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A B S T R A C T   

Conceptual rainfall-runoff models (CRRMs) can be used as a design tool for green roofs due to their simplicity 
and acceptable accuracy. This study showed how the uncertainty of CRRM parameters could be reduced by 
changing the calibration practice, which can enhance the interpretation and identifiability of CRRM parameters. 
A CRRM was developed and tested on a dataset of 14 extensive green roofs located in four Norwegian cities with 
different climatic conditions. Two calibration schemes were compared: a common scheme using runoff data as a 
basis for calibration (single-objective), and a scheme combining runoff and soil moisture data for the calibration 
(multi-objective scheme). The results confirmed the ability of the CRRM to simulate runoff from extensive green 
roofs across multiple climatic zones and different roof configurations (Kling Gupta Efficiency > 0.75). The multi- 
objective calibration scheme was found to reduce the uncertainty of the CRRM parameters, especially the storage 
parameters, enhancing the physical interpretation of parameter values. The study attempted to give guidelines to 
estimate parameters of the CRRM which can be used by practitioners for new roof configurations under different 
climatic conditions.   

1. Introduction 

Urbanization converts the natural undeveloped areas into imper
meable surfaces such as roads, parking lots, and rooftops. This results in 
decreased evapotranspiration and infiltration, and increased stormwater 
runoff on a catchment level. The ongoing climate change is causing an 
increase in the intensity of precipitation for many places around the 
globe (Sun et al., 2006), while global urbanization is growing rapidly 
(Luederitz et al., 2015). The combined effect of climate change and rapid 
urbanization is expected to increase the stormwater runoff in the future, 
as stated by Yazdanfar & Sharma (2015) among others. Green roofs have 
over the past decade become a popular solution to reduce stormwater 
runoff in urban areas. Green roofs have shown great potential in 
reducing runoff from rooftops, as concluded by many studies (Fassman- 
Beck et al., 2013; Johannessen et al., 2018; Stovin, 2010). Additionally, 
green roofs have been shown to improve runoff water quality, enhance 
urban biodiversity and improve visual amenities in urban areas (Czemiel 
Berndtsson, 2010). 

Much of the current literature on green roofs pay particular attention 
to the performance of different green roofs under different climatic 
conditions through field measurements (Fassman-Beck et al., 2013; 

Hamouz et al., 2018; Johannessen et al., 2018; Stovin, 2010). Some 
studies applied hydrological models to test green roofs performance 
beyond the measured data and roof characteristics which is of great 
interest for planning future cities (Li & Babcock, 2016; Stovin et al., 
2013). Hydrological models of green roofs can serve as a valuable tool 
for decision-makers and stormwater engineers for planning and design 
purposes. These practitioners prefer models that i) require less effort to 
set up, ii) run with low computation costs, and iii) give reliable results 
(Johannessen et al., 2019). Conceptual rainfall-runoff models (CRRM) 
fulfil these criteria as they are simpler and computationally cheaper than 
physically-based models. Additionally, their results are more generic 
and interpretable than data-driven models. 

CRRMs have been applied successfully in many green roof studies 
(Palla et al., 2012; Soulis et al., 2017; Stovin et al., 2013; Vesuviano 
et al., 2014; Yio et al., 2013). The most common conceptualization is to 
represent the roof with a cascade of linear or nonlinear tanks repre
senting the different roof layers (i.e., vegetation, substrate, and drainage 
layers). The storage and the flow of water between the tanks are 
controlled via parameters. Due to the simplification of these conceptual 
models, most of their parameters are not physically measurable, and 
hence calibration is needed to find their optimal values. 
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Many studies have attempted to link the parameters of CRRMs and 
the physical characteristics of the green roofs. For instance, Stovin et al. 
(2013) explained how the storage parameters in their reservoir model 
could be estimated from the substrate’s measurable physical properties 
(i.e., field capacity). Vesuviano & Stovin (2013) found the parameters of 
the drainage layers in their model to be independent of rain intensity, 
while correlated with the physical properties of the drainage layer and 
the slope of the roof. Yio et al. (2013) found the flow parameters of the 
substrate layer to be correlated to the depth of the substrate. Similarly, 
Soulis et al. (2017) described how the depth of the roof affected the flow 
parameter in their reservoir model. However, all the above-mentioned 
studies were conducted in lab-scale green roofs in which horizontal 
water flow through the roof structure is insignificant due to the short 
horizontal flow length compared to a full-scale roof. Hence, there is a 
need for further studies to estimate CRRM parameters for full-scale 
green roofs. Estimating parameters of green roof models has been 
done for other models than the reservoir routing based models. For 
instance, Johannessen et al. (2019) attempted to transfer parameters of 
a SWMM model (Rossman, 2015) between similar full-scale green roofs 
located in four Norwegian cities. The calibrated parameter sets for the 
same type of green roofs differed between the cities, limiting the per
formance of the transferred parameter sets. 

The limited knowledge on how to estimate CRRM parameters of 
green roofs from climatic and roof characteristics can be attributed to 
the uncertainty of finding their optimal values. Many sources of un
certainties can affect parameter values, such as the uncertainty of model 
inputs, uncertainty due to the calibration practice, and the induced 
uncertainty due to the model structure. For instance, Sims et al. (2019) 
attributed the errors of their hydrological model to the uncertainty of 
initial soil moisture measurements. On the other hand, Hernes et al. 
(2020) found the lack of temporal storage in the drainage layer in the 
Mike-Urban model (DHI, 2017) to be compensated by the model by 
assigning unrealistic parameter values during calibration to fit with the 
observed discharge. In this study, we investigated the effect of the 
calibration practice on CRRM parameters values. 

Many calibration practices can be found in green roof modelling 
studies, such as maximizing NSE between observed and simulated runoff 
(Hamouz & Muthanna, 2019; Liu & Fassman-Beck, 2017; Soulis et al., 
2017), or minimizing the error between observed and simulated runoff 
(such as the sum of square error or the root mean square error) (Alfredo 
et al., 2010; Vesuviano et al., 2014; Yio et al., 2013). However, it was 
found that for all the studies, the measured runoff was the only quantity 
used as a basis of calibration in most green roof modelling studies. This 
was found despite the fact that using only one measured quantity (e.g., 
observed runoff) for model calibration increases the uncertainty of 
parameter values (Beven, 1989). This is because the parameters of the 

substrate and vegetation layers do not explicitly simulate the runoff 
process but other internal processes (i.e., infiltration, evapotranspira
tion, soil storage, plant storage, etc.). Hence, using one measured 
quantity (i.e., runoff) might cause convergence towards the wrong 
parameter set due to the compensation and interaction between model 
parameters which increase the equifinality (Beven, 1993), in which 
different parameter sets give similar results. Hernes et al. (2020) 
demonstrated this by presenting two different parameter sets of a green 
roof model that gave the same results due to the compensation between 
substrate and drainage parameters. 

The benefits of constraining hydrological models by calibrating 
against more than one measured quantity, hereafter referred to as 
“multi-objective calibration”, have been discussed frequently in general 
hydrological modelling studies. Seibert (2000) applied a multi-objective 
calibration scheme that combined measured groundwater level data and 
observed streamflow data to calibrate a CRRM for multiple catchments. 
The author found that the multi-objective calibration scheme signifi
cantly reduced parameter uncertainty compared to the typical scheme 
using streamflow measurements only. A similar finding was found by 
Beldring (2002), in which groundwater level data and runoff data were 
used to calibrate a physically-based model for a Norwegian catchment. 
Parajka et al. (2009) found a multi-objective calibration scheme 
combining soil moisture data with runoff data to provide a more robust 
parameter set for a CRRM compared to using only one measured 
quantity. Budhathoki et al. (2020) applied a multi-objective calibration 
scheme incorporating in-site soil moisture measurements with runoff 
data to calibrate a distributed hydrological model. The study found that 
the scheme to reduce parameter uncertainty while enhancing the 
simulation accuracy of the internal catchment storage in comparison to 
a calibration scheme that only used flow measurements. 

In this study, a CRRM was developed and validated using a dataset of 
14 full-scale extensive green roofs located in four Norwegian cities with 
different climatic conditions. In addition, the study investigated the 
advantages of multi-objective calibration (i.e., using soil moisture and 
runoff for calibration) in green roof CRRMs. The study sheds light on 
how the multi-objective calibration improves the model results by 
reducing the uncertainty of model parameters, enhancing their identi
fiability, and their physical interpretation. Moreover, the study 
attempted to develop a general guideline for estimating parameters for 
the CRRM from climate and physical roof characteristics simplifying the 
use of the model for practical applications. 

Fig. 1. The hydrological model used in this study.  
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2. Methods and tools 

2.1. The hydrological model 

The hydrological model is a simple two-stage reservoir model 
(Fig. 1), somewhat similar to the one applied in the study by Vesuviano 
et al. (2014) and to the FAVEUR model (Ramier et al., 2018). The model 
represents the roof layers by two tanks: an upper tank for the substrate 
layer and a lower tank for the drainage layer. The precipitation (P) en
ters the substrate and fills the available storage of the substrate layer 
(S1). Water infiltrates into the lower tank when the storage of the sub
strate layer is surpassed. The infiltration process is determined by 
Equation (1). The drainage layer stores the water (S2), and the water 
starts to flow from S2 (Q) after the storage of the drainage layer is filled 
(Equation (2)). 

INFt = k1(max(SWt − S1, 0))n1 (1)  

Qt = k2(max(DWt − S2, 0))n2 (2)  

SWt = max(SWt− 1 +Pt − AET1t − S1, 0) (3)  

DWt = max(DWt− 1 + INFt − AET2t − S2, 0) (4) 

Evapotranspiration is allowed from both storage tanks. Actual 
evapotranspiration (AET) (Equation (7) and Equation (8)) is determined 
from the potential evapotranspiration (PET) and the actual soil mois
ture. The Oudin equation (Equation (5)) was used to determine PET 
following recommendations from Johannessen et al. (2017). In the 
Oudin equation, PET is a function of the latitude and the Julian day as 
follows: 

PET
[

mm
day

]

=

⎧
⎨

⎩

0 if Tmean⩽ 5C
Ra
λρ × 0.01 × (Tmean + 5) if Tmean > 5C

(5) 

Tmean is the daily mean temperature [CRa is extra-terrestrial radiation 
derived from the Julian day and latitude [MJ.m− 2], 1

λρ ≈ 0.408, λ the 
latent heat of vaporization [MJ.kg− 1], ρ is the volumetric mass of water 
[kg.m− 3]. The reduction factor (ft) due to the moisture deficit was 
determined using a simple soil reduction function (Equation (6)). 

ft = min(1,
SWt− 1

S11
) (6)  

AET1t = ft × PETt (7)  

AET2t = min(DWt− 1,PETt − AET1t) (8) 

S11 is a calibrated parameter representing a threshold of the soil 
moisture, after which the AET equals the PET. 

2.2. The calibration schemes 

The model has seven calibrated parameters: the storage parameters 
(S1, S2), the substrate flow parameters (k1, n1), the drainage flow pa
rameters (k2, n2), and an evapotranspiration parameter (S11). Two 
calibration schemes were tested:  

• Single-objective calibration: maximize KGEQ (objective function 1 
OF1)  

• Multi-objective calibration: maximize KGEQ × KGESW (objective 
function 2 OF2) 

KGEQ is the Kling-Gupta Efficiency (Gupta et al., 2009) between 
simulated and observed runoff and KGESW is the Kling-Gupta Efficiency 
between simulated and observed soil moisture. According to Thiemig 
et al. (2013), the KGE can be used to classify model results as follows:  

• Good (KGE ≥ 0.75)  
• Satisfactory (0.75 > KGE ≥ 0.5)  
• Poor (unsatisfactory) (0.5 > KGE) 

Multi-objective calibration techniques can be divided into Pareto- 
based and aggregated (Efstratiadis & Koutsoyiannis, 2010). The 
Pareto-based approach detects sets of non-dominated solutions using 
multi-objective evolutionary algorithms while the aggregated approach 
selects a unique parameter set by multiple criteria embedded into one 
aggregated objective function, making it a best compromise. In this 
study, the adopted multi-objective calibration scheme can be classified 
as an aggregated approach, similar to the work of Seibert (2000). 

We evaluated two parameterization options of the CRRM; a linear 
parameterization in which the values of n1 and n2 were fixed to one 
during calibration (5 calibrated parameters), and a nonlinear parame
terization in which n1 and n2 are calibrated (7 calibrated parameters). 
Both calibration schemes were applied to the linear and nonlinear pa
rameterizations of the CRRM. 

For calibration, the differential evolution algorithm (DE) (Storn & 
Price, 1997) was applied using the Deoptim library in R (Mullen et al., 
2011). The algorithm solved the optimization problem by generating 
populations of candidate solutions. Each new population was generated 
from the previous one in such a way that the new objective function of 
each candidate was either improved or kept the same in the next gen
eration. For each calibration scheme, 200 generations were done. The 
number of candidates in each population was selected as 
thenumberofmodelparameters× 10. The best result of each generation was 
stored. The best solution of the 200th generation was considered as the 
optimized parameter set. Due to the lack of a snow routine in the current 
model, snow periods were excluded (1st of October – 31st of March) 
from the simulations. 2017 was used for model calibration while 2016 
was used for model validation. The simulations were done using a 5- 
minute time step. 

Table 1 
Roof geometries and configurations.  

Category City Area 
(m2) 

Slope 
(o) 

Substrate type 
and thickness 

Drainage layer 
type and thickness 

Thin1 BERG 7.84 16 VM (30 mm) RF (3 mm) 
OSL 8 5.5 – – 
SAN 8.48 27 VM (30 mm) RF (3 mm) 
TRD 15 16 – –  

Thin2 BERG 7.84 16 VM (30 mm) RF (10 mm) 
OSL 8 5.5 VM (30 mm) RF (10 mm) 
SAN 8.48 27 VM (30 mm) RF (10 mm) 
TRD 15 16 VM (30 mm) RF (10 mm)  

Medium BERG 7.84 16 VM (30 mm) MW (50 mm) 
OSL 8 5.5 – – 
SAN 8.48 27 VM (30 mm) MW (50 mm) 
TRD 15 16 VM (30 mm) MW (50 mm)  

Thick BERG 7.84 16 VM (30 mm) +
BS (50 mm) 

EPS (75 mm) + RF 
(5 mm) 

OSL 8 5.5 VM (30 mm) +
BS (50 mm) 

HDPE (40 mm) +
RF (5 mm) 

SAN 8.48 27 VM (30 mm) +
BS (50 mm) 

EPS (75 mm) + RF 
(5 mm) 

TRD 15 16 VM (30 mm) +
BS (50 mm) 

HDPE (25 mm) +
RF (5 mm)  

Valid TRD 100 2 VM (30 mm) RF (10 mm) +
HDPE (25 mm) 

VM = Pre-grown vegetation mats (sedum plants). 
RF = Retention fabric. 
MW = Mineral wool plate. 
BS = Brick substrate (a mixture of Leca and bricks). 
EPS = Plastic drainage layers of expanded polystyrene. 
HDPE = Plastic drainage layers of high-density polyethylene. 
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3. Green roof data 

Fourteen green roofs, located in four Norwegian cities: Bergen 
(BERG), Trondheim (TRD), Sandnes (SAN), and Oslo (OSL), were used in 
this study. BERG receives the highest amount of precipitation, followed 
by SAN, TRD, and OSL. The four cities cover three classes of the Köppen 
Geiger classification system (Kottek et al., 2006). TRD has a subpolar 
oceanic climate (Dfc) while OSL has the warm-summer humid conti
nental climate (Dfb). The climate of Bergen and Sandnes cities is clas
sified as temperate oceanic climate (Cfb). The green roofs were 
categorized into five groups based on their configurations: Thin1 with a 
thickness of 33 mm, Thin2 with a thickness of 40 mm, Medium with a 
total thickness of 80 mm, and Thick with a thickness higher than 100 
mm. An additional category termed “Valid” includes an additional green 
roof located in Trondheim (TRD), described in Hamouz et al., (2018). 
The valid roof was used to verify the applicability of the developed 

guidelines to estimate the parameters of the reservoir model. The details 
of the roof configurations are presented in Table 1. Precipitation, tem
perature, and runoff were collected in 1-min resolution between 2015 
and 2017 at BERG, SAN, and TRD, while OSL roofs have eight years of 
records from 2011 to 2017. The roof “Valid” has a data record of 11 
months collected between May 2017 to April 2018. Details about field 
measurements and data processing are documented by Johannessen 
et al. (2018) and Hamouz et al. (2018). 

4. Results and discussion 

4.1. Parameterization of the CRRM 

The Thin2 roofs in the four cities were used to compare linear and 
nonlinear parameterizations of the CRRM, as shown in Fig. 2. The result 
confirmed the ability of the two parameterization options to simulate 

Fig. 2. Comparison between the two calibration schemes and the two parameterizations of the CRRM at Thin2 roofs.  
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observed and simulated discharges in both calibration and validation 
periods (KGE ≥ 0.75). The nonlinear parameterization of the CRRM 
produced slightly better runoff simulations (higher KGE values) than the 
linear option, especially in BERG and OSL roofs. Similarly, Skala et al. 
(2019) found a nonlinear model in their study to yield more accurate 
results than a linear cascade model. This can be attributed to the higher 
degree of freedom for the nonlinear parameterization due to the number 
of calibrated parameters, which improves the calibration (Schoups et al., 
2008). However, the reduced number of calibrated parameters and the 
fact that the results produced by the linear parameterization of the 
CRRM model are still classified as good, based on the KGE criteria 
(Thiemig et al., 2013) make the linear parameterization of the CRRM 
more favourable over the nonlinear one. Models with few parameters 
are widely recommended in the hydrological modelling literature over 
models with higher model parameters (Kay et al., 2006; Oudin et al., 
2008; Tsegaw et al., 2019) due to the reduced model parameter in
teractions and uncertainties. 

4.2. Calibration schemes and parameter values 

The comparison between the two calibration schemes is presented in 
Fig. 2. By considering runoff data only as a basis for calibration, it is 
possible to produce good results of runoff simulations (KGE > 0.75) for 
both the calibration and validation data. However, by applying the 
single objective calibration, there is a high risk of yielding unsatisfactory 
soil moisture simulations. Fig. 3 and Fig. 4 present one month of runoff 
and soil moisture simulations from calibration and validation periods at 
Thin2-BERG roof using the two calibration schemes. The results show 
how it is possible, by applying the single-objective scheme, to achieve 

satisfactory runoff calibration in both the calibration and validation 
periods with a large deviation on the simulated internal state of the roof 
(i.e., soil moisture), which in this case was underestimated. This 
demonstrated the need for alternative calibration strategies which ac
count for the internal state and runoff response. In this case, it was found 
that the optimizer converged to optimal solutions by splitting the total 
roof storage between the substrate and the drainage layer in an unre
alistic way which resulted in erroneous soil moisture simulation results. 
A consequence of this approach was a high correlation between the 
storage parameters (S1 and S2) which could result in equifinality, where 
different parameter sets yield similar results. Similar correlations were 
found by Locatelli et al. (2014) between the storage parameters when 
only runoff was used as a basis for calibration. Applying the multi- 
objective calibration strategy, the model produced satisfactory results 
for both flow and soil moisture simulations. Budhathoki et al. (2020) 
found the same, that multi-objective calibration produced better soil- 
moisture simulations than single-objective calibration. Similarly, Sei
bert (2000) reported better runoff and groundwater level simulations by 
following a multi-objective calibration compared to a single-objective 
scheme. It should be noted that the TRD and SAN roofs have large 
gaps in soil moisture measurements in the validation year, which 
resulted in low values of KGE for the simulated soil moisture. 

The results presented in Fig. 5 and Fig. 6 illustrate the parameter sets 
of the best solution in each of the 200 generations identified by the DE 
algorithm for the nonlinear and linear parameterization of the CRRM, 
respectively. It can be noted that the calibration scheme highly affects 
the uncertainty of parameter values in the two parameterizations of the 
CRRM. This can be seen in Fig. 5 and Fig. 6 by the range of parameter 
values giving the same modelling results. The single-objective 

Fig. 3. Comparison between the two calibration schemes in simulating runoff and soil moisture (Thin2-BERG) for one month (calibration period).  
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calibration made it difficult to conclude on the optimal set of parame
ters, especially the storage parameters, if no prior knowledge about the 
system is utilized. For instance, Soulis et al. (2017) applied runoff only 
for calibrating a reservoir model. However, the storage parameters in 
the model were fixed following the result of lab measurements and the 
calibration results of a physical-based model. As presented in Fig. 5 and 
Fig. 6, the multi-objective calibration scheme resulted in unique clusters 
of solutions for most parameters that were easier to interpret than the 
solutions of the single-objective scheme. For instance, S1 values of the 
Thin2 roofs clustered around 10 mm and ranged between 7 mm and 11 
mm, accounting for 23% to 36% of the substrate thickness. Likewise, 
Locatelli et al. (2014) concluded a similar value of S1 when they applied 
a reservoir model for a green roof with 30 mm substrate depth, similar to 
the Thin2 roofs. 

In addition, minor differences between S1 values in the four cities 
were noted. For instance, the roofs at OSL and SAN had a higher S1 value 
than those at BERG and TRD. This can be attributed to the different 
geometries of the roofs, particularly the slope. The OSL roofs have a mild 
slope of 5.5%, and TRD and BERG roofs have a slope of 16% and SAN has 
a slope of 27%. Through lab measurements, Getter et al. (2007) found 
the green roof retention (i.e., available permanent storage) to increase 
by decreasing the roof’s slope. The S1 values at the SAN roof location 
were slightly higher than those at BERG and TRD, despite the 27% slope. 
Though this was somewhat contradictory to expectation, it is difficult to 
evaluate accurately the value of S1 due to the quality of the soil moisture 
dataset, which can be seen in the model performance during validation. 
Another factor that could explain the minor differences of S1 values is 
the difference of vegetation types and densities amongst the roofs, as 
reported by Johannessen et al. (2018). TRD and BERG have lower 

vegetation coverage and percentages of Sedum plants, in comparison to 
SAN and OSL roofs which results in different substrate properties (i.e. 
porosities) due to roots development. 

Another interesting finding was the S11 parameter, the threshold at 
which the actual evapotranspiration equals the potential. The parameter 
had a unique value for each city, which can be explained by the dif
ference in local climatic conditions (e.g. wind exposure, air humidity, 
solar radiation) and the vegetation types and densities. As reported in 
Johannessen et al. (2018), TRD roofs were the most wind-exposed, 
which increased the evapotranspiration resulting in a lower value of 
S11 than the other roofs. In comparable studies, S11 has been fixed to 
the maximum holding capacity of the roof (Stovin et al., 2013). Argu
ably, fixing S11 to the maximum holding capacity might lead to an 
overestimation of green roof retention for locations without enhanced 
evapotranspiration conditions (e.g., low wind exposure). In addition, 
the differences of vegetation types and densities between the roofs as 
reported in Johannessen et al. (2018) study could partly explain the 
geographical difference of S11. Thin2 roofs at TRD and BERG have 
higher percentages of local vegetation than OSL and SAN roofs, which 
enhances evapotranspiration, resulting in lower values of S11 param
eter. Johannessen et al. (2018) reported higher values of event-based 
retention of Thin2 roofs at TRD and BERG in comparison to SAN and 
OSL cities. 

The value of S2, the permanent storage in the drainage layer, varied 
between the four cities. At OSL and SAN roofs, S2 was found to vary 
between 1 mm and 2 mm, whereas the value of S2 in TRD and BERG was 
found to higher and to vary in a wider range, as shown in Fig. 6. The 
model used in this study does not explicitly account for the storage due 
to the plant interception. Therefore, the parameter S2 represents the 

Fig. 4. Comparison between the two calibration schemes in simulating runoff and soil moisture (Thin2-BERG) for one month (validation period).  
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permanent storages in the drainage and vegetation layers. Hence, the 
variation of S2 amongst the roofs can somewhat we explained by the 
differences of vegetation densities and types (Johannessen et al., 2018). 
Locatelli et al. (2014) developed a CRRM for extensive green roofs with 

an additional layer representing the plant interception. They found the 
storage parameter of the vegetation layer to be 0.8 mm. 

The sensitivity of S2 was investigated by running grid simulations in 
which S2 was changed by a fixed step (1 mm) while fixing the other 

Fig. 5. Calibration results of the two schemes at Thin2 roofs (the nonlinear parameterization of the CRRM).  
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model parameters to their optimal values. The results of these simula
tions are illustrated in Fig. 7. Changing the value S2 parameter was 
found to have no effect on the simulated soil moisture (KGESW) and to 
have a little impact on the quality of runoff simulation (KGEQ), except 
for the Thick roofs at TRD and OSL and the Medium roof at TRD. In 
addition, the range of S2 between (1 mm – 2 mm) could yield good 
modelling results (KGEQ > 0.75) in most of the roofs in the study. 

The parameters n1 and n2 showed unpredictable variations for both 
calibration schemes, probably due to compensation with other model 
parameters, further strengthening the conclusion of using the linear 
parameterization of the CRRM. Similarly, Vesuviano et al. (2014) sug
gested fixing the value of n in their reservoir model due to the 
compensation between the n and k parameters. 

By following the multi-objective scheme, the parameter k1 showed a 
wide range of variation in the linear parametrization of the CRRM 
(Fig. 6). We investigated how k1 and k2 are related in all roofs in the 
study. This was done by running grid simulations (Fig. 8) in which k1 
and k2 were changed by a small step (0.01) while fixing S1, S2, and S11 
parameters. The result presented in Fig. 8 suggested a unique k1-k2 
relationship for each green roof thickness that was influenced by the 
local climatic conditions as well. The k1 and k2 values can be inter
changeable for Thin roofs (Thin1 and Thin2). This means that a model 
with high k1 and low k2 can achieve the same response as a model with 
low k1 and high k2 values. However, this is not valid for Thick roofs 

where the k2 value must be lower than k1 for optimal performance. The 
parameter k1 represents the portion of water above field capacity that 
flows into the drainage layer, representing the vertical infiltration of 
water through the substrate. The k2 parameter represents the horizontal 
movement through the drainage layer (i.e., the portion of water that 
leaves the roof system). Green roofs substrates are designed with high 
porous materials to avoid surface ponding, and thus quickly moving 
from the substrate to the drainage layer after reaching field capacity. 
Additionally, the horizontal flow distance (i.e. roof length) is typically 
higher than the vertical flow distance (i.e. substrate) by orders of 
magnitude in extensive green roofs Hence, the vertical movement of 
water is typically faster than the horizontal movement (Johannessen 
et al., 2018). Therefore, it can be concluded that the value of k1 should 
be higher than k2, which is illustrated in Fig. 8. It was found that the k1 
value can be fixed between 0.75 and 1 for all roofs in the study. 

After fixing the k1 value to 0.75, the variation in the k2 value can be 
attributed to the location, and to, some extent, the roof depth (Fig. 9). 
Similar relations between roof flow parameters and the substrate depth 
were described by Yio et al. (2013) and Soulis et al. (2017). TRD and 
SAN roofs were found to have lower k2 values, in comparison to the 
roofs at BERG and OSL cities. This is can be partly explained by the 
difference in rainfall events characteristics amongst the four cities. For 
instance, BERG city receives rainfall events with higher amount and 
intensity and has shorter anticipant dry weather periods (ADWP), in 

Fig. 6. Calibration result of the two schemes at Thin2 roofs (the linear parameterization of the CRRM).  
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comparison to TRD and SAN cities (Abdalla et al., 2021). Consequently, 
the green roofs located at TRD and SAN have, in most of the time, lower 
soil moisture contents than the green roof at BERG. As a result, the green 
roofs at BERG were found to have higher k2 values (more outflow) in 
comparison to the roofs at TRD and SAN, as illustrated in Fig. 9. 

It should be noted that OSL roofs have the mildest slope and the 
highest k2 values. This is somewhat contradictory to expectation as k2 
values are expected to be higher for steep roofs and lower for roofs with 
mild slopes. One possible explanation is the differences of rainfall-events 
characteristics amongst the four cities, which influence the value of k2 
parameter as explained earlier. Hence, it is expected to observe a higher 
impact of roof slope on the value of k2 if roofs with different slopes are 
tested in the same location. 

4.3. Calibration and validation of the CRRM model 

Following the multi-objective calibration, the linear CRRM was 
calibrated and validated for all the green roofs at the four locations in 
the study. The results are shown in Table 2. 

The result confirmed the CRRM’s ability to produce good runoff 
modelling results (KGEQ > 0.75) in most cases. Some of the soil moisture 
simulations results were unsatisfactory (KGESW < 0.5), especially for the 
TRD and SAN roofs which were attributed to large gaps in soil moisture 
measurements. 

The value of S1 for Thin1, Thin2, and Medium roofs was found to be 
9.56 ± 1.44, accounting for 27–36% of the substrate depth. For Thick 
roofs, the S1 value was found to be 29.3 ± 1.44, which is equivalent to 
34% to 38% of the substrate depth. These are consistent with the re
ported literature values of the maximum holding capacities of vegeta
tion mats (Johannessen et al., 2018; Locatelli et al., 2014) and brick- 
based substrates (Stovin et al., 2013). It can be noted that the varia
tion of S1 values was larger for Thick roofs. One possible explanation 
could be the different drainage layer configurations for the roofs in this 
category (Table 1). 

4.4. Practical applications of the CRRM 

The hydrological performance of green roofs is typically assessed by 
estimating retention and detention. The former is the permanent 
reduction of stormwater due to evapotranspiration, and it is typically 
determined from flow accumulation curves (Stovin et al., 2013). On the 
other hand, the detention is the delay and attenuation of drainage out
flows due to the temporal storage of water within the green roof layers. 
Detention is typically estimated via several indicators such as peak 
reduction rate, peak delay, and centroid delay (Stovin et al., 2017) or by 
using flow duration curves (Hernes et al., 2020). The model developed 
in this study can be used by practitioners (e.g., stormwater engineers, 
city planners, etc.) to plot flow accumulation curves and flow duration 
curves from long-term simulations to estimate retention and detention 
performance. Fig. 10 presents the simulated and observed flow accu
mulation curves and flow duration curves for Thin2 roofs. Flow accu
mulation curves illustrate the cumulative reduction of precipitation 
water due to the evapotranspiration of the green roof. As shown in 
Fig. 10, the model gave accurate estimations of flow accumulation 
curves at the different climatic regions. On the other hand, flow duration 
curves show the values of runoff from green roofs and durations when 
these runoff values are exceeded. Therefore, they represent the practical 
implication of green roof detention (i.e. peak delay and attenuation). For 
instance, Hernes et al. (2020) showed how the implementation of green 
infrastructures at the catchment scale could reduce the duration of 
drainage flows above a critical value that triggers combined sewer 
overflow events. As presented in Fig. 10, the CRRM estimated accurately 
the flow duration curves at the four cities except for high runoff values 
(duration < 1hr) and low values (duration > 1000 hr). 

4.5. Guidelines to estimate parameters of the linear CRRM 

Well-calibrated CRRM yielded satisfactory runoff and soil moisture 
simulations across different climatic regions and can be used to estimate 
green roof retention and detention performances. Based on the results of 
this study, we attempted to give guidelines that can be used to estimates 

Fig. 7. Effect of varying the value of S2 (mm) on the value of Kling-Gupta efficiency (KGE_Q) of the simulated discharges at the four cities for the four roof con
figurations and for the linear parameterization of the CRRM. 
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the linear CRRM parameters, when observations are not available for 
model calibration:  

• S1 represents the available permanent storage in all substrate layers. 
Vegetation mats were found to have around 23% to 36% of their total 
depth, while brick-based substrates have around 40% of total sub
strate depth.  

• The optimal range of the parameter S2 was found to be (1 mm–2 mm) 
in most of the roofs. This parameter represents the permanent stor
ages of the vegetation (i.e. interception) and drainage layers.  

• S11 varies according to local climatic conditions and the vegetation 
characteristics of the green roof but it is typically less than the total 
substrate thickness. S11 is lower for locations with enhanced 
evapotranspiration conditions (wind exposure, humidity, vegetation 
density, etc.). Further studies are needed to relate the S11 value with 
local climatic conditions and vegetation characteristics.  

• The value of k1 represents the vertical movement of water, which is 
typically faster than the horizontal movement. A k1 value of 0.75 
was found to fit with the different roof characteristics and climatic 
regions.  

• The value of k2 ranges between 0.01 and 0.15 in all roofs in our 
study. It depends mainly on the climatic conditions and slightly on 
the roof thickness. A low k2 value is expected in dry locations, and a 
high k2 value is expected in wet locations and mild-sloped roofs. 

These guidelines were tested on a month-long simulation for the 
Valid-TRD roof (July 2017) (Fig. 11). High KGE values were obtained for 

soil moisture and runoff simulations (KGEQ = 0.77, KGEsw = 0.82), 
indicating good simulation results (Thiemig et al., 2013). 

The value of S1 was initially selected as 10 mm yielding a good 
runoff simulation but overestimated the soil moisture. By reducing the 
value of S1 to 6 mm it resulted in a good fit with the Valid-TRD roof. This 
can be attributed to the difference in substrate age between Valid-TRD 
roofs and the other roofs in the study. De-Ville et al. (2017) found the 
holding capacity of a crushed brick-based substrate of an extensive green 
roof to increase by 7% over five years. The modelled period of Valid-TRD 
was during the third month of operation of the roof, which might explain 
the reduced S1 value compared to other roofs. It should be noted that the 
type of substrate in the study by De-Ville et al. (2017) was different from 
the substrate of Valid-TRD. The value of S11 was taken as 30 mm, which 
was estimated from the value of S11 at OSL. This because the roof is 
almost flat (2 degree) which affects its exposure to wind and hence 
reduce the evapotranspiration. k1 was fixed to 0.75 following the gen
eral guidelines, while the value of k2 was estimated as 0.02 from Fig. 8 
by following the curves of TRD. S2 was taken as 1.5 mm, following the 
general guidelines. 

5. Conclusions 

This study developed a CRRM reservoir model that can be used to 
estimate the hydrological performance of green roofs. The study high
lighted the benefits of the multi-objective calibrations, in which soil 
moisture measurements are used for calibration together with runoff 
data in green roof CRRMs. Based on the results, the following 

Fig. 8. Effects of changing k1 and k2 parameters (using the linear parameterization of the CRRM).  
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conclusions were drawn:  

• The results confirmed the ability of the CRRM to simulate runoff 
from extensive green roofs across multiple climatic zones and 
different roof configurations  

• The multi-objective calibration scheme reduced the uncertainty of 
the CRRM model parameters, especially the storage parameters, 
which enhances the physical interpretation of CRRM parameters 
values. The scheme results in comparable runoff simulations as the 
single-objective scheme while yielding satisfactory soil moisture 
simulations. 

This study attempted to give practitioners guidelines to estimate the 
linear CRRM model parameters for new roof configurations. However, 

we acknowledge the difficulties of identifying k2 and S11 parameters 
solely from the green roof characteristics. The variation of the parameter 
k2 amongst the cities was attributed to the rainfall characteristics of 
each city (i.e. amount, intensity, ADWP). The variation of the parameter 
S11 was attributed to the local climatic conditions (i.e. wind exposure, 
air humidity, solar radiation, etc.) and vegetation characteristics of the 
green roof (density and type). 
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Fig. 9. Effect of varying the value of k2 on the value of the objective function (OF2) at the four cities for the four roof configurations (k1 = 0.75) and for the linear 
parameterization of the CRRM. 

Table 2 
Optimal parameters for the roofs (Linear model/calibration scheme 2).  

Category City S1 S11 k1 k2 S2 Calibration Validation 

KGEQ KGESW KGEQ KGESW 

Thin1 BERG  9.66  16.44  0.14  0.82  1.51  0.88  0.91  0.88  0.8 
OSL          
SAN  10.65  23.15  0.16  0.04  1.74  0.7  0.64  0.81  0.52 
TRD           

Thin2 BERG  8.74  13.58  0.81  0.08  2.82  0.92  0.84  0.89  0.87 
OSL  10.96  29.64  0.67  0.10  1.38  0.89  0.77  0.83  0.77 
SAN  10.40  19.66  0.48  0.02  1.79  0.92  0.77  0.82  0.38 
TRD  9.75  11.96  0.96  0.01  7.07  0.82  0.85  0.75  0.44  

Medium BERG  6.38  9.42  0.04  0.36  2.10  0.91  0.4  0.89  − 0.4 
OSL          
SAN  10.68  24.24  0.35  0.02  3.16  0.88  0.63  0.89  0.52 
TRD  8.46  12.45  0.73  0.01  2.60  0.79  0.84  0.79  0.58  

Thick BERG  29.43  17.65  0.86  0.20  28.50  0.82  0.95  0.84  0.88 
OSL  31.46  30.98  0.87  0.15  0.01  0.73  0.74  0.72  0.82 
SAN  29.53  30.06  0.76  0.07  0.00  0.81  0.58  0.73  − 0.41 
TRD  27.24  24.36  0.90  0.03  0.06  0.75  0.94  0.78  0.09  
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