

Modeling and Executing Cyber Security Exercise Scenarios in Cyber Ranges

Journal Pre-proof

Modeling and Executing Cyber Security Exercise Scenarios in Cyber
Ranges

Muhammad Mudassar Yamin, Basel Katt

PII: S0167-4048(22)00034-7
DOI: https://doi.org/10.1016/j.cose.2022.102635
Reference: COSE 102635

To appear in: Computers & Security

Received date: 15 April 2021
Revised date: 13 January 2022
Accepted date: 31 January 2022

Please cite this article as: Muhammad Mudassar Yamin, Basel Katt, Modeling and Execut-
ing Cyber Security Exercise Scenarios in Cyber Ranges, Computers & Security (2022), doi:
https://doi.org/10.1016/j.cose.2022.102635

This is a PDF file of an article that has undergone enhancements after acceptance, such as the addition
of a cover page and metadata, and formatting for readability, but it is not yet the definitive version of
record. This version will undergo additional copyediting, typesetting and review before it is published
in its final form, but we are providing this version to give early visibility of the article. Please note that,
during the production process, errors may be discovered which could affect the content, and all legal
disclaimers that apply to the journal pertain.

© 2022 Published by Elsevier Ltd.

https://doi.org/10.1016/j.cose.2022.102635
https://doi.org/10.1016/j.cose.2022.102635

Modeling and Executing Cyber Security Exercise

Scenarios in Cyber Ranges

Muhammad Mudassar Yamin∗and Basel Katt

Department of Information Security and Communication Technology,
Norwegian University of Science and Technology, Teknologivegen 22,

2815 Gjvik

January 2022

Abstract

The skill shortage in global cybersecurity is a well-known problem; to
overcome this issue, cyber ranges have been developed. These ranges provide
a platform for conducting cybersecurity exercises; however, conducting such
exercises is a complex process because they involve people with different skill
sets for the scenario modeling, infrastructure preparation, dry run, execution,
and evaluation. This process is very complex and inefficient in terms of time
and resources. Moreover, the exercise infrastructure created in current cy-
ber ranges does not reflect the dynamic environment of real-world systems
and does not provide adaptability for changing requirements. To tackle these
issues, we developed a system that can automate many tasks of the cyber-
security exercise life cycle. We used model-driven approaches to (1) model
the roles of the different teams present in the cybersecurity exercises and (2)
generate automation artifacts to execute their functions efficiently in an au-
tonomous manner. By executing different team roles such as attackers and
defenders, we can add friction in the environment, making it dynamic and
realistic. We conducted case studies in the form of operational cybersecurity
exercises involving national-level cybersecurity competitions and a university
class setting in Norway to evaluate our developed system for its efficiency,
adaptability, autonomy, and skill improvement of the exercise participants.
In the right conditions, our proposed system could create a complex cyberse-
curity exercise infrastructure involving 400 nodes with customized vulnerabil-
ities, emulated attackers, defenders, and traffic generators under 40 minutes.
It provided a realistic environment for cybersecurity exercises and positively
affected the exercise participants’ skill sets.

Key words– Cyber range, Security, Exercises, Scenario, Modeling

∗Corresponding Author: muhammad.m.yamin@ntnu.no

1

1 Introduction

Conducting operational cybersecurity exercises is a difficult and challenging task
[PTCB16], and creating the environment for such exercises is error-prone and
mostly manual [BTP+18]. Creating such cybersecurity exercise environments and
executing exercise scenarios can be done using cyber ranges [YKG20]. Exercise sce-
narios can help with conducting hands-on operational cybersecurity exercises, as
well as discussion-based or table-top exercises for educational purposes. Although
both types of cybersecurity exercises are very important, we identified that there
were inefficiencies in operational-based exercises [YK18a], hence hindering their ca-
pabilities to be widely used for cybersecurity education, as well as for other public
or private institutions.

Multiple researchers have been trying to make the process of executing op-
erational cybersecurity exercises more efficient and less manual labour intensive
[PTCB16, SSSAK+17, YK19, RCA20]. These researchers were successful in deal-
ing with the inefficiencies in cybersecurity exercises. However, most of the proposed
solutions are just limited to deploying the exercise infrastructure only. Moreover,
because of the dynamic nature of evolving cybersecurity threats, there is a need
to model scenarios so that they are adaptable enough to accommodate changes in
scenario requirements before and after scenario deployment. Additionally, for a re-
alistic cybersecurity exercise environment, there is a need to autonomously execute
cybersecurity exercise operations [JON+15, YKG20]. These operations range from
emulating virtual users and generating network traffic to executing offensive and
defensive operations within the exercise environment. Traditionally, these tasks
have been the responsibility of human teams; therefore, there is the need to in-
crease the automation level to make the exercise life cycle more efficient. So in the
current work, we investigate four research questions:

1. How can we model and execute realistic cybersecurity exercise scenarios more
efficiently?

2. Is it possible to make cybersecurity exercise models adaptable to changing
requirements?

3. What operations in cybersecurity exercises can be executed autonomously to
reduce dependability on human teams?

4. How much do such exercise scenarios improve the skills of cybersecurity ex-
ercise participants?

In the present work, we developed a software-based solution that addresses these
questions. We used our solution to model, verify, deploy, test, and execute cyber-
security exercise scenarios in a controlled and safe environment. We performed a
case study with top cybersecurity talents in Norway to evaluate our solution’s per-
formance on a set of defined matrices. Our developed solution is now being actively
used in research and educational activities at the Norwegian University of Science
and Technology (NTNU), the details of which are presented in the current paper.

2

To demonstrate the capabilities of the proposed system, two case studies were
conducted during Norwegian Cyber Security Challenge(NCSC) 2020. NCSC is a
national competition in Norway in which individuals ranging from 1625 years old
participate. NCSC has multiple rounds, and our developed solution was used in its
final rounds for two case studies. The first case study involves a penetration testing
scenario in which a small organization network was orchestrated.The network had
three subnets: public, demilitarized zone, and internal network. Red team members
had direct access to the public network, but they had to exploit vulnerabilities in
the public network to pivot into the demilitarized zone and internal network. The
participants were asked to find vulnerabilities in the network and achieve a very
specific objective: updating the content of a file in a specific machine present in the
internal network.

The second case study was also conducted during the NCSC 2020 finals, in
which an attack/defense scenario was created. The scenario topology comprised
five identical isolated networks and the execution was divided into two parts. In
the first part, teams were tasked with patching the vulnerabilities present in their
corresponding networks in a particular amount of time. In the second part, the
isolated networks were interconnected, and the teams were tasked with attacking
each other’s network.

The paper is structured as follows: In Section 2, we provide the necessary
background and related work for this research. Continuing that, in Section 3, we
present the methodology that we employed for this research. Following that, in
Section 4, we present the requirement and our design for modeling and executing
cybersecurity exercises. After that, in Section 6, we discuss the implementation
details of our solution and its evaluation through a case study. Finally, in Section
7 and 8, we conclude the article with a discussion and conclusion respectively.

2 Background and Related Work

2.1 Background

2.1.1 Cyber Ranges

The word ”Cyber Range” was first used during the 1970s and 1980s to describe a
class of mainframe super computers developed by Control Data Corporation (CDC)
[Lor85, WC10]. These computers were used in mathematically intensive tasks and
the modeling of complex natural phenomena. Moving forward, in 2004, the US
Congress directed the Center for Technology and National Security Policy (CTNSP)
to develop a program ”to find practical ways in which the defense IT community can
gain a mutual understanding of defense needs and industry capabilities and identify
opportunities to integrate IT innovations in the U.S. military strategy.” [KSW06].
In the report findings, the US Northern Command suggested the creation of a ”Cy-
ber range” for homeland security and homeland defense. Cyber ranges provide an
interactive representation of an organizational environment, including tools, appli-
cation, network architecture, and people functions; they are used for cybersecurity

3

training, testing, and educational scenarios in a controlled and safe environment
for providing hands-on cybersecurity experiences [NIS].

We conducted a detailed study on unclassified cyber ranges [YKG20] in which
we discussed the scenarios, functions, tools, and architecture of such platforms. We
developed a taxonomy of cyber ranges and proposed a functional architecture for
building future cyber ranges. In the proposed architecture, there are six modules
for the cyber range, which are presented in Figure 1. One of the modules that deal
with the run-time environment has different functions such as running the exer-
cise infrastructure on emulated, simulated, or hardware infrastructure, generating
attacks, user behavior, and traffic to add necessary realism into the environment.

This run-time environment is the prime necessity for conducting operational
cybersecurity exercises. Other modules of cyber ranges also depend on this run-
time environment for the scenario management and the exercise monitoring.This
run-time environment also facilitates the operations of training, testing, and educa-
tional modules. Because of their central role, a lot of research has been conducted
on cyber ranges [PTCB16, SSSAK+17, YK19, RCA20], and creating such a dy-
namic environment is usually the responsibility of the different teams present in
cybersecurity exercises, which we discuss in Section 2.1.2.

Figure 1: Cyber range functional architecture [YKG20]

4

2.1.2 Cyber Security Exercises

There are multiple teams involved in the cybersecurity exercise life cycle that per-
form different roles, as follows:

1. White Team
White team members are subject matter experts who define the cybersecurity
exercises objective and plan the scenario. They can assist the other partici-
pating teams in understating the scenario and can provide hints.

2. Green Team
Green team members are responsible for deploying the cybersecurity exercises
infrastructure as per the specification of the white team members’ developed
scenario. They are also responsible for the monitoring and maintenance of
exercise infrastructure during the cybersecurity exercises.

3. Red Team
Red team members are the attackers in the cybersecurity exercises. They
attack the cybersecurity infrastructure developed by the green team members
for achieving the objectives defined by the white team members.

4. Blue Team
Blue team members are the defenders in the cybersecurity exercises. They
defend the cybersecurity infrastructure developed by the green team members
for achieving the objectives defined by the white team members.

2.1.3 Cyber Security Exercises Scenarios

There are different types of operational cybersecurity exercise scenarios. We cat-
egorized them based on the network topology that is employed to execute the
scenarios.

1. Jeopardy Style CTF
The jeopardy-style capture-the-flag (CTF) competition uses the simplest net-
work topology in which individuals and teams of attackers have access to the
machine over a network that has vulnerabilities. Attackers must exploit those
vulnerabilities and retrieve a unique string, which is called the flag. The flag
is then used for scoring purposes. The exercises are time-bound, so whoever
scores the most will be declared the winner at the end. A simple represen-
tation of a jeopardy-style CTF competition network topology is presented in
Figure 2:

2. Attack/Defense
Attack/defense cybersecurity exercises are team-based exercises in which each
team has access to a network for which they are responsible for maintain-
ing/defending the services of the different machines present in the network.
The teams have the capability to launch attacks on the other team networks

5

Figure 2: Simple jeopardy-style CTF scenario network topology

and disrupt the running of services. Flags and service availability statis-
tics are mostly used for scoring purposes. A simple representation of an
attack/defense cybersecurity exercise scenario network topology is presented
in Figure 3:

Figure 3: Simple attack/defense scenario network topology

3. Red Team/Blue Team
Red team/blue team exercises are objective-oriented, in which a team of at-
tackers/red team is assigned an objective to penetrate into an organization
and perform specific tasks such as data exfiltration and manipulation. The
blue team performs actions related to incident response and forensics to figure
out the red team’s objectives. The exercise is conducted for skill improvement
for the both red and blue teams and is mostly evaluated based on which team
clearly achieved its objectives. A simple representation of the red team/blue
team cybersecurity exercise scenario network topology is presented in Fig-
ure 4:

2.1.4 Cyber Security Exercises Life Cycle

Developing, verifying, testing, and evaluating cybersecurity exercise scenarios is
a challenge in and of itself. There is a whole life cycle involved in conducting
cybersecurity exercises, Vykopal et al. [VVO+17] presented the lessons learned
from an operation-based cybersecurity exercise in a cyber range. After analyzing

6

Figure 4: Simple red/blue scenario network topology

multiple cybersecurity exercises, the researchers shared their cybersecurity exercise
life cycle. The life cycle has five phases, as follows:

• Preparation
In this phase, the exercises’ objectives are defined, the scenario for the exercise
is developed, and the necessary infrastructure for the scenarios is deployed.
This phase takes from weeks to months in the cybersecurity exercise life cycle
because it involves a lot of planning and development.

• Dry run
In this phase, the developed scenario and deployed infrastructure are tested
by a team of experts. Changes are made to ensure that everything is working
as planned. This phase also takes a few weeks because it involves debugging
the exercises scenario and infrastructure for any error.

• Execution
In this phase, the cybersecurity exercise is executed by different teams to try
to achieve the objectives defined in the exercise scenario. This phase usually
takes from a few days to few weeks, depending on the nature of the exercise.

• Evaluation
In this phase, the different participating teams’ performance in the cyber-
security exercise is evaluated based on the achieved objectives. This phase
usually takes a few days to evaluate team performance.

• Repetition
In this phase, the overall exercise is analyzed to identify any technical and
nontechnical problems that need to be addressed before rerunning the exer-
cise. This phase usually takes a few days to fix newly identified issues.

From our previous research, we have identified that the current way of conducting
cybersecurity exercises is not efficient [YK18a]. Here, introducing automation at

7

different phases of the cybersecurity exercise life cycle can greatly reduce the time
required for such exercises [YKT+18]. Another problem with the current way of
conducting cybersecurity exercises is their static nature because they do not offer
active opposition to attackers and defenders [JON+15] and are not adaptable to
real-life environments. Hence, we propose a modern cybersecurity operation triad
that can be applied to the cybersecurity exercise life cycle to make them more
efficient and address these shortcomings.

2.2 Related Work

A lot of research has been carried out in the development of security testbeds and
cyber ranges; we will highlight some of the related works in the field. In 2000,
the development of EMULAB/Netbed began [WLS+02], which is a combination
of software and specialized hardware facilities. It has two parts: end nodes and
core nodes. The end nodes host the experimental artifacts, while the core nodes
are designed to be used as end nodes, simulated routers, traffic shaping nodes,
and traffic generators. The core nodes allow the EMULAB/Netbed infrastructure
to be reconfigured, making it useful for a variety of networking and cybersecurity
experiments.

In 2004, the cyber-Defense Technology Experimental Research laboratory (DE-
TER) [MBF+10] started an over 300-node facility. DETER uses physical nodes and
provides access to students over SSHDETER uses Emulab for the programming of
routers present in the network to create new network topologies. At its inception,
most of the work in DETER lab was done manually, with a later edition of the
automation of traffic generation.

In 2008, the first phase of the Cyber Range and Training Environment (CRATE)
[AG20] started. CRATE provides a hybrid cyber range environment; that is, it runs
on both emulated virtual machines and dedicated hardware. CRATE supports
the design, deployment, and execution of cybersecurity scenarios through a set
of dedicated APIs that use JSON as the input. CRATE is deployed over local
servers, and access to users is provided through VPN. CRATE uses a high level of
automation and divides the cyber range network into parts, first event plane and
then control plane. In the event plane, internet traffic and attacks are emulated
to add realism in the environment, while in the control plane, the cybersecurity
exercise is conducted.

In 2012, researchers presented Telelab [WM12], which was used to develop a
single virtual machine-based lab environment for cybersecurity exercises. The in-
teresting thing about this is that it uses an XML-based lab requirement specification
to inject vulnerabilities in a virtual machine through a local agent running on the
machine. Similar to Telelab, researchers created SecGen [SSSAK+17], which also
uses XML configuration language for creating a virtual machine with vulnerabilities
randomly selected from a catalog. They used Puppet and Vagrant for automat-
ing the process of vulnerability injection. Similar to Telelab and Secgen, in 2019,
researchers developed Alpaca [ECGB19], which creates single virtual machines
for cybersecurity exercises using Ansible. However, it has a prolog-based exercise

8

planner, which is used to develop multi-step attack scenarios for complex training.
In 2016, researchers presented Cyber Range Instantiation System for Facilitat-

ing Security Training (CyRIS) [PTCB16]. They automated the process of design-
ing and deploying infrastructure for cybersecurity exercises using a YAML-based
language. The researchers used Libvirt [lib] virtualization API for deploying ex-
ercises infrastructure on local servers. Continuing this, in 2017, they developed
CyTrONE [BPT+17], an integrated cybersecurity training framework. CyTrONE
uses YAML-based language to do two things: first, create content for a learning
management system (LMS), which is a mobile-based application and second is to
design, deploy, and emulate attacks on a virtual environment. For the infrastructure
orchestration, CyTrONE uses CyRIS.

In 2016, researchers presented [YMO+16] a mimetic network environment con-
struction system Alfons. It was developed to mimic a realistic environment for
malware execution and dynamic analysis in a local environment. It was written in
Ruby using an XML-based environment composition file with SpringOS API calls
to deploy the infrastructure on StarBed virtualized nodes. Alfons was not designed
for conducting cybersecurity exercises, but it was developed to provide a platform
to conduct forensic analyses for blue team members.

In 2017, researchers presented the KYPO Cyber Range [VOČ+17], which uses
a JSON-based scenario definition language, which is used for designing and de-
ploying the exercise infrastructure on an Openstack-based cloud environment. The
scenario specification is translated into Ansible and Puppet scripts, which are then
used for infrastructure orchestration. It supports the execution of attacks on infras-
tructures such as for phishing and DoS through SDL-defined templates. It is useful
for conducting CTF-like competitions and has a physical facility for conducting
cybersecurity exercises as well; however, it can also be accessed remotely.

In 2020, researchers presented the Cyber Range Automated Construction Kit
(CRACK) [RCA20], which supports the design, automated verification, deploy-
ment, and automated testing of complex cyber range scenarios. The CRACK frame-
work is built on the extended version of a scenario definition language(SDL) [RCA18],
which is YAML based. SDL was developed to be compatible with open TOSCA [Opeb]
standards and is suitable for deploying infrastructure on the cloud in an agnostic
manner. The researchers combined their SDL with Datalog logic programming for
verification of the scenario properties, and they performed a case study for conduct-
ing a cybersecurity exercise on the infrastructure of a small organization. In the
case study, three networks were behind firewall protection.Also, in 2020 researchers
presented the AIT cyber range [LFH+20], which uses Ansible and Terraform in-
frastructures for creating a cybersecurity exercise environment. The conducted
exercises involved nearly 350 students.

We consider EMULAB, DETER, and CRATE as hardware-specific reliant testbeds
that support cybersecurity exercises. We believe they can support large-scale cy-
bersecurity exercises; however, this will require a lot of human effort for setting
up the exercise environment. Telelab, Secgen, and Alpaca can be used for small-
scale training exercises but are not suitable for large-scale exercise. The CYRIS,
KYPO, CRACK, and AIT cyber ranges can support large-scale exercises using in-

9

frastructure as code and cloud technologies; however, they do not provide enough
flexibility to change the exercise infrastructure after deployment. Moreover, the
above solutions do not provide the necessary friction [JON+15] for conducting re-
alistic cybersecurity exercises.

In our solution, we utilized previous suitable techniques and added new elements
to make the cybersecurity exercises more realistic. We utilized similar techniques
from TELELAB to make virtual machines vulnerable in an agentless manner. We
developed a JSON-based SDL similar to KYPO for infrastructure provisioning.
We implemented a similar solution from CRACK for scenario infrastructure ver-
ification. We added similar capabilities in the CRATE event plane for emulating
attacks, presenting user behavior, and generating network traffic. Finally, we in-
troduced emulated defenders in the cyber range environment to make the exercise
more realistic.

If we compare the proposed solution with other systems identified in the liter-
ature we can see that most systems are focusing on preparation of cybersecurity
exercise environment. While CRACK is using formal verification for Dry Run
purposes. KYPO, CRACK and our proposed system are using widely adapted
cloud technologies that make them more computationally repeatable in terms of
infrastructure deployment compare to other systems that are using very specific
hardware and virtualization technologies. For dry run we used formal modeling and
analysis for verification of different scenario properties before the scenario actual
operational deployment. In terms of execution, the proposed system is introduc-
ing new capabilities like attacker and defender agents for conducting cybersecurity
exercises in a more efficient manner. The process of evaluation can be automated
in different ways, like flags style scoring. However, for complex exercises, detailed
root cause analysis of system compromise is required which needs further investi-
gation. A comparison between our proposed solution and other systems present in
the literature based upon cybersecurity exercise life cycle is presented in Figure 5.

3 Methodology

The overall research methodology that we used is DSR (design science re-
search) [VK15]. DSR focuses on the development and performance improvement
of artifacts for increasing the functional performance of the artifact. These arti-
facts are usually algorithms and systems that involve human-computer interactions.
DSR has three parts 1) knowledge flows, 2) process steps, and 3) output. Knowl-
edge flows recursively integrate the information identified in the previous process
steps into the next process steps. The process steps involve six processes: 1) aware-
ness of problem, 2) suggestions, 3) development, 4) evaluation, and 5) conclusion.
The execution of these processes results in the output in the form of 1) proposal,
2) tentative design, 3) artifacts, 4) performance measurement, and 5) results. We
published our findings related to the proposal and tentative design in the following
research articles [YK18a, YKT+18, YK19, YKG20], in which we identified that the
current way of executing cybersecurity exercises is not efficient and that automation

10

Figure 5: Comparison between different cyber range systems with respect to cy-
bersecurity exercise life cycle

can help to reduce this inefficiency.
For the artifact’s development and to reduce these inefficiencies, we used MDE

(model-driven engineering) [Sch06]. Model-driven approaches provide the ability to
express complex domain-specific concepts in an abstract manner, which was very
difficult in third-generation programming languages. This helps in increasing the
productivity by a factor of 10 and improves consistency, traceability, and main-
tainability in the software development process [CZW+19]. MDE combines two
important technologies:

1. DSML (Domain specific modeling languages)
In DSML, domain experts specify the domain knowledge in the form of a
model. The model contains the concepts from the domain, their key seman-
tics, relationship, and constraints associated with combining different con-
cepts. DSML is used to specify the specific problem related to a specific
domain in a DSML’s instance, which is the abstract and human-readable
representation of the problem.

2. Transformation engines and generators
Transformation engines and generators take the DSML’s instance and trans-
form them into concrete software artifacts in an automated manner. This au-
tomated process of software artifact generation involves multiple steps, which
include, but are not limited to, the following:

• Text-to-model transformation
In this step, the human-readable DSML instance is transformed into a
computer-readable model. The DSML instance is usually the source code

11

of a program that is transformed into a computer model using different
parsing rules.

• Model validation
In this step, the model is verified using a set of defined semantic rules
to ensure it is correct, which is done by construction implementation of
the model.

• Model to model, or model to code, transformation
In this step, the model is transformed into another model, or a concrete
code, that represents the problem specified in the DSML’s instance.

The proposed system has an abstract scenario modeler that can generate two
artifacts: one is a concrete DSL domain specific language instance that can be
deployed to execute the cybersecurity exercise scenario, and the other is as a formal
model of the scenario in Datalog, which can be used to analyze the different proper-
ties of the scenario before deployment. A model-to-model translation methodology
was used in scenario modeler, which gave us the ability to logically verify some of
the scenario properties. We developed a JSON-based DSL and used text-to-model
transformation for orchestrating the exercise infrastructure and executing different
cybersecurity operations. We used logic programming [Llo12] to formally verify
and analyze and verify different properties of the scenario for model validation
before actual deployment. We used model-to-model transformation to combine the
DSL model with a formal model, hence providing meta-model conformance. For
the practical implementation of the artifact, we used different programming lan-
guages and operating system automation techniques, ranging from Python, Bash,
Power shell, HEAT templates, and many more. The programming languages and
techniques were selected with no particular preferences and were employed as the
functionality’s need arose. The artifact was developed in a very modular way.
Each module can work independently from each other, providing us with a lot of
flexibility in executing different cybersecurity operations.

For performance measurement of the developed artifact, we employed applied
experimentation in operational cybersecurity exercises [EM17]. In applied ex-
perimentation, the performance of the developed artifact is measured against a set
of predefined test cases and benchmarks. These were used to evaluate the overall
performance of the artifact. Because the developed artifact involved system perfor-
mance for deploying the exercise infrastructure and skill improvement of exercise
participants, we used a mixed methods approach to gather quantitative and quali-
tative research data. We conducted a case study in which a cybersecurity exercise
scenario was deployed and executed. We measured different quantitative matrices
such as the scenario deployment efficiency, its usability in cybersecurity exercises,
its flexibility to accommodate new changes, its adaptability to be used in contexts
other than the defined context, and its scalability. We conducted pre and post-
exercise surveys to measure the qualitative matrices, for example, realism and skill
improvement from the cybersecurity exercise scenario execution.

12

4 Design

4.1 Requirements for Modern Cyber Security Operations

With the rapid advancement of technologies such as IaC infrastructure as code [Whaa]
and SOAR security orchestration, automation, and response [Whab], it has become
increasingly apparent that cyber operations are evolving. This advancement was
made to execute such operations in an efficient, adaptable, and autonomous man-
ner. This enabled us to reduce the cybersecurity exercise life cycle’s inefficiencies
and execute them in an efficient, adaptable, and autonomous manner.

4.1.1 Efficient

As stated earlier, preparing the environment for cybersecurity exercises takes any-
where from weeks to months. Efficiency in this context implies that the process
of creating the exercise scenario and infrastructure should not take more than a
couple of hours to a few days and should be applicable and accurate, as per the
specified requirements. Efficiency means reducing the time required for creating
the scenario, which does not affect the scenario’s applicability and accuracy. Ap-
plicability measures whether the deployed scenario is employable for conducting
practical cybersecurity exercises. In comparison, accuracy measures whether the
deployed scenario fulfills the specified requirements in the scenario model. Multiple
factors can affect the timeline, which may include the size and complexity of the
exercise, but these factors need to be addressed in a systemic manner to remove
inefficiency.

4.1.2 Adaptable

Here, adaptability implies that the deployed cybersecurity exercise infrastructure
is flexible and scalable enough to adapt to new changes per the chaining scenario
requirements. Flexibility measures the deployed scenario’s capability to accept
changes after deployment; in comparison, Scalability measures whether the de-
ployed scenario is expandable enough to accommodate additional teams in the sce-
nario. The adaptability will enable the cybersecurity exercises scenario developers
to adapt the scenario for participants with different skill levels, creating a balanced
environment for different participants.

4.1.3 Autonomous

In this context, autonomous implies that most of the cybersecurity operations are
executed with minimum or no human interference. If we consider the example
of autonomous cars, we can identify six levels of autonomy: 0: no automation,
1: driver assistance, 2: partial automation , 3: conditional automation , 4: high
automation, and 5: full automation [J30]. Cyber operations such as an attack
and defense scenario can be autonomous in a cybersecurity exercise environment.

13

Human intervention is still possible in monitoring the situation; however, this inter-
vention must be conditional, which would be in contrast to the second level, where
human monitoring is required.

4.2 Integrating Modern Operations with Cyber Security Ex-
ercise Life Cycle

After an in-depth analysis of the five phases of the cybersecurity exercise life cycle,
we divided these phases in to eight independent modular activities, and those eight
modular process have 11 technical functions. The updated cybersecurity exercise
life cycle is presented in Figure 6, and details of the new activities and functions of
the cybersecurity exercise life cycle are given below.

Figure 6: Modern cybersecurity operations integrated with cybersecurity exercise
life cycle

14

4.2.1 Preparation

4.2.1.1 Scenario Modeling
In this phase of the scenario, a logical network topology with vulnerabilities was
modeled, attacker and defender capabilities to exploit or defend those vulnerabil-
ities were defined, and probable attack and defense strategies were analyzed and
logically verified. We developed a DSL to specify different cybersecurity operational
requirements during the exercise. A DSL provides a layer of abstraction to solve
domain-specific problems without dealing with the necessary overhead of general
purpose programming language. We simplified the cybersecurity operation in an
exercise into five general operations: infrastructure orchestrator, vulnerability in-
jector, attacker agent, defender agent, and traffic generator. These operations have
their specific properties in a cybersecurity exercise scenario; to simplify things, the
properties of our scenario modeling language are presented in BNF (Backus-Naur
form). BNF is a notation technique for context-free grammar and is also used to
describe the syntax of languages used in computing, such as computer programming
languages.

1. Scenario Language Design
The scenario modeling was performed through our developed scenario lan-
guage, which was verified logically by Datalog. Our scenario language has
multiple parts whose requirements are presented in the coming sections. Be-
fore defining the actual scenario modeling language, we first define some of
the basic variables that were used in the language:

Listing 1: Defining the basic variables

<digit> ::= 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9

<letter> ::= a | b | c | ... | y | z

<integer> ::= <digit> { <digit> }

<string> ::= " <char> { <char> } "

<char> ::= <letter> | <digit>

<IP-Address> ::= <Class-Address>"."<VLAN-Location>"."

<Device-Code>"."<Node>

<Class-Address> ::= 001 to 255

<VLAN-Location> ::= 001 to 255

<Device-Code> ::= 001 to 255

<Node> ::= 001 to 255

<CIDR> ::= <Class-Address>"."<VLAN-Location>"."

<Device-Code>"."<Node>"/"<Range>

<Range> ::= 0 to 24

These basic variables are used to define the characters, strings, integers, IP
addresses, ranges, and CIDR used in rest of the language.

• Infrastructure Orchestrator
The infrastructure orchestrator has two parts subnet and machine. Sub-

15

net is used to represent the network with which machines are connected.
It requires three things to be specified in the language:

(a) CIDR (CIDR value like 10.10.0.10/24)

(b) Name (String value that indicates the name of subnet, like Public)

(c) A network interface (String value of Network ID from Openstack)

The second part machine is a host; hosts are virtual machines that
are connected to the specified subnet and in which vulnerabilities are
injected. It requires r thingsto be specified in the language:

(a) Name (String value that indicates the name of a machine like Ma-
chine1)

(b) Operating system (String value operating system id that is already
uploaded over Openstack)

(c) Key (String value SSH key that can be used for maintenance and
monitoring)

(d) Depends (String value name of subnet with whine Machine is
connected)

The BNF representation for specifying the requirements of infrastructure
orchestration is as follows:

Listing 2: Defining infrastructure

<Subnet> ::= <SubnetName> <CIDR> <NetworkID>

<SubnetName> ::= <string>

<CIDR> ::= <CIDR>

<NetworkID> ::= <string>

<Machine> ::= <MachineName> <OS> <Key> <Depends>

<MachineName> ::= <SubnetName>

<OS> ::= <string>

<Key> ::= <string>

<Depends> ::= <string>

• Vulnerability Injector
When the machines are deployed, then the vulnerability injection can
be done. The process vulnerability injection requires the following prop-
erties:

(a) MachineIP (IP address value of a deployed machine like 10.10.1.10)

(b) MachineUserID (String value that indicates admin user account on
a deployed machine like root)

(c) MachineUserPassword (String value that indicates the admin user
password of the deployed machine like toor)

(d) OS (String value that indicates the name of a machine like Ma-
chine1)

16

(e) Vulnerability (String value that indicates the type of vulnerability
that needs to be injected in the machine like WeakPassword)

(f) Parameter (String value that indicates the vulnerability-specific pa-
rameter like ”passwd—apollo”)

The BNF representation for specifying the requirements of the vulnera-
bility injection is as follows:

Listing 3: Defining vulnerabilities

<Vuln> ::= <MachineIP> <MachineUserID>

<MachineUserPassword> <OS>

<Vulnerability> <Parameter>

<MachineIP> ::= <IP-Address>

<MachineUserID> ::= <string>

<MachineUserPassword> ::= <string>

<OS> ::= <string>

<Vulnerability> ::= <string>

<Parameter> ::= <string>

• Attacker Agent
After the vulnerabilities are injected, they can be verified by an attack
agent. Itcan also be used to emulate attacker behavior during a cyberse-
curity exercise. The attacker agent requires six properties to be specified
before its execution.

(a) ToolName (String value that indicates the tool name to be used by
the agent like nmap)

(b) AgentIP (IP address value of a Kali Linux -based machine present
in the network topology like 10.10.1.5)

(c) AgentUserID (String value that indicates admin user account of the
Kali Linux machine like root)

(d) AgentUserPassword (String value that indicates admin user pass-
word of the Kali Linux machine like toor)

(e) Argument ((String value that indicates attacker agent action-specific
parameter like -sS -sV)

(f) Target (IP address value of a deployed machine like 10.10.1.10)

The BNF representation for specifying the requirements of attacker agent
behavior is as follows:

Listing 4: Defining attacker agent behavior

<Agent> ::= <ToolName> <AgentIP>

<AgentUserID>

<AgentUserPassword>

<Target> <Argument>

<ToolName> ::= <string>

17

<AgentIP> ::= <IP-Address>

<AgentUserID> ::= <string>

<AgentUserPassword> ::= <string>

<Argument> ::= <string>

<Target> ::= <IP-Address>

• Defender Agent
To add friction and realism in cybersecurity exercises, a host-based de-
fender agent is developed that can be injected into the deployed ma-
chines. It has the following five properties.

(a) MachineIP (IP address value of a deployed machine like 10.10.1.10)

(b) MachineUserID (String value that indicates the admin user account
on deployed machine like root)

(c) MachineUserPassword (String value that indicates the admin user
password of the deployed machine like toor)

(d) OS (String operating system name of the deployed machine like
Windows)

(e) Parameter (String value that indicates the action-specific parame-
ters of the defender agent in a CSV file like netstat -ano— taskkill
/F /PID ??)

The BNF representation for specifying the requirements of defender
agent behavior is as follows:

Listing 5: Defining defender agent behavior

<Agent>::= <AgentIP> <AgentUserID>

<AgentUserPassword> <OS>

<Parameter>

<AgentIP> ::= <IP-Address>

<AgentUserID> ::= <string>

<AgentUserPassword> ::= <string>

<OS> ::= <string>

<Parameter> ::= <string>

• Traffic Generator
To make the scenario execution dynamic with realistic traffic, two mod-
ules have been developed. First, there is TcpRelay, which can replay
traffic from prerecorded network traffic using PCAP files. Second, there
is VncBot, which can emulate user behavior from prerecorded VDO files.
These modules have similar six requirements as those of the attack agent:

(a) ToolName (String value that indicates the tool name to be used by
the agent like VncBot)

(b) AgentIP (IP address value of a Kali Linux -based machine present
in network topology like 10.10.1.5)

18

(c) AgentUserID (String value that indicates the admin user account of
the Kali Linux machine like root)

(d) AgentUserPassword (String value that indicates the admin user pass-
word of the Kali Linux machine like toor)

(e) Argument ((String value that indicates an attacker agent action-
specific parameter like Test.vdo—toor where toor is the password
of the VNC-enabled machine deployed in the exercise infrastructure)

(f) Target (IP address value of a deployed machine like 10.10.1.10)

The BNF representation for specifying the requirements of the traffic
generator is as follows:

Listing 6: Defining traffic generator behavior

<Agent> ::= <AgentIP> <AgentUserID>

<AgentUserPassword> <Argument>

<Target>

<AgentIP> ::= <IP-Address>

<AgentUserID> ::= <string>

<AgentUserPassword> ::= <string>

<Argument> ::= <string>

<Target> ::= <IP-Address>

2. Formal Scenario Specification
Multiple models have been proposed for modeling the attackers’ and defend-
ers’ behavior during a cyber engagement. These models focus on the chain of
events that lead up to compromising the computer systems. Lockheed Martin
[HCA11] put forward the cyber kill chain methodology to protect computer
network damage espionage. The cyber kill chain consists of the following
steps and stages:

(a) Reconnaissance: Looking out for intrusions, via email, conferences, and
so forth.

(b) Weaponization: Malicious intent realized through PDF and word files
for intrusion purposes.

(c) Delivery: Sending the intrusion payload 20042010 according to Lockheed
Martin mostly sent through email attachments, USB, and websites.

(d) Exploitation: Intrusion is in and focuses on its target

(e) Installation: Providing a means of access to the compromised system to
the adversary

(f) Command and control: After getting access, obtaining all the controls
of the compromised, intruded system, and controlling it, done manually,
not automatically via an internet controller server.

(g) Actions on objectives: To get access to the information and resources
for which the last six phases took place.

19

They [HCA11] also proposed the defender’s course of action against the at-
tacker in cyber kill chain, including what type of visibility the defender has
and what tools and techniques a defender can use to stop the attacker. The
course of action matrix is presented in Figure 7.

Figure 7: Cyber kill chain course of action matrix for attacker and defender [HCA11]

Other models like MITRE [MIT] and the unified kill chain [Pau] provide
more technical details of the attacker’s and defender’s steps, but at this stage,
we chose the cyber kill chain for two main reasons: First, it is very well
established and well-known modeling technique, and second, it offers a layer
of simplicity and abstraction compared with other models, which focus more
on core technical steps.

(a) Scenario Formalization Background
We used Datalog [Dat] for formal modeling of the scenario and to verify
the different scenario properties. Datalog is a programming language
based on a declarative logic [Llo12]. It is employed by researchers for
large-scale software analyses [Nai20], automatic evaluations of cyber-
security matrices [ZN20], and the verification of cybersecurity exercise
scenarios [RCA20], making it suitable as a formal model for cybersecu-
rity exercise scenarios. It consists of two parts: facts and clauses. A fact
conforms to the parts of the elements of the predicated phenomenon. A
clause refers to information deriving from other subsets of information.
Clauses rely on terms, which can contain variables; however, facts can-
not. Itadjudicates whether the specific term is adherent to the specified
facts and clauses. If it happens to be so, the specific query is validated
via a query engine, providing the prerequisite facts and clauses.

When running a Datalog operation, the specified conditions include a
combination of two facts along with a singular clause. We assign a

20

condition that if the query is valid, a specific response is to be expected
at the end. The conclusion of the said experiment is that the specific
response is received and that the query is satisfied. By utilizing the
clauses via their variables, the engine can pinpoint and find the result.
For a concrete example [CGT+89], consider the facts ”John is the father
of Harry” and ”Harry is the father of Larry”. A clause will allow us
to deduce facts from other facts. In this example, consider we want to
know ”Who is the grandfather of Larry?”. We can use three variables
X,Y and Z and make a deductive clause: If X is the parent of Y and
Y is the father of Z, then X will be the grandfather of Z. To represent
facts and clauses, Datalog uses horn clauses in a general shape:

L0 : −L1...,Ln

Each instance of L represents a literal in the form of a predicate symbol
that contains one or multiple terms. A term can have a constant or
variable value. A Datalog clause has two parts: the left hand side part
is called the head, while the right hand side part is called the body. The
body of the clause can be empty, which makes the clause a fact. A body
that contains at least literal represents the rules in the clause. Lets us
represent the above mentioned facts that ”John is the father of Harry”
and ”Harry is the father of Larry” as follows:

Father(John,Harry)

Father(Harry ,Larry)

The clause if X is the father of Y and Y is the father of Z, then X
will be the grandfather of Z can be represented as follows:

GrandFather(Z ,X) : −Father(Y ,X),Father(Z ,Y)

(b) Scenario Formalization
We have defined four basic predicates for our scenario modeling, which
are 1) link, 2) vulnerable, 3) capability, and 4) killchain. The facts for
the scenario model are presented as follows:

The Link predicate is logically represented as Link(H,N), and it has
the two variables of host H and network N. H is a string value that
indicates the machine name (virtual machine name), while N is a string
value that indicates the name of the network with which it is connected.
For a concrete example, say a Host name ’Machine1’ connected with
network name ’Public’ can be represented as follows:

Link(Machine1,Public)

The Vulnerable predicate is logically represented as vulnerable(H,V),
it has two variables host H, which is the specified machine name and

21

V, a string value that indicates the presence of a particular vulnerability
in H. A concrete example could be that ’Machine1’ is vulnerable to a
’SSHBruteforce’ attack and can be represented as follows:

Vulnerable(Machine1,SSHBruteForce)

The capability predicate is logically represented as capability(V,A,DE),
and it has three variables V, which is the vulnerability present in H, A,
which is a Bool value that indicates whether a particular vulnerability V
is exploitable by the attacker and DE that indicates whether a particular
vulnerability V is defendable by the defender. A concrete example of a
’SSHBruteforce’ vulnerability that can be exploited by an attacker but
cannot be defended by the defender is represented as follows:

Capability(SSHBruteForce,YES ,NO)

The KillChain predicate is logically represented as KillChain(H,R,W,D,E,C,O).
It has seven variables host H and raw cyber kill chain process of recon-
naissance R, weaponization W, delivery D, exploitation E, command
and control C, and actions and objectives O. The cyber kill chain pro-
cess variables have Bool values that were assigned based on V present
in H. A concrete example for a host ’Machine1’ that is completely
exploitable as per the cyber kill chain can be represented as follows:

KillChain(Machine1,YES ,YES ,YES ,YES ,YES ,YES ,YES)

A detailed scenario model with all its facts and clauses for the scenario
presented in Figure 10 is given in Appendix B. We used the clauses for
logical verification of the scenario, which are presented in next section.

3. Formal Scenario Verification
We developed a tool for scenario modeling and verification. The tool in-
tegrates the concepts of our scenario language with Datalog modeling and
provided us with the capability to model and verify cybersecurity exercise
scenarios at the same time. In the scenario modeler, a user can specify the
following:

(a) The networking topology that is required for the scenario

(b) The type of machines that are present in the network

(c) The type of vulnerabilities present in the machine

(d) The capabilities of the attacker and defender who can exploit or defend
those vulnerabilities

After the specification is given to the modeler, the modeler can generate the
instance required for the orchestration of cybersecurity exercise operations
and a formal model in Datalog. Different type sof logical analyses can be
performed before the actual deployment; some examples of security properties
and questions that can be verified include the following:

22

(a) Which machines are reachable from a specific point in the network?

(b) Which machines are vulnerable to attack and can be reached by an
attacker?

(c) Which machines are vulnerable to an attack but can be defended by the
defender to limit attacker ingress into the network?

This is achieved by defining clauses that contain specific rules related to the
scenario. First, we need to logically inter link different hosts. This can be
done by creating a rule for a direct bidirectional link connection between the
hosts using variables X and Y, as follows:

Link(X , Y) ≤ Link(Y , X)

Second, similar to the grandfather and grandchildren case, to identify which
hosts are indirectly connected in the network, we can create a new CanReach
with variable Z. This can be used to find a direct link between X and Y,
as well as an indirect link between X and Z through Y :

CanReach(X , Y) ≤ Link(X , Y)

CanReach(X , Y) ≤ Link(X , Z)

To check which machines are connected to a machine, for example, Machine1,
with a specific vulnerability, for example, BufferOveflow, we can verify this
by the following clause:

CanReach(′Machine1′, Y)&Vulnerable(Y , ′BufferOverFlow ′)

To check which hosts are connected to a vulnerable host, for example,
Machine1, which is not defendable by a defender, we can verify it with the
following clause:

Capability(V , ′YES ′, ′NO ′)&CanReach(′Mahine1′, Y)&Vulnerable(Y , V)

To integrate cyber kill chain concepts into the model, we can specify the
impact of a vulnerability injected in the host regarding whether it allows the
attacker to perform steps like reconnaissance, exploitation, and so forth. This
impact is a bool value that suggests the cyber kill chain stage the attacker
can theoretically reach. We can create the following clause:

Capability(V , ′YES ′, ′NO ′)&CanReach(′Mahine1′, Y)&Vulnerable(Y , V)&

KillChain(Y , ′YES ′, ′YES ′, ′YES ′, ′YES ′, ′YES ′, ′YES ′, ′YES ′)

23

The verification of the scenario can be done on run time before the actual deploy-
ment of the exercise infrastructure. The verification process used the facts and
clauses generated in Datalog syntax through our developed tool. With the help
of mathematical logical operation, specially transitive relation, the Datalog engine
can return properties verification results based upon given quires. The queries are
similar to SQL quires and can use logical operators like AND or OR for verification
of different properties. If the property is verified then the Datalog engine will return
the output containing the elements that were verified by the query. If the output is
empty then it is considered that the property is not verified. A complete scenario
model with its properties verification steps are presented in appendix B.

4.2.1.2 Infrastructure Orchestration
In this phase, the modeled scenario that has been formally verified is transformed
into an emulated network topology. This transformation is achieved by utilizing
infrastructure as code technologies in which the template for the infrastructure or-
chestration is generated; this is deployed over a cloud instance. Multiple cloud
providers like Microsoft, Google, and Amazon provide infrastructure orchestra-
tion technologies, but they are a closed source and paid solution. We opted for
an open source solution called Openstack, which provides a functionality similar
to Microsoft, Google, and Amazon; however, it also provides the capability to set
up local cloud infrastructures without relying on third-party infrastructure. Open-
stack provides infrastructure orchestration to HEAT templates. HEAT templates
provide an interface to specify the requirement for the network topology and the
type of system present in the network.

4.2.1.3 Vulnerability Injection
Vulnerability injection in this type of network topology is a difficult process [RCA18].
Researchers have used different infrastructure configuration technologies like An-
sible and Puppet for vulnerability injection [LFH+20]. However, we opted for a
fundamentally different technique for vulnerability injection and developed our own
custom vulnerability injector. Vulnerabilities are injected per the scenario model
requirement using different operating system automation techniques. These OS
automation techniques basically open an SSH connection in the machines deployed
in the emulated network and manipulate software, services, and configuration using
Bash, Powershell, and Python scripts. This enabled us to modify the scenario
after infrastructure deployment and inject new vulnerabilities to make the scenario
more flexible and balanced, if required.

4.2.2 Dry run

In the dry run phase, different scenario properties are checked to identify whether
the deployed scenario fulfills the specified requirements in the scenario model. We
divided this phase into two parts.

24

4.2.2.1 Manual Testing
Manual testing is performed as a quality assurance process for verifying differ-
ent scenario requirements. In this phase, the deployed infrastructure is manually
checked for any abnormalities. This is done by manually executing a dry run, which
involves checking the network topology and exploiting the injected vulnerabilities.

4.2.2.2 Automated Verification
A manual dry run of the exercises usually takes a lot of time as well. To address
this issue, we used the attacker agent to verify different scenario properties auto-
matically. The attacker agent is a Kali Linux-based host machine present in the
deployed network infrastructure. It receives the instruction of what actions to take
from the scenario language. When a vulnerability is modeled to be injected into
a host, a model for the attacker agent action is also generated to verify the vul-
nerability properties. This automatic verification includes different network link
connections and vulnerability presence, along with exploitability.

4.2.3 Execution

Preparation and the resulting dry run take the most time in the cybersecurity
exercise life cycle. When these parts are completed, the exercise can be executed;
however, finding the right people for the exercise was a challenge because if you want
to conduct a blue team exercise, you need a red team or vice versa. To address this
issue, we added automation in the execution part as well, so our proposed exercises
could be executed in the below ways.

4.2.3.1 Automatic
In automatic execution, attacker and defender actions can be specified for testing
different cybersecurity scenarios in an automated manner. We used agent-based
techniques for this purpose, in which we can inject attacker and defender agents
within the exercise infrastructure. This agent follows the requirements specified in
the DSL to execute attacker and defender actions.

4.2.3.2 Hybrid
In hybrid execution, an automated agent can emulate an attacker or defender
against a human team in a cybersecurity exercise. In a hybrid execution, an ad-
versary team’s requirement is removed, making the cybersecurity exercise life cycle
less reliant on human input and reducing the inefficiencies related to finding human
teams.

4.2.3.3 Manual
In manual execution, a normal cybersecurity exercise is conducted in which all
participants are human. Depending on the training requirements, the proposed
system supports the manual execution of cybersecurity exercises. In manual ex-
ecution, both red and blue teams consist of human participants who perform a
cyber-attack and defense within the exercise infrastructure.

25

4.2.4 Evaluation

Most operational cybersecurity exercises are evaluated using flags. Flags are a tex-
tual string that the participants must capture from a system to receive a score.
A different variation of this method is called dynamic scoring. Time is taken to
capture the flag, and the number of times the flags are captured are also taken into
account for awarding higher and lower scores. We could easily integrate such a scor-
ing mechanism into our system. However, we opted for more systemic evaluation
methods, which are given below.

4.2.4.1 Log Analysis
We have collected the command line history of exercise participants, which can be
used to analyze the participants’ capability and what type of skills they have. We
plan to train an AI model for this purpose and use it to classify exercise participants’
skill sets based on the cyber kill chain. Because we are still collecting data from
the exercises and working on this part, this is not included in this paper.

4.2.4.2 Surveys
We used pre and post-exercise surveys to identify any skill improvements of the
exercise participants and get qualitative data about the exercises. Researchers
have previously used these methods [MFL17] for such purposes.

4.2.5 Repetition

In this phase, the feedback from the surveys is analyzed, and problems are identified
in the scenarios, including whose solutions were incorporated in the next iterations
of the exercise.

4.3 Full System Workflow

We have presented the whole system workflow in Figure 8 which we discussed
in section 4.2. In the workflow, different parts of the cybersecurity exercise life
cycle are presented in different colors. The system uses our scenario language to
model the scenario in a coherent, logical model that is platform independent. The
logical model is used to verify different scenario properties, and if they fulfill the
scenario requirement, then the platform-independent model is transformed into
platform-dependent artifacts. These artifacts create the network topology, inject
vulnerabilities, generate traffic, and emulate various exercise teams. After this, the
scenario is manually tested and automatically verified from the attacker agent, and
if it satisfies the scenario specification, then the exercise is executed. After exercise
execution, relevant data are collected for exercise experience improvement in the
next exercises.

The concept defined in the our scenario language instance is presented in con-
crete syntax for the orchestrator to understand and generate the necessary artifacts.
The concrete syntax is JSON Java script object notation representations, which is

26

Figure 8: Cyber security exercise operation workflow27

Figure 9: Cyber security exercise operation orchestrator

specifically chosen because of its excellent capability to represent different models
into objects with minimum or no changes in the code data structure. The details
of the concrete syntax with respect to the specific concept is presented below:

Our scenario language input is transformed into emulated artifacts, and these
artifacts can be used together or independently in five different processes for the
execution of the cybersecurity exercise life cycle. The orchestrator is developed
using the .Net framework, in which C# played a major role; secondary components
of the orchestrator were developed using python scripts, whose calls were controlled
by the C# base program. This modular design approach allowed us to include
many existing system automation techniques inside a single platform that provided
much flexibility from scenario generation to scenario execution in a semiautonomous
manner. The logical operation of the scenario orchestrator is presented in Figure 9.
The details of each component are given below. Although some technical functions
in the cybersecurity exercise life cycle are still manual, such as manual testing and
survey, they are included to increase the exercise quality from a human perspective.

28

5 System Implementation

The system is developed in a highly modular way, and different modules are used
to automate different phases of the cybersecurity exercise lifecycle. Each module
can run independently, or all the modules can run as a whole through a common
API that uses our developed DSL for the exercise environment orchestration. The
system is implemented in a web application that provides the interface to the de-
veloped API. It can take input from the developed DSL for orchestrating different
cybersecurity operations roles. The website can be deployed in a local environ-
ment or on the cloud. The developed solutions require Openstack base cloud for
performing infrastructure provisioning. While Vulnerability injection, attacker and
defender emulation, and traffic generation can be done on a system supporting
standard SSH protocol.

A variety of programming languages were used for the development of the ap-
plication. The front end of the application was developed in Asp.net. Similarly,
the API was developed in C#; however, the API runs multiple Python, Bash, and
HEAT scripts in the back end. Package managers were used to installing vulnera-
bilities in Linux-based systems, while a silent install technique was used to install
vulnerable software on Windows-based machines. In the case of the configuration
and services, SSH-based automation techniques were used to make the system vul-
nerable. The source code of the developed orchestrator application can be found
here [NCR]. The repository contains pre-requisite information and detailed instal-
lation instruction for its easy deployment.

The system has three interfaces that are used to provide input and platform
access. The first interface is for the administrator; the administrator can design and
deploy customized cyber ranges having access to detailed network configuration and
vulnerability injection modules. The second interface is for a teacher or a coach who
need to deploy a scenario in a very short amount of time, so the teacher or a coach
can specify the type of vulnerabilities and the number of machines that are needed
to be deployed for the scenario and the things deployed automatically. The final
interface is for students who need to access the platform for practicing cybersecurity
skills. They can access the platform and have access to multiple predefined scenarios
that they can deploy by themselves and practice in the environment.

If we want to start the exercise from scratch, we can use all the modules that are
presented in Figure 9. We can perform (1) scenario modeling and orchestration for
deploying exercise infrastructure, (2) vulnerabilities’ injection and verification, (3)
traffic generation, and (4) attacker and (5) defender agents for executing the exercise
scenarios. If the infrastructure is already present, the implemented system can be
used to inject vulnerabilities based upon the given requirement. Additionally, if the
infrastructure is vulnerable, the developed solution can generate an attack model
to verify those vulnerabilities. This modular system gives us the flexibility to adapt
to various cybersecurity scenarios for dynamic cybersecurity exercises. The system
module’s usage for modeling an exercise scenario is presented in the form of a case
study. It highlights the different modules developed during the research and their
usage for conducting this research work.

29

6 Case Studies

The competition organizers gave the scenario requirements, in which they requested
two scenarios: a penetration testing scenario and an attack and defenses scenario.
For the penetration testing scenario, the competition organizers gave the following
scenario requirements:

1. The scenario should represent the IT infrastructure of a small- or medium-
sized organization.

2. The scenario should have vulnerabilities that are exploitable in a particular
amount of time

3. The scenario should be suitable for participants with various skill set levels.

We created a sample scenario description, which is provided in appendix A and a
rough network topology presented in Figure 10 to translate the high-level require-
ments in to low-level technical artifacts based on our experience for conducting such
exercises [YKT+18, YK19]. We presented these ideas to the competition organizers
and after their feedback and approval, we used it for the penetration testing sce-
nario. We will used this network topology, as presented in Figure 10, to showcase
that a scenario can be modeled and orchestrated on a virtualized environment in
the cloud. The scenario was logically verified and tested by an attacker agent, and
the scenario also incorporated a defender agent in one of the scenario machines,
which was included to add the friction and make the scenario more realistic. This
case study was used to evaluate the efficiency and autonomy offered by our pro-
posed solution. In the second case study, the competition organizers provided the

Figure 10: Case study scenario

30

machines required for an attack/defense scenario with the diagram of the network
topology. The requirement from the organizers was the following:

1. Deploy the machines in identical isolated networks for the first phase of the
attack/defense scenario.

2. Update the network topology in the second phase of the attack/defense sce-
nario so that the deployed networks can be interconnected.

Because this scenario involved integrating external machines and updating network
topology at run time, we used the adaptability to evaluate our proposed solution.

6.1 Preparation

6.1.1 Formal Scenario Modeling and Analysis

We used our developed scenario modeler and verifier tool for the preparation of
the scenario presented in Figure10. The scenario description is presented in ap-
pendix A. The formal model generated by our tool is presented in appendix B.
The formal model of the scenario allowed us to verify different scenario properties.
A Datalog analysis engine execution allowed us to logically verify different scenario
properties, such as which machines present in the network were directly or indi-
rectly accessible to the attackers. This allowed us to identify different edge cases
like attacker accessibility without machine exploitation so that we could update
the scenario before emulated network deployment. In appendix B of the formal
scenario model, we present the process of verifying a condition. An example of
Datalog query execution for identification of an attacker accessibility to different
subnets is presented in Listing 7:

Listing 7: Analysis of an attacker that can reach other machines through direct
and indirect links in different subnets like public, demilitarized zone, and internal

Query

CanReach(Attacker1,Y)

Output

Public

Machine1

Machine2

Machine3

Machine4

Machine5

Demilitarized Zone

Machine6

Machine7

Machine8

31

Internal

Machine9

Machine10

Similarly, in another example presented in appendix B of the formal scenario
model, we used the Datalog analysis engine execution for identifying which hosts
were vulnerable to specific vulnerabilities and were reachable by attacker machines.
This allowed us to determine the probable attacks’ paths based on attacker capabil-
ities and remove any edge cases where an attacker could not exploit the machines
present in the logical representation of the exercise environment. A sample exe-
cution of the machines that were exploitable by a particular attacker capability is
presented in Listing 8:

Listing 8: Analysis of a host Machine1 that can reach machines vulnerable to
BufferOverflow vulnerability

Query

CanReach(Attacker1,Y) &Vulnerable(Y,BufferOverFlow)

Output

Machine4

Machine7

When different scenario properties are verified then the infrastructure is orches-
trated.

6.1.2 Infrastructure Orchestrator

The infrastructure orchestrator takes the JSON input from our scenario language
and transforms it into HEAT templates. The HEAT templates were used to deploy
the infrastructure using Openstack orchestration API. It should be noted that the
required operating system images for the exercise are needed to be uploaded on
Openstack before running the HEAT template. The orchestrator is currently only
generating the exercise infrastructure in Openstack, but it is possible to transform
our scenario language instance to other cloud orchestration technologies.

An example of the infrastructure is presented in Listing 9:

Listing 9: Concrete syntax for infrastructure generation

[

{

"Subnet 1": {

"Name": "Public",

"CIDR": "10.10.0.0/24",

32

"NetworkID": "e18b412c-75c0-44a3-a326-708659d04152"

},

"Machine 0": {

"Name": "Linux1",

"OS": "721b1bc5-430e-44b9-89e3-45c92f3617fb",

"key": "test",

"Depends": "Public"

}

}

]

6.1.3 Vulnerability Injector

The vulnerability injector can inject three types of vulnerabilities into the deployed
infrastructure: software, services, and configuration. For software, the vulnerability
injector reads the executable of the vulnerable program from the local drive and
uses SSH to move it to a specified remote machine and then install it using different
OS automation techniques. For services, the vulnerability injector reads a docker
container file containing vulnerable services and moves it through SSH to the spec-
ified remote machine and deploys it automatically using different OS automation
techniques. For configuration, a set of predefined bad configurations are integrated
on the orchestrator, which can be specified in our scenario language and employed
on remote machines using SSH. The configuration ranges from setting a user with
a weak password to open directory shares for exploiting different vulnerabilities.

An example of our developed scenario language instance for vulnerability injec-
tion is presented in Listing 10:

Listing 10: Concrete syntax for vulnerability injection

[

{

"Vuln 1": {

"MachineIP": "192.168.81.128",

"MachineUserID": "root",

"MachineUserPassword": "toor",

"OS": "Windows",

"Vulnerability": "VulnerableProgram",

"Parameter": "BufferOverflow.exe"

},

"Vuln 2": {

"MachineIP": "192.168.81.130",

"MachineUserID": "root",

"MachineUserPassword": "toor",

"OS": "Linux",

"Vulnerability": "WeakPassword",

"Parameter": "root2,toor"

},

33

"Vuln 3": {

"MachineIP": "192.168.81.128",

"MachineUserID": "root",

"MachineUserPassword": "toor",

"OS": "web-dvwa.tar",

"Vulnerability": "DockerInject",

"Parameter": "docker run -d -p 80:80 -p 3306:3306 -e

MYSQL_Pass=\"mypass\" vulnerables/"↪→

}

}

]

In Vuln 1, the vulnerability is VulnerableProgram, and the parameter is Buffer-
Overflow.exe. This code will take the buffer overflow vulnerable program of SDL
orchestrator machine and deploy it over a remote machine with the specified IP
address using SSH and OS automation techniques.

In Vuln 2, the vulnerability is ”WeakPassword,” and the parameter is ”root2,toor.”
This code will create a new user account root2 with toor as a password on a remote
machine using an SSH connection and OS automation techniques.

In Vuln 3, the vulnerability is DockerInject, and the parameter is ”docker run -d
-p 80:80 -p 3306:3306 -e MYSQL Pass=m̈ypassv̈ulnerables/.”” It will take ”web-
dvwa.tar” from the orchestrator machine and automatically deploy the docker on
the remote machine using a SSH connection and OS automation techniques.

The orchestrator contains a mapping list between potential values of the vulner-
ability property and the vulnerability type such that the orchestrator understands
the type of the vulnerability that needs to be injected by reading that property
value. Consequently, the orchestrator expects a specific information in the parame-
ter property. Table 1 shows a sample keys of these parameters and the vulnerability
types they represent, including software, services and configuration vulnerability
types. The complete list of the orchetrator include over 800 vulnerabilities related
to both Windows and Linux environments. This list is constantly expanding with
new vulnerabilities. For example, the vulnerability property VulnerableProgram is
mapped to the software vulnerability type, and indicates a program that contains
a software problem (c.f. Table 1). In this case, the parameter property indicates
the name of the vulnerable executable.

If we want to allow multiple vulnerabilities of the same type, then we add two
vulnerabilities with the same vulnerability property and different parameter prop-
erties. For example, if we want to allow two bufferoverflow software vulnerabilities
in same machine, (1) we define two vulnerabilities, whose vulnerability property is
VulnerableProgram, and (2) each one refer to different buffer overflow executable
to be deployed, e.g., bufferoverflow1.exe and bufferoverflow2.exe. The rest
of the values like MachineIP, MachineUserID.., will remain same in case both
vulnerabilities are being deployed on the same machine. It should be noted that
this simple classification of vulnerabilities can be mapped to other types of classi-
fications, like CWE and CVE, however this is out of scope of this work.

34

Vulnerability
Type

Vulnerability Prop-
erty

Parameter Prop-
erty

Description

Software VulnerableProgram IntgratedHomePro.exe Name of executable
Software VulnerableProgram Icecast.exe Name of executable
Software VulnerableProgram WingFTP.exe Name of executable
Service DockerInject docker run -d -p

80:80 -p 3306:3306
-e MYSQL
Pass=\”mypass\”
vulnerables/

Service command to be
run or deploy and its
parameters

Service EnableTelnet Install-
WindowsFeature
-name Telnet-Client

Service command to be
run or deploy and its
parameters

Service EnableRDP InvokeCommand Com-
putername server1,
Server2 ScriptBlock
{SetItemProperty
Path HKLM:\System
\CurrentControlSet
\Control \Terminal
Server Name
fDenyTSConnections
Value 1}

Service command to be
run or deploy and its
parameters

Configuration WeakPassword root,toor Usename and password
Configuration DisableFirewall NetSh Advfirewall set

allprofiles state off
Disabling security ser-
vice

Configuration EnableLocalShare net share
Docs=E:\Documents
/grant:everyone,FULL

Changing local drive
access settings

Table 1: Vulnerability type, property and parameter mapping

35

6.1.4 Attacker Agent

The attacker agent is a Kali Linux machine deployed within the exercise infrastruc-
ture. The Kali Linux machine is controlled through SSH by the orchestrator and
performs the steps specified in our scenario language. These steps include perform-
ing network scanning, launching actual exploits, and post-exploitation. Different
automation techniques have been used to achieve this process. One such technique
for automating Metasploit is presented in Figure 11. Here, we used Metasploit
resource scripts to specify and pre and post-attacker steps during exploitation. In
Figure 11 vulnserver.rb is the Metasploit exploit, which is then automated in step 1
and transformed into vul.rc, which is the Metasploit resource script. The resource
script is sufficient for launching the attack, but we integrated post-exploitation steps
in it to mimic a real attacker. In Step 2, gather.rc is integrated, which emulates
post-exploitation steps such as capturing network information, as indicated in Fig-
ure 11. It should be worth mentioning that there can be multiple attacker agents
in the scenario, with each one performing different types of attacks independent of
each other.

Figure 11: Automated exploitation and post exploitation using metasploit

An example of our scenario language for attacker behavior emulation in the
scenario is presented in Listing 11:

Listing 11: Concrete syntax for attacker behavior emulation

[

{

"ActiveScan": {

"AgentIP": "192.168.81.128",

"AgentUserID": "root",

36

"AgentUserPassword": "toor",

"Argument": "SV",

"Target": "192.168.81.130"

},

"BruteForce": {

"AgentIP": "192.168.81.128",

"AgentUserID": "root",

"AgentUserPassword": "toor",

"Argument": "SSH",

"Target": "192.168.81.130"

},

"MetaSploit": {

"AgentIP": "192.168.81.128",

"AgentUserID": "root",

"AgentUserPassword": "toor",

"Argument": "Vulnserver",

"Target": "192.168.81.130"

}

}

]

6.1.5 Defender Agent

The defender agent is a portable executable that can be injected into the machine
that is present in the scenario environment. A configuration file is also injected with
the agent, and the CSV file contains a list of actions that an attacker can perform
and a list of reactions against those actions that the defender agent can take. For a
Windows-based environment, the defender agent analyzes Windows security event
logs to identify the attacker actions specified in the configuration file and execute
the appropriate reaction for stopping the attacker. The defender agent’s internal
working is based on our exploit chain detection algorithm [YKG19]. Here, we looked
for a particular Windows security event ID 4688 and analyzed the command line
argument for the identification of malicious behavior, as we presented in [YK18b]. It
should be worth mentioning that there can be multiple defender agents running with
different configurations within the scenario, reacting to different types of attacks
independent of each other.

An example of our scenario language for defender behavior emulation in the
scenario is presented in Listing 12:

Listing 12: Concrete syntax for defender behavior emulation

[

{

"Defender 1": {

"MachineIP": "192.168.81.132",

"MachineUserID": "root",

"MachineUserPassword": "toor",

37

"OS": "Windows",

"Parameter": "Actions1.csv"

},

"Defender 2": {

"MachineIP": "192.168.81.134",

"MachineUserID": "root",

"MachineUserPassword": "toor",

"OS": "Windows",

"Parameter": "Actions2.csv"

}

}

]

6.1.6 Traffic Generator

The traffic generator is a Kali Linux machine deployed within the exercise infras-
tructure. The Kali Linux machine is controlled through SSH by the orchestrator
and performs the steps specified in our scenario language. These steps included
replaying already captured network traffic and exercising specific email generation
to emulate benign user behavior. For emulating benign users, Vncdotool [vnc] is
used, enabling us to mimic user behavior in the GUI over VNC-enabled remote
machines using a prerecorded VNC session. This added an extra layer of realism
within the cybersecurity exercise environment. It should be noted that there can
be multiple traffic generators in the scenario, generating different types of traffic
independent from each other.

An example of our scenario language for the traffic generation and user behavior
emulation in presented in Listing 13.

Listing 13: Concrete syntax for traffic generation

[

{

"TcpRelay": {

"AgentIP": "192.168.81.128",

"AgentUserID": "root",

"AgentUserPassword": "toor",

"Argument": "Traffic.pcap",

"Target": "Null"

},

"VncBot": {

"AgentIP": "192.168.81.130",

"AgentUserID": "root",

"AgentUserPassword": "toor",

"Argument": "Userbehavior.vdo|toor",

"Target": "192.168.81.133",

}

}

38

]

6.2 Dry Run

The attacker agent developed during the research has two uses. Besides its role
during the execution of the exercise, it can also perform a dry run on the developed
infrastructure to test and verify that everything is working as expected. Some of
the attacker agent’s functionality tested during the dry run is presented in the form
of the logs at appendix C. Because our attacker agent is a Kali Linux machine, it
can perform a network scan both actively and passively to check and verify that the
machines in the scenario are up and running. Listing 14 shows the log of a passive
scan that identifies the running machine in the scenario. Listing 15 shows the log
generated by launching a brute-force attack on one of the deployed machines in
the scenario. Similarly, Listing 16 shows the log of an automated exploit execution
using Metasploit.

Additionally, the attacker agent can play the role of traffic generator using dif-
ferent Kali Linux functionalities. An example of an agent generating and replaying
random network traffic is presented in Listing 13. As stated earlier, for emulating
user behavior, VNCDOTOOL was used. A sample script for emulating a user to
an open notepad and writing a few lines is presented in Listing 18. Moreover, a
sample of the successful and unsuccessful email generation from our scenario lan-
guage is presented in Listing 19. These functionalities can be used in different ways,
depending on the scenario requirements.

6.3 Execution and Evaluation

The platform was used for multiple qualifying rounds at NCSC 2020. The challenge
had multiple rounds of qualifications, and in the first round, which was online,
150 people participated from all around Norway. Twenty-five individuals were
invited for the second and third rounds, which were deployed by the proposed
system. In the second round, 17 individuals participated in a penetration testing
scenario. In the third and final round, the participants took part in an attack
and defense scenario. The platform was evaluated for its efficiency in creating a
realistic cybersecurity exercise infrastructure. Its capability to execute operations
that are traditionally performed by human participants, along with its capability
to adapt changes based on changing requirements. Moreover, it was also evaluated
for improving the skill set of the cybersecurity exercise participants.

6.3.1 Platform Deployment Evaluation

The platform was evaluated by deploying the scenario presented in Figure 10. The
scenario had nine exploitable machines, one machine with no known vulnerability,
and one machine running the defender agent. The machine running the defender
agent had a similar vulnerability present in one of the exploitable machines. The

39

machines were divided into three subnets: public, demilitarized zone, and inter-
nal network. Each team had five Kali machines present in the public network,
which they could access over the internet using SSH. The scenario was deployed
within five minutes using the orchestrator, but this does not accurately reflect the
complexities involved in deploying such a scenario. For deploying the scenario, we
needed to (1) collect the required operating system, vulnerable programs, services,
and configuration details, which took a few hours to days, depending on the sce-
nario requirement; (2) upload the required operating system on the cloud in the
form of RAW images, which took a few minutes to hours depending on the internet
speed; (3) specify the scenario according to the scenario language, which took a few
minutes to hours depending on scenario complexity; (4) deploy the scenario on the
cloud using the proposed system, which also took a few minutes to hours depending
on scenario complexity; and (5) verify scenario properties using the emulated dry
run, which took a few minutes to hours depending on scenario complexity. When
all the perquisites for deploying and testing the scenario were fulfilled, our scenario
language was able to provide the functionality and was very efficient in deploy-
ing the scenario. We then evaluated the proposed solution based on a set of five
qualitative matrices: efficiency, usability, completeness, flexibility, scalability, and
adaptability.

6.3.2 Efficiency

As stated earlier, multiple factors are involved in the efficiency of deploying cy-
bersecurity scenarios. Consider the case of cooking a dish as an example of those
factors. First, you must gather all the ingredients and then follow a recipe to make
a dish. Here, we can measure the efficiency with respect to time in three ways:
(1) cooking time, (2) the time required to gather the ingredients, and (3) the time
required to grow the ingredients. The standard way of measuring how fast a dish
is made is based on the cooking time, so we are ignoring the time required to
gather the necessary components and artifacts for deploying the scenario and are
only measuring the time our scenario language took to deploy the scenario, which
was approximately five minutes. This figure can vary greatly because we deployed
the scenario on a highly customized cloud infrastructure [Opea] that is specifically
optimized for such infrastructure orchestration. Technically, the cloud infrastruc-
ture comprised 608 CPUs, 5.5 TB RAM for general purpose and 84 CPUs, 1792
GB RAM, 2 Tesla v100, 2 Tesla a100 for GPU-accelerated workloads with 133 TiB
of total SSID storage. We suspect that the deployment efficiency result will be
different in different cloud infrastructures, but we will investigate this in future
research.

6.3.2.1 Applicability
Applicability measures whether the deployed scenario is employable for conduct-
ing operational cybersecurity exercises without manual tuning of the infrastruc-
ture. We tested the developed orchestrator in two different cybersecurity exer-
cises that involved the top cybersecurity talent present in Norway, finding that

40

the deployed scenario’s performance was up to par with similar systems [RCA20,
VOČ+17, LFH+20]. The deployed infrastructure faced some failures during the
exercises like some services failing to respond after continuing attacks; however,
these issues were mitigated on the spot to ensure smooth running of the exercises.

6.3.2.2 Accuracy
Accuracy measures whether the deployed scenario fulfilled the requirements spec-
ified in our scenario language accurately, such as the network topology and vul-
nerabilities present in the machines. Our developed scenario language fulfilled the
technical requirement for deploying the infrastructure, injecting vulnerabilities, and
executing a dry run as specified; the experimentally validated details of which are
presented in section 6.2 and section 6.3.5.

6.3.3 Adaptability

Adaptability refers to the capability of developed solutions to accept and accommo-
date changes from different sources and implement the exercise scenario. We used
another qualifying round for NCSC to check this capability. This qualifying round
was an attack/defense scenario in which the vulnerable machine was developed by
one of our colleagues using another source code vulnerability injector solution. Our
colleague shared the four vulnerable machines with us, and using our scenario lan-
guage, we deployed the scenario in an attack/defense network topology. Five teams
participated in the attack/defense scenario, and they were assigned five identical
isolated networks with four vulnerable machines each. The attack/defense scenario
had two parts: in the first part, the teams had to patch the vulnerabilities in their
assigned network. In the second part, the teams’ networks were interconnected and
were tasked to exploit the vulnerabilities in the other teams’ machines. This chang-
ing network topology, while accommodating unknown machines, was used to verify
the adaptability of our developed system. The deployed attack/defense scenario on
Openstack is presented in Figure 12.

6.3.3.1 Flexibility
Flexibility measures the capability of the deployed scenario to accept changes after
deployment. We developed the scenario orchestrator in a modular way, in which the
infrastructure was independent of the vulnerability injection steps. This enabled us
to inject new vulnerabilities after the scenario had been deployed. We consider this
a highly useful feature because it enabled us to use the same network topology with
different types of vulnerabilities for individuals with different skill sets. Moreover
we could change the network topology, add additional machines with new vulnera-
bilities, and launch new attacks to make the scenario more dynamic based on the
given requirements.

6.3.3.2 Scalability
Scalability measures whether the deployed scenario is expandable and can accom-
modate additional teams in the scenario. There were a total of 15 machines that

41

Figure 12: Deployed Attack/defense scenario

were allocated to one team, but there were a total of five teams involved in NCSC,
so the scenario was replicated within five minutes to instantiate 75 virtual machines,
which enabled us to assign a completely segregated network to each team. The fully
deployed five networks comprising 75 machines that implemented the case study
scenario are presented in Figure 10 and can be seen in Figure 13:

Because we conducted this research to perform cybersecurity exercises that are
scalable for a large number of participants, we used the developed tool to create
and deploy the exercise infrastructure for one of the cybersecurity courses taught
at NTNU. The course had 84 students, and the infrastructure was required for
a four-week-long red and blue team exercise. The infrastructure included nearly
400 machines with 19 teams and one research network and was deployed in ap-
proximately 37 minutes. The deployment time was noted form the Openstack
SystemUsageData which includes the timestamps for when the Stack CREATE
started and when the Stack CREATE is completed [Sys]. It should be noted that
each network was deployed as a separate HEAT template, and we added a one-
minute break after each network deployment to manage Openstack API calls. The
deployed network topology is presented in Figure 14.

6.3.4 Autonomy

Autonomy refers to the capability of a developed solution to perform tasks that
have been traditionally performed by a human. We used the developed solution
to perform an emulated dry run automatically on the scenario infrastructure, as

42

Figure 13: Deployed penetration testing scenario

discussed in section 6.2. This provided us with the capability to replace humans in
the dry run phase of cybersecurity exercises. Second, two machines in the scenario
had the same vulnerability, but one machine was running the proposed defender
agent. Five teams played the scenario, and two teams were able to exploit the
vulnerability and get the flag on the machine that was not running the defender
agent. The teams did not have any knowledge about a defender agent running on
the system and were incentivized to exploit the machine to get additional points,
as stated in A. With this experiment, we concluded that the defender agent was
working as expected and could be a useful addition to cybersecurity exercises to
add friction for increased realism.

6.3.5 Preliminary Skill Improvement Evaluation

The skill improvement was measured in the final round of NCSC, in which 17
individuals, who qualified from the nationwide CTF of Norway, participated. The
participants aged between 16-25, more than half of the participants were high school
and university students, while others were employed in different public and private
sectors. They participated in the form of randomly assigned groups in the CTF

43

Figure 14: Deployed red and blue team cybersecurity exercise scenario

consisting of 3-4 individuals each. We employed a multitude of quantitative and
qualitative methods for identifying skill improvements in exercise participants that
were highlighted in [Mae20]. First, we conducted pre and post-exercise surveys to
identify any skill improvement in the individuals. This methodology was employed
in a case study where individuals measured specific skill set levels over the passage
of time [MFL17]. In summary a total of 7 technical skills were measured that were
required to solve the challenges present in the exercise. The pre and post self-
classification of skill level were presented in Figure 15 and details of the results are
provided in section 6.3.5.1 and 6.3.5.2.

Secondly, we used CTF instrumentation suggested in [CN15]; however, each
group was assigned their own separate exercise infrastructure and unique flags were
injected manually to avoid Flag Plagiarism. Additionally, we asked the exercise

44

Figure 15: Self-classification of skill level Pre and Post Exercise

participants to provide a Penetration Test Report to evaluate their performance in
a qualitative manner. The survey questions are presented in appendix D, and the
results of the survey and CTF instrumentation are given below:

6.3.5.1 Pre-exercise Survey
For the first question, we asked the participants about their self-classification of
skill sets.The majority of the participants had medium and high cybersecurity skills,
35% each, while 29% reported that they had low cybersecurity skills. Details of
the participants’ answers about their self-classification of skill level are presented
in Figure 16:

Figure 16: Self-classification of skill level

The second question we asked was about the participants’ experiences in CTF
competitions. The question was intended to get information that could be used to
measure the CTF quality in post-exercises surveys. Most participants (47%) replied
that they had participated between in five and 10 CTFs before, 41% participated
in more than 10 CTFs, while only 12% participated between one and five CTFs.
Experience in CTF competitions is presented in Figure 17:

45

Figure 17: Experience in CTF competitions

The third question we asked was rating their skill-specific cybersecurity tools
from 1 to 5, where 1 is the lowest and 5 is the highest value. These tools included
Kali Linux, Nmap, Meatsploit, Burp, hydra, Wireshark, and Immunity Debugger.
Most of the participants were familiar with Kali Linux, with a mean score of 3.06
out of 5, while most were not familiar with Immunity Debugger, with a mean score
of 1.65 out of 5. Details of their preexercise skill set response related to specific
tools are presented in Figure 18.

Figure 18: Pre-exercise skill set specific to tools

6.3.5.2 Post-Exercise Survey
After the pentest scenario, we conducted a post-exercise survey to measure the skill
improvement of the scenario participants. The first question we asked was related
to skill improvement with respect to specific tools. The participants reported that
they saw skill improvements in Kali Linux, Nmap, Metasploit, Burp, and Hydra
but did not see any improvements in their Wireshark and Immunity Debugger
skills. Details of their postskill set responses related to specific tools are presented
in Figure 19.

The second question we asked was related to their overall skill improvement,
in which 24% reported that they had a definite skill improvement, while 41% re-
ported that they saw some skill improvement after playing the scenario. Here, 35%
reported that they did not have any skill improvement, which was expected because

46

Figure 19: Post-exercise skill set

35% represented the six seniors who were already highly skilled. Details of their
postexercise overall skill improvement are presented in Figure 20.

Figure 20: Post-exercise skill improvement

The third question was related to the realistic level of the scenario; here, we
asked the participants to rate the scenario’s realism from 1 to 5. The scenario
received a total rating of 2.47 out of 5. We consider this sufficient because most of
the scenario was generated by our scenario language. Details of scenario’s realism
rating are presented in Figure 21:

Figure 21: Scenario realism

The last question we asked was related to scenario difficulty level, in which
59% of the participants considered the scenario to be difficult, 24% considered the
difficulty level as medium, while 18% considered the difficulty level as easy. Details
of the scenario difficulty level are presented in Figure 22:

47

Figure 22: Scenario difficulty level

6.3.5.3 CTF Instrumentation
We used CTFd [CTF] for scoring and instrumentation purposes. CTFd is widely
used for scoring purposes for such exercises and is very user friendly and easy to
deploy. The CTFd score board indicated how each group is performing in solving
different challenges with respect to time as indicated in Figure 23. This helped us
to compare the skill set required to solve a challenge with the skill set stated by
the participants in pre and post-exercises surveys.

Figure 23: Final Score Board of CTF

For instance, if we analyze the task complemented by the one of the leading
group we can see that it completed a task related to debugging of an application and
brute force attack on another application as indicated in Figure 24 where NewBie
is for brute-force and Debugger1 is for debugging. Other groups were struggling
with those tasks, which was reflected in post exercise survey where participant self
assessed their skills lower then compare to pre-exercise survey. Similarly majority of
exercise participants were able to complete tasks that involved Metasploit, Nmap
and Kali Linux which was positively reflected in post exercise survey. This helped

48

us to measure the actual skill set compare to perceived skill set of the exercise
participants. Finally a thematic analysis on the submitted penetration test reports
were performed. Individual feedback for each participating group was given for
focusing on particular skill set in future.

Figure 24: Challenge Completion Analysis

7 Discussion

In the course of this research, we investigated inefficiencies in the cybersecurity
exercise lifecycle. Conducting cybersecurity exercises is a complex and challenging
task involving a whole cycle which includes phases of Preparation, Dry run, Ex-
ecution, Evaluation and Repetition. Each phase brings a new set of challenges
and inefficiencies for cybersecurity exercise organizers. The challenges range from
preparing operational exercise infrastructure to finding skilled individuals to per-
form dry run on it. Moreover, identifying skilled individuals to play the role of Red
or Blue team members is also challenging during the exercise execution phase which
adds additional inefficiencies. We proposed a system to address those inefficiencies
and make the execution more efficient. The results and limitations of the prospered
research work are presented below:

49

7.1 Results

We investigated 4 Research Questions in this work, Question 1 was to identify
systems and methods with which we can model and execute realistic cybersecurity
exercise scenarios more efficiently. We proposed our developed orchestrator for ad-
dressing this question, we used model-driven engineering to develop a DSL that
can use to specify cybersecurity exercise models involving realistic adversaries and
traffic generation. Using our orchestrator, the DSL can computationally execute
various functions of different teams present in the cybersecurity exercise environ-
ment to conduct exercises with minimal human effort, which makes the exercise
execution efficient.

In Research Question 2 we investigated the following query: Is it possible to
make cybersecurity exercise models adaptable to changing requirements?. We ad-
dressed this question by conducting three cyber security exercises involving around
100 people. The exercises were conducted over the period of 6 months with changing
requirements. The first exercise Penetration testing exercise was conducted to test
the developed platform. The second Attack and Defense exercise was conducted
to check the adaptability and flexibility of the developed platform, in which the
developed platform incorporated machines from other sources. The third exercise
which was a large Red VS Blue team exercise was conducted to test and validate
the scale-ability and performance of developed autonomous agents.

In Research Question 3 we investigated What operations in cybersecurity ex-
ercises can be executed autonomously to reduce dependability on human teams?.
Our work indicated that in terms of automation, White, Green, and partially Red
teams that are involved in the Preparation and Dry run phases are automated
completely. For exercise execution, forensic traces for a Red vs Blue team exercise
can be created, which removes the need for a human Red team in such scenarios.
Similarly, autonomous defense agents can be injected into the machines present in
the network to prevent the human attacker to achieve their objectives in a pene-
tration testing scenario. A separate case study highlighting the internal working
of attack and defense agents will be published soon. We are currently working on
an AI model to analyze cybersecurity skills based on the participants’ bash his-
tory. We are in the advanced stages of its development but lack sufficient data for
proper training of the AI model. To address this, we are conducting cybersecurity
exercises, collecting relevant data from them, and planning to publish a separate
study.

In Research Question 4 we investigated How much do such exercise scenar-
ios improve the skills of cybersecurity exercise participants?. Our work indicated
that the developed cybersecurity exercise execution platform has a positive impact
on exercise participants. The participants reported skill improvement on 5 out 7
tested technical skills which was co-related with the type of challenges completed
in the exercises. The results are positive, yet not definitive, and further studies are
required for better assessment of the skill improvement.

50

7.2 Limitations

Although the proposed system addresses the problems in conducting cybersecurity
exercises efficiently and realistically, nevertheless it has few limitations. One of
the first limitations of the proposed system is in vulnerability injection. The pro-
posed system uses its own classification of vulnerabilities based upon operational
requirements of the software, services, and configuration, which isn’t commonly
used in standards like CVE and CWE. We will address this in our future work
by integrating other classification standards into the vulnerability classification of
the vulnerability injection function. Secondly, for the evaluation, only 17 people
participated and provided their feedback on the system for qualitative evaluation.
However, we would like to emphasize that the 17 survey participants were selected
from the pool of 150 people who competed in a nationwide CTF in Norway. The
17 participants were actively participating in the study and the exercises. On the
other hand, one of ENISA report from 2021 [Tow] indicated that while the number
of participants in cyber security competitions can be high, the active participants
are a small portion of the total number (ca. 11%). We are targeting very specific
skill sets and incorporating a large group is very challenging, especially during the
pandemic. Similarly, from the same report, it was also indicated that the average
training group for different European countries is around 20 people. Based upon
this information we believe that the data presented in the qualitative evaluation
surveys might not be conclusive, but it has meaningful insights. We would fur-
ther like to highlight similar studies [AMA+15, MFL17, PRDS+16, YKN21] that
involve 26, 30, 28, and 25 people, respectively.

8 Conclusion and Future work

In the current work, we presented a cybersecurity exercise modeling and execution
tool for cyber ranges. At the core of the tool, we have proposed a scenario language
that unifies concepts of different operations present in cybersecurity exercises. This
enabled us to computationally orchestrate their functionality. We used our tool to
conduct multiple cybersecurity exercises in an efficient, adaptable, and autonomous
manner, which resulted in decreasing the inefficiencies in the cybersecurity exercise
life cycle. This will enable the utilization of operational cybersecurity exercises on a
wide scale for education and training purposes, helping overcome the ever-growing
cybersecurity skill shortage.

This research work resulted in the development of a DSL that can be used to
model cybersecurity exercises scenarios. The modeled scenarios can be executed
in an efficient and realistic manner using the orchestrator developed during this
research. The proposed models are adaptable based upon changing cybersecurity
exercise scenario requirements. This is achieved through the automation of various
roles in cybersecurity exercises. The white team role is automated to specify the
scenario requirements and automatic deployment of exercise infrastructure. The
red team role is automated to perform dry runs and act as an automated adversary
during exercise execution. While blue team role was automated to provide active

51

defense during cybersecurity exercise execution. We evaluated the developed system
by conducting multiple cybersecurity exercises and measured exercises participant
skill improvement.

In the future, we are planning to expand the current version of our scenario lan-
guage and add a new concept called ”module.” The ”module” concept will specify
a template of an organizational infrastructure, for example, an bank or an internet
service provider ISP. When the ”module” specification is given to our scenario lan-
guage, the infrastructure will be provisioned for automatic deployment. One key
feature that we are planning to integrate into such infrastructure provisioning is
multi-cloud orchestration because we are going to emulate the whole infrastructure
of an organization, which will be quite resource-demanding for single cloud deploy-
ment. This will also help us realistically model different segregated organizations
on the internet for cybersecurity scenarios. Finally, we are planning to use TLA+
to model the attacker and defender steps during a cybersecurity exercise. This
will enable us to perform a more formal analysis on different attack and defense
strategies. We will conduct more in-depth case studies for autonomous cybersecu-
rity exercise execution and then analyze such technology’s effectiveness in training
human attackers and defenders.

References

[AG20] Almroth, Jonas ; Gustafsson, Tommy: CRATE Exercise Control–
A cyber defense exercise management and support tool. In: 2020
IEEE European Symposium on Security and Privacy Workshops (Eu-
roS&PW) IEEE, 2020, S. 37–45

[AMA+15] Abbott, Robert G. ; McClain, Jonathan T. ; Anderson, Ben-
jamin R. ; Nauer, Kevin S. ; Silva, Austin R. ; Forsythe, James C.:
Automated Performance Assessment in Cyber Training Exercises. /
Sandia National Lab.(SNL-NM), Albuquerque, NM (United States).
2015. – Forschungsbericht

[BPT+17] Beuran, Razvan ; Pham, Cuong ; Tang, Dat ; Chinen, Ken-ichi ;
Tan, Yasuo ; Shinoda, Yoichi: Cytrone: An integrated cybersecu-
rity training framework. In: SCITEPRESS–Science and Technology
Publications (2017), S. 157–166

[BTP+18] Beuran, Razvan ; Tang, Dat ; Pham, Cuong ; Chinen, Ken-ichi
; Tan, Yasuo ; Shinoda, Yoichi: Integrated framework for hands-
on cybersecurity training: CyTrONE. In: Computers & Security 78
(2018), S. 43–59

[CGT+89] Ceri, Stefano ; Gottlob, Georg ; Tanca, Letizia u. a.: What you
always wanted to know about Datalog(and never dared to ask). In:
IEEE transactions on knowledge and data engineering 1 (1989), Nr.
1, S. 146–166

52

[CN15] Chothia, Tom ; Novakovic, Chris: An offline capture the flag-
style virtual machine and an assessment of its value for cybersecurity
education. In: 2015 {USENIX} Summit on Gaming, Games, and
Gamification in Security Education (3GSE 15), 2015

[CTF] CTFd : The Easiest Capture The Flag Platform. https://ctfd.io/.
– (Accessed on 10/13/2021)

[CZW+19] Chang, Wanli ; Zhao, Shuai ; Wei, Ran ; Wellings, Andy ; Burns,
Alan: From java to real-time java: a model-driven methodology
with automated toolchain. In: Proceedings of the 20th ACM SIG-
PLAN/SIGBED International Conference on Languages, Compilers,
and Tools for Embedded Systems, 2019, S. 123–134

[Dat] Datalog: Deductive Database Programming. https://docs.

racket-lang.org/datalog/index.html. – (Accessed on
09/30/2020)

[ECGB19] Eckroth, Joshua ; Chen, Kim ; Gatewood, Heyley ; Belna,
Brandon: Alpaca: Building dynamic cyber ranges with procedurally-
generated vulnerability lattices. In: Proceedings of the 2019 ACM
Southeast Conference, 2019, S. 78–85

[EM17] Edgar, Thomas W. ; Manz, David O.: Research methods for cyber
security. Syngress, 2017

[HCA11] Hutchins, Eric M. ; Cloppert, Michael J. ; Amin, Rohan M.:
Intelligence-driven computer network defense informed by analysis of
adversary campaigns and intrusion kill chains. In: Leading Issues in
Information Warfare & Security Research 1 (2011), Nr. 1, S. 80

[J30] Taxonomy and Definitions for Terms Related to Driving Automation
Systems for On-Road Motor Vehicles - SAE International. https:

//www.sae.org/standards/content/j3016_201806/. – (Accessed
on 09/25/2020)

[JON+15] Jones, Randolph M. ; OGrady, Ryan ; Nicholson, Denise ; Hoff-
man, Robert ; Bunch, Larry ; Bradshaw, Jeffrey ; Bolton, Ami:
Modeling and integrating cognitive agents within the emerging cy-
ber domain. In: Proceedings of the Interservice/Industry Training,
Simulation, and Education Conference (I/ITSEC) Bd. 20 Citeseer,
2015

[KSW06] Kramer, Franklin ; Starr, Stuart ; Wentz, Larry: Actions to
enhance the use of commercial information technology (IT) in De-
partment of Defense (DoD) systems. In: Fifth International Con-
ference on Commercial-off-the-Shelf (COTS)-Based Software Systems
(ICCBSS’05) IEEE, 2006, S. 8–pp

53

[LFH+20] Leitner, Maria ; Frank, Maximilian ; Hotwagner, Wolfgang ;
Langner, Gregor ; Maurhart, Oliver ; Pahi, Timea ; Reuter,
Lenhard ; Skopik, Florian ; Smith, Paul ; Warum, Manuel: AIT
Cyber Range: Flexible Cyber Security Environment for Exercises,
Training and Research. In: Proceedings of the European Interdisci-
plinary Cybersecurity Conference, 2020, S. 1–6

[lib] Libvirt: The virtualization API. https://libvirt.org/. – (Accessed
on 02/25/2021)

[Llo12] Lloyd, JohnW.: Foundations of logic programming. Springer Science
& Business Media, 2012

[Lor85] Lord, David: Worldwide networking for academics. In: Data Pro-
cessing 27 (1985), Nr. 5, S. 27–31

[Mae20] Maennel, Kaie: Learning Analytics Perspective: Evidencing Learn-
ing from Digital Datasets in Cybersecurity Exercises. In: 2020
IEEE European Symposium on Security and Privacy Workshops (Eu-
roS&PW) IEEE, 2020, S. 27–36

[MBF+10] Mirkovic, Jelena ; Benzel, Terry V. ; Faber, Ted ; Braden,
Robert ; Wroclawski, John T. ; Schwab, Stephen: The DETER
project: Advancing the science of cyber security experimentation and
test. In: 2010 IEEE International Conference on Technologies for
Homeland Security (HST) IEEE, 2010, S. 1–7

[MFL17] Moore, Erik ; Fulton, Steven ; Likarish, Dan: Evaluating a
multi agency cyber security training program using pre-post event
assessment and longitudinal analysis. In: IFIP World Conference on
Information Security Education Springer, 2017, S. 147–156

[MIT] MITRE ATT&CK. https://attack.mitre.org/. – (Accessed on
09/30/2020)

[Nai20] Naik, Mayur: Petablox: Large-Scale Software Analysis and Analytics
Using Datalog / GEORGIA TECH RESEARCH INST ATLANTA
ATLANTA United States. 2020. – Forschungsbericht

[NCR] NCR Orchestrator Application. https://tinyurl.com/4y57t3vb. –
(Accessed on 10/15/2021)

[NIS] NIST: Cyber Ranges. https://www.nist.gov/system/files/

documents/2018/02/13/cyber_ranges.pdf. – (Accessed on
11/09/2020)

[Opea] Openstack at NTNU - SkyHigh - NTNU Wiki. https://www.ntnu.

no/wiki/display/skyhigh/Openstack+at+NTNU. – (Accessed on
03/24/2021)

54

[Opeb] OpenTOSCA. https://www.opentosca.org/. – (Accessed on
02/25/2021)

[Pau] Paul-Pols—The-Unified-Kill-Chain.pdf. https:

//www.csacademy.nl/images/scripties/2018/

Paul-Pols---The-Unified-Kill-Chain.pdf. – (Accessed on
09/30/2020)

[PRDS+16] Peker, Yesem K. ; Ray, Lydia ; Da Silva, Stephanie ; Gibson,
Nathaniel ; Lamberson, Christopher: Raising cybersecurity aware-
ness among college students. In: Journal of The Colloquium for In-
formation Systems Security Education Bd. 4, 2016, S. 17–17

[PTCB16] Pham, Cuong ; Tang, Dat ; Chinen, Ken-ichi ; Beuran, Razvan:
Cyris: A cyber range instantiation system for facilitating security
training. In: Proceedings of the Seventh Symposium on Information
and Communication Technology, 2016, S. 251–258

[RCA18] Russo, Enrico ; Costa, Gabriele ; Armando, Alessandro: Scenario
design and validation for next generation cyber ranges. In: 2018 IEEE
17th International Symposium on Network Computing and Applica-
tions (NCA) IEEE, 2018, S. 1–4

[RCA20] Russo, Enrico ; Costa, Gabriele ; Armando, Alessandro: Build-
ing Next Generation Cyber Ranges with CRACK. In: Computers &
Security (2020), S. 101837

[Sch06] Schmidt, Douglas C.: Model-driven engineering. In: Computer-
IEEE Computer Society- 39 (2006), Nr. 2, S. 25

[SSSAK+17] Schreuders, Z C. ; Shaw, Thomas ; Shan-A-Khuda, Mohammad
; Ravichandran, Gajendra ; Keighley, Jason ; Ordean, Mihai:
Security Scenario Generator (SecGen): A Framework for Generating
Randomly Vulnerable Rich-scenario VMs for Learning Computer Se-
curity and Hosting {CTF} Events. In: 2017 {USENIX} Workshop
on Advances in Security Education ({ASE} 17), 2017

[Sys] SystemUsageData - OpenStack. https://tinyurl.com/a8y3bed. –
(Accessed on 10/12/2021)

[Tow] Towards a Common ECSC roadmap ENISA. https://www.enisa.

europa.eu/publications/towards-a-common-ecsc-roadmap, . –
(Accessed on 01/11/2022)

[VK15] Vaishnavi, Vijay K. ; Kuechler, William: Design science research
methods and patterns: innovating information and communication
technology. Crc Press, 2015

55

[vnc] vncdotool PyPI. https://pypi.org/project/vncdotool/. – (Ac-
cessed on 10/08/2020)

[VOČ+17] Vykopal, Jan ; Ošlejšek, Radek ; Čeleda, Pavel ; Vizvary, Mar-
tin ; Tovarňák, Daniel: Kypo cyber range: Design and use cases.
In: SciTePress (2017)

[VVO+17] Vykopal, Jan ; Vizváry, Martin ; Oslejsek, Radek ; Celeda,
Pavel ; Tovarnak, Daniel: Lessons learned from complex hands-
on defence exercises in a cyber range. In: 2017 IEEE Frontiers in
Education Conference (FIE) IEEE, 2017, S. 1–8

[WC10] Weeden, Brian C. ; Cefola, Paul J.: Computer systems and algo-
rithms for Space situational awareness: history and future develop-
ment. In: Advances in the Astronautical Sciences 138 (2010), Nr. 25,
S. 2010

[Whaa] What is Infrastructure as Code (IaC)? — IBM. https://www.

ibm.com/cloud/learn/infrastructure-as-code. – (Accessed on
09/25/2020)

[Whab] What is SOAR? Security definition — FireEye. https://www.

fireeye.com/products/helix/what-is-soar.html. – (Accessed on
09/25/2020)

[WLS+02] White, Brian ; Lepreau, Jay ; Stoller, Leigh ; Ricci, Robert
; Guruprasad, Shashi ; Newbold, Mac ; Hibler, Mike ; Barb,
Chad ; Joglekar, Abhijeet: An integrated experimental environ-
ment for distributed systems and networks. In: ACM SIGOPS Oper-
ating Systems Review 36 (2002), Nr. SI, S. 255–270

[WM12] Willems, Christian ; Meinel, Christoph: Online assessment for
hands-on cyber security training in a virtual lab. In: Proceedings of
the 2012 IEEE Global Engineering Education Conference (EDUCON)
IEEE, 2012, S. 1–10

[YK18a] Yamin, Muhammad M. ; Katt, Basel: Inefficiencies in Cyber-
Security Exercises Life-Cycle: A Position Paper., CEUR workshop
proceedings, 2018

[YK18b] Yamin, Muhammd M. ; Katt, Basel: Detecting Malicious Windows
Commands Using Natural Language Processing Techniques. In: In-
ternational Conference on Security for Information Technology and
Communications Springer, 2018, S. 157–169

[YK19] Yamin, Muhammad M. ; Katt, Basel: Modeling attack and defense
scenarios for cyber security exercises. In: 5th interdisciPlinary cyber
research conference 2019, 2019, S. 7

56

[YKG19] Yamin, Muhammad M. ; Katt, Basel ; Gkioulos, Vasileios: De-
tecting Windows Based Exploit Chains by Means of Event Correlation
and Process Monitoring. In: Future of Information and Communica-
tion Conference Springer, 2019, S. 1079–1094

[YKG20] Yamin, Muhammad M. ; Katt, Basel ; Gkioulos, Vasileios: Cyber
ranges and security testbeds: Scenarios, functions, tools and architec-
ture. In: Computers & Security 88 (2020), S. 101636

[YKN21] Yamin, Muhammad M. ; Katt, Basel ; Nowostawski, Mariusz:
Serious games as a tool to model attack and defense scenarios for
cyber-security exercises. In: Computers & Security 110 (2021), S.
102450

[YKT+18] Yamin, Muhammad M. ; Katt, Basel ; Torseth, Espen ; Gkiou-
los, Vasileios ; Kowalski, Stewart J.: Make it and break it: An
IoT smart home testbed case study. In: Proceedings of the 2nd In-
ternational Symposium on Computer Science and Intelligent Control,
2018, S. 1–6

[YMO+16] Yasuda, Shingo ; Miura, Ryosuke ; Ohta, Satoshi ; Takano, Yuuki
; Miyachi, Toshiyuki: Alfons: A mimetic network environment con-
struction system. In: International Conference on Testbeds and Re-
search Infrastructures Springer, 2016, S. 59–69

[ZN20] Zaber, Matthew ; Nair, Suku: A framework for automated eval-
uation of security metrics. In: Proceedings of the 15th International
Conference on Availability, Reliability and Security, 2020, S. 1–11

A Scenario Description

NCSC 2020 Penetration Test Scenario

A.1 Good Corp LLC

Good Corp LLC is a SME (Small and Medium Enterprise) working in the Man-
agement Consultancy area. It provides assistance to various government and non-
government entities in making decisions that are economically feasible, environmen-
tally sustainable and socially acceptable. Good Corp LLC is currently conducting
a study that is focusing on economic benefits of increased Baltic sea area by fore-
casting success of recent DS (Delete Sweden) movement.

While the DS movement got allot of support from Nordic regions and is economi-
cally feasible and environmentally sustainable. However, it is not socially acceptable
by some people, so they launched an anti-DS movement Ref: https://www.change.org/p/sweden-
anti-delete-sweden

57

But the anti-DS movement didnt get any significant public support, so a group
of 5 social activist hackers decided to take things in their own hands. They planned
to launch a cyber-attack on Good Corp LLC and tamper with the data on its servers
in order to change its report that it is going to present to the government.

A.2 Good Corp LLC Employees

Good Corp LLC is an equal opportunity organization and provide people from di-
verse backgrounds and environments to grow and achieve success. New employees
come and go. Some learn new things while other earn. Due to current COVID situ-
ation Good Corp LLC is struggling to provide orientation sessions to new employees
which includes overview of company values and basic cybersecurity awareness. Mike
is a young and passionate researcher who recently joined Good Corp LLC but missed
the orientation sessions. Good Corp LLC is facing a lot of cybersecurity challenges
as it is involved in very high-profile research, so it invited a cybersecurity firm to
pentest their employees and infrastructure. The firm identified a lot of security is-
sues in Good Corp LLC infrastructure. Some of them were related to very famous
ransomware vulnerabilities while others were related system configuration and bad
password policies. One shocking finding of the pentest was a data breach that was
identified but thankfully it didnt contain some important information. Just some
old file and custom software programs that Good Corp LLC uses in its day to day
operations. The good thing that was identified in the pertest was that the CEO
Jason was found to be very well secured while one of the mangers has no zero day
vulnerabilities. The CEO decided to continue the operations of the company while
patches were implemented and issues with data breach were resolved. Link to data
breach:

A.3 Rules

1. You are tasked to discover, exploit, analyze and report vulnerabilities in Good
Corp LLC infrastructure.

2. Every system has a file flag.txt. Locate it and post the content of it in the
scoreboard.

3. Take a screenshot of the flag content with IP address of exploited machine
and use it as evidence in the report.

4. Bonus point for putting a file in CEO computer with content DS is not rec-
ommended

5. Not allowed to use any sort of DoS Attacks

6. Not allowed to share any information about the scenarios with anyone other
than your teammates

58

B Formal Scenario Model and Verification for the
Use Case

Lets us consider this scenario in which 10 machines are connected to 3 sub-nets. In
the scenario two subnets are directly connected PUblic and MilitrizedZone while
a machine present in the network have dual network interface which provide access
to sub-net Internal . We can define1 the scenario model the following way.

1. Defining Links

Link Facts

%Specifying facts which Hosts are connected to which Network

Link(′Machine1′, ′Public′)

Link(′Machine2′, ′Public′)

Link(′Machine3′, ′Public′)

Link(′Machine4′, ′Public′)

Link(′Machine5′, ′Public′)

Link(′Public′, ′DemilitarizedZone ′)

%Specifying two Networks are directly connected

Link(′Machine6′, ′DemilitarizedZone ′)

Link(′Machine7′, ′DemilitarizedZone ′)

Link(′Machine8′, ′DemilitarizedZone ′)

Link(′Machine8′, ′Internal ′)

%Specifying a Host is connected with multiple network interface

Link(′Machine9′, ′Internal ′)

Link(′Machine10′, ′Internal ′)

To check which machines are connected to which network and can reach which
machines we can define a new Term CanReach with variable X, Y and Z.

Link Clauses

%A clause which creates a bidirectional link between two Hosts X and Y

Link(X , Y) ≤ Link(Y , X)

%A clause to check direct link between two Hosts X and Y

CanReach(X , Y) ≤ Link(X , Y)

%A clause to check link between two Hosts X and Z via Host Y

CanReach(X , Y) ≤ Link(X , Z)

1Definition in pydatalog ref:https://sites.google.com/site/pydatalog/home

59

2. Defining Vulnerabilities

Vulnerability Facts

%Specifying facts which Hosts are vulnerable to which vulnerability

Vulnerable(′Machine1′, ′SSHBruteForce ′)

Vulnerable(′Machine2′, ′EasyFTPExploit ′t)

Vulnerable(′Machine3′, ′MS17− 010′)

Vulnerable(′Machine4′, ′BufferOverFlow ′)

%A Host can be vulnerable to multiple vulnerabilities

Vulnerable(′Machine4′, ′MS17− 010′)

Vulnerable(′Machine5′, ′XXE ′)

Vulnerable(′Machine6′, ′AppacheExploit ′)

Vulnerable(′Machine7′, ′MS14− 068′)

Vulnerable(′Machine7′, ′BufferOverFlow ′)

Vulnerable(′Machine8′, ′RDPBrutforce ′)

%A Host can have no known vulnerability as well

Vulnerable(′Machine9′, ′NoVulnerability ′)

Vulnerable(′Machine10′, ′EasyFTPExploit ′)

To check which machine is connected to machine with a specific vulnerability
e.g. BufferOveflow we can verify it by the following clause:

Vulnerability Clause

CanReach(′Attacker1′, Y)&Vulnerable(Y , ′BufferOverFlow ′)

3. Defining Capabilities

Capabilities Facts

%Specifying which vulnerabilities are exploitable and which are defendable

Capability(′SSHBruteForce ′, ′YES ′, ′NO ′)

Capability(′WebExploit ′, ′YES ′, ′NO ′)

Capability(′MS17− 010′, ′YES ′, ′YES ′)

Capability(′BufferOverFlow ′, ′YES ′, ′NO ′)

Capability(′MS14− 068′, ′YES ′, ′YES ′)

Capability(′XXE ′, ′YES ′, ′NO ′)

Capability(′AppacheExploit ′, ′YES ′, ′NO ′)

60

Capability(′RDPBrutforce ′, ′YES ′, ′NO ′)

Capability(′EasyFTPExploit ′, ′YES ′, ′YES ′)

Capability(′NoVulnerability ′, ′NO ′, ′YES ′)

To check which machine is connected to vulnerable machines which are not
defendable by defender we can create the following clause:

Capabilities Clause

Capability(V , ′YES ′, ′NO ′)&CanReach(′Attacker1′, Y)&Vulnerable(Y , V)

4. Defining KillChain

KillChain Facts

%Specifying facts that which host is exploitable to different stages of CKC .

KillChain(′Machine1′, ′YES ′, ′YES ′, ′YES ′, ′YES ′, ′YES ′, ′YES ′, ′YES ′)

KillChain(′Machine2′, ′YES ′, ′YES ′, ′YES ′, ′YES ′, ′YES ′, ′YES ′, ′YES ′)

KillChain(′Machine3′, ′YES ′, ′YES ′, ′YES ′, ′YES ′, ′YES ′, ′YES ′, ′YES ′)

KillChain(′Machine4′, ′YES ′, ′YES ′, ′YES ′, ′YES ′, ′YES ′, ′YES ′, ′YES ′)

KillChain(′Machine5′, ′YES ′, ′YES ′, ′YES ′, ′YES ′, ′YES ′, ′YES ′, ′YES ′)

KillChain(′Machine6′, ′YES ′, ′YES ′, ′YES ′, ′YES ′, ′YES ′, ′YES ′, ′YES ′)

KillChain(′Machine7′, ′YES ′, ′YES ′, ′YES ′, ′YES ′, ′YES ′, ′YES ′, ′YES ′)

KillChain(′Machine8′, ′YES ′, ′YES ′, ′YES ′, ′YES ′, ′YES ′, ′YES ′, ′YES ′)

KillChain(′Machine9′, ′YES ′, ′YES ′, ′YES ′, ′YES ′, ′YES ′, ′NO ′, ′NO ′)

KillChain(′Machine10′, ′YES ′, ′NO ′, ′NO ′, ′NO ′, ′NO ′, ′NO ′, ′NO ′)

To integrate Cyber Kill Chain concepts to the model we can create the fol-
lowing clause:

KillChainClause

%A clause to check which specific Host is connected to Hosts

%in a network that are vulnerable and are not defendable

%and are exploititable to different stages of Cyber Kill Chain .

Capability(V , ′YES ′, ′NO ′)&CanReach(′Mahine1′, Y)&Vulnerable(Y , V)&

KillChain(Y , ′YES ′, ′YES ′, ′YES ′, ′YES ′, ′YES ′, ′YES ′, ′YES ′)

61

C Dry Run Logs

Listing 14: Sample log for passively checking network connection

Date and Time:12:20 PM

17 Captured ARP Req/Rep packets, from 4 hosts. Total size: 1020

IP At MAC Address Count Len MAC Vendor

192.168.81.2 00:50:56:fc:37:72 3 180 VMware, Inc.

192.168.81.130 00:50:56:29:2a:2e 1 60 VMware, Inc.

192.168.81.1 00:50:56:c0:00:08 12 720 VMware, Inc.

192.168.81.254 00:50:56:e0:48:87 1 60 VMware, Inc.

Listing 15: Sample log generated by launching a brute-force attack during dry run

Date and Time:12:26 PM

Hydra v8.6 (c) 2017 by van Hauser/THC - Please do not use in

military or secret service organizations, or for illegal

purposes.

↪→

↪→

Hydra (http://www.thc.org/thc-hydra) starting at 2019-02-28

15:25:16↪→

[DATA] max 64 tasks per 1 server, overall 64 tasks, 5084 login

tries (l:1/p:5084), ~80 tries per task↪→

[DATA] attacking ssh://192.168.243.130:22/

[STATUS] 1022.00 tries/min, 1022 tries in 00:01h, 4191 to do in

00:05h, 64 active↪→

[22][ssh] host: 192.168.243.130 login: root password: jason1

1 of 1 target successfully completed, 1 valid password found

[WARNING] Writing restore file because 62 final worker threads did

not complete until end.↪→

Hydra (http://www.thc.org/thc-hydra) finished at 2019-02-28

15:26:33↪→

Listing 16: Sample log generated from launching a Metasploit exploit from our
scenario language

.:okOOOkdc' 'cdkOOOko:.

.xOOOOOOOOOOOOc cOOOOOOOOOOOOx.

:OOOOOOOOOOOOOOOk, ,kOOOOOOOOOOOOOOO:

'OOOOOOOOOkkkkOOOOO: :OOOOOOOOOOOOOOOOOO'

oOOOOOOOO.MMMM.oOOOOoOOOOl.MMMM,OOOOOOOOo

62

dOOOOOOOO.MMMMMM.cOOOOOc.MMMMMM,OOOOOOOOx

lOOOOOOOO.MMMMMMMMM;d;MMMMMMMMM,OOOOOOOOl

.OOOOOOOO.MMM.;MMMMMMMMMMM;MMMM,OOOOOOOO.

cOOOOOOO.MMM.OOc.MMMMM'oOO.MMM,OOOOOOOc

oOOOOOO.MMM.OOOO.MMM:OOOO.MMM,OOOOOOo

lOOOOO.MMM.OOOO.MMM:OOOO.MMM,OOOOOl

;OOOO'MMM.OOOO.MMM:OOOO.MMM;OOOO;

.dOOo'WM.OOOOocccxOOOO.MX'xOOd.

,kOl'M.OOOOOOOOOOOOO.M'dOk,

:kk;.OOOOOOOOOOOOO.;Ok:

;kOOOOOOOOOOOOOOOk:

,xOOOOOOOOOOOx,

.lOOOOOOOl.

,dOd,

.

=[metasploit v5.0.98-dev]

+ -- --=[2045 exploits - 1106 auxiliary - 344 post]

+ -- --=[562 payloads - 45 encoders - 10 nops]

+ -- --=[7 evasion]

Metasploit tip: View advanced module options with advanced

[*] Processing vul.rc for ERB directives.

resource (vul.rc)> setg RESOURCE /root/gather.rc

RESOURCE => /root/gather.rc

resource (vul.rc)> use exploit/vulnserver

[*] No payload configured, defaulting to

windows/meterpreter/reverse_tcp↪→

resource (vul.rc)> set AutoRunScript

post/multi/gather/multi_command↪→

AutoRunScript => post/multi/gather/multi_command

resource (vul.rc)> set RHOST 192.168.81.158

RHOST => 192.168.81.158

resource (vul.rc)> set RPORT 9999

RPORT => 9999

resource (vul.rc)> exploit

[*] Started reverse TCP handler on 192.168.81.129:4444

[*] 192.168.81.158:9999 - Sending 350 byte payload...

[*] Sending stage (176195 bytes) to 192.168.81.158

[*] Meterpreter session 1 opened (192.168.81.129:4444 ->

192.168.81.158:49172) at 2020-10-09 04:05:26 -0400↪→

meterpreter >

63

[*] Session ID 1 (192.168.81.129:4444 -> 192.168.81.158:49172)

processing AutoRunScript 'post/multi/gather/multi_command'↪→

[*] Running module against WIN-TTMIH9LTG7O

[*] Running command ipconfig

[+] Command output saved to: /root/.msf4/loot/

20201009040527_default_192.168.81.158_host.command_553149.txt↪→

[*] Running command arp -a

[+] Command output saved to: /root/.msf4/loot/

20201009040527_default_192.168.81.158_host.command_236368.txt↪→

[*] Running command tasklist

[+] Command output saved to: /root/.msf4/loot/

20201009040527_default_192.168.81.158_host.command_168109.txt↪→

Listing 17: Sample log for network traffic generation

Date and Time:5:10 AM

Actual: 136045 packets (13973936 bytes) sent in 3.39 seconds

Rated: 4114044.4 Bps, 32.91 Mbps, 40052.79 pps

Flows: 0 flows, 0.00 fps, 136045 flow packets, 0 non-flow

Statistics for network device: eth0

Successful packets: 136045

Failed packets: 0

Truncated packets: 0

Retried packets (ENOBUFS): 0

Retried packets (EAGAIN): 0

Listing 18: Sample VDO configuration for emulating a user behavior

key tab

pause 1

key enter

pause 1

type notepad

pause 1

key enter

pause 1

type "Testing Automation"

pause 1

key enter

type "which is very basic proof of concpet"

pause 1

key enter

type "showing a user behavior on notepad"

64

pause 1

key enter

type "in a very limited manner"

pause 1

key enter

key alt

key enter

Listing 19: Sample log for successful and unsuccessful phishing email generation

Date and Time:8:22 AM

Jan 22 11:20:39 kali sendemail[3707]: Email was sent successfully!

Date and Time:2:42 AM

Jan 23 05:40:29 kali sendemail[1722]: ERROR => Received:

554 5.7.1 [2] Message rejected under suspicion of SPAM;

https://ya.cc/1IrBc 1579776029-NTJI8wwzTr-eSWu5qsR

↪→

↪→

D Survey Questions

D.1 Pre-Exercise

1. You classify yourself as a Senior or Junior?*

• Senior

• Junior

2. You classify yourself as a low/medium/high skilled individual in cybersecu-
rity?*

• Low

• Medium

• High

3. How many CTF you previously played*

• 1 to 5

• 5 to 10

• More then 10

4. Rate your skills in different cybersecurity tools from 1 to 5, where 1 is the
lowest value and 5 is the highest value:*

65

• Kali linux

• Nmap

• Metasploit

• Burp

• hydra

• Wireshark

• Immunity Debugger

D.2 Post-Exercise

1. Rate your skills in different cybersecurity tools from 1 to 5, where 1 is the
lowest value and 5 is the highest value:*

• Kali linux

• Nmap

• Metasploit

• Burp

• hydra

• Wireshark

• Immunity Debugger

2. How do you rate the difficulty of played CTF Easy/Medium/Hard*

• Low

• Medium

• High

3. How realistic was the CTF compare to other CTF you played before? Give
it rating from 1 to 5, where 1 indicates the lowest value and 5 indicates the
highest value.

4. Did you havve any skill improvement after playing the CTF?*

• Yes

• No

• Somewhat

66

Declaration of Competing Interest

The authors declare no conflict of interest in publishing the article “Modeling
and Executing Cyber Security Exercise Scenarios in Cyber Ranges”

67

Credit Author Statment

Muhammad Mudassar Yamin
-Idea
-Research and development
-Experimentation
-Writing original draft
Basel Katt
-Research Supervision
-Reviewing and editing paper draft

68

Muhammad Mudassar Yamin is currently doing his PhD at the Depart-
ment of Information and Communication Technology at the Norwegian Univer-
sity of Science and Technology. He is the member of the system security research
group and the focus of his research is system security, penetration testing, se-
curity assessment, intrusion detection. Before joining NTNU, Mudassar was
an Information Security consultant and served multiple government and pri-
vate clients. He holds multiple cyber security certifications like OSCE, OSCP,
LPT-MASTER, CEH, CHFI, CPTE, CISSO, CBP.

Basel Katt is currently working as an Associate Professor at the Depart-
ment of Information and Communication Technology at the Norwegian Univer-
sity of Science and Technology. He is the technical project leader of Norwegian
cyber range. Focus of his research areas are: • Software security and security
testing • Software vulnerability analysis • Model driven software development
and model driven security • Access control, usage control and privacy protection
• Security monitoring, policies, languages, models and enforcement

69

