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Abstract—This paper presents the exact transient solu-
tion to the unbalanced and balanced faults in the doubly-fed
induction machine (DFIM). Stator currents, rotor currents,
and stator fluxes have been validated using simulation and
experiment. The work is meant to strengthen and fasten the
predictability of large DFIMs in the design stage to comply
with mechanical constraints or grid fault issues. Moreover,
the analytical approach reduces the computational costs
of large-scale stability studies and is especially suited to
the initial phase, where a of plethora design computations
must be carried out for the DFIM before it is checked for its
transient interaction with the power system. The possibility
to dynamically estimate the DFIM performance is simplified
by original equations derived from first principles. First,
case studies of two large 265MVA DFIMs are used to verify
the analytical approach, and to justify the proposed "large
machine approximation" using simulation with an exact
match. Finally, laboratory measurements were conducted
on a 10.96 kVA and a 1.94 kVA DFIM to validate the transient
current peaks predicted in the proposed analytic expres-
sions for two-phase and three-phase faults, respectively.

Index Terms—Transient analytical modeling, doubly-fed
induction machines (DFIMs), unbalanced short-circuits.

I. INTRODUCTION

THE doubly-fed induction machine (DFIM) is a topology
that is widely applied in a variety of power generation

facilities, such as hydropower [1]–[5] and wind power [6]–
[8] applications. In large facilities, there are concerns related
to the mechanical design, the control design, as well as to
the interaction with the power system [9], where transients
can propagate. Constraining the armature currents and torque
transients are critical machine-related issues, as their peak
values influence the mechanical and grid connection designs.
The DFIM must withstand these stresses without any damages,
e.g., mechanical vibrations in the winding overhang of large
DFIMs.
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Fig. 1. Equivalent schematic diagram of the DFIM studied herein.

The rotor slip can vary from -10 % to 10% (e.g., in hy-
dropower), or as much as from -30% to 30% (e.g., in wind
power). It is, therefore, likely that the DFIM will experience
vibration, even during normal operation. For instance, rotor
harmonics [10] or even supply induced harmonics [11] can
lead to vibrations. Therefore, a user-friendly and simplified
analytical approach is needed to give a go/no-go decision
for large DFIMs in the design stage. In fact, a detailed
numerical model would require huge computational efforts,
e.g., finite element (FE) magnetic and mechanical calculation.
The main contribution of this paper is formulating an exact
analytical method to significantly reduce the computations
needed to estimate peak transient torque and currents occurring
in DFIMs, where FE is merely used to extract parameters prior
to machine construction.

From the grid perspective, the phenomena occurring during
a fault-ride through (FRT) event are much more relevant [12]–
[15]. In these cases, the grid owner normally requires that the
machine can stay connected to the grid after several transient
events that might occur. However, the amplitudes of these
phenomena are generally lower than for a terminal short-
circuit fault (balanced or unbalanced). They do not impact
the mechanical design of the generator as the more severe,
local ones. Grid faults are usually simulated in generalized
numerical simulation environments, such as SIMSEN, as the
system topology might be different for every project.

Earlier works on DFIMs have been limited to transient
equations for the three-phase short-circuit while ignoring the
unbalanced case [16]. Moreover, the three-phase analytical
equations that have been derived do not match precisely with
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TABLE I
DFIM’S RATED DATA - M1, M2, M3 & M4

Quantity M1 M2 M3 M4

nom. power (S) 265.5 MVA 265 MVA 10.96 kVA 1.94 kVA

stator volt. (Us) 18 kV 15.75 kV 230 V 400 V

stator cur. (Is) 8.5 kA 9.8 kA 27.5 A 2.8 A

mech. speed (n) 158.51 rpm 333.34 rpm 1430 rpm 1420 rpm

stator freq. (fs) 50 Hz 50 Hz 50 Hz 50 Hz

the presented test results [16], while this paper proposes not
only an exact match with simulation results but also a sufficient
match between analytical expression and measurements as
well. In [17], the analytical developments are declared as
approximate, while the experiment and simulation show only
the agreement without explicit comparison, i.e., without plac-
ing them on the same figure allowing the reader to judge the
fidelity of the approximated expressions developed, whereas
our paper does. Recently, other simplified models have been
proposed for the DFIM under steady-state and transient op-
erations [18], [19], without considering the short-circuit case.
Reference [20] presented a harmonics analysis of the double-
output induction generator that also overlooked the short-
circuit impact. Other applications of transient models include
DFIM controller improvements [21], as well as reducing the
computational burden of transient stability studies [22].

This paper takes the transient domain a step further, with
an earlier preliminary work already taken as a basis [23]. A
complete set of dynamic equations for the induction machine
was presented in [24], whereas the well-known expressions
for an induction machine were already provided in [25].
However, both of these did not consider the specific case of
DFIMs under terminal short-circuits. The original contribution
of this study lies in the transient equations for DFIM that
are applicable for the "large machine approximation" (refer to
[25] for its definition), which are further derived based on the
work presented by [24], and specifically adapted for a DFIM.
In addition, the exact equations for predicting the unbalanced
two-phase fault are also included in this paper, which is
in itself a distinguishable contribution relative to the latest
literature. The analytic expressions also provide frequency
harmonic information, which can be effectively used to ensure
that a severe transient might trigger no mechanical eigenmodes
over the complete operating range of a large DFIM. Compared
to [23], this paper added an experimental validation of the
expression developed in the conference paper, provided a
complete derivation of the equation set, and extended the range
of use to smaller power machines (2 kVA and 11 kVA).

As a first step in this research, the work focuses merely
on the machine side and the validation of the transient ex-
pressions for a large DFIM. Further studies should integrate
grid and converter interactions as well. Analytical expressions
have significant time and integration advantages compared to
numerical simulation, especially in the design process of large
DFIMs, which normally requires between 50-100 iterations
(e.g., that number can easily reach up to 1000 simulations

TABLE II
SIMULATED DFIM - CALCULATED PARAMETERS - MACHINE M1 & M2

Symb. Quantity M1 M2

Rs stator resistance 4.5056 mΩ 3.8183 mΩ

(≈ 0.0037 pu) (≈ 0.0041 pu)
R′
r rotor resistance 1.9364 mΩ 1.5809 mΩ

(≈ 0.0016 pu) (≈ 0.0017 pu)
Xs stator react. (sat.) 2.0912 Ω 2.337 31 Ω

(≈ 1.7136 pu) (≈ 2.4969 pu)
Xm magn. react. (sat.) 1.9387 Ω 2.2306 Ω

(≈ 1.5887 pu) (≈ 2.3829 pu)
Xσ,s stator leak. react. 0.1525 Ω 0.1068 Ω

(≈ 0.1250 pu) (≈ 0.1140 pu)
X′
σ,r rotor leak. react. 0.1957 Ω 0.1692 Ω

(≈ 0.1604 pu) (≈ 0.1808 pu)

TABLE III
EXPERIMENTAL DFIMS - MEASURED PARAMETERS - M3 & M4

Symbol Quantity M3 M4

Rs cold stator resistance 144.92 mΩ 8.40 Ω

R′
r cold rotor resistance 231.4 mΩ 10.65 Ω

Rc core loss resistance 125.88 Ω 842.86 Ω

Xs stator reactance (sat.) 7.48 Ω 133.39 Ω

Xm magnetizing reactance (sat.) 7.22 Ω 117.32 Ω

Xσ,s stator leakage reactance 262.53 mΩ 16.07 Ω

X′
σ,r rotor leakage reactance 262.53 mΩ 16.07 Ω

considering several operation points). Therefore, saving time
in the transient analysis is highly appreciated.

Several handpicked three-phase, star-connected DFIMs (in-
sulation class F), i.e., M1, M2, M3, and M4, are studied in this
paper. Two large 265 MVA-sized machines have been chosen
for the theoretical study, which is the highest-rated DFIMs
in construction. In addition to M1, M2 was chosen for the
additional simulation with a current-controlled rotor converter
that had regulator parameters available. M3 and M4 are low-
rated machines available in the laboratory. Tables I and II give
the rated data and equivalent parameters of M1 and M2 used in
the theoretical analysis, made in comparison with SIMSEN. In
addition, Tables I and III provide the rated data and estimated
parameter values (from measurements)1 of M3 and M4 used in
experimental verification. Fig. 2 present the measured open-
circuit characteristic of M3 and M4 with an open rotor. It
shows how the stator reactance (Xs) depend on voltage level,
where unsaturated values are larger than those in Table III.

The remainder of the paper is organized as follows. Section

1The leakage reactance is obtained using the classical approach
presented in the norm IEEE 112, which permits obtaining the sum of
both reactances. Then according to this norm, the results can be divided
by two to obtain each reactance, i.e., that is why both are equal. As the
DFIM under study is the wound-rotor type, this approach is reasonable
and leads to "acceptable results" as both slots should be more or less
the same. Another option would have been to compute them using
classical analytical computation â but as we did not find any drawing
or electrical computation, this path is not practicable.
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Fig. 2. Standstill open-circuit characteristics of the experimental ma-
chines M3 (10.96 kVA) and M4 (1.94 kVA) with open rotor circuit. Line-
to-line stator voltage plotted against stator current.

II presents the modeling hypothesis and its assumptions before
the transient analytical expressions of the DFIM are derived
in Section III. Then, in Section IV, validates the constant rotor
voltage hypothesis by comparing simulation results with rotor-
controlled current and the analytical expressions. Section V
validates the torque-estimating equations numerically. Finally,
Section VI validates the analytically predicted transient current
peaks before Section VII concludes the paper. Appendix A and
B provide additional details to the analytical development.

II. THEORETICAL FRAMEWORK AND ASSUMPTIONS

There are some important assumptions taken on board in
our work, which are common for transient analysis of large
AC machines [25], [26]. The resistance values are taken as
constants for a given operating temperature [25]. Moreover,
the saturation of the main inductance that may exist prior to
the faulty condition is considered by re-adjusting the main
inductance to the voltage level prior to the transient event
[25]–[27]. These quantities are governed by the saturation
of the stator and rotor leakage reactance, where one method
postulates to artificially reduce the leakage reactances by 10-
20 %, depending on the initial saturation level of the machine
[26], to account for this phenomenon. In general, the DFIM
can be considered in steady-state with constant torque just
before the short-circuit event occurs and as having constant
speed during the short-circuit (i.e., ideally high inertia). This
hypothesis basically holds for any large DFIM due to its rotor
construction leading to an inertia constant >5 s in all cases.

The voltage-sourced inverter (VSI) is modeled with a con-
stant voltage source so that its influence is neglected during the
short-circuit [25], that hypothesis will be checked in Section
IV. In order to stick with the main focus of the work, no
further grid influence is considered at this stage. The VSI
is assumed to continue to provide the same rotor voltage as

before the transient, even though the semi-conductors cannot
always deliver this. However, in our down-scaled experiments
for M3 and M4, the assumption holds. In large-scale reality,
there is a resistive crowbar going into operation when the
machine and/or the VSI protection decides to fire it [27].
This firing is done to limit the current in the VSI. It takes
about 5-10 ms to fire the crowbar, implying that the first and
most important current and torque peak will happen without
the impact of the crowbar. In the case of the firing of the
crowbar, the rotor voltage drops down to zero and is replaced
by the resistive crowbar. In order to model the described case,
the rotor resistance can be adapted to reflect the crowbar
resistance, and the firing of the crowbar is modeled by a rotor
voltage step towards zero [27]. However, the detailed action of
the crowbar is beyond the scope of this work, but all equations
have been derived in a way that it will be very easy to perform
that last step on top of our analysis.

The equivalent diagram of the DFIM presented in [25] is
recalled in Fig. 1. It follows by Kirchoffs curren law (KCL)
in complex variables that

Im = Is − Ic + I ′r. (1)

The mathematical development is performed in the rotating
dq-frame to allow exact analytical treatment, while symmetri-
cal component only allow approximated analytical treatment.
Moreover, one can easily deduce the voltage equations from
Kirchoff’s voltage law (KVL), yielding

Us = RsIs + j(Xσ,s +Xh)Is +XhI
′
r (2)

U ′r
s

=
R′r
s
I ′r + j(X ′σ,r +Xh)I ′r +XhIs, (3)

which have already been established in [25]. Eqs. (2) and
(3) are formulated in transient mode, replacing their Laplace-
form with time derivative, written in per-unit and omitting the
underline (representing the space vector) as

us = Rsis +

(
d

dt
+ jωs

)
ψs, (4)

ur = Rrir +

(
d

dt
+ j∆ω

)
ψr, (5)

where the ′-sign is omitted not to create confusion for the
transient equation (L′s and L′r) of the inductances. The slip (s)
incorporated into the definition of ∆ω = sωs, yielding

∆ω = ωs − ωmech = ωs − ωs(1− s) = sωs. (6)

The fluxes in eqs. (4) and (5), with stator subscript ’s’ and
rotor subscript ’r’, are given by

ψs = Lsis + Lmir, (7)
ψr = Lmis + Lrir, (8)

where Ls = Lσs + Lm and Lr = Lσr + Lm.

III. FUNDAMENTAL DFIM TRANSIENT EQUATIONS

This section takes the basics and the assumptions of Section
II onboard, and formulates the transient expressions for DFIM
analysis. The initial conditions are firste defined before the
transient equations for the currents and flux linkages are
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derived. Finally, the transient torque expressions provided and
the behavior prediction under unbalanced fault conditions are
presented.

The derivation of the transient equations has been based on
[25], which deviates from the alternative one presented in [24].
In predicting the initial state of the DFIM transients, some
initial conditions (written with the subscript ’o’) are needed.
The stator voltage us, the speed n and the mechanical power
pmec are known. From these three parameters, one can deduce
the initial values of the stator current (is0), rotor (ir0) current
and rotor voltage (ur0). For the stator and rotor fluxes (used
to calculate the torque) their initial conditions are given by

uso = Rsis0 + jωsψso, (9)
uro = Rriro + j∆ωψro, (10)

where eq. (10) is written in the stator reference frame as
already stated.

A. Transient Equations for the Stator Currents
Eqs. (4) and (5) are compactly reformatted by setting the

derivator d/dt equal to the operator p, yielding

us = Rsis + (p+ jωs)ψs (11)
ur = Rrir + (p+ j∆ω)ψr. (12)

Then, eq. (8), can be inserted into eq. (12) then solved to
obtain the rotor current (ir) as follows

ir =
ur − (p+ j∆ω)Lmis

Rr

(
1 + (p+ j∆ω)Tr

) , (13)

where Tr = Lr/Rr. Eq. (7) can be inserted into eq. (11) and
combined with ir from eq. (13), yielding

us =
p2 + p

(
Ts+Tr

T ′
s+T

′
r

+ j(ωs + ∆ω)
)

Lr

(
1/Tr + (p+ j∆ω)

) is

+

1
Ts·T ′

r

(
1 + j∆ωTr + jωsTs(1 + j∆ωT ′r)

)
Lr

(
1/Tr + (p+ j∆ω)

) is

+
Lm

Lr

(p+ jωs)

1/Tr + (p+ j∆ω)
ur, (14)

where Ts = Ls/Rs, T ′s = L′s/Rs with L′s = Lσ,s +
LmLσ,r/Lr and T ′r = L′r/Rs with L′r = Lσ,r + LmLσ,s/Ls.
The numerator of eq. (14) is a second order polynom and
its simplification using the "large machine approximation" is
detailed in Section III-D.

Eq. (14) can also be expressed for the stator current, yielding

is =
Lr

LsL′r

p+ 1/Tr + j∆ω

(p+ 1/T ′s + jωs)(p+ 1/T ′r + j∆ω)
us

+
Lm

Lr

p+ jωs

(p+ 1/T ′s + jωs)(p+ 1/T ′r + j∆ω)
ur. (15)

The transient equation of the stator current can be found by
applying an inverse Laplace-transform to the equation. In fact,
it is not straightforward to find approximate equation for is0,
is1 and is2 (cf. Section III-E for the definition of these currents)

as ∆ω has a large amplitude variation and that the equations
are not linear in terms of ∆ω [27]. The prediction of the
current calculation can be found using the exact solution to
obtain the zeros of the numerator of eq. (14) as well as the
coefficients is0, is1 and is2.

B. Transient Equations for the Stator Flux
The flux eqs. (7) and (8) can be expressed in matrix-form.

Inverting the matrix will provide equations of the currents in
terms of the fluxes. The stator current (is) becomes

is =
1

L′s︸︷︷︸
α

ψs −
Lm

L′sLr︸ ︷︷ ︸
−β

ψr = αψs + βψr, (16)

and for the rotor current one obtain

ir = − Lm

L′sLr︸ ︷︷ ︸
−γ

ψs +
1

L′r︸︷︷︸
δ

ψr = γψs + δψr, (17)

where L′s = (LsLr−L2
m)/Lr, and L′r = (LsLr−L2

m)/Ls. Note
that β = γ, conveniently they were defined as two separate
variables. Applying eq. (17) into the rotor voltage eq. (12),
and solving for the rotor flux (ψr) leads to

ψr =
ur −Rrγψs

Rrδ + (p+ j∆ω)
. (18)

The resulting eq. (18) can be incorporated into the stator
voltage eq. (11), then solved in terms of ψs, yielding

ψs =

(
Rrδ + (p+ j∆ω)

)
us −Rsβur(

Rsα+ (p+ jωs)
)(
Rrδ + (p+ j∆ω)

)
−RsRrβγ

,

(19)

ψs =
Rrδ + (p+ j∆ω)(

Rsα+ (p+ jωs)
)(
Rrδ + (p+ j∆ω)

)
−RsRrβγ

us

− Rsβ(
Rsα+ (p+ jωs)

)(
Rrδ + (p+ j∆ω)

)
−RsRrβγ

ur.

(20)

C. Transient Equation for the Rotor Current
The stator voltage equation, eq. (11), is solved to obtain is,

which will be inserted into the rotor current equation, eq. (13),
which will be solved to obtain the desired transfer function.
The result of these manipulations can then be inserted into the
rotor voltage equation, yielding

ur =Rr

(
1 + (p+ j∆ω)Tr

)
ir +

(
p+ j∆ω

)
Lmis, (21)

ur =
RrRs

(
1 + (p+ j∆ω)Tr

)(
1 + (p+ jωs)Ts

)
Rs

(
1 + (p+ jωs)Ts

) ir

− (p+ j∆ω)(p+ jωs)L
2
m

Rs

(
1 + (p+ jωs)Ts

) ir

+
(p+ j∆ω)Lm

Rs

(
1 + (p+ jωs)Ts

)us. (22)
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Fig. 3. Evolution of the poles p1 and p2 in function of ∆ω for M1.
Adapted from preliminary work [23].

Eq. (22) can be formulated in terms of ir, leading to the
rotor current expression. Reference [27] presents a validation
using the SIMSEN numerical environment for simulating the
presented rotor current equations and got a good agreement
between analytical and numerical expressions.

D. Simplification of the Poles of the Transfer Function

Recalling the numerator of eq. (14) leads to

p2 + p[
Ts + Tr
T ′s + T ′r

+ j(ωs + ∆ω)]

+
1

Ts · T ′r
[1 + j∆ωTr + jωsTs(1 + j∆ωT ′r)] = 0. (23)

In the field of large electrical machines, the following inequal-
ities can be considered as fulfilled (refer to [25])

Tr > Ts >> T ′r >> T ′s >> 1/ωs. (24)

The inequalities are also called the "large machine approx-
imation". On purpose, ∆ω was deliberately not used in the
inequalities as it can change in the range −0.1ωs to 0.1ωs. It
simplifies the equation of the poles and shows that the poles
(p1 and p2) can be expressed as

p1 = −1/T ′s − jωs, (25)
p2 = −1/T ′r − j∆ω, (26)

at leading order. Further treatment of this part can be found
in [23], [27]. Fig. 3 shows the evolution if the real part
and imaginary part of p1 and p2 for different values of ∆ω.
One can see that at leading order, the poles behave like the
simplified equations predicts.

E. Torque Harmonics for a Three-Phase Short-Circuit, or
Three-Phase Faulty Synchronization

In order to exclude any excitation of a mechanical eigen-
mode in the stator or rotor of the generator, one needs to

determine the frequency of the torque harmonics. From eq.
(15) one can deduce that the stator current is given by

is = is0 + is1 exp(−t/T ′s) sin(ωst)

+ is2 exp(−t/T ′r) sin(∆ωt) (27)

where is0, is1 and is2 (the detailed expression are given in Sec.
VIII-A) are obtained from the corresponding transfer function.
Similarly, the stator flux is obtained from the stator current,
starting from eq. (20), yielding

ψs = ψs0 + ψs1 exp(−t/T ′s) sin(ωst)

+ ψs2 exp(−t/T ′r) sin(∆ωt), (28)

where ψs0, ψs1, ψs2 (the detailed expression are given in Sec.
VIII-B) are obtained from the corresponding transfer function.
Finally, the torque (Tem) is given by

Tem =
3

2
· p · Im{ψ∗s · is}. (29)

The interesting part of the torque harmonics is to identify if
there could be any resonance between the mechanical system
and the foundation, i.e., it is not mandatory to calculate each
component. Its frequency dependence leads to

f1 = 2∆ω (30)
f2 = ωs ±∆ω (31)
f3 = ωs (32)
f4 = 2ωs. (33)

F. Modelling the Two-Phase Short-Circuit
In the current research literature, no exact analytical expres-

sion for the current or torque of a two-phase short-circuit in
the dq-rotating frame have been proposed [28], [29]. Based
on a previous works on the DC-Decay tests (i.e., two-phase
short-circuit) in a synchronous machine [29], the two-phase
short-circuit was characterised by the following equation

ua = ub. (34)

Eq. (34) imply that two voltages will be clamped to each
other after the short-circuit. In addition to this, if the machine
is supposed to be star-connected, yields as the following
relations.

ua + ub + uc = 0

2ua + uc = 0. (35)

In order to obtain the voltages after the short-circuit, the
reaction of the voltage on the open phase c must be known or
assumed known after the event. Prior to the short-circuit, the
phase voltage of c is given neither by the machine (through
the induced voltage) or by the grid. Just after the fault (a few
milliseconds after), the currents in the machine will not have
any discontinuity. The currents and the flux linkages are state
variables, so that the voltage in phase c will remain the same.
The terminal voltage of phase c, is not affected by the short-
circuit, will not change. As a result,

uc = us, (36)
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where us is the stator voltage phasor before the short-circuit.
In this case, it is important to keep Park’s reference frame
aligned with the stator voltage in order to get a real number.
From this understanding, the stator voltage in the abc-frame
is known before and after the short-circuit, yielding

ua = −uc/2, (37)
ub = −uc/2, (38)

uc = uc. (39)

After some trivial trigonometric operations, one obtains the
voltage in the rotating frame, yielding

ud = −u
2

sin(2ωst) (40)

uq = −u
2

(1 + cos(2ωst)), (41)

which is an original contribution of this work and have also
been validated with measurement performed on a large AC
machine, as preliminary presented in [27]. In summary, the
torque harmonics appearing during a two-phase short-circuit
or faulty synchronisation, the technique described in this
subsection uses the voltage eqs. (40) and (41).

IV. VERIFICATION OF THE CURRENT EQUATIONS

This section presents the validation of the current equation
for two-phase and three-phase stator short-circuits starting
from the no-load condition. The analytical equations are
compared to the response obtained with a SIMSEN simulation
model with current regulation (rotor and stator). M2 was cho-
sen because it is the only machine where regulator parameters
were readily available. The current regulation is derived from
[30], [31], which provides information regarding the regula-

tion and the derivation of the parameters of the regulators). To
keep the simulation model simple, the rotor current regulation
has no cross-branch I-regulator, leading to a slightly less rapid
current control and some oscillation during the transients. A
solution to that problem exists and has been implemented in
hydropower plant applications but is not relevant for this paper
as they only impact the speed at which the regulator reacts to
current transients [31].

Fig. 4 presents the comparable curves obtained for the
three-phase and two-phase short-circuits, respectively. The first
current peaks are quasi-identical on both, which is expected
since the regulator needs some time to respond to the short-
circuit and that no active short-circuit current control exists.
Then, there is a certain damping due to the presence of the
current control that reduces the current with respect to the
analytical computation, which has no current control at all.

In conclusion, the simplified modeling assessed in Fig. 4,
which assumes that a constant rotor voltage source can replace
the full converter model and controls, can be considered
validated via simulations. If no active short-circuit current
control occurs, the results from the analytical expressions
match the curves obtained using a complex simulation model.
In the sustained short-circuit mode, some discrepancies will
inevitably occur, but they are not the main topic of this paper,
respectively, beyond the scope of this paper.
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Fig. 4. Stator current (phase a) for a two-phase and three-phase short-
circuit from no-load with rated speed and voltage using rotor-current
regulated M2.

V. VERIFICATION OF THE TORQUE EQUATIONS

This section presents the validation of the analytical equa-
tions developed in Section III for an ASM and DFIM at
rated load operation. The verification of the torque is done
in the SIMSEN numerical software environment using the
parameters defined in Table II (i.e., handpicked simulation case
study). SIMSEN assumes an equivalent diagram as given in
Fig. 1 and applies the same hypothesis as the one defined in
Section II. The electrical machine is connected to the grid on
both stator- and rotor-side converters and operated at rated
operation before the short-circuit. The analytical equations
are compared to numerical solutions. Practically speaking,
one enters the same parameters (refer to Table II) and initial
conditions and compares the output. The limitations of this
confirmation merely depend on the modelling hypothesis that
have been proposed. Equivalent parameters for the ASM
(i.e., asynchronous machine) and the DFIM (i.e., doubly-fed
induction machine) were the same. The ASM is, therefore,
a virtual machine, while the DFIM can be considered as the
real case. The ASM case was only used to simplify the model
and to have a richer validation study. The DFIM is operating
at rated conditions (over-excited) before the fault, while the
ASM is operating at the same equivalent operating point (same
active power) before the short-circuit for both the two-phase
and three-phase short-circuit. As the verification for the two-
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phase short-circuit only depends on the stator voltage equation,
it has been decided to perform it only on the ASM, i.e., the
simplest case. Given this premise, the two-phase validation
for the DFIM case is implicit. Fig. 5 present the transient
air-gap torque curves for the ASM machine in three-phase
and two-phase short-circuit, and DFIG in the case of a three-
phase short-circuit. Finally, it can be observed that all transient
curves agrees well with the simulated curves in SIMSEN.
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VI. EXPERIMENTAL VALIDATION OF CURRENT PEAKS

This section extends the verification made in Section IV by
providing an experimental validation. The test rig is illustrated
and depicted in Figs. 6 and 7. Herein, the rotor-side converter
(RSC) has a maximum transient rating of 250 kVA and 400 A.
By intention, the stator voltage have been reduced to avoid
entering into the current limitation mode of the RSC so that
no coupling of the stator with the grid can be considered. In
addition, the main goal of the validation is to measure short-
circuits (two-phase and three-phase) from no-load, considering
the fact that a load short-circuit has the same expressions [27].
This reduction voltage also limits the transient torques, which
is preferred due to the mechanical limitation in the laboratory.
There was no additional rotating inertia on the shaft-line,
and the rotational speed was only partially maintained by the
speed regulator of the prime mover (i.e., the DC-machine).
Therefore, some slight speed changes will unavoidably occur
and perturbed the measurements.

Prior to the short-circuit, the machine was operated in
no-load condition, with the rotor fed by the RSC, with a
low stator voltage. The fault is established by closing the
short-circuit contactor on the stator side, which induces no
redundancy (i.e., confirmed by the contactor closing curves).
Then, the stator currents was recorded using a digital storage
oscilloscope and plotted against the simulated transient curves.
The process was similar for M3 and M4. The short-circuit
inception corresponds to a zero-crossing of the voltage of
phase a, so with angle of 0◦.
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A. Experimental Results of Machine M3

Fig. 8 presents the three individual tests done on machine
M3. Test 1 was done at 50 % of rated voltage. There is small
speed change leading to the observed frequency sweep (due
to lack of rotating inertia installed). The frequency sweep
is not present for test 2 done at 25 % armature voltage.
The observed current peaks confirm the computation model.
For the two-phase fault, the agreement was worst for the
first current peak, while a small frequency sweep due to
the same above-mentioned phenomenon. However, the steady-
state short-circuit current and the first peak are really well
estimated, while only the second and third peak deviates from
the estimated one (i.e., over-estimated). This phenomena is an
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Fig. 9. Detailed computation of each stator current component of the
stator three-phase short-circuit current with an armature voltage of
0.5 pu for M3 (10.96 kVA DFIM) with fault initiated at 0 ms. Speed was
1350 rpm (50 Hz electrical). The base armature voltage is 230 V.

issue of further work to determine if this effect is coming of
the test platform, considering the simulated M1 agreed well
for the whole transient envelope.

Fig. 9 shows the current decomposition for M3 (three-phase
short-circuit). After the transient, which is governed by the
component 1 and 2, the machine goes into sustained short-
circuit operation given by the 0-component. It is interesting
to note that the peak is driven by the difference between the
components 1 and 2.

B. Experimental Results Machine M4
Fig. 10 presents the 4 tests done on machine M4. Test 1

was done at 100 % of rated voltage. For this reason, there is
a significant transient speed change occurring, leading to the
observed frequency sweep (due to lack of rotating inertia).
However, the frequency sweep is not present for test 2 done
at 50 % armature voltage and for test 3 done at 25 % of
the nominal voltage. Observed for the two-phase fault, a
very good agreement is seen for the first current peak and
a small frequency sweep due to the same above-mentioned
phenomenon. The steady-state short-circuit current is also well
estimated, while only the second and third peak deviates
slightly from our estimations. In general, the measurements
tend to showcase that the speed change could be the main
origin of errors, but other factors could also be involved. The
two-phase fault has the highest peaks for same voltage.

Fig. 11 shows the current decomposition for M3 (two-phase
short-circuit). After the transient, which is governed by the
component 1 and 2, the machine goes into sustained short-
circuit operation given by the 0-component and by the 3-
component (due to the two-phase pole). It is interesting to
note that the peak is driven by the difference between the
components 1 and 2.

VII. CONCLUSION

This paper simplifies the transient faulty analysis of double-
fed induction machines (DFIMs) by proposing an exact ana-
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lytical model. The framework provides an accurate indication
of the harmonic components in the transient and an estimation
of the peak torque and currents during faulty events. The
approach is in excellent agreement with a detailed numerical
model. In addition, the "large machine approximation" is
introduced for the analytical model, and it is shown to be
valid for the case study of machine M1. Moreover, the constant
rotor voltage hypothesis has been validated numerically by a
simplified rotor current-controlled simulation model. Finally,
two other case studies of experimentally tested machines show
that the transient peaks in the armature current amplitudes
correspond well with our analytical model, including balanced
three-phase faults and unbalanced two-phase short-circuits,
respectively. In general, the predictability of our analytic
approach can be used to guide the mechanical design of large
power conversion facilities, such as variable-speed hydropower
and wind power plants. In future research items, complete
modeling of the rotor-side converter (RSC) and its control
actions can be incorporated in more detail, if needed, for the
particular application.

Further work will focus on the integration with the grid, the
rotor-side converter (RSC), and especially on the rotor current
saturation due to the active current limitation of the RSC.
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VIII. APPENDIX

A. Expressions for the Stator Current (is0, is1 and is2)
A demonstrated in [27], there are no simplified expressions

for the stator current as the slip varies between -10% and
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+10%. One must therefore compute the exact expression for
each speed. To keep the expression readable and simple, the
derivation uses matrix-expression. The equations for to obtain
the 3phases short-circuit are prenseted in detail hereafter. Due
to space limitations, the derivation for the 2phase short-circuit
is left over but it follows exactly the same principle. The stator
current is given for the 3phase short-circuit by

is = is0 + is1 exp(−t/T ′s) sin(ωst)

+ is2 exp(−t/T ′r) sin(∆ωt) (42)

where is0, is1 and is2 will be determined hereafter. Defining
the zero (zi) of the transfer function (Eq. 15) by

zi = −1/Tr − j∆ω (43)

leads to the following expression for is0

is0 = −us0
zi

p1 ∗ p2
Tr

RsTsT ′r
(44)

where p1 and p2 are the pole of the transfer function (Eq. 15).
is1 and is2 are given by

is1 = us0ζ
Tr

RsTsT ′r
(45)

is2 = us0η
Tr

RsTsT ′r
(46)

where ζ and η can be obtained using a matrix-approach. The
matrix approach comes from the separation of variables to be
done (leading to 2 equations with 2 unkown) when inverting
Eq. 15 to transform it back to the temporal space. The matrix
approach leads to a Ax=b equation to be solved. Defining the
b-vector as

b =

(
zi

p1∗p2
zi

(p1∗p2)(p1+p2)−1

)
(47)

and the A-matrix as

A =

(
1 1
p2 p1

)
(48)

leads to the following expression for ζ and η(
ζ
η

)
= A−1b. (49)

B. Expressions for the Stator Flux (ψs0, ψs1, ψs2)
To obtain the detailed expression for the stator flux, one uses

the same principle as for the stator current (refer to section
VIII-B for the detailed process). The stator flux is given by

ψs = ψs0 + ψs1 exp(−t/T ′s) sin(ωst)

+ ψs2 exp(−t/T ′r) sin(∆ωt), (50)

where ψs0, ψs1, ψs2 will be computed hereafter.
Defining the zero (zψ) of the transfer function (Eq. 20) by

zψ = −Rrδ − j∆ω (51)

leads to the following expression for ψs0

ψs0 = −us0
zψ

p1 ∗ p2
(52)

where p1 and p2 are the pole of the transfer function (Eq. 20).
ψs1 and ψs2 are given by

ψs1 = us0ζψ (53)
ψs2 = us0ηψ (54)

where ζψ and ηψ can be obtained using a matrix-approach.
This approach leads to a Ax=b equation to be solved. Defining
the b-vector as

b =

(
zψ

p1∗p2
zψ

(p1∗p2)(p1+p2)−1

)
(55)

and the A-matrix as

A =

(
1 1
p2 p1

)
(56)

leads to the following expression for ζ and η(
ζψ
ηψ

)
= A−1b. (57)

C. Expressions for the stator rotor (ir0, ir1 and ir2)

The rotor current is given for the 3phase short-circuit by

ir = ir0 + ir1 exp(−t/T ′s) sin(ωst)

+ ir2 exp(−t/T ′r) sin(∆ωt) (58)

where ir0, ir1 and ir2 will be determined hereafter.
Defining the zero (zr) of the transfer function (Eq. 22) by

zr = −j∆ω (59)

leads to the following expression for ir0

ir0 = −us0
zr

p1 ∗ p2
xh

x2h − xsxr
(60)

where p1 and p2 are the pole of the transfer function (Eq. 22).
ir1 and ir2 are given by

ir1 = us0ζr (61)
ir2 = us0ηr (62)

where ζr and ηr can be obtained using a matrix-approach. This
approach leads to a Ax=b equation to be solved. Defining the
b-vector as

b =

(
zr

p1∗p2
zr

(p1∗p2)(p1+p2)−1

)
(63)

and the A-matrix as

A =

(
1 1
p2 p1

)
(64)

leads to the following expression for ζ and η(
ζr
ηr

)
= A−1b. (65)
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