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Abstract

In this thesis we develop an optimization model for tactical production plan-
ning during the seawater stage of the Atlantic salmon farming value chain.
We develop a stochastic model that accounts for uncertainty in salmon lice
and its impact on operations. We frame our model as a multi-stage stochas-
tic mixed integer linear program. Due to computational constraints, this
program is simplified into a two-stage stochastic program. The first-stage so-
lution of this program is evaluated through a rolling horizon heuristic based
simulation framework. We use this framework to investigate the potential
benefits of introducing novel smolt types. Additionally, we assess the value
of accounting for uncertainty when performing tactical production planning.

We optimize for two different objectives, namely raw harvest volumes, and
harvest volumes weighted by relative prices. Our results show that introduc-
ing novel smolt types when maximizing for raw harvest volumes can increase
the objective values by approximately 9.4 %, while we see an increase of
10.3 % when maximizing with respect to relative prices. We see a small shift
towards harvesting heavier weight classes during late summer when optimiz-
ing for relative prices instead of raw harvest volumes. Moreover, we find that
accounting for uncertainty during production planning has few benefits when
it comes to increasing objective values, however, incorporating uncertainty
tends to produce more robust production plans under some circumstances.
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Sammendrag

I denne masteroppgava utvikler vi en optimeringsmodell for taktisk prod-
uksjonsplanlegging under saltvannsdelen av lakseoppdrettverdikjeden. Vi
utvikler en stokastisk modell som tar hensyn til usikkerheten i lakselusnivåer
og lusas operasjonelle betydning. Vi formulerer modellen som et flerstegs
stokastisk lineært blandet heltallsprogram. Grunnet begrenset regnekraft
forenkler vi dette programmet til et tostegs stokastisk program. Vi eval-
uerer førstestegsløsningen til dette programmet gjennom et rullerende hor-
isont heuristikk basert simuleringsrammeverk. Vi bruker så dette ramme-
verket til å undersøke fordelene av å introdusere nye smolt typer. I tillegg
undersøker vi verdien av å hensynta usikkerhet når man lager taktiske prod-
uksjonsplaner.

Vi optimerer med hensyn til to forskjellige målfunksjoner. Nemlig, rå slakte-
volumer og slaktevolumer vektet med relativ pris etter vektklasse. Resul-
tatene våre viser at å introdusere nye smolt typer kan øke målfunksjonen
med omtrent 9,4 % når vi maksimerer med hensyn på rå slaktevolumer, og
med 10,3 % når vi maksimerer med hensyn til relative priser. Vi ser også et
lite skifte mot å slakte tyngre vektklasser på sensommeren når vi optimerer
for relative priser istedenfor rå slaktevolumer. Dog finner vi at å hensynta
usikkerhet når man lager produksjonsplaner har liten verdi når det kommer
til å øke målfunksjonsverdiene, men at det sørger for at man i enkelte tilfeller
får mer robuste produksjonsplaner.
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Chapter 1

Introduction

The world’s population is forecasted to increase from 7.8 billion in 2021
to 9.7 billion by 2050 (Worldometers.info, 2021). As such it is of critical
importance to increase production of healthy and nutritious food through
sustainable production methods. One potential source is seafood, which is
rich in high quality protein, vitamins, minerals, and omega 3 acids. The
world’s consumption of seafood has increased from approximately 20 million
tonnes in 1950 to 156 million tonnes in 2016, and is further projected to
increase by 18 % by 2030 (FAO, 2020). As of 2018 aquaculture accounted
for 52 % of consumed seafood, and its share is expected to rise to 59 % in
2030. Moreover, the amount of captured wild fish have remained flat during
the last 30 years, and this trend is expected to continue until 2030. Mean-
ing that a considerable part of the increase in seafood consumption must
stem from increased aquaculture production. However, increasing aquacul-
ture production is becoming increasingly difficult, as stricter environmental
regulations are enforced world-wide. The need for regulation is illustrated by
a disease outbreak which occurred in Chile during 2007 and 2008. The out-
break caused the country’s salmon production tonnage to decrease by 64 %
between 2008 and 2010, and production did not recover until 2012 as farmers
were reluctant to deploy smolt in the aftermath of the outbreak (Vike, 2014).

Salmonids are a seafood type that accounted for 4.4 % of the global seafood
consumption in 2018, and approximately 77 % of salmonids are farmed (Mowi
ASA, 2020). Atlantic salmon makes up the largest share of salmonids on
the market, and is becoming increasingly popular as production is up by a
staggering 1000 % since 1990. Farmed Atlantic salmon are interesting from
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a sustainability standpoint, as the carbon footprint per kilogram of edible
salmonids are 65 % that of pork and 20 % that of beef, while the freshwater
consumption per edible kilogram is 33 % and 13 % that of pork and beef
respectively.

Biological and environmental constraints such as seawater temperature limit
the potential locations of Atlantic salmon farms. As a consequence Atlantic
salmon is only produced at sea in Norway, Chile, the United Kingdom, North
America, the Faroe Islands, Ireland, New Zealand, and Tasmania. Norway is
by far the largest producer of Atlantic salmon with a market share of 52 %,
while Chile is the second largest producer with a market share of 28 %.

The Norwegian Atlantic salmon farming industry has since its infancy in the
late 1960s increased its production significantly, through both technological
advancements and increasing its production capacity. As the industry’s eco-
logical footprint has increased, more stringent regulations have been placed
on the industry. One such regulation is that salmon farming companies must
abide by biomass restrictions, which restrict how much biomass a company
can have at sea at any point in time. These restrictions have caused the
production volumes to stagnate as shown in Figure 1.1, and mean that a
farming company can no longer increase its production by simply deploy-
ing more fish. Hence, the importance of utilizing biomass restrictions to the
fullest have increased.

Another challenge is the ecological impacts salmon farming has on the en-
vironment, and the spread of diseases among farmed salmon has become a
significant problem. A prevalent disease is salmon lice, which periodically ap-
pears at Norwegian salmon farms and causes both biological and economic
damages. Meaning that farmers must account for the fact that salmon lice
can disrupt their production schedules when they perform production plan-
ning.

In this thesis we investigate the potential of using novel smolt types in At-
lantic salmon farming to try and increase production within the existing reg-
ulatory framework. Moreover, we model the presence and consequences of
salmon lice on production planning through a stochastic model. We develop
a multi-stage stochastic mixed integer program, and due to computational
constraints we approximate this program through a two-stage program in

2
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Figure 1.1: Yearly export of Norwegian farmed Atlantic salmon (Statistisk
sentralbyrå, 2021).

combination with a simulation based rolling horizon heuristic framework to
produce and evaluate operational plans.

This thesis consists of 11 chapters. We start off by providing some industry
background on Atlantic salmon farming in chapter 2. Next, we present the
problem description in chapter 3 that forms the basis for the rest of this the-
sis. We then review the relevant existing literature relating to the problem
description in chapter 4. Chapter 5 goes through the basic modeling that
is needed to explain the stochastic mixed integer linear program we intro-
duce in chapter 6. We then discuss solution and evaluation methodologies in
chapter 7. In chapter 8 we introduce a case study that we use to perform a
computational study in chapter 9. We finish off by discussing some pathways
for further research in chapter 10, before we give our concluding remarks in
chapter 11.
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Chapter 2

Industry Background

The Atlantic salmon farming industry’s value chain can be broken up along
the different stages of the salmon life cycle. Larger players usually integrate
close to the entire value chain, while smaller players focus on specific parts
of the value chain. As the salmon life cycle defines the value chain it is
natural to start off by giving a short introduction to the life cycle as found in
nature, before moving onto the industrial value chain. We then give a brief
introduction to the nature of salmon prices. Next, we introduce the novel
smolt types that are currently being studied by Aquagen AS. Thereafter we
give an overview of causes of production losses including salmon lice. Lastly,
we present relevant parts of the regulatory framework Norwegian Atlantic
salmon farming companies must abide by.

2.1 Salmon Life Cycle
The salmon life cycle can be divided into seven stages, namely, eggs, alevins,
fries, parrs, smolt, pre gender maturation salmon, and post gender matura-
tion salmon. The stages preceding the smolt stage occur in freshwater, while
the smolt and post smolt stages in general take place in saltwater. Salmon
spawn as eggs in fresh water rivers usually during fall. The eggs hatch during
the subsequent spring, and the salmon emerge as alevins. An alevin has its
own yolk sac, which is its source of nutrition. After the yolk sac is consumed
and the alevins have increased in size, they gain the ability to swim freely
and turn into fries. Fries are extremely sensitive to environmental factors,
thus the presence of fries in a river is a clear indication of a healthy aquatic

4
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Figure 2.1: Main stages of the salmon farming value chain

environment. During the following fall fries develop vertical stripes and spots
for the purpose of camouflage, and become classified as parrs. After approxi-
mately two to five years parrs undergo a transformation called smoltification
to prepare for life in saltwater. The smoltification process turns fries into
smolt, which migrate to seawater. When a salmon has grown sufficiently
large it undergoes gender maturation and returns to fresh water rivers to
breed. The precise timing of gender maturation is highly variable and genet-
ically dependent.

2.2 Value Chain
The industrial farming value chain starts with the creation of eggs. Brood-
stock are used to breed salmon that have advantageous characteristics such
as increased growth and reduced mortality rates. Breeding companies ana-
lyze the genes of their broodstock and select eggs and sperm from salmon
containing suitable genetic profiles for spawning. Fertilized eggs are kept in a
hatchery at approximately 8◦C and are exposed to low light intensity (Sink-
abergHansen AS, 2021). During this phase unsuitable eggs are filtered out.
Hatching usually occurs after approximately 400 – 500 degree days, which
in practice is close to 50 – 60 days. In cases where the smolt producer dif-
fers from the egg supplier, eggs are often transported around 10 days before
hatching to the smolt supplier.

After approximately 200 – 300 degree days following hatching the fries’ yolk
sacs have been depleted by 2/3, and the fries can now acquire nutrition from
external sources (SinkabergHansen AS, 2021). Traditionally, this phase suf-
fered from high mortality rates, however, modern techniques have achieved
survivability rates close to 100 %. After approximately 8 – 10 months smoltifi-
cation occurs and the smolt is moved to seawater. The smoltification process
can be sped up by using artificial lighting. The smolt can be kept in fresh
water for a prolonged amount of time to increase its weight, in order to lower
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mortality when it is released into seawater during months with lower tem-
peratures. The smolt traditionally weigh between 100 – 250 gram at the time
of seawater deployment.

Salmon is usually kept in seawater for approximately 12 – 18 months reaching
a weight interval of 3 – 6 kg (Mowi ASA, 2020). During the seawater stage
the salmon are exposed to environmental factors, and potentially salmon lice
and other diseases. Disease outbreaks often necessitates either treatment or
emergency harvesting. Both have economic consequences, as early harvesting
means that the salmon will not reach is full potential weight, while treating
diseases is costly in itself, but also disrupts growth rates and operational
schedules. Lastly, at the end of the seawater stage salmon can undergo gen-
der maturation which severely reduces meat quality and thus market prices.
Using modern techniques such as artificial light one can postpone gender
maturation enough to not be problematic (Iversen et al., 2016). However,
research has shown that growth accelerates right before the occurrence of
gender maturation, which could be exploited to increase production.

The final step of the seawater stage is to harvest the salmon. Together with
the timing of deployment, timing of harvesting is one of the main parameters
the farming company can control in order to maximize production. For wel-
fare and meat quality reasons it is important that the salmon experience low
stress levels during the harvest phase. To achieve this, the fish are starved
for a minimum of one week before being anesthetized. After harvesting the
salmon are transported to a slaughterhouse for gutting and further process-
ing. Lastly, the processed salmon are transported to the end market. Mode
of transportation varies, however, utilizing cargo space on civilian airfares is
common practice.

2.3 Salmon Prices
An important aspect of salmon farming is the price the farming company can
achieve for their salmon in the market. Salmon is priced per head on gutted
(HOG) kilogram, however, the kilogram price varies according to how heavy
the salmon is. Typically, larger salmon fetch higher kilogram prices than
smaller salmon. Thus, one might be tempted to farm as heavy salmon as
possible, however, this would come at the expense of increased feeding costs
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Figure 2.2: Historical weekly salmon prices per weight class as quoted on the
NASDAQ Salmon Index.

and longer rearing cycles which ties up working capital. Moreover, salmon
prices are highly volatile, which is evident from Figure 2.2, where weekly
historical prices as quoted on the NASDAQ Salmon Index are presented for
the most heavily traded weight classes. As the figure shows, the heavier
weight classes consistently net higher prices than the lighter weight classes.

2.4 Smolt Types
We now give an introduction to the different smolt types that are currently
studied by Aquagen AS. By introducing novel smolt types Aquagen aims to
allow farming companies to increase their production tonnage. The current
regulatory framework limits production tonnage indirectly through biomass
restrictions. Thus, farming companies cannot simply deploy more salmon
to increase production. They must instead utilize their biomass restrictions
more efficiently, which is where the novel smolt types enter the picture.
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Figure 2.3: Weight development of a 150 gram smolt for both the mono-
gender and regular smolt types based on growth rates obtained from sea
trials.

2.4.1 Regular Smolt

The regular smolt type is the currently most typical smolt type that is used
by Norwegian Atlantic salmon farmers. Although it is called regular, it is
still a product of breeding. This thesis assumes that there only exist one
type of regular smolt, however, in reality there exists several small variations
that differ with regards to mortality and growth rates among other factors.

2.4.2 Mono-Gendered Smolt

Mono-gendered smolt refers to regular smolt where the two genders are kept
separate from one another, e.g. a net-pen of only male smolt. Hence, mono-
gender is not a feature of the smolt itself, but rather how it is reared. The
genders are separated before entering seawater, as separating them during
earlier stages are difficult as it is challenging to identify the different gender
characteristics early on.

Sea trial results show that mono-male, mono-female, and regular smolt dif-
fer with respect to growth rates and mortality rates. The results reveal
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that mono-female smolt have slower growth rates than the regular smolt,
but also lower mortality rates. Moreover, mono-male smolt exhibited higher
growth rates during the trials than both the mono-female and regular smolt.
However, it also proved to have higher mortality rates than the two afore-
mentioned smolt types. Figure 2.3 shows the weight development of a 150
gram smolt of the mono-gender and regular smolt types based on growth
data obtained from sea trials.

2.4.3 Cooled Eggs

The cooled eggs smolt type has its name from the fact that the smolt hatch
from eggs that are kept at lower temperatures than what has traditionally
been used. Initial results from freshwater trials show that cooled eggs have
a higher growth rate than a regular smolt type control group. Sea trials are
currently ongoing, and there are hopes that the smolt originating from cooled
eggs continue to exhibit higher growth rates.

2.4.4 Early Gender Maturation Smolt

Early gender maturation smolt are smolt that mature earlier than usual.
This can be exploited as salmon experience increased growth rate in the
time period preceding maturation. The hypothesis for the early maturation
smolt type is that growth accelerates during the 13th – 14th month at sea.
The disadvantage is that matured salmon has lower economical value due
to its lowered meat quality. Therefore, it must be harvested before mat-
uration takes place, limiting the amount of time the salmon can spend at
sea to approximately 14 months. Preliminary results from ongoing sea trials
indicate that growth does indeed increase in the time period leading up to
maturation.

2.5 Production Loss
When farming Atlantic salmon production losses are common place. During
a normal production cycle without any adverse events one would expect a
total cumulative mortality rate of around 10 – 15 % (Bang Jensen et al.,
2020). In this section we provide some background on some of the most
common causes of production losses caused by adverse events.
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2.5.1 Salmon Lice

Salmon louse is a copepod parasite living mainly on salmonids. The louse
may damage the skin and fins of the salmon, and could potentially create skin
wounds that open the salmon up for further infections from other sources.
Salmon lice levels follow a seasonal pattern, mainly driven by fluctuations in
seawater temperature. Salmon lice levels peak during summer and hit their
low point during winter (Aldrin et al., 2013). Salmon lice are prominent in
Norwegian Atlantic salmon farms and spread between farms if uncontained.
From a farming standpoint one of the major complications of lice is the ne-
cessity to stop feeding while treating salmon lice, as the loss of feeding days
reduces salmon growth rates. Additionally, mortality rates have a tendency
to increase when treatments are performed.

Salmon lice also pose a significant threat to wild salmon, hence there is a
clear need to limit the spread of salmon lice from farms. Thus, the Norwe-
gian regulations stipulate that there must at all times be less than 0.5 female
adult lice per fish in a salmon farm (Nærings- og fiskeridepartementet, 2012).
However, during the weeks when wild salmon are migrating the threshold is
lowered to 0.2. For Northern Norway the lowered threshold is applied during
the weeks 21 – 26, i.e. approximately late May through June. If the lice level
rises above this threshold the farming company must take action to reduce
the lice level, and possibly harvest the entire salmon population at the farm
as an emergency solution. Several treatments for removing salmon lice exist.
However, the lice tend to develop resistance against treatments. To avoid
resistance problems, treatments techniques are rotated.

2.5.2 Other Diseases and Escapees

Other diseases also occur in Norwegian Atlantic salmon farms, such as the
virus diseases pancreas disease (PD), infectious salmon anemia (ISA), in-
fectious pancreatic necrosis (IPN), heart and skeletal muscle inflammation
(HSMI), and cardiomyopathy syndrome (CMS) also commonly known as
heart rupture (Fiskeridirektoratet, 2020). These diseases are often more se-
rious than salmon lice infections, but occur less frequently. As an example, if
the presence of ISA is proved, the affected net pens must be harvested in their
entirety within a short time frame. This is in contrast to salmon lice, where
treatment usually suffices to continue production without the need for emer-
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gency harvesting. ISA infected salmon can safely be consumed by humans,
however, some countries are hesitant to import infected fish. Moreover, if the
salmon have been harvested at a weight below the marketable threshold they
are more or less worthless. As diseases can cause significant economical dam-
age, several methods such as vaccination and genetical breeding have been
employed with success to eliminate several diseases from Norwegian Atlantic
salmon farms.

2.6 Regulatory Framework in Norwegian At-
lantic Salmon Farming

The regulatory framework for the Norwegian Atlantic salmon farming indus-
try intends to both promote economical development of coastal regions, and
fish welfare combined with a sustainable ecological footprint (Nærings- og
fiskeridepartementet, 2008). In the following we give an introduction to the
main regulatory requirements that farming companies must account for in
their production plans.

2.6.1 Production Licenses and Biomass Regulations

Norwegian Atlantic salmon farming companies must abide by regulations
that limit the amount of biomass they can have employed at sea at one
point in time. The regulations regulate biomass both at a location, regional,
and company level. A specific production location has a maximal allowable
biomass (MAB) restriction assigned that limits the amount of biomass that
can be employed at the location at any point in time. The Norwegian coast
is divided into 13 production zones, and a company has its total employed
biomass inside a production zone limited by the amount of production licenses
she holds in the production zone. The regulations do however open for the
possibility of combining licenses across production zones in some cases. A
standard trout or Atlantic salmon production license has a maximum allow-
able biomass of 780 tonnes outside of the northernmost county of Troms and
Finnmark where it is increased to 945 tonnes.

Figure 2.4 gives a graphical explanation of the MAB system for a Norwegian
Atlantic salmon farming company. In zone 1 the company owns 8 licenses
of 780 tonnes each, limiting the total employed biomass in the zone to 6,240
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Figure 2.4: Graphical explanation of the regulatory MAB system at a re-
gional and location level.

tonnes. Besides the regional MAB, the company must also respect the lo-
cation MAB, meaning that the company can never have more than 4,000
tonnes employed at location 1, and can similarly not exceed 3,500 tonnes
and 3,250 tonnes at location 2 and 3 respectively. In the case where the com-
pany has been granted an inter-regional MAB between two or more zones,
the company is allowed to sum all licenses in the relevant zones, and can
in reality view the zones in question as merged into one zone. Assume that
the company depicted in the figure has an inter-regional MAB between zone
1 and 2, then the regions are in reality merged with a total of 8 + 5 = 13
licenses and a combined regional MAB of (8+5)·780 = 10, 140 tonnes. In the
extreme case, the company could potentially have 10,140 tonnes employed
in zone 1 and 0 tonnes employed in zone 2. In some cases, such as the case
study we introduce in chapter 8, the company is granted an inter-regional
MAB between all of her zones, yielding a company wide MAB that replaces
several regional MABs, however, as always the location MABs must still be
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respected.

To counteract stagnating production volumes caused by a lack of new pro-
duction licenses, the authorities introduced the so called traffic light system
in 2017 (Nærings- og fiskeridepartementet, 2017). The goal of the traffic light
system is to allow new licenses to be issued in an ecologically safe manner.
In short, each of the 13 production zones are assigned one of the three colors
red, green, and yellow, hence the name traffic light system. A zone that is
red must reduce its total allowable biomass by 6 %, yellow zones maintains
the status quo, while green zones can increase its total allowable biomass
by 6 %. The zones’ colors are decided by the impact of salmon lice on wild
smolt mortality. If less than 10 % of the wild smolt in the production zone
are expected to die as a consequence of salmon lice the zone is colored green,
mortality in the range 10 – 30 % colors the zone yellow, and if it is above 30 %
the zone is colored red. The coloring as of April 2021 is given in Figure 2.5.

2.6.2 Operational Requirements

The Norwegian Atlantic salmon farming regulations require that companies
every year produce a two-year operational plan. This plan must contain
information on where, when, and by which amount the company plans to
deploy smolt, and similarly where and when she plans to harvest. Moreover,
the company must ensure that she fallows a location for a minimum of two
months between completing harvesting of a deployment and deploying smolt
again. If a location remains unused for 24 months or longer the company
risks having the production license for that location withdrawn.

As we touched upon in section 2.5, farming companies are required to mon-
itor and report the presence of infectious diseases to the authorities, and
potentially act through treating or emergency harvesting the salmon.
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Figure 2.5: Status of the traffic light system for each of the 13 zones as of
April 2021.
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Chapter 3

Problem Description

In this chapter we describe the stochastic tactical optimization problem an
Atlantic salmon farming company faces during the seawater stage of the value
chain. Thus, in accordance with Anthony’s framework (Anthony, 1965), the
scope of the problem is limited to aspects affecting deployment of smolt and
harvesting of salmon over a mid-term planning horizon.

The company must decide when, where, and by which amount she wishes
to deploy smolt. She also needs to decide which smolt types she wishes to
deploy, as different types inhibit different mortality and growth characteris-
tics. Moreover, the company must also decide the initial weight of the smolt
that is to be deployed. Both the smolt type and initial weight must be cho-
sen from seasonally dependent sets of available smolt types and weights. A
deployment of smolt with the same smolt type and weight specification at
a location constitutes a cohort. The company can decide to deploy one or
more cohorts at the same time at a location. Moreover, during certain time
periods the supply of smolt may be limited.

Operational limitations and practical considerations limit the amount of fish
that can be deployed as part of a cohort at a location to lie between an upper
and lower bound during a time period. Moreover, biological considerations
necessitate that deployment of smolt is limited to certain periods of the year.
When smolt has been deployed at a location, no other deployments can take
place at the same location during the rearing cycles of the deployed cohorts.

After deploying a cohort, the company must decide when to harvest it.
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The mean weight of a deployed cohort must have reached a specified weight
threshold before it can be harvested, and must not have surpassed an upper
weight threshold. However, the company need not harvest the entire cohort
at the same time. The company must limit her harvest volumes at location
during a time period to lie between a lower and upper bound if she chooses
to harvest. Additionally, her company wide harvest volumes during a time
period are restricted by a capacity limit. Moreover, the company restricts
the maximum length of a rearing cycle, requiring that a deployed cohort
must be harvested before its time at sea surpasses this restriction. After
harvesting the company sells her harvested salmon into a market that prices
salmon based on different weight classes. The price within each weight class
fluctuates over time.

The company has several locations, each of which has a given maximum
allowed biomass, that restricts the total amount of biomass that can be em-
ployed at the location at any point in time. Additionally, a company wide
maximum allowed biomass restriction, limits the sum of simultaneously em-
ployed biomass across all locations. The company must also ensure that a
location is fallowed for a minimum amount of time after a production cy-
cle. However, a location must never be fallowed for more than a maximum
amount of time, otherwise its location license could be withdrawn.

The company bases her tactical decisions on growth and mortality predic-
tions. However, both growth and mortality rates can be impacted by salmon
lice treatments. The necessity of salmon lice treatments is stochastic and the
company has several scenarios for how the necessity of salmon lice treatments
will impact biomass development during a time period at a location level.

The time periods that constitute the company’s planning horizon is divided
into multiple disjoint sets of contiguous time periods called planning blocks.
For each planning block the company must decide her deployments together
with where and when to fallow and harvest before the planning block starts,
and she cannot change these decisions after the planning block has started.
However, she need not decide the harvest volumes before the planning block
commences, she can instead wait until new information arrives, revealing the
growth and mortality rates her deployed cohorts has experienced.

Finally, the company must ensure that there is a certain amount of biomass
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employed at the end of the planning horizon, and that this biomass will
not violate maximum allowed biomass regulations in the time following the
planning horizon.
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Chapter 4

Literature Review

In this chapter we review existing literature relating to the problem descrip-
tion given in chapter 3. We start off by examining the literature on gen-
eral operations research approaches to aquaculture and specifically salmon
farming. Thereafter, we review relevant literature regarding the biological
processes of biomass development, mortality, and salmon lice. Next, we give
an overview of the relevant literature on salmon prices. Lastly, we outline
the contribution of this thesis.

4.1 Production Planning
For a general overview of existing literature on operations research applied
to aquaculture we refer the reader to Bjørndal et al. (2004), which gives a
broad overview of different historical approaches to aquaculture operations
optimization.

Bjørndal (1988) develops a bioeconomic model to determine the optimal tim-
ing of harvesting a cohort. The optimal time for harvesting is in general when
marginal revenue equals marginal costs, which is a well known microeconomic
axiom. He studies how the optimal timing of harvesting changes when dif-
ferent costs are accounted for. He finds that accounting for a harvesting
cost per fish pushes the time point for optimal harvesting out in time, while
introducing feeding costs brings it forward in time. Moreover, he concludes
that a graded harvesting scheme is superior to a batch harvesting scheme. In
a graded harvesting scheme the farming company can decide which weight
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classes to harvest from in a cohort during a harvest operation. This is in
contrast to a batch harvesting strategy where the company harvests across
the entire cohort without filtering for certain weight classes.

Arnason (1992) investigates the interplay between feeding and timing of har-
vesting, which he finds to be heavily interdependent. In addition, the optimal
feeding schedule depends on the applied growth model, and there are few gen-
eralizations that hold across different growth models. Heaps (1993) extends
the work of Arnason (1992) by examining the potential in letting the feeding
rate be a decision variable controlled by the farming company, under the as-
sumption of a density independent growth model. A consequence of having
the ability to control the feeding rate is that the company can control the
growth rate, instead of having the growth rate dictate the feeding rate. He
finds that culling is not always a part of an optimal operational schedule.
Culling is the practice of performing graded harvesting at different points
in time during a rearing cycle. A density dependent growth model is intro-
duced in Heaps (1995), and results regarding feeding schedules are shown to
generalize from the density independent growth models introduced in Heaps
(1993). However, with a density dependent growth model, culling might be
part of an optimal operational plan.

Forsberg (1996) presents a multi-period linear program that determines op-
timal deployment and harvesting volumes for a single fish farm with a total
allowable biomass constraint. The model optimizes discounted profits and
accounts for weight dependent price levels on the revenue side, while in-
corporating smolt, feeding, and harvesting costs on the cost side. Biomass
development is modeled using discrete weight classes and a time varying
Markov process describing transition probabilities between weight classes.
In Forsberg (1999) he develops a slightly more comprehensive multi-period
linear program, and determines that pursuing a graded harvesting strategy
can increase profits by 11.8 % compared to performing batch harvesting.

Pascoe et al. (2002) argue that existing optimization models for aquacul-
ture do not properly capture uncertainty, and as a consequence their output
cycle lengths deviates significantly from real world observations. They point
out that discount rates are neither continuous nor constant during rearing
cycles, which is assumed in most models. In a case study of tiger prawns
they find it is necessary to set the discount rate to a staggering 400 % to
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approximate the rearing cycle lengths observed in industry.

Guttormsen (2008) develops an extended version of the Faustmann model
introduced in (Faustmann, 1849) to solve the rotational problem in fish farm-
ing. He finds that the optimal cycle length is 19 months in the simplest
application of the model to Atlantic salmon farming. In further experiments
he accounts for both the cyclical nature of relative prices, and climate re-
strictions limiting deployment of different fish types to specific parts of the
year. Results show that accounting for these two factors affect the optimal
cycle length both in isolation and in the joint case. However, whether it
increases or decreases the optimal cycle length depends on which calendar
month deployment takes place.

Hæreid et al. (2013) take a multi-stage stochastic programming approach
to maximizing expected profits for a production planning problem spanning
4 – 5 years for an Atlantic salmon farming company with multiple locations.
They account for uncertainty in prices, growth, and mortality. They base
their biomass development on a growth table provided by the feeding com-
pany Skretting AS, and apply interpolation to increase the table’s granularity.
Bravo et al. (2013) construct two mixed integer linear programs (MILP), one
for the freshwater stage of the value chain, which aims to minimize costs while
satisfying the seawater stage’s demand, and the second for the seawater stage
with the goal to maximize harvested biomass while satisfying demand from a
processing plant. Their models are aimed at giving decision support to one of
Chile’s largest salmon farming companies. Preliminary results show that the
models help the farming company abide by constraints that are difficult to
enforce using manual planning, and in doing so also increased their objective
values.

Næss and Patricksson (2019) create a two-stage stochastic MILP, which max-
imizes the expected total harvest volumes over a time horizon of five years.
They apply the model with a monthly time resolution on a farming network
consisting of 16 farms. The model incorporates regulatory requirements such
as maximum allowable biomass constraints, and activity and fallowing re-
quirements. The model is thus able to create production plans that utilize
the full flexibility the regulatory framework offers, instead of pre-defining cer-
tain decisions to abide by the regulations. However, this also increases the
computational complexity, they thus aggregate the 16 locations into three
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locations to solve stochastic instances of five scenarios, and apply sample av-
erage approximation. They also study the increase in harvest volumes that
can be achieved by introducing male mono-gender smolt. They model mono-
gender growth rates by scaling the growth table used in Hæreid et al. (2013)
based on data from sea trials. Their deterministic study finds that introduc-
ing male mono-gender smolt could increase production tonnage by 21.3 %,
and that male mono-gender smolt is used exclusively when available. While,
their stochastic studies show that having stochastic temperatures reduces the
total expected harvest volume by 4.2 % compared to the deterministic study.

Oglend and Soini (2020) study the effect of having a regulator limiting supply
of aquaculture licenses. In general they find that limiting maximum allow-
able biomass constraints result in companies increasing stocking densities
when optimizing for profits, meaning the farming companies harvest at lower
weights than they would have if they had unconstrained production capacity.

4.2 Biological Processes
We now outline the literature regarding the relevant biological processes.

4.2.1 Biomass Growth

Growth is one of the most important factors to account for when making
operational decisions in Atlantic salmon farming. As a consequence several
growth models of various complexity and robustness have been developed.
We refer the reader to Aunsmo et al. (2014) for a comprehensive review of
growth models for Atlantic Salmon.

The first growth model we review is the average daily growth rate (ADG),
which is given by

ADG =
wn − w1∑n

d=1 d
, (4.1)

where wn and w1 denote the weight of the fish at day n and 1 respectively.
Aunsmo et al. (2014) find ADG to be inappropriate for fish growth modeling,
as absolute weight growth increases with the weight of the fish. Thus, it is
sensitive to the initial stocking weight of the fish.
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The daily specific growth rate (SGR) introduced by Brett and Groves (1979)
can be calculated using the same notation as with ADG as

SGR =
ln(wn)− ln(w1)∑n

d=1 d
. (4.2)

Forsberg (1995) approximates the relationship between SGR, the seawater
temperature T in Celsius, and fish weight w in grams as

SGR ≈ T0.97w−0.34. (4.3)

This relationship is limited to Atlantic salmon with a weight between 50 –
3000 grams, and seawater temperatures in the range 4◦C – 14◦C. As equa-
tion (4.3) shows, SGR varies with the weight of the fish. This pattern is also
found by Aunsmo et al. (2014), as they find stocking weight to influence SGR.

Aunsmo et al. (2014) find the thermal growth coefficient (TGC) by Iwama
and Tautz (1981) to be the most suitable model among the non-proprietary
models they examine. It is defined as

TGC = 1000 · w
1
3
n − w

1
3
1∑n

d=1 Td

, (4.4)

where Td is the average seawater temperature measured in Celsius during
day d. Jobling (2003) cautions against uncritical use of TGC across differ-
ent temperatures, and shows how it deviates outside of normal temperature
ranges for different fish types. Moreover, Aunsmo et al. (2014) find TGC
to depend on stocking weight, but to a lesser degree than ADG and SGR.
Thorarensen and Farrell (2011) state that the difference in TGC for a fish
with a specific weight varies less than 4 % in the thermal range between 4◦C
and 14◦C. Moreover, the weight difference for a fish weighing 50 grams at
4◦C and a fish weighing 3000 grams at 14◦C is less than 6 %.

The Ewos growth index (EGI) is a proprietary regression based growth
model. Letting α be a vector of regression parameters including an inter-
cept, and letting ei ∼ N (0, 1) be an error term we have

YEGI
i = α0+α1T2

i +α2T4
i +α3x1i+α4x2i+α5w

1
3
i +α6x1iw

1
3
i +α7w

2
3
i +ei, (4.5)

where Ti is the seawater temperature, x1i is the length of the day, which is
defined as the time the sun spends above the horizon, x2i is the change in
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day length, and wi is the fish weight. Aunsmo et al. (2014) find EGI to be
the most suitable model overall, however, as mentioned it is proprietary and
the regression parameters are thus not publicly available.

4.2.2 Mortality Patterns

Bang Jensen et al. (2020) examine mortality for Norwegian Atlantic salmon
farms during the years 2014 – 2018. They define the mortality rate during a
time period t, Ψt, as

Ψt =
dt

1
2
(nt+1 + nt)

, (4.6)

where dt is the number of fish that died during time period t, and nt is the
number of fish alive at the start of time period t. The denominator represents
the average amount of fish alive during time period t, under the assumption
of a linear reduction in the cohort’s population. Moreover, they define the
mortality risk µt, which is the probability of an individual fish dying during
time period t, as

µt = 1− e−Ψt . (4.7)

They estimate the cumulative mortality risk for a cohort that has spent 15
months at sea to lie in the interval 10 – 15 % on average. Moreover, they
investigate the connection between months spent at sea and monthly mor-
tality risk. They find the mortality risk to be at its highest during a cohort’s
first month at sea, thereafter it reaches its minimum during the third month
at sea, before it starts increasing again and plateaus after approximately 14
months. A graphical replication of their findings is shown in Figure 4.1. A
similar pattern is established in Scotland by Salama et al. (2016) during the
years 2002 – 2009.

4.2.3 Salmon Lice Prediction

Salmon lice is one of the main causes of production loss in the Norwegian
Atlantic salmon farming industry, and thus predicting the presence of salmon
lice has seen extensive study. Aldrin et al. (2013) develop a stochastic space-
time model where the monthly lice abundance level for every Norwegian
Atlantic salmon farm is predicted simultanously. They find that 66 % of
expected lice abundance at a farm is explained by internal factors at the
farm, while 22 % is attributable to neighboring farms, and the final 6 % to
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Figure 4.1: Monthly mortality risk of a cohort as a function of months
spent at sea in Norway during the years 2014 through 2018. Replicated
from Bang Jensen et al. (2020).

non-specified factors. They model the correlation between farms as exponen-
tially decreasing with seaway distance. Kristoffersen et al. (2014) build on
Aldrin et al. (2013) and take a biological approach in modeling the lice in-
fection pressure by accounting for egg production and different stages of the
louse life-cycle. Aldrin et al. (2017) expand further on the aforementioned
works by introducing a Bayesian mechanistic population model at individ-
ual farms, where the parameters are obtained from full scale production data.

Overton et al. (2019) survey salmon lice treatment methodologies in Nor-
way during the years 2012 – 2017, and find that treatment methodologies
varies over time and between production zones. They find a clear shift from
the use of chemotherapeutant baths during 2012 – 2015 to thermal, mechan-
ical, and hydroperoxide treatments during 2016 – 2017. Moreover, they find
an increase in mortality during months where lice treatments are performed,
and that the size of the increase depends on temperature, fish size, and the
cohorts’ previously experienced mortality rates.

Kragesteen et al. (2019) build a bioeconomic model and study the lice level
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threshold a company should use to maximize profits. The lice level threshold
is used to indicate when salmon lice treatment should commence at a farm.
They show that when optimizing for an individual farm the company should
use a rather high threshold. However, when optimizing for an entire network
of farms a threshold of 0.1 gravid female lice per salmon should be used,
which is considerably lower than the Norwegian government’s requirement of
0.5. They conclude that the difference in the optimal threshold between op-
timizing in isolation and in a network gives rise to a tragedy-of-the-commons
environment. Meaning, that from a game theoretic standpoint, strict gov-
ernmental enforcement is needed to ensure that the different farmers abide
by the common optimal threshold.

4.3 Patterns in Salmon Prices
Multiple studies find that salmon prices are non-stationary and do not ex-
hibit persistent seasonal patterns (Asche et al., 1999; Asche and Guttormsen,
2001). Asche and Guttormsen (2001) study seasonal patterns of relative dif-
ferences in price between different sizes of salmon. They define the relative
price Pα

t per kilogram of weight class α at time t as

Pα
t =

P̂α
t

P̂ᾱ
t

, (4.8)

where ᾱ is the reference weight class, and P̂ denotes the absolute price per
kilogram. They study the prices of weight classes 1 – 2 kg, 2 – 3 kg, 3 – 5 kg,
5 – 6 kg, and 6 – 7kg, and they use the aggregated 3 – 5 kg weight class as the
reference weight class. They find that the relative price of a weight class is
cyclical with a cycle length of approximately one year, and that this seasonal
pattern can be approximated by trigonometric regression.

In general, the relative prices of larger salmon weighing 5 – 7 kg reach their
high point in August and September, where the 6 – 7 kg class has a price
of approximately 120 % relative to the 3 – 5 kg reference class, and their
relative prices reach their low point at around 90 – 95 % in February and
March. Smaller salmon weighing 1 – 3 kg exhibit their lowest relative price
during May through June, and their relative prices are at their highest dur-
ing November through January. They hypothesize that the seasonal patterns
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are caused by the timing of traditional rearing cycles. Typically, companies
prefer to harvest large salmon before August as the likelihood of gender mat-
uration is at its peak during August and September, thus lower volumes of
large salmon are harvested during these two months. Moreover, they find
that both the absolute and first differences in price of neighboring weight
classes, e.g. 1 – 2 kg and 2 – 3 kg, are highly correlated, while the correlation
between 1 – 2 kg and 6 – 7 kg is much lower.

Forsberg and Guttormsen (2006) examine both absolute and relative salmon
prices. They show that absolute prices tend to peek during weeks 20 – 24 of
the year, i.e. the mid of May to the mid of June, while they bottom out dur-
ing November. The difference between the highest and lowest prices achieved
during a year is usually around 20 %. Interestingly, they find that absolute
prices do not show any significant increases during Christmas, which is com-
monly believed in the industry. This indicates that salmon farmers adapt to
the high demand around Christmas by increasing supply. They also find the
seasonal patterns in relative prices found in Asche and Guttormsen (2001)
to still be present. Moreover, they study the value of information that prices
inhibit by applying the model introduced in Forsberg (1999). They find that
the value of information of prices is significant, as a farmer who plans based
on perfect price information for each weight class could triple his profits
compared to one who plans according to historical data without separating
weight classes. They also find that planing based on historical data for each
weight class instead of prices that aggregate the weight classes can increase
profits by approximately 33 %.

Asche et al. (2016) examine the relationship between futures prices and spot
prices for salmon on the Fish Pool exchange. They consider futures contracts
with up to six months maturity, and find the futures price to provide an unbi-
ased estimate for the spot price. However, this relationship is unidirectional.
Thus, futures prices does not provide a price discovery function, and they
therefore conclude that the salmon futures market is still immature.

4.4 Our Contributions
We develop a multi-stage stochastic mixed integer linear program, which
is inspired by Næss and Patricksson (2019), that accounts for regulatory
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and practical constraints. Biomass development is modeled according to the
thermal growth coefficient and accounts for patterns in mortality. We replace
the discrete weight classes and transition probabilities Næss and Patricksson
(2019) and Hæreid et al. (2013) use to model biomass development, with a
cohort-level biomass development scheme, which reduces solution-time sig-
nificantly. Moreover, we model the probability of lice treatments at a salmon
farm with dependence between the farms in the farming network, and the
interdependence between lice treatments and growth and mortality rates.
Finally, we introduce a rolling horizon framework to evaluate solutions of a
simplified two-stage version of the multi-stage program in a computationally
tractable manner. We study both the potential of introducing novel smolt
types, and the difference between maximizing raw harvest volumes and max-
imizing with respect to relative prices. Lastly, we study the impact of using
stochastic programming when planning versus planning deterministically as-
suming that no lice treatments are necessary.
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Chapter 5

Methodology

In this chapter we go through the modeling that is needed to develop the
mathematical model that we introduce in chapter 6. We start off by intro-
ducing a model for biomass development, next we describe the stochastic
process of salmon lice presence and its connection to biomass development.
We then develop a framework for weight distribution of a cohort. Lastly, we
examine updated relative price data.

5.1 Biomass Development
Biomass growth is the most pivotal parameter to model in the salmon farming
industry. Several growth models exist, and they have different strengths and
weaknesses. We choose to use the thermal growth coefficient (TGC), which is
a simple model that have been found to be robust, and does not rely on any
proprietary parameters or data. Using TGC we can predict the development
of the mean weight of a cohort according to

wt+1 = (w
1
3
t +

1

1000
·TGCt · Lt · Tt)

3, (5.1)

where wt is the mean weight of the cohort’s salmon at the start of time period
t, Lt is the length of time period t in days, and Tt is the mean daily seawater
temperature during the time period in Celsius. We have introduced a time
index for the TGC parameter, which is intended to adjust for the fact that
TGC depends on the amount of time the fish have enjoyed at sea.
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The salmon also experience a mortality rate µt during time period t. Letting
the fraction of fish still alive at time t be st, we have the recursive relationship

st = (1− µt−1)st−1. (5.2)

At the time of deployment the entire cohort is still alive, giving s1 = 1. We
can then define a parameter At as the ratio between a cohort’s total biomass
at the start of time period t and its initial total biomass

At =
st · wt
w1

. (5.3)

Assuming that no harvesting takes place, the total biomass of a cohort at
the start of time period t, which we denote Mt, is simply given by

Mt = At · y, (5.4)

where y is the initially deployed biomass. However, when harvesting is per-
formed we need to adjust for the harvested volumes. For the sake of this
thesis we assume that harvesting is performed according to a batch harvest-
ing strategy. We define the parameter Rt to be the percentage increase in
total biomass during time period t− 1, i.e. between the start of time period
t− 1 and and the start of time period t, assuming no harvesting have taken
place

Rt =
At

At−1

. (5.5)

Denoting the total harvest volume during time period t as Ht, we assume
that the following relationship holds

Mt = Rt · (Mt−1 − Ht−1). (5.6)

We note that although this thesis specifically uses TGC, the way biomass
development is incorporated in the stochastic mixed integer linear program
we introduce in chapter 6 is independent of the underlying biomass develop-
ment model, it suffices to provide a specification of At and thus implicitly
Rt.

5.2 Salmon Louse Modeling
The salmon lice level at a salmon farm is a stochastic process. When lice
levels pass a certain threshold treatment is necessary, both from a regulatory
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perspective and from the perspective of protecting the salmon against getting
eaten by lice. In order to treat lice the salmon farmer must stop feeding the
fish, and the fish might require time to recover before they resume acquiring
nutrition after the treatment have taken place. This means that growth
rates slow during lice treatments. We start off by modeling the presence
of lice treatments at an individual location in isolation, before moving onto
modeling dependence between locations in a farming network, and finish off
by describing salmon lice treatments’ impact on biomass development

5.2.1 Individual Location

We let ρit be a random variable that denotes the probability that treatment
of salmon lice is necessary during time period t at location i. Moreover, we
let ζit be a binary random variable representing whether a lice treatment is
necessary during time period t at location i that is distributed according to

ζit ∼ Bernoulli(ρit). (5.7)

We assume the probability of a lice treatment being necessary during time
period t depends on two factors, namely, calendar month and whether treat-
ment took place during the previous time period. Note that we omit the
aspect of whether biomass is present at a location to reduce the dimension of
the state-space. For notational ease we introduce ρ̂it = P(ζit = 1|ζi(t−1) = 0),
i.e. the probability of a treatment at time t at location i if no treatment
was performed at time t − 1 at location i, and ρ̌it = P(ζit = 1|ζi(t−1) = 1)
representing the probability of treatment given treatment took place during
the previous time period. We then assume the following relationship

ρit = ρ̂it(1− ζi(t−1)) + ρ̌itζi(t−1), (5.8)

where we let ζi0 be a constant present through initial conditions.

Figure 5.1 depicts empirical measurements of ρit in blue, ρ̂it in orange, and
ρ̌it in green, based on data from Barentswatch (2021) for production zone 9
– Vestfjorden and Vesterålen in Northern Norway for the years 2012 – 2020.
When estimating these probabilities we have only considered farms that are
denoted as likely active during both time period t and time period t − 1.
Moreover, we have assumed that the probabilities are equal for all farms
located in the production zone.
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Figure 5.1: Fraction of active locations in production zone 9 treated for lice
during different calendar months.

5.2.2 Correlation Between Locations

If a treatment is necessary at a specific location, there is naturally an in-
creased probability that treatments are necessary at nearby locations. Hence,
given two locations i and j we have dependence between ζit and ζjt, which is
attributable to the spatial dimension. We express this dependence through
the relative risk of infection, RR. Letting RRij denote the relative risk of
infection between location i and j, we have the following definition

RRij =
P(ζit = 1|ζjt = 1)

P(ζit = 1|ζjt = 0)
. (5.9)

Aldrin et al. (2013) gives the relation between RRij and the seaway distance
dij between location i and j as

RRij ∝ e
−φ1
φ2
d
φ2
ij , (5.10)

where φ1 and φ2 are constant parameters. As the presence of salmon lice at
another farm cannot reduce the risk of infection, we have that the relative
risk is not less than one in our case. We thus assume the following

RRij = max{N · e−
φ1
φ2
d
φ2
ij , 1}, (5.11)
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where N is a constant parameter deciding at which distance the relative risk
becomes one. Combining equation 5.9 with the law of total probability, we
arrive at the joint probability distribution between two pairwise locations

Pt
ij = P(ζit = 1 ∧ ζjt = 1) =

ρitρjt
1 + ρjt(RRij − 1)

RRij. (5.12)

As the reader may note, it is possible that Pt
ij 6= Pt

ji when ρit 6= ρjt. To correct
for this issue we introduce a corrected joint probability P′tij, which must also
respect the property ρit ≥ P′tij, where the latter requirement follows directly
from the law of total probability. A natural choice thus becomes

P′tij = min{Pt
ij,P

t
ji}. (5.13)

We can now estimate the joint probability distribution of a treatment being
necessary P(

∧
i∈I(ζit = cit)) for all locations, by utilizing iterative propor-

tional fitting (IPF). We refer the reader to Gange (1995) for a detailed discus-
sion of IPF. For the sake of our applications IPF estimates a joint probability
distribution respecting both the marginal distribution for each location and
the marginal joint distribution between pairwise locations. In practice, we
only estimate the marginal distribution for each location, and the Pearson
correlation coefficient between all pairwise locations, the rest is handled by
the R procedure RMultBinary in the mipfp package. For completeness we
state the Pearson correlation coefficient for ζit and ζjt

corr(ζit, ζjt) =


1 i = j

P′tij−ρitρjt√
ρitρjt(1−ρit)(1−ρjt)

i 6= j ∧ ρit > 0 ∧ ρjt > 0

0 otherwise

. (5.14)

5.2.3 Impact of Salmon Lice on Biomass Development

The main point of interest in modeling the presence of lice treatments is
to capture its effect on growth and mortality rates. For our purposes lice
treatments affect growth rates through a reduction in feeding days. We let
the amount of feeding days during time period t, Lit, be a random variable
defined as

Lit = Lt −D · ζit, (5.15)

where Lt is the amount of days in time period t and D is the amount of
feeding days lost during a treatment. We assume that a maximum of one
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treatment can take place per time period. The change in feeding days in-
fluence our biomass modeling through our use of TGC in equation (5.1) to
predict mean weight development. Moreover, the mortality rate will increase
by µ̂it, meaning the mortality rate µit is revised according to

µit = µ̄it + µ̂it · ζit, (5.16)

where µ̄it is the base mortality rate when no lice treatment occurs. The
change in mortality caused by lice treatments enter our biomass model through
the survivability relationship provided in equation (5.2) and as a consequence
our definition of At given in equation (5.3).

5.3 Weight Distribution
The harvest weight of salmon is of seminal importance, since both the price
achieved per kilogram and EBIT per kilogram are functions of the salmon
weight. At the time of harvesting the fish have their weight distributed
according to a probability density function (PDF) f . We discretize the con-
tinuous weight domain into discrete classes Wα representing the weights in
the interval [Wα,Wα). However, as price is our main interest there is a
small caveat. Namely, that salmon are priced according to its head-on-gutted
(HOG) weight. We assume that the HOG weight is a constant fraction κ of
the salmon’s sea weight at the time of harvest. As such we correct our weight
intervals to be

[
Wα

κ
, Wα

κ

)
. Letting F denote the cumulative distribution func-

tion (CDF) of f , we can calculate the fraction of total biomass Zα that falls
into weight class Wα through

Zα =

∫Wα/κ

Wα/κ
xf(x)dx∫∞

−∞ xf(x)dx
=

(
F

(
Wα

κ

)
− F

(
Wα

κ

)) E
[
X
∣∣∣Wα

κ
≤ X ≤ Wα

κ

]
E[X]

.

(5.17)
As smaller fish are usually filtered out before deployment, the weight dis-
tribution of a cohort at deployment follows a log-normal distribution, which
is maintained through the cohort’s rearing cycle. In the following we as-
sume that the weight of a cohort is distributed according to a log-normal
distribution parametrized according to

X ∼ Lognormal(µ, σ) = eµ+σS, (5.18)
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where S is distributed according to a standard normal distribution

S ∼ N (0, 1) =
1√
2π
e−

1
2
s2 . (5.19)

Letting w denote the average weight of a cohort with a coefficient of variation
CV, we have the relationships

µ = ln

(
w2√

w2 + (CV · w)2

)
, (5.20)

and
σ2 = ln

(
1 + CV2

)
. (5.21)

Letting Φ denote the CDF of the standard normal distribution we obtain the
following expression by applying equation (5.17) to a log-normal distribution
using the above parametrization

Zα = Φ

(
ln(Wα

κ
)− µ− σ2

σ

)
− Φ

(
ln(

Wα

κ
)− µ− σ2

σ

)
. (5.22)

We add that this approach is flexible, in that by adjusting κ one can obtain
other weight class measures such as sea weight and head-off-gutted weight.
Moreover, similar results can also be obtained for the normal distribution
under the same assumptions, and other distributions could be accommodated
if the parameters that define the distribution are available.

5.4 Relative Prices
As explained earlier, salmon prices depend on the weight of the salmon. It
is difficult to predict the future salmon price, but as Asche and Guttormsen
(2001) and Forsberg and Guttormsen (2006) show there are persistent sea-
sonal patterns in relative prices. We compute the relative prices with the
weight class 4 – 5 kg as the reference class, based on data from the NASDAQ
Salmon Index between 2013 and 2020. We find that patterns in relative price
still exist as shown in Figure 5.2. The choice of 4 – 5 kg as the reference class
is motivated by the fact that it carries the largest volumes. In Figure 5.3 we
show monthly relative prices broken down per year. The data for November
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Figure 5.2: Weekly relative prices computed based on the NASDAQ Salmon
Index between 2013 and 2020.

and December 2020 are lacking as the NASDAQ Salmon Index removed his-
toric data per weight class from their website. The pattern of heavier weight
classes’ relative price peaking around August and September as Asche and
Guttormsen (2001) found is still present. However, the pattern where the
relative price of smaller salmon peak during summer and bottoms out during
winter is no longer present, at least not consistently. For completeness, we
mention that we also looked for seasonal patterns in absolute prices as found
in Forsberg and Guttormsen (2006), however, we could not find any clear
and persistent patterns across the years 2013 – 2020. Thus, we decide to only
consider relative prices in this thesis as they historically have been rather
predictable.
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Figure 5.3: Monthly relative prices computed based on the NASDAQ Salmon
Index between 2013 and 2020.
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Chapter 6

Mathematical Model

We formulate the salmon farming company’s decision problem as a multi-
stage stochastic mixed integer program. In formulating this model we try
to give a realistic depiction of the real world’s requirements and constraints,
while trying to provide a simple and clear model mathematically. We start
off by giving an overview of the notation used in this chapter. Next, we
describe the stages of our stochastic program. Thereafter, we introduce the
program’s objective function and constraints.

6.1 Notation
We now introduce the notation we use to formulate our mathematical model.

6.1.1 Sets
Symbol Definition
T The set of all time periods in the planning horizon.

T + As T , but includes an extra dummy time period at the
end of the planning horizon.

T R The set of all release time periods in the planning horizon.

T R0
T R ∪ {0} where 0 is an initial dummy time period to
account for initial conditions.
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Symbol Definition
G The set of all smolt types.

Gt
The set of all smolt types that can be deployed during
time period t.

F The set of all available initial smolt weights.

Ft
The set of all available initial smolt weights that can be
deployed during time period t.

I The set of all locations.

T Gs

fgit

The set of all growth time periods in the planning horizon
for a cohort with initial mean weight f and smolt type g
deployed at location i during time period t in scenario s.

T Hs

fgit

The set of all harvest time periods in the planning horizon
for a cohort with initial mean weight f and smolt type g
deployed at location i during time period t in scenario s.

T H+s

fgit

As T Hs

fgit, but includes an extra final dummy time period
in case the harvestable period starts before and continues
after the end of the planning horizon.

T Ds

fgit

The set of all time periods in scenario s when a cohort
with initial mean weight f and smolt type g deployed at
location i that can be harvested at time t could have been
deployed.

T Λ−
t

The set of the trailing Λ time periods at time t, including
0 when applicable.

T ∆−R
t

The set of all release time periods occouring at time t
or during the trailing ∆ − 1 time periods, including the
dummy time period 0 when applicable.

T Γ−
t

The set including the time period t and and the Γ − 1
trailing time periods.

T Γinit

i

The set including the time periods wherin there must be
deployed biomass at location i during the start of the
planning horizon to not be in conflict with the activity
regulations.
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Symbol Definition

T Es
The set of time periods from the time period following
the end of the planning horizon until the last time period
where a cohort enjoys its growth phase in scenario s.

W The set of all HOG harvest weight classes.

P A set containing sets of time periods where smolt supply
is restricted during the time periods in the set.

Bgs
it

Contains tuples (f, g, t′) representing deployments that
would still be in their growth phase during time period
t at location i in scenario s if deployed.

Bhs
it

Contains tuples (f, g, t′) representing deployments that
would be in their harvest phase during time period t at
location i in scenario s if deployed.

S The set of scenarios.

N The set of nodes in the scenario tree.

Sn
The set of scenarios passing through node n in the scenario
tree.

Tn
The set of time periods associated with node n in the
scenario tree.

T Rn
The set of release time periods associated with node n in
the scenario tree.

6.1.2 Parameters
Symbol Definition
πs The probability of scenario s occurring.

Pα
t The price of weight class α during time period t.

Zα
s

t′fgit

The fraction of biomass from a deployment with initial
mean weight f and smolt type g deployed at location i
during time period t′ that falls into HOG weight class α
during time period t.
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Symbol Definition

Nf
Number of fish in thousands per tonne of smolt deployed
from the release weight class f .

L̃dep
i

Lower bound on the number of fish that can be deployed
simultaneously as part of a deployment of a specific smolt
type at location i.

L̂dep
i

Lower bound on the number of fish that can be deployed
simultaneously at location i.

Ũdep
i

Upper bound on the number of fish that can be deployed
simultaneously as part of a deployment of a specific smolt
type at location i.

Ûdep
i

Upper bound on the number of fish that can be deployed
simultaneously at location i.

Lh
i

Lower bound on the amount of biomass that can be har-
vested simultaneously at location i.

Uh
i

Upper bound on the amount of biomass that can be har-
vested simultaneously at location i.

Ucomp
t

Upper bound on the amount of biomass that can be har-
vested at time t on a company wide level.

Qi
Lower bound on the amount of biomass that must be em-
ployed at location i if biomass is employed.

As
t′fgit

The ratio between the employed biomass during time pe-
riod t and the initially deployed biomass during time pe-
riod t′ of a deployment with initial mean weight f and
smolt type g deployed at location i during time period t′.

Rs
t′fgit

The ratio between the employed biomass during time pe-
riod t and t− 1 of a deployment with initial mean weight
f and smolt type g deployed at location i during time
period t′.

MABi
Location Maximum Allowed Biomass (MAB) for location
i.

MABcomp Company wide Maximum Allowed Biomass (MAB).
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Symbol Definition

q0fgi0

Initial amount of biomass originating from a smolt de-
ployment with initial weight class f and smolt type g at
location i at the start of the planning horizon.

yfgi0

Initial amount of biomass originating from a smolt de-
ployment with initial weight class f and smolt type g at
location i at the start of the planning horizon.

βi0
1 if and only if biomass is employed at location i at the
start of the planning horizon.

Γ
The maximum amount of time periods without biomass
presence before a license is vacated.

∆ The maximum length of the rearing cycle.

Λ
The minimum amount of time periods a location must be
fallowed before deploying new biomass after the end of a
rearing cycle.

6.1.3 Decision Variables
Symbol Definition

δ̃sfgit

1 if and only if a cohort with initial mean weight f of type
g is deployed at location i during time period t in scenario
s, otherwise 0.

δ̃′nfgit
Used to enforce non-anticipativity variable for δ̃sfgit in sce-
nario tree node n if scenario s passes through n.

δ̂sit
1 if and only if a cohort is deployed at location i during
time period t in scenario s, otherwise 0.

δ̂′nit
Used to enforce non-anticipativity variable for δ̂sit in sce-
nario tree node n if scenario s passes through n.

ysfgit

Continuous variable denoting the amount of biomass de-
ployed through a cohort with initial weight f and type g
at location i during time period t in scenario s.

41



Symbol Definition

y′nfgit
Used to enforce non-anticipativity variable for ysfgit in sce-
nario tree node n if scenario s passes through n.

ωsit
1 if and only if a harvesting operation takes place at loca-
tion i during time period t in scenario s, otherwise 0.

wst′fgit

Amount of tonnes harvested during time period t from a
cohort with mean initial weight f , smolt type g, deployed
at location i during time period t′ in scenario s.

w′nt′fgit
Used to enforce non-anticipativity variable for wst′fgit in
scenario tree node n if scenario s passes through n.

βsit
1 if and only if biomass is employed at location i during
time period t in scenario s, otherwise 0.

β′nit
Used to enforce non-anticipativity variable for β′nit in sce-
nario tree node n if scenario s passes through n.

q̃st′fgit

The amount of biomass in tonnes at time t stemming from
a cohort with initial mean weight f , smolt type g and
deployed at location i during time period t′ in scenario s.

q̂sit
The amount of biomass in tonnes employed at location i
during time period t in scenario s.

6.2 Stage Description
In this section we describe the stages of our multi-stage program. In gen-
eral, the company plans her operations for a set of upcoming contiguous time
periods at a time, e.g. for the upcoming year, which we denote a planning
block. Before a planning block commences, the company must have decided
all deployment variables, and when and where to fallow and harvest for all
time periods contained in the planning block. The company makes these
decisions assuming one of the scenarios s ∈ S will occur, but she does not
know which one. Importantly, she does not need to decide the precise har-
vest volumes a head of time, she can rather wait for updated information, i.e.
learn which scenario transpires, before she decides the harvest volumes for
the time periods in the planning block. Assuming the company’s planning
horizon consists of one planning block spanning the entire horizon, we would
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have two stages which decisions are made in.

In our case we wish to plan for a planning horizon containing multiple con-
secutive disjoint planning blocks, in the extreme case each time period could
be its own planning block. Naturally, we get more than two stages, as the
decisions made for each planning block should be based on the most updated
information possible. Hence, the first-stage consists of deciding deployment
variables and when and where to harvest for the first planning block, while
the second-stage consists of deciding the harvest-volumes for the time peri-
ods of the first planning block knowing which scenario has transpired during
the first planning block, and the third stage consists of deciding the deploy-
ment variables and when and where to harvest for the second planning block
knowing the scenario that have transpired during the first planning block,
and so on. As the second and third stage decisions are made having the same
information available, these two stages are actually the same stage, and are
thus merged. However, note that the very last stage cannot be merged with
another stage, it therefore only consists of deciding the harvest volumes for
the last planning block. Hence, a problem with n planning blocks has n+ 1
stages.

Figure 6.1 illustrates a case with a planning horizon consisting of two time
periods, and each time period is its own planning block for the sake of simplic-
ity. Moreover, the figure depicts two possible scenarios per planning block,
yielding a total of four scenarios. Each level of the tree represents a stage of
our problem, and the variables inside the nodes are the variables that must
be decided with the information available at that stage of the problem. The
arrows indicate the information that becomes available between the stages,
namely whether a lice treatment takes place or not.

The tree presented in Figure 6.1 can more generally be though of as a sce-
nario tree. We let each node of the scenario tree be associated with the
time periods for which deployment variables must be decided in the node,
which we denote Tn for node n. Note that the leaves of the tree are thus not
associated with any time periods.
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Figure 6.1: Depiction of the different stages of a problem consisting of two
time periods and two scenarios per time period, where each time period is
its own planning block.

6.3 Objective Function
We let our objective value be the expected value of total harvest volumes
weighted by relative price. The product Zα

s

t′fgitw
s
t′fgit gives the harvest vol-

umes contained in HOG weight class α for a harvest operation taking place
during time period t, harvesting a cohort of smolt type g and initial mean
weight f deployed during time period t′ at location i. To get the total har-
vest volumes of such a cohort we sum over all time periods t contained in its
harvest phase T hs

fgit′ . Hence we arrive at the following objective

max
∑
s∈S

πs

 ∑
t′∈T R0

∑
f∈Ft′

∑
g∈Gt′

∑
i∈I

∑
t∈T hs

fgit′

∑
α∈W

Pα
t Zα

s

t′fgitw
s
t′fgit

 . (6.1)
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6.4 Constraints
As laid out in section 2.6 farming companies must abide by several practical
and regulatory constraints. We now introduce the constraints we consider in
this thesis. For the sake of brevity we discuss most of the constraints for a
isolated single scenario, save the non-anticipativity constraints.

6.4.1 Smolt Deployments

Practical considerations require that a cohort deployed at location i contains
at least L̃dep

i fish, and no more than Ũdep
i fish. The number of fish contained

in a cohort is given by Nf ·ysfgit, or in plain words the number of fish per tonne
times the amount of tonnes deployed. We thus have the following constraint

L̃dep
i δ̃sfgit ≤ Nfy

s
fgit ≤ Ũdep

i δ̃sfgit s ∈ S, t ∈ T , f ∈ Ft, g ∈ Gt, i ∈ I. (6.2)

This constraint also enforces that δ̃sfgit = 1 if and only if ysfgit > 0 i.e. when
a corresponding deployment takes place, assuming L̃dep

i > 0.

In a similar manner, we require that if multiple cohorts are deployed at
location i at the same time, they must in sum consist of at least L̂dep

i fish
and at a maximum of Ûdep

i fish.

L̂dep
i δ̂sit ≤

∑
f∈Ft

∑
g∈Gt

Nfy
s
fgit ≤ Ûdep

i δ̂sit s ∈ S, i ∈ I, t ∈ T (6.3)

The reasoning for restricting smolt deployments at both a cohort and loca-
tion level is of practical nature. The lower bound on a cohort level allows us
to avoid very small smolt orders for a specific smolt type, and the location
level lower bound ensures that there is enough smolt deployed to justify the
use of operational resources required to operate the location. In practice,
we only need an upper bound at a location level to ensure that the amount
of smolt does not exceed operational limitations. The upper bound at the
cohort level is added to ensure that ysfgit = 0 when δ̃sfgit = 0.

The company has her smolt supply limited during certain set of time peri-
ods p, typically specific parts of the year. Meaning that the sum of deployed
smolt across all cohorts deployed during the time periods contained in p must
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be less than the supply Sp. Hence the following must hold∑
i∈I

∑
t∈p

∑
g∈Gt

∑
f∈Ft

Nfy
s
fgit ≤ Sp s ∈ S, p ∈ P . (6.4)

To tighten the model we add the following constraint that forces the loca-
tion deployment variable δ̂sit to one, if at least one of the cohort deployment
variables δ̃sfgit is equal to one.∑

f∈Ft

∑
g∈Gt

δ̃sfgit ≤ |Ft||Gt|δ̂sit s ∈ S, i ∈ I, t ∈ T R (6.5)

The product |Ft| · |Gt| represents the maximal amount of cohorts that can be
deployed at a location during time period t, and is chosen as the right hand
side coefficient to make the model as tight as possible.

When we deploy a cohort it must be at sea for at least the duration of
the cohort’s growth period. As such we must require βsit to be 1 during the
cohort’s growth period. For each possible deployment represented through
δ̃sfgit we have

δ̃sfgit ≤ βsiτ s ∈ S, t ∈ T R, f ∈ Ft, g ∈ Gt, i ∈ I, τ ∈ T gs
fgit. (6.6)

Together with constraint (6.15) this forces βsit to 1 when a location i contains
biomass at time t. In fact constraint (6.15) is sufficient in itself as it enforces
the equivalence that βsit = 1 if and only if biomass is employed at location i
during time period t. However, we find that the addition of constraint (6.6)
makes the model tighter.

6.4.2 Harvesting

Similarly to deployment volumes, harvesting volumes are limited at a location
level due to practical considerations and capacity constraints. To obtain the
harvest volumes during time period t at location i, we must sum over all
possible cohort’s that would be in their harvest phase if deployed. Hence we
consider all possible combinations of the initial mean weight f and smolt type
g, and for each such combination we exploit that the set T d

fgit contains all
possible release time periods that would yield a cohort in its harvest phase
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at time t respecting the combination of f and g. We then sum over all
harvest volume variables wst′fgit corresponding to a cohort which would be in
its growth phase at time t

Lh
i ω

s
it ≤

∑
f∈F

∑
g∈G

∑
t′∈T d

fgit

wst′fgit ≤ Uh
i ω

s
it s ∈ S, i ∈ I, t ∈ T . (6.7)

This constraint also ensures that ωsit = 1 if and only if harvesting takes place,
given Lh

i > 0.

The company must also abide by a company wide harvest limit during a
time period Ucomp

t . The company wide harvest volumes are obtained through
simply summing up the harvest volumes at each individual location.∑

f∈F

∑
g∈G

∑
i∈I

∑
t′∈T d

fgit

wst′fgit ≤ Ucomp
t s ∈ S, t ∈ T (6.8)

We note that the harvest volume constraints are good targets for relaxation,
as they are in reality soft constraints, e.g. going one kilogram above or below
the harvest volume constraints is insignificant from a real world perspective.

6.4.3 Fallowing

The company is required to fallow a location after the end of a rearing cycle.
Denoting the required fallowing length in time periods as Λ, we must ensure
that no deployment can take place at a location i unless there were no biomass
present at this location during the trailing Λ time periods. If a deployment
takes place at time t we have that δ̂sit = 1, and to uphold the fallowing
requirement we must have βsiτ = 0 for all τ ∈ {t−Λ, t−Λ+1, . . . , t−1} = T Λ−

t ,
yielding

Λδ̂sit +
∑

τ∈T Λ−
t

βsiτ ≤ Λ s ∈ S, i ∈ I, t ∈ T R \ {1, ..,Λ}. (6.9)

If δ̂sit = 1 in the restriction above, it must be the case that βsit is 0 for the
trailing Λ time periods. Thus, there must have been zero biomass employed
at the location during the trailing Λ time periods, as we shall enforce that
βsit = 0 if and only if there is no biomass present at location i during time
period t.
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6.4.4 Activity Requirements

To avoid vacating a license, the company must ensure that she has em-
ployed at least some biomass at each location during a period consisting of
Γ consecutive time periods. As βsit = 1 if and only if biomass is employed
at location i during time period t, it suffices that βsiτ = 1 for at least one
τ ∈ {τ − Γ + 1, τ − Γ + 2, . . . , τ} = T Γ−

τ , for all contiguous sequences of Γ
time periods. ∑

τ∈T Γ−
t

βsiτ ≥ 1 s ∈ S, i ∈ I, t ∈ T \ {1, ...,Γ− 1} (6.10)

6.4.5 Biomass Development and Regulations

We keep track of biomass development at both a cohort, location, and com-
pany level. The basic building block is the cohort level. We then aggregate
the cohort level into a location level biomass, and thereafter the locations’
biomass are aggregated into the company’s total employed biomass.

Cohort Level

We must keep track of a cohort’s total biomass as it develops over time, as
growth and mortality takes place. Since the biomass development is dis-
cretized with respect to time, we assume that growth and mortality occur
at the start of the time period following the time period where they were
accrued. To illustrate this, a cohort deployed during time period t′ accrues
biomass development during time period t′, but this development is not ac-
counted for before the start of time period t′ + 1. Moreover, we assume that
all deployments take place during the start of the time period it is performed.

The simplest case of biomass development we need to account for is when
no harvesting can take place. Due the simplicity of this case, we separate
it from the harvest case to ease the computational strain. The parameter
As
t′fgit denotes the ratio between a cohort’s total biomass at time t and its

initial biomass at the time of deployment t′, we introduced this parameter
in section 5.1 with a more modest amount of subscripts. When no harvest-
ing takes place we can obtain the total biomass of a cohort at time t, q̃st′fgit,
through multiplying the initially deployed biomass ysfgit′ with the ratio As

t′fgit.
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This approach is valid during the entire growth phase and the first time pe-
riod of the harvest phase. The latter is included to account for the biomass
development accrued during the last time period of the growth phase.

q̃st′fgit = As
t′fgity

s
fgit′ s ∈ S, t′ ∈ T R0 , f ∈ Ft′ , g ∈ Gt′ , i ∈ I,

t ∈ T gs
fgit′ ∪ {min T hs

fgit′}
(6.11)

During the harvest phase things are slightly more complicated as we have to
account for the harvest volumes wst′fgit. Rs

t′fgit is a parameter giving the ratio
between a cohort’s total biomass at time t and t − 1 if no harvesting takes
place. If a harvest operation takes place during time t, we assume that it
takes place at the start of the time period. As a consequence, the harvested
fish will not have accrued any biomass growth or mortality. Furthermore,
we assume that the company uses a batch harvesting scheme as described in
Forsberg (1999), meaning that it will not filter fish within a cohort by weight
when harvesting. Under these assumptions the total biomass at time t + 1
is simply the biomass development ratio Rs

t′fgi(t+1) times the biomass at the
start of time period t with the volumes that are harvested immediately at
the start of the time period subtracted.

q̃st′fgit = Rs
t′fgit(q̃

s
t′fgi(t−1) − wst′fgi(t−1)) s ∈ S, t′ ∈ T R0 , f ∈ Ft′ , g ∈ Gt′ , i ∈ I,

t ∈ T h+s

fgit′ \ {min T hs
fgit′}

(6.12)

Caution must be shown during the final time period |T | of the planning hori-
zon. If the cohort’s growth phase extends beyond the final time period, a
final dummy time period 1 + |T | is included in the set T h+s

fgit′ to allow for har-
vesting during time period |T |. The reader might note that we have still not
allowed harvesting to take place during a cohort’s last harvest time period,
this issue is accounted for in constraint (6.13).

Next, we require that all deployed fish are eventually harvested. If this is not
explicitly enforced the company might find it advantageous to not harvest
the entire deployed cohort due to the harvest volume constraints. We note
that without the harvest constraints, the company would always harvest ev-
ery deployed fish as a consequence of the objective maximizing for harvest
volumes. We enforce that the harvest volume during the last harvest time
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period must be equal to whatever biomass that is left of the cohort.

q̃s
t′fgi

[
max T h+s

fgit′

] − ws
t′fgi

[
max T h+s

fgit′

] = 0 s ∈ S, t′ ∈ T R0 , f ∈ Ft′ , g ∈ Gt′ , i ∈ I

(6.13)
Again, extra care must be shown at the end of the planning horizon. If a
cohort’s harvest period extends beyond |T |, we avoid harvesting the entire
cohort at time |T | through the extra final dummy time period 1 + |T | in
T h+s

fgit′ . The harvest volumes stemming from the final dummy time period
are of technical nature and are not part of the objective function. Thus, in
a practical implementation the above constraint can be omitted for cohorts
with growth periods extending beyond the planning horizon.

Location Level

We introduce q̂sit as a book keeping variable, that keeps track of the amount
of biomass employed at location i during time period t. To obtain the total
biomass at location i during time period t we must account for the biomass
contributed by all deployments that could have been deployed during time t
and the trailing ∆ − 1 time periods. This time window is sufficient as ∆ is
the maximum amount of time periods in a rearing cycle. However, we only
need to consider the time periods in this time window that allow deployments
T ∆−R
t . Hence for each release time step t′ ∈ T ∆−R

t we sum up the biomass at
time t for each cohort that could have been deployed at time t′ at location i.

q̂sit =
∑

t′∈T
∆−
R

t

∑
f∈Ft′

∑
g∈Gt′

q̃st′fgit s ∈ S, i ∈ I, t ∈ T (6.14)

The biomass at a location is bounded by MABi due to regulations. Moreover,
we enforce the equivalence that βsit = 1 if and only if biomass is employed at
location i at time t. To achieve this we introduce a lower bound on biomass
Qi when βsit = 1.

Qiβ
s
it ≤ q̂sit ≤MABiβ

s
it s ∈ S, i ∈ I, t ∈ T (6.15)

Company Level

Lastly, the company is subject to a company wide MAB. Thus, the sum of
biomass across all locations must be less than or equal to MABcomp during
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all time periods. ∑
i∈I

q̂sit ≤MABcomp s ∈ S, t ∈ T (6.16)

6.4.6 Initial Conditions

We must account for the fact that there is an operational history preceding
our planning horizon. This means there is already biomass present at the
start of the planning horizon. We account for this through the dummy time
period 0, and the parameters ysfgi0, q̃s0fgi0, and βsi0. These deployments have
their first biomass adjustment at the start of the second time period, meaning
A0fgi1 = 1, and for simplicity that all the cohort’s are in their growth phase
during the dummy time period. Moreover, the set of harvest periods T h

fgit′ are
adjusted to make sure that the dummy cohorts do not have a longer rearing
cycle than ∆ time periods, based on the cohort’s time at sea preceding the
planning horizon. We add that there is no need to keep the different initial
mean weights separated for these dummy deployments. All cohorts can be
assigned to the same initial mean weight class f . The A and R parameters
for these cohorts are based on the weight and time spent at sea at the start
of the planning horizon.

Lastly, we introduce a set of initial activity constraints which serve the role
of constraint (6.10) at the start of the planning horizon, i.e. for t ≤ Γ.
The initial condition set T Γinit

i contains the time periods where the company
must employ biomass during at least one time period. The set contains Γ
contiguous time periods starting from the time period where location i was
last fallowed, however, we discard the time periods preceding the planning
horizon. ∑

t∈T Γinit
i

βsiτ ≥ 1 s ∈ S, i ∈ I (6.17)

In a similar fashion we also introduce a set of initial fallowing constraints

βsit ≤ 0 s ∈ Si ∈ I, t ∈ T Λinit

i . (6.18)

6.4.7 End of Horizon Constraints

Lastly, the company does in reality plan to keep operations running on an
infinite time horizon, and as such the model cannot completely disregard the
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future outside of the planning horizon. We therefore require that there is
a certain amount of biomass deployed at the end of the planning horizon.
Specifically, we demand that the company’s total biomass at sea during the
final time period of the planning horizon |T | is greater than the total initial
biomass ∑

i∈I

q̂si|T | ≥
∑
f∈F

∑
g∈G

∑
i∈I

ysfgi0 s ∈ S. (6.19)

The company must also be able to comply with the biomass regulations
after the end of the planning horizon. We let Bgs

it contain the set of tuples
(f, g, t′) representing deployments of cohorts that would be in their growth
phase at location i during time period t if deployed. T Es contains the time
periods from the end of the planning horizon up to and including the last
possible growth period of a potentially deployed cohort. As these cohorts are
in their growth phase at time t, their biomass at time t can be calculated as
As
t′fgity

s
fgit′ . We then arrive at∑

(f,g,t′)∈Bgs
it

As
t′fgity

s
fgit′ ≤MABi s ∈ S, i ∈ I, t ∈ T Es (6.20)

∑
i∈I

∑
(f,g,t′)∈Bgs

it

As
t′fgity

s
fgit′ ≤MABcomp s ∈ S, t ∈ T Es . (6.21)

6.4.8 Non-Anticipativity Constraints

We now introduce the non-anticipativity constraints. For each node in the
scenario tree we force the decision variables corresponding to the same deci-
sion, e.g. ωsit, to the same value for all scenarios passing through the node.
We represent the common value by a decision variable marked with ′, e.g.
ω′nit for the binary harvest variables in node n. For each node n we associate
a set of time periods Tn, for which we must decide deployment volumes and
whether to fallow and harvest or not up front. Denoting the set of scenarios
passing through node n as Sn we have

(δ̃sfgit, y
s
fgit) = (δ̃′nfgit, y

′n
fgit) n ∈ N , s ∈ Sn, t ∈ T Rn , f ∈ Ft, g ∈ Gt, i ∈ I,

(6.22)
δ̂sit = δ̂′nit n ∈ N , s ∈ Sn, t ∈ T Rn , f ∈ Ft, g ∈ Gt, i ∈ I, (6.23)

and
(ωsit, β

s
it) = (ω′nit , β

′n
it ) n ∈ N , s ∈ Sn, i ∈ I, t ∈ Tn. (6.24)
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Adding non-anticipativity constraints on δ̃sfgit and δ̂sit is not strictly necessary,
as the non-anticipativity constraints put on ysfgit only leaves one possible as-
signment for the aforementioned variables.

The harvest volume variables wst′fgit have non-anticipativity constraints en-
forced in the stage following the stage where the corresponding binary harvest
variables ωsit have their non-anticipativity constraints enforced. Hence, for
a node n we require that the harvest volumes matches for the time periods
associated with the node’s predecessor π(n)

wst′fgit = w′nt′fgit n ∈ N , s ∈ Sn, t ∈ T +
π(n), i ∈ I, (f, g, t

′) ∈ Bhs
it . (6.25)

We thus have that the root node does not impose any non-anticipativity
constraints on wst′fgit.

6.4.9 Non-Negativity and Binary Requirements

For completeness we state the non-negativity and binary requirements.

ωsit, β
s
it ∈ {0, 1} s ∈ S, i ∈ I, t ∈ T (6.26)

ω′nit , β
′n
it ∈ {0, 1} n ∈ N , i ∈ I, t ∈ Tn (6.27)

δ̂sit ∈ {0, 1} s ∈ S, i ∈ I, t ∈ T R (6.28)

δ̂′nit ∈ {0, 1} n ∈ N , i ∈ I, t ∈ T Rn (6.29)

δ̃sfgit ∈ {0, 1} s ∈ S, t ∈ T R, f ∈ Ft, g ∈ Gt, i ∈ I (6.30)

δ̃′nfgit ∈ {0, 1} n ∈ N , t ∈ T Rn , f ∈ Ft, g ∈ Gt, i ∈ I (6.31)

q̂sit ≥ 0 s ∈ S, i ∈ I, t ∈ T (6.32)

wst′fgit ≥ 0 s ∈ S, t′ ∈ T R0 , f ∈ Ft′ , g ∈ Gt′ , i ∈ I, t ∈ T h+s

fgit′ (6.33)

w′nt′fgit ≥ 0 n ∈ N , t ∈ T +
π(n), i ∈ I, (f, g, t

′) ∈
⋃
s∈Sn

Bhs
it (6.34)

ysfgit ≥ 0 s ∈ S, t ∈ T R, f ∈ Ft, g ∈ Gt, i ∈ I (6.35)

y′nfgit ≥ 0 n ∈ N , t ∈ T Rn , f ∈ Ft, g ∈ Gt, i ∈ I, (6.36)

q̃sft′git ≥ 0 s ∈ S, t′ ∈ T R0 , f ∈ Ft′ , g ∈ Gt′ , i ∈ I, t ∈ T gs
fgit′ ∪ T h+s

fgit′ (6.37)
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Chapter 7

Solution and Evaluation
Methodologies

The mathematical model introduced in chapter 6 is a multi-stage stochastic
program. Ideally, we would like to solve this program with a time granular-
ity of one month, and having each planning block representing a year and
potentially hundreds of scenarios. In the case studies that we introduce in
chapter 8 we use a time horizon of five years and have a total of 16 locations.
Unfortunately, it turns out that solving these cases with six stages is compu-
tationally infeasible even for as few as 2 scenarios per planning block. In this
chapter we introduce heuristics and methods to simplify the problem to make
it computationally tractable. In short, we transform the multi-stage program
into a simplified two-stage program, and evaluate the first-stage solution by
applying a rolling horizon heuristic based simulation framework.

7.1 Two-Stage Simplification
As the multi-stage program introduced in chapter 6 is intractable even for a
modest amount of scenarios, we decide to reduce it to a two-stage program.
This is done by simply removing the non-anticipativity constraints following
the first-stage. After solving the two-stage program we obtain a solution for
the first-stage, which we denote a candidate solution. We also get a scenario
specific solution to the second-stage.

The candidate solution, specifies where, when, what and how much to deploy
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and when and where to fallow and harvest during the time periods associated
with the first planning block, however it does not specify the harvest volumes
during these time periods. From a practical standpoint, a farming company is
mainly interested in the candidate solution, as the decisions contained therein
have to be decided more or less immediately, while the company can wait and
see how the real world evolves before deciding the second-stage variables. At
the same time, the contribution of the second-stage variables to the objective
value informs the company about the quality of the candidate solution. In
fact, our objective only consists of second-stage variables. Thus, our objec-
tive measures how good second-stage decisions our candidate solution allows.

Although we have reduced the computational strain by turning the multi-
stage problem into a two-stage problem, the amount of scenarios we can
include is still limited. As such, relying solely on the objective value of the
two-stage program to evaluate the quality of a candidate solution is insuffi-
cient, as we do not know how well the candidate solution will fare outside of
the included scenarios.

Farming companies usually plan one year at a time, i.e. planning blocks
spanning one year. Thus, the company would use the two-stage program at
the start of the year to obtain the coming year’s operational plan. When the
year has passed it would run the program again with updated initial condi-
tions to produce the operational plan for the next year, and so on. In general,
the company is faced with a sequential decision problem. As such, when we
evaluate a candidate solution we should perform multiple simulations of a
sequential decision process. In the following we thus develop a rolling hori-
zon heuristic inspired simulation framework to evaluate candidate solutions.
We then apply this framework several times to the same candidate solution
to get a more reliable estimate of its quality.

7.2 Evaluation Framework
To provide a single evaluation of a candidate solution, we need to decide the
remaining decision variables of the planning horizon. Hence, we first need
to decide the harvest volume variables of the planning block covered by the
candidate solution. As the harvest volume variables depends on knowing the
actual realization of the planning block, we need to simulate the outcome
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of this planning block. Next, we must decide the decision variables of the
next planning block and so on. This can be done by simply repeating the
process we used for the first planning block. When all decision variables of
the planning horizon are decided, we can compute an objective value. In
the following we first provide a deeper background into the scheme presented
above, before we describe the process of obtaining multiple evaluations of a
candidate solution in a manner that makes it possible to compare different
candidate solutions.

7.2.1 Rolling Horizon Heuristic

We now provide some formal background to our evaluation scheme, which is
based on a Rolling Horizon Heuristic (RHH).The main idea behind an RHH
is to divide the problem into several subproblems along the time axis and
solve these problems in chronological order. Each subproblem consists of
three disjoint contigiuous time period sets, the locked period T L, the central
period T C, and the forecast period T F , where T L ∪ T C ∪ T F is contigiuous.
For each subproblem the locked period provides the initial conditions, while
the central and forecast period contribute the constraints, decision variables,
and objective function.

The decisions made during the central period are locked and carried over
as initial conditions to the subsequent subproblem, since the central period
of a subproblem becomes part of the locked period of the next subproblem.
The forecast period is included in the subproblem to ensure that the de-
cisions made during the central period account to at least some degree for
their future consequences. Since these decisions are not carried over to the
subsequent problems, it is common to relax constraints and integrality re-
quirements during this period to ease the computational load further. Note
that the forecast period does not necessarily make up the entire time line
following the central period, but rather a contiguous subsequence that is suf-
ficiently long to ensure we do not over optimize for the central period at the
cost of the future.

Figure 7.1 gives a graphical overview of a simple application of an RHH
scheme, where we having a planning horizon of five years, a central period
of one year, and a forecast period of two years. Note that we include year
6 and 7 as part of the forecast period during the last iteration, even though
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Y1 Y2 Y3 Y4 Y5 (Y6) (Y7)

Iteration 1

Iteration 2

Iteration 3

Iteration 4

Iteration 5

Figure 7.1: Execution of the rolling horizon heuristic over a five year planning
horizon with a one year central period and a two year forecast period.

they are outside of the planning horizon.

7.2.2 Rolling Horizon Heuristic Combined With Simu-
lation

We wish to apply an RHH scheme where each subproblem is made up of a
two-stage stochastic program. In our case a simple RHH-scheme which breaks
the planning horizon into different subproblems based solely on the time-axis
is insufficient, as variables sharing the same time index are in different stages
of our two-stage stochastic program. We decide to decompose the time-axis
by planning blocks, such that each subproblem span the time periods con-
tained in a planning block. However, we split each of these subproblems
into two new subproblems, the first having a central period containing the
first-stage variables of the planning block, and the second having a central
period containing the second-stage variables of said planning block. As a
consequence, our central periods and forecast periods are no longer disjoint
with respect to time. Hence, when we move to the next central period, we
do not necessarily move forward in time. In some contexts we simply refer
to the second-stage variables of the planning block as harvest volume vari-
ables, this is a simplification as technically the second stage also contains the
biomass decision variables q̃ and q̂, but these are decided implicitly by the
combination of deployment volume and harvest volume variables.
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Figure 7.2: Schematic overview of the evaluation framework. C is the set of
planning blocks.
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For each sub-problem, we generate a two-stage stochastic program as de-
scribed in section 7.1, by taking the model introduced in chapter 6 with
a planning horizon spanning the time periods contained in the central and
forecast period, and then relaxing the non-anticipativity constraints post the
first-stage. This means our two-stage program also considers time periods
after the forecast period, since we must account for the end of horizon con-
straints. We therefore deviate somewhat from the RHH philosophy, in that
we solve complete replicas of the problem repeatedly, instead of just consid-
ering specific parts of the problem at a time.

Solving the subproblems containing first-stage variables is done through the
same procedure as when we generate a candidate solution. In fact, gener-
ating a candidate solution can be viewed as solving the first subproblem of
the RHH. The scenario tree used in this subproblem contains two levels, a
root node for the central period, and leaf nodes for the forecast period. Af-
ter obtaining the first-stage variables we lock them and move them to the
locked period. Next, we simulate the outcome of the time periods spanned
by the central period. To do this, we generate one specific outcome, i.e. one
scenario, for the stochastic lice treatment variables for the time periods con-
tained in the central period of the subproblem. We denote the scenario we
generate as a realization of the planning block.

Next, we move onto the subproblem which solves for the harvest volume
variables of the same time periods as the previous subproblem. However, we
still wish to use stochastic programming to decide these variables, although
we have a specific realization of the planning block. Hence, we generate a
set of scenarios for the time periods contained in forecast period conditioned
on our realization of the planning block time periods. Note that the central
and forecast period are disjoint with respect to time in this subproblem. We
choose to generate the same number of scenarios as we used when solving
the first-stage variable subproblem. We thus get a two-stage scenario tree,
which structure differs from the scenario tree of the previous subproblem in
that branching has been delayed by one node, meaning the harvest volume
variables of the central period have transitioned into the role of first-stage
decision variables in this subproblem. Figure 7.3 illustrates this for a simple
example with only two time periods each being a planning block, the tree on
the left shows the scenario tree used during the first-stage subproblem, while
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the tree on the right is used during the second-stage subproblem to solve for
the harvest volume variables. We then solve the obtained subproblem, and
lock the harvest volume variables.

The combination of having realized the planning block together with lock-
ing the harvest volume variables provide sufficient initial conditions for the
next subproblem. The cohort level biomass variables, q̃, for the time period
that follows the end of the planning block give the initial present biomass
at the start of the next subproblem, with one important exception, we must
discard the q̃ variables corresponding to cohorts deployed during the time
period that immediately follows the planning block. Moreover, to be able to
generate the A and R parameters, we must also store the mean weight of the
cohorts at the start of the time period that immediately follows the planning
block together with the time the cohort has spent at sea. Storing cohort’s
time at sea is also necessary to ensure that the cohort’s rearing cycle length
does not exceed ∆ time periods.

We then move onto the next subproblem by moving to the next central
period. In doing so, we also generate a new two-level scenario tree, where
the root node is conditioned on the realization we generated for the previous
planning block. This subproblem solves for the first-stage variables of the
next planning block. We can now simply repeat this scheme, to produce a
solution for the entire planning horizon. We summarize the main elements
of this scheme in Figure 7.2.

As we now have generated a solution for the entire planning horizon, we
need to compute the objective value of this solution. In our case this is
done at the end of each iteration of the solution framework presented in Fig-
ure 7.2, i.e. after the harvest volume variables are locked. For each iteration
we compute all terms in the objective provided in equation (6.1) containing a
harvest volume variable wst′fgit with a time index t being part of the planning
block, or more generally all terms connected to the planning block. After all
iterations are finished, we sum up the objective values obtained during each
iteration to get a total objective value for the planning horizon.
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Figure 7.3: Depiction of scenario trees used to lock to the first-stage variables
on the left and second-stage variables on the right.

7.2.3 Multiple Evaluations

Applying the RHH scheme once to a candidate solution gives us an evaluation
of the candidate solution based on the realizations and scenario trees used.
As these two factors are sampled, we would naturally like to see how our can-
didate solution fare under different realizations and scenario trees. Thus, we
apply the RHH scheme multiple times to the same candidate solution, each
application yielding an operational plan for the planning horizon together
with an objective value. We let the average of the obtained objective values
serve as a proxy for the expected objective value of the candidate solution,
and thus its quality.

Figure 7.4 shows an application of the evaluation scheme to a candidate
solution with three evaluations. The candidate solution results from a prob-
lem with a planning horizon of five years, a central period of one year, and a
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Eval 2

Eval 3

Figure 7.4: Schematic overview of the evaluation of a candidate solution to
the first-stage variables of the first primary period.

forecast period of four years. A central period length of one year means we
use planning blocks spanning a year, and the forecast period length simply
means that we look four years ahead after the end of the planning block we
are currently solving. We also need to include the time periods necessary
for the end of horizon constraints following the forecast period, however, we
do not depict them in the figure. During the first planning block, we have
graphically split the block in two to depict the difference between locking the
first and second-stage variables of the planning block, while we have omitted
this distinction during the later planning blocks for the sake of brevity. The
graphical split of the first year does not mean that the second-stage variables
follow the first-stage variables in time.

As we generate candidate solutions by using a two-stage program with a spe-
cific initial scenario tree containing a limited amount of scenarios, it might
be the case that we could get a better candidate solution if we use a different
initial scenario tree. We thus sample several initial scenario trees and gener-
ate a candidate solution for each tree. Each candidate solution is then run
through the evaluation scheme presented above and in Figure 7.4. In the end

62



we have multiple candidate solutions, each with multiple evaluations.

To disentangle the impact of different stochastic realizations from the qual-
ity of the candidate solution, we use the same set of scenario trees when
evaluating two different candidate solutions. The two candidate solutions
are generated based on two independently sampled scenario trees, however,
the scenario trees used during the evaluation of the two candidate solutions
must be equal. In the example given in Figure 7.4, one scenario tree is needed
to generate the candidate solution, while nine scenario trees are needed to
evaluate it once, whereof five are scenario trees with a planning block real-
ization used to lock the second-stage variables, and four are used to lock the
first-stage variables. To perform three evaluations we thus need 3 · 9 = 27
scenario trees. When we evaluate multiple candidate solutions, we thus sam-
ple a total of three sets of scenario trees, each consisting nine scenario trees
respecting the properties outlined in section 7.2.2 with regards to realization
of the central period and conditioning on previous realizations. When evalu-
ating two different candidate solutions, we use the first set of scenario trees
during evaluation 1 of both candidate solution, and the second sampled set
during evaluation 2 of both candidate solutions, and so on.

We note that the use of out of sample simulation and iterative scenario tree
generation in practice renders the resulting two-stage programs infeasible. In
such cases we can either return an objective value of −∞ or some other ap-
propriate value, or we can attempt to modify the program to make it feasible.
Since our programs in practice always turn out to be infeasible we choose the
latter option. Noting that small deviations from an operational plan with
respect to timing of harvesting and the harvested cohorts’ mean weight are
generally acceptable, both from a business and regulatory standpoint.

7.3 Feasibility When Using Rolling Horizon
Heuristics

A problem that can arise when we lock variables and generate a new scenario
tree out of sample is that the new program might turn out infeasible. Lock-
ing the first-stage variables when solving for the second-stage variables of
the planning block is a further complication. To illustrate this issue, assume
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we lock a deployment at time t′ and lock harvest of the deployment at time
t. At time t the cohort has reached a mean weight of 4,001 grams, 1 gram
above the weight threshold for harvesting at 4,000 grams. Moreover the total
biomass of the cohort is approximately equal to the location MAB. Next, we
generate a new scenario tree out of sample, and now the cohort only reaches
3,999 grams at time t, and can thus not be harvested even though it must
be since we have locked in the harvest operation. Even worse, if we do not
harvest, then at time t+1 the total biomass of the cohort may have surpassed
the location MAB. Clearly our program is infeasible.

We solve the illustrated problem by moving time period t from the cohort’s
growth phase to its harvest phase. However, it is also possible that the co-
hort grows faster in one of the newly sampled scenarios, and as such must
be harvested at time t − 1 to avoid breaching the location MAB at time t.
In such a case we move t− 1 and all subsequent growth phase time periods
to the cohort’s harvest phase for the scenario in question. When solving the
two-stage program to fix the second stage variables of the planning block,
we must consider the locked variables. Denoting the locked variables with a
superscript l and specifically the locked binary harvest variables as ωli(t−1),
we flip ωli(t−1) to one to allow harvesting at time t− 1 in the case above. To
avoid forcing the company to also use its old locked harvest operations ωlit,
which in itself could give rise to new feasibility problems, we only require the
following initial conditions for the time periods, T C, of the central period in
question

ωsit ≤ ωlit, i ∈ I, t ∈ T C, (7.1)

and as a consequence to allow fallowing after the last harvesting operation

βsit ≤ βlit, i ∈ I, t ∈ T C. (7.2)

At each location we check the time periods in chronological order from t = 1
to t = |T C| + ∆ the latest possible time period to harvest a locked deploy-
ment. During each time period we control that the total biomass in its growth
phase during t−1 does not exceed the location MAB at time t. When solving
with locked variables we must also consider cohorts in their harvest phase,
where the locked harvest variables ωl do not allow the deployed cohorts to be
harvested at time t− 1 or earlier. If the biomass at a location respecting the
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aforementioned characteristics does exceed the location MAB at time t, we
move t− 1 and the cohort’s subsequent growth time periods to the cohort’s
harvest phase. When solving the two-stage program to fix the second stage
variables we set ωli(t−1) = 1 to allow harvesting. When t−1 > |T C| we do not
consider ωli(t−1) as it does not exist, and when we solve the two-stage program
to lock in the first-stage variables ωl does not exist at all. In the case were
a deployment consists of several cohorts we perform the above procedure on
the cohort with the highest mean weight. Next, we check whether the time
period has become feasible, if not we move onto the second heaviest cohort
in the deployment, and so on.

After ensuring feasibility at a location level, we perform the same procedure
at a company level with respect to the company wide MAB. We perform the
location level and company wide level feasibility procedure described above
for each scenario. As a final step we ensure that if a cohort’s harvest phase
starts during a time period t′ which is contained in the central period in one
of the scenarios, that the cohort’s harvest phase starts no later than during
time period t′ in all of the scenarios. We achieve this by simply moving time
periods from the growth phase to the harvest phase in the scenarios where it
is necessary. The reasoning is that if we harvest in one of the scenarios, we
must harvest in all due to the non-anticipativity constraints.

As the astute reader might have noted, constraints limiting harvest volumes
are likely to cause infeasibility when solving with locked variables or initial
conditions. We therefore relax the harvest volumes constraints, and penalize
breaching them trough adding penalty terms to the objective function. In
our case only the company-wide upper harvest constraint (6.8) and the lower
bound location level harvest constraint (6.7) need to be relaxed. We set the
upper bound of the location harvest constraint equal to the location MAB
in our case studies, making it non-restrictive. We thus omit relaxing it here
for the sake of brevity, however, for different upper bounds it might be nec-
essary to relax it. For simplicity we relax the constraints for all time periods,
although it suffices to relax the constraints for time periods 1, 2, . . . , |T C|+∆.

We replace the location lower harvest volume constraints by∑
f∈F

∑
g∈G

∑
t′∈T d

fgit

wst′fgit ≥ Lh
i ω

s
it − φ̃sit s ∈ S, i ∈ I, t ∈ T , (7.3)
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where φ̃sit is a continious decision variable with its domain restricted to lie
between zero and the location’s lower harvest volume limit Lh

i for tightness
purposes

0 ≤ φ̃sit ≤ Lh
i ω

s
it s ∈ S, i ∈ I, t ∈ T . (7.4)

Similarly, we replace the company wide upper harvest constraint by∑
f∈F

∑
g∈G

∑
i∈I

∑
t′∈T d

fgit

wst′fgit ≤ Ucomp
t + φ̂st s ∈ S, t ∈ T , (7.5)

where we restrict the decision variable φ̂st to be non-negative and simply
yield an upper harvest constraint that potentially can be as relaxed as the
company wide MAB

0 ≤ φ̂st ≤ MABCOMP − Ucomp
t s ∈ S, t ∈ T . (7.6)

We then simply subtract the following penalty term from our objective, to
discourage the model from utilizing these relaxations unless it is necessary

∑
s∈S

πs

[∑
t∈T

[
φ̂st +

∑
i∈I

φ̃sit

]]
. (7.7)

We note that the procedures outlined above do far from guarantee feasi-
bility. Especially the activity constraints that require the company to deploy
biomass in combination with the lower bound constraints on deployment vol-
umes may still cause infeasibility. This occurs when the company is forced
to deploy fish, but are unable to do so without breaching the company wide
MAB due to the lower bound on deployment volumes. We choose to not
relax the deployment lower bounds in the same manner we did with harvest
volumes, as we find that the model could be forced to deploy very small de-
ployments consisting of less than a net-pen worth of fish, which is not feasible
from a practical standpoint. As such, we decide to leave the RHH framework
infeasible if this happens.
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Chapter 8

Case Study

In this chapter we introduce the case study which forms the basis for the
computational study we present in chapter 9. We start of by giving a brief
introduction to Eidsfjord Sjøfarm, which is an Atlantic salmon farming com-
pany situated in Northern Norway, and serves as the inspiration for our case
study. Thereafter we introduce the characteristics of the relevant smolt types.
Next, we specify the parameters needed to model the presence of salmon lice
treatments and present a complete scenario generation algorithm. Lastly we
finish of by presenting the remaining constraint parameters and the reasoning
behind their chosen values.

8.1 Company
Eidsfjord Sjøfarm is a mid-size Norwegian Atlantic salmon farming company
situated in Northern Norway, which historically has produced approximately
15,000 head-on-gutted tonnes of Atlantic salmon per year. For the sake of
our case study we base our production system on Eidsfjord Sjøfarm’s historic
production system, which consisted of 16 locations scattered across Northern
Norway as presented in Figure 8.1. Table 8.1 gives the location MAB for each
of the 16 locations, together with the initial biomass present at the start of
our case study, which is November 2020. Ten of the locations are located
in Vesterålen, three are situated around Senja, and the final three locations
are located in Nord-Troms. The regions lie within the regulatory defined
production zones 9, 10, and 11 respectively. However, Eidsfjord Sjøfarm has
been granted an inter-regional MAB between these three zones, yielding a
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Figure 8.1: Geographical location of Eidsfjord Sjøfarm’s farms.

company wide MAB of 10,902 tonnes. We include the fact that Eidsfjord
Sjøfarm’s current production system consists of 17 locations and a company
wide MAB of 14,528 tonnes, however, we choose to use the historic production
system as historical benchmark data are available for this system, providing
us the possibility to sanity check our results.

8.2 Smolt and Salmon Specifications
We now define the parameters related to smolt and salmon characteristics,
which includes release weights, TGC and mortality rates of the different
smolt types, harvest weight requirements, and specification of cohorts’ weight
distributions.

8.2.1 Release Weights

The company has the opportunity to release smolt during eight months of
the year, which are split into three main release windows. The initial weight
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Table 8.1: Overview of Eidsfjord Sjøfarm’s production system with initial
conditions.

ID Name Region MAB
Initial
Biomass
(tonnes)

Initial Mean
Weight
(grams)

Months
at Sea

1 Bremnesøya Vesterålen 3900 1864 2207 10
2 Daljorda Vesterålen 3120 2316 3273 13
3 Innerbrokløysa Vesterålen 3120 0 0 NA
4 Kuneset Vesterålen 3120 0 0 NA
5 Langholmen N Vesterålen 3120 0 0 NA
6 Pollneset Vesterålen 3120 0 0 NA
7 Reinsnesøya Vesterålen 3120 1007 1464 5
8 Sandan Sø Vesterålen 2340 0 0 NA
9 Stretarneset Vesterålen 3120 1033 5261 17
10 Trolløya Sv Vesterålen 3120 999 2641 5
11 Flesen Senja 2700 0 0 NA
12 Kvenbukta V Senja 2700 225 317 2
13 Lavika Senja 2700 571 689 2
14 Hagebergan Nord-Troms 3600 1497 6000 17
15 Haukøya Ø Nord-Troms 3600 0 0 NA
16 Russelva Nord-Troms 3500 1298 1591 5

of deployed smolt depends on which release window they are deployed in,
as presented in Table 8.2. During the release window containing Decem-
ber and January the company must use so called winter smolt with an ini-
tial weight of 250 grams. A further constraint during this release window
is that the company can only release 550,000 smolt due to a supply lim-
itation on winter smolt. We formally have Sp = 550 during each period
p ∈ P = {{December Year y, January Year y} : y ∈ Y}, where Y is the set
of years in the planning horizon. During the release window of April, May,
and June the initial release weight is constrained to 150 grams, while the re-
lease window containing the months of July, August, and September utilizes
an initial smolt weight of 100 grams. In general the initial smolt weight is
higher when sea temperatures are low, as more robust smolt are required.

We add that in the industry the weight used during the summer half re-
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Table 8.2: The possible release months for each initial smolt weight.
Weight Months

100 grams July, August, September
150 grams April, May, June
250 grams December, January

lease windows are no longer as strictly defined as it traditionally has been.
Recent trends show a tendency towards deploying smolt in the weight range
100 – 200 grams during both of the summer half release windows, and the
trend is more and more towards the higher end of this interval. However,
we have kept a more traditional deployment weight scheme for the sake of
simplicity.

8.2.2 Smolt Types

We study five smolt types, as introduced in section 2.4, namely, regular
smolt, mono-female smolt, mono-male smolt, smolt originating from cooled
eggs, and early gender maturation smolt. The choice of these five smolt types
stems from the fact that Aquagen is currently running studies on them.

All smolt types except the early maturation type can be released during any
of the release months presented in Table 8.2. However, the early maturation
smolt can only be released during June and July, since its growth boost can
only occur during July, August, and September, and we require that both its
13th and 14th month at sea occur during the three aforementioned months.

The five smolt types differ with respect to TGC and mortality rates. When
estimating these parameters we only have reliable sea trial data available for
the regular, mono-female and mono-male smolt types. Figure 8.2 presents the
TGC with respect to time spent at sea for the five smolt types. As apparent,
the cooled eggs and mono-male smolt types exhibit the highest growth rates,
save for the period when early maturation experiences its growth boost, while
mono-female is the slowest growing fish. The TGC of the regular, mono-
female, and mono-male smolt types are based on data from sea trials that
lasted 14 months. To fill in the blanks during month 15 and later, we simply
extrapolate by using the average of months 12 – 14. For the early maturation
smolt type we assume that it has to be harvested during it 13th or 14th month
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Figure 8.2: TGC of the different smolt types as a function of time spent at
sea.

at sea, and that it gets a growth boost during these months. We assume that
the early maturation smolt type’s TGC is equal to the regular smolt type
until month 13 and 14 where it becomes equal to the highest TGC value the
regular smolt type exhibited, i.e. the regular smolt type’s TGC value during
its 4th month at sea. For the cooled eggs we assume that its TGC is 8 %
higher than regular smolt type’s TGC, which is based on fresh water trials,
where the cooled eggs exhibited an 8 % higher TGC than regular smolt. We
do note, however, that TGC is not really applicable during the fresh water
stage, but for the lack of any better data we choose to continue with this
assumption.

As for mortality, we model the mortality rates as a function of months enjoyed
at sea. We base the mortality rates for the regular, mono-female, and mono-
male smolt types on empirical values obtained from sea trials. We assume
that cooled eggs and early maturation smolt experience the same mortality
rates as the regular smolt type. We do however, scale the mortality rates
such that the regular smolt type match the national average and the ratios
between the different smolt types remain unchanged. We do this through
replacing the regular smolt types mortality rate with the national average
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Figure 8.3: Scaled mortality rates for the regular, mono-female, and mono-
male smolt type. We assume that the cooled eggs and early maturation smolt
types exhibit the same mortality rates as the regular smolt type.

obtained from Bang Jensen et al. (2020), and then scaling the other smolt
types mortality rates such that the ratios from the sea-trails are preserved.
As with TGC the ratios for months 1 through 14 are based on the sea trial
data, while the months 15 – 19 are based on the average during the months
12 through 14. The early maturation smolt type’s mortality rate is natu-
rally cut short after 14 months, its latest possible harvest time. Figure 8.3
gives a graphical depiction of the monthly mortality rates for the regular,
mono-female, and mono-male smolt type as a function of months enjoyed at
sea. An interesting point to examine is the impact of the mono-female smolt
type’s low mortality rate during its first months at sea, and whether this
compensates for its comparatively low growth rates.

8.2.3 Other Fish Paramters

We now provide the missing parameters with regards to fish modeling. We
assume that the HOG yield of a harvested salmon is κ = 0.84 based on
Mowi ASA (2020). We define the harvest threshold as 3,500 grams HOG,
giving us a harvest threshold in terms of sea weight of 3500

0.84
≈ 4, 166.67
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Figure 8.4: Temperature curves in Celsius for the three regions as a function
of calendar month.

grams. Hence in terms of our modeling language, a cohort with a mean
weight below this threshold is in its growths phase, while a cohort with a
mean weight at or above this threshold is in its harvest phase. Similarly, we
define an upper harvest weight threshold of 6, 500 HOG grams, i.e. cohorts
must be harvested before their mean sea weight reaches 6,500

0.84
≈ 7, 738.10

grams, meaning a cohort’s harvest time periods set does not contain time
periods where the cohort’s mean weight would be above this threshold. These
thresholds are based on the fact that market demand is considerably lower
for weights outside of the range defined by the lower and upper thresholds.
Moreover, we assume that a cohort’s weight distribution has a coefficient of
variation CV = 0.225 based on Forsberg (1999) and Hæreid (2011).

8.3 Temperatures
To predict weight growth using TGC, we need to specify the temperature
at each location for all time periods. We assume that all locations situated
within the same region have the same temperature. As previously mentioned,
Eidsfjord Sjøfarm’s locations are scattered across three regions, which from
south to north are denoted Vesterålen, Senja, and Nord-Troms. Figure 8.4
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gives the average monthly seawater temperatures for these regions based on
historic data obtained from Eidsfjord Sjøfarm. Senja and Vesterålen’s curves
are based on historic data from 2019. Nord-Troms lacked temperature data
during the months January to April in 2019, we therefore impute these values.
We estimate the temperature for these months assuming the temperature ra-
tio between the Nord-Troms and Senja was the same in 2019 and 2018. We
then compute this ratio for each of these months in 2018 based on available
data, and use these ratios to impute the missing values for Nord-Troms in
2019. We assume that the temperature repeats yearly. Thus, we obtain
the temperature curves for a multi-year planning horizon by duplicating Fig-
ure 8.4 for each year of the planning horizon and the time periods contained
in the end of horizon conditions.

8.4 Salmon Lice Parameters and Scenario Gen-
eration

We now provide a complete scenario generation algorithm for salmon lice
treatments based on the approach presented in section 5.2.

8.4.1 Salmon Lice Treatment Data

This subsection defines the parameters that are needed before we can perform
scenario generation. The production locations introduced in section 8.1 are
split between three production zones as defined by Norwegian authorities,
namely, production zones 9, 10, and 11. As such we define the lice treat-
ment probability parameters ρ̂it = P(ζit = 1|ζi(t−1) = 0) and ρ̌ = P(ζit =
1|ζi(t−1) = 1) separately for these three zones, since lice data are available at
a production zone level. Figure 8.5 shows the values of ρ̂ and ρ̌ as a func-
tion of calendar month for production zones 9, 10, and 11 respectively. The
general trend is that production zone 11 has considerably lower probability
of lice treatments than zones 9 and 10, especially during summer.

When a treatment is performed we assume that five feeding days are lost
at the location, i.e. D = 5. Lastly, based on Overton et al. (2019) we assume
mortality rates increase by one percentage point during the time period when
treatment occurs at a location, yielding µ̂it = 0.01.
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Figure 8.5: The parameters ρ̂ and ρ̌ for production zones 9, 10, and 11 as a
function of calendar month. Previous month = 0 refers to ρ̂, while previous
month = 1 refers to ρ̌.

8.4.2 Scenario Generation

We start off with deciding the parameters used to model the relative risk
which depends on the seaway distance dij in kilometers between location i
and j, and is given as

RRij = max{N · e−
φ1
φ2
d
φ2
ij , 1}. (8.1)

Aldrin et al. (2017) estimate that φ1 ≈ 0.351 and φ2 ≈ 0.568. We decide that
two locations are pairwise independent of one another if they have a seaway
distance of at least 50 km between them, hence we define N = e

0.351
0.568

·500.568 . We
measure the seaway distance manually by using the distance measuring tool
in Google Maps, the results of these measurements are given in Appendix A.
As a consequence of our chosen value of N we can generate scenarios for
each of the three production zones separately as they are uncorrelated. This
reduces the computational burden significantly, as the largest sample space
we have to estimate probabilities for is of size 210 = 1024 instead of 216 =
65, 536 for each time step. We still have to consider two extra sample spaces,
each of size 23 = 8 separately, but the computational overhead of this is
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minuscule. The scenario generation algorithm based on the presentation in
section 5.2 is given in algorithm 1. We assume that ζsi0 = 0 at the start
of the planning horizon. Lastly, we assign all sampled scenarios the same
probability, i.e. πs = 1

|S| .

Algorithm 1 Scenario generation for a production region I ′ ⊆ I given initial
conditions ζ0, relative risks RRij, p̂t, p̌t, and the sample space ΩI′ = {0, 1}|I′|.

for all t← 1, 2, . . . , |T | do
ρt ← ρ̂t � (1− ζ(t−1)) + ρ̌t � ζ(t−1)

// Find the corrected joint distribution between pairwise locations.
P′tij ← 0
for all (i, j) ∈ I ′ × I ′ do

Pt
ij ←

ρitρjt
1+ρjt(RRij−1)

RRij

P′tij ← min{Pt
ij,P

t
ji}

end for
Use iterative proportional fitting to find P(ζt = c), respecting
P(ζt = 1n) = ρt and P(ζit = 1 ∧ ζjt = 1) = P′tij

// Sampling ζt from a discrete distribution
Sample z ∈ U(0, 1)
r ← 0
for all c ∈ ΩI′ do
r ← r + P(ζt = c)
if r ≥ z then
ζt ← c
break

end if
end for

end for
return ζ

8.5 Other Constraint Parameters
This section summarizes the last parameters we need to specify, an overview
of these parameters is provided in Table 8.3.
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We set the maximum rearing cycle length ∆ to 19, which is done through
simply adjusting the cohorts’ harvest time periods sets to ensure that they
are harvested before ∆ time periods have passed. The Norwegian regulations
stipulate that a site must be fallowed for at least two months between rearing
cycles, hence we have Λ = 2. In a similar fashion, the regulations require the
company to have some biomass present at each location at least once during
a 24 month period yielding Γ = 24.

We let Qi = 4, giving the lower bound on the amount of biomass that must
be employed at a location if biomass is employed. This value is somewhat
arbitrary, and is set to a low non-zero value to simply enforce the relation-
ship that βit = 1 if and only if biomass is employed at location i at time t,
without being restrictive in practice. We want to avoid a tight lower bound,
as it causes feasibility issues when applying our RHH framework. The value
of 4 is chosen to be absolutely certain the solver does not encounter any nu-
merical issues, which could occur if we choose an overly low value.

We base our deployment restrictions on the number of fish that fit in a
net pen, which in practice is around 120 thousand fish. We restrict the lower
deployment volumes of a cohort to two net pens, i.e. L̃dep

i = 240 thousand
fish. At a location level we demand the deployment volumes to lie in the
range between L̂dep

i = 480 and Ûdep
i = 1, 440 thousand fish, which is between

4 and 12 net pens. As we allow a deployment to consist of only one cohort
we let Ũdep

i = Ûdep
i .

Our harvest volume limits are motivated by the fact that Eidsfjord tries
to harvest at least 1/2 of a net pen per week, which is equivalent to approxi-
mately 475 tonnes. Note that we measure harvest volumes in tonnes and not
in the number of fish. We set the lower harvest limit at a location level per
time period to Lharv

i = 425, which is equivalent to 50 tonnes less than 1/2 of
a net pen at full capacity. We limit the harvest volumes at a company level
to be less than Ucomp

t = 3, 800, which is approximately twice the monthly
harvest goal. We do not restrict the harvest volumes at a location level any
further, as such we set Uharv

i = min{MABi, 3800}
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Table 8.3: Summary of parameters regarding production cycles length, fal-
lowing length, activity constraints, deployment volume constraints, and har-
vest volume constraints.

Parameter Value
∆ 19
Λ 2
Γ 24
Qi 4

L̃dep
i 240

Ũdep
i 1,440

L̂dep
i 480

Ûdep
i 1,440

Lharv
i 425

Ucomp
t 3,800

Uharv
i min{MABi, 3800}
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Chapter 9

Computational Study

In this chapter we perform a computational study based on the case study
introduced in chapter 8. All experiments are performed on a linux compu-
tational cluster with a Lenovo NextScale nx360 M5 server with a 2x 2.3GHz
Intel E5-2670v3 – 12 core CPU, 64GB RAM, and a 120GB SATA SSD. The
software used is Python 3.7.4, R 3.6.2, and Xpress 8.10.

9.1 General Configurations
We now provide the general setup for the computational instances we study
in this chapter. The instances are based on chapter 8, however, we now
provide the details for the specific instances we study, together with details
on the technical configurations we use for the MILP-solver and our rolling
horizon heuristic framework. All instances we study in this chapter have a
planning horizon of five years and each time period represents one calendar
month.

9.1.1 Smolt Combinations

We study three different smolt combinations that the farming company has
available. The company has the opportunity to use all smolt types she has
available, but she does not need to use all of them. The reason for studying
different combinations is to measure the potential value of introducing dif-
ferent novel smolt types, e.g. how much of an increase in objective value can
the company achieve by introducing mono-gender smolt compared to only
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using the regular smolt type.

The first combination we study is the regular smolt type in isolation, the
second is regular smolt, mono-female, and mono-male smolt, and the last
combination includes all smolt types, i.e. cooled eggs and early maturation
smolt in addition to the ones included in the second combination. The sec-
ond combination is included since it is based on more reliable data than the
third combination.

9.1.2 Rolling Horizon Heuristic

The rolling horizon heuristic (RHH) framework we introduced in chapter 7
is applied with a central period of one year and a forecast period of four
years. Meaning, we use planning blocks spanning a year, and for each sub-
problem we look four years ahead after the end of the planning block we
are solving. We thus consider a time span of the same length as the five
year planning horizon for each subproblem. However, the forecast period
extends beyond the planning horizon during later iterations, e.g. during the
fifth main iteration we consider the years five through nine. Although the
central and forecast period defining the two-stage stochastic program contain
60 time periods, we ensure that each scenario is generated to cover 80 time
periods, to cater to the end of horizon time periods following the forecast
period. We also relax integrality requirements during the last two years of
the forecast period. Each time we solve the two-stage stochastic program we
let the program run until an optimality gap of 3 % is achieved or three hours
have lapsed. If no feasible solution has been found within three hours, the
program runs until a feasible solution has been found.

9.1.3 Evaluation Measurements

The two most obvious and important ways to compare different candidate
solutions are the average objective value and average harvest volumes, where
the average is computed over all evaluations of the candidate solution. How-
ever, in order to assess the industrial and technical implications of our results,
it is necessary to introduce some additional measurements. We first intro-
duce as set of performance measurements that are commonly used in the
industry. These serve two purposes, one, they allow us to sanity check our
results against industrial practices, second, they allow us to examine what
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drives the change in objective value when we examine different smolt com-
binations. Lastly, we introduce a sensitivity measure to assess the difference
between the best and worst outcome of a candidate solution.

Industrial Key Performance Indicators

Firstly, we compute the average HOG harvest weight as

κ ·
∑
wt′fgit ·Wt′fgit∑

wt′fgit
, (9.1)

where Wt′fgit is the mean weight of the cohort corresponding to the har-
vest volume variable wt′fgit, we omit the summation indices for the sake
of brevity. Equation (9.1) yields the average harvest weight per harvested
tonne of biomass, and not the average weight per harvested fish. This is a
simplification we utilize, since we do not keep track of the amount of fish
in a cohort during the rearing cycle. Ceteris paribus a higher average HOG
harvest weight is advantageous as it increases production volumes.

We define the short rearing cycle length (SRCL) as the average number of
time periods from deployment to the first harvesting operation of the deploy-
ment takes place. Similarly, we define the long rearing cycle length (LRCL)
as the average number of time periods from deployment to the last harvest-
ing operation performed on said deployment. Note that we measure based
on deployments and not cohorts, e.g. if two cohorts are part of a deploy-
ment the SRCL only considers the cohort that is first subject to harvesting.
In general it is preferable to achieve a given average HOG harvest weight
with short rearing cycles, as this would allow the company to increase their
number of rearing cycles reaching the same harvest weight during a planning
horizon. When calculating the average cycle lengths we only consider de-
ployments performed during the planning horizon, i.e. we omit the biomass
present through initial conditions at the start of the planning horizon. When
calculating the long rearing cycle length we only include deployments that
are completely harvested at the end of the planning horizon.
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Sensitivity Measurements

To measure the difference between the best and worst outcome of a candidate
solution, we define the following gap measurement

gap(obj) =
maxi obji −mini obji

mini obji
, (9.2)

where obj is a vector where each element i correspond to a measurement
value of evaluation i of the candidate solution in question. Despite its sim-
ilarities, this gap measurement should not be confused with an optimality
gap. We introduce it, since we cannot provide an optimality gap for an en-
tire evaluation of a candidate solution when we apply an RHH. Our gap can
also be applied to other values than just the objective value, such as total
harvest volumes or solve time. In general a low gap indicates that a can-
didate solution is stable with regards to different realizations of the future,
while a high gap tells us that the candidate solutions performance heavily
depends on the realization of the future.

9.2 Size of the Two-Stage Program
In this subsection we give a brief overview of the computational complexities
we are faced with when studying instances varying in the number of smolt
types and scenarios. Table 9.1 gives the size of the two-stage stochastic pro-
gram in columns, rows, and non-zero elements. The numbers are provided
after the solver has performed pre-solve, which reduces the original size of
the program. The size reduction resulting from pre-solve varies somewhat
depending on the precise scenarios/program, but the numbers presented in
Table 9.1 are representative for the program size of other scenarios as well.
The five scenario programs used in Table 9.1 share the same scenarios across
the different number of smolt types, while the one scenario programs simply
have ζsit = 0 for all i and t.

Naturally as we increase the number of smolt types and scenarios, the num-
ber of rows, columns, and non-zero elements increases. However, this scales
sub-linearly in the case of increasing smolt types. Going from one smolt type
to five in the one scenario case, we increase the number of rows and columns
by approximately 3.1x and 2.7x respectively, and by 3.2x and 2.7x in the case
with five scenarios. While increasing the number of scenarios increases the
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Table 9.1: Size of the two-stage stochastic program in rows, columns, and
non-zero elements after pre-solve for different number of available smolt types
and scenarios.

Smolt Types Scenarios Rows Columns Non-Zero Elements
1 1 14,760 4,933 57,077
1 5 68,829 21,025 262,160
3 1 35,895 10,547 134,061
3 5 170,469 44,649 620,862
5 1 45,268 13,349 171,638
5 5 218,066 56,399 801,477

number of rows by 4.7x and the number of columns by 4.2x on average. The
number of non-zero elements increase on average by 4.6x when going from
one to five scenarios, and 3.0x when increasing the number of available smolt
types from one to five. These numbers show that increasing the number of
scenarios is more costly in terms of program size than increasing the num-
ber of smolt types. However, it should be noted that solution-time does not
scale with the numbers presented in this paragraph. Indeed, the results we
present later show that going from one to five scenarios on average increases
solve-time by 25.8x. Moreover, going from one smolt type to five smolt types
increases solve-time by 9.0x on average, while going from one to three smolt
types increases it by 3.74x on average. This further underlines the fact that
increasing scenarios is more costly in terms of solution time than increasing
the number of smolt types.

9.3 Maximizing Harvest Volumes
In this section we study instances where we maximize harvest volumes. This
is done through setting the relative price Pα

t = 1 for all weight classes α and
all time periods t. We start off by doing a deterministic study without lice
to establish a benchmark and to evaluate the usage of the RHH. Next, we
perform a stochastic study with lice treatments, and thereafter we evaluate
the value of using stochastic planning.
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Table 9.2: Results of the deterministic no-lice study.
Smolt Types Solution Method Objective

Value
Optimality

Gap
Harvest
Volumes

Avg. HOG
Harv. Weight

Solution
Time [s]

Reg. No Heuristic 88,969.65 0.02 % 88,969.65 4,680.03 10,800
Reg. RHH Relax 0y 88,092.70 88,092.70 3,975.69 263
Reg. RHH Relax 2y 88,822.93 88,829.77 4,061.93 228
Reg. & Mono No Heuristic 96,783.58 0.17 % 96,783.58 4,783.89 10,800
Reg. & Mono RHH Relax 0y 96,661.10 96,661.10 3,998.85 1,119
Reg. & Mono RHH Relax 2y 95,872.13 95,945.17 4,085.41 679
All No Heuristic 97,135.91 0.63 % 97,135.91 4,593.56 10,800
All RHH Relax 0y 97,458.93 97,458.93 3,853.47 2,113
All RHH Relax 2y 96,774.69 96,774.69 3,883.68 1,559

9.3.1 No-Lice Study

To assess the effect of salmon lice we study a deterministic instance without
lice to establish a no-lice benchmark. The deterministic instance is defined
by one scenario with all ζ1

it = 0, i.e. no lice treatments are necessary. We
also use the opportunity to measure the effect of applying the RHH in a non-
stochastic setting. We compare the result of the RHH to the result of solving
the same deterministic instance without applying any heuristic, which is the
same as solving the program given in chapter 6 with one scenario. When
we do not apply RHH, we simply let the solver run for three hours, or until
a solution is found if no solution is found within three hours. Lastly, we
examine the effect of relaxing the integrality requirements during the later
time periods of the forecasting period during iterations of the RHH.

The main results of the deterministic study are presented in Table 9.2, where
relax 2y refers to relaxing the integrality requirements during the last two
years of the forecast period in the RHH. We keep our presentation of the
results at a high level, as the main purpose of the deterministic no-lice study
is to measure the effect of different versions of the RHH without the presence
of stochastic elements, and to provide a benchmark of production levels in a
no-lice setting.

To our surprise, the RHH does not impact the objective value or harvest
volumes to any significant degree. For the all smolt types combination, the
objective value and harvest volumes are actually higher when the RHH Relax
0y is applied than when no heuristic is applied. The major difference we see,
is that the average harvest weight measured in grams is considerably lower
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when the RHH is applied, however, as discussed this does not have any major
impact on the objective value or total harvest volumes.

Additionally, relaxing integrality during the final two years of the forecast-
ing period yields a modest reduction in objective value and harvest volumes.
Indeed, when we have only the regular smolt type available we even see a
slight increase in both values. We conclude, that we can safely utilize an
RHH where we relax the integrality requirements during the last two years
of the planning horizon, without reducing the quality of our solutions to any
significant degree, while saving compute time. Another interesting aspect is
that the harvest volumes are equal to the objective value in almost all cases,
meaning that the relaxations of harvest volume constraints as explained in
subsection 7.3 are rarely exploited.

9.3.2 Stochastic Study

We now perform a stochastic study utilizing stochastic programming to per-
form production planning. The stochastic instances have five scenarios per
two-stage program, where the scenarios are sampled according to Algorithm 1
given in section 8.4. We evaluate three candidate solutions as explained in
section 7.2 for each smolt combination, each candidate solution is generated
by using an individually sampled scenario tree. Each candidate solution is
then evaluated 15 times, as such we sample 15 sets of nine scenario trees
to use during the evaluations. This ensures that the different candidate so-
lutions are evaluated using the same sets of scenario trees, e.g. the third
evaluation of the first candidate solution uses the same scenario trees as the
third evaluation of the second candidate solution, and so on as we explained
in the last paragraph of section 7.2. Hence, the evaluations measure the dif-
ferences contained in the candidate solutions in isolation.

The average number of lice treatments per location per year for the 15 dif-
ferent realizations of the planning horizons is 2.41, while the minimum and
maximum are 1.98 and 2.80 respectively. Figure 9.1 visualizes the realization
of the stochastic lice treatment variables ζsit per location and time period for
the first realization we sampled, green indicates no lice treatment being nec-
essary and red indicates that a lice treatment is necessary. Note the strong
correlation between locations in the same production zone, i.e. locations 1 –
10, 11 – 13, and 14 – 16.
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Figure 9.1: Realization of the planning horizon for the first evaluation, green
indicates that no lice treatment is necessary, while red indicates the opposite.

Table 9.3 presents the results of our stochastic study for each of the smolt
type combinations and their respective candidate solutions. When calculat-
ing the average values for a specific candidate solution over its evaluations,
we exclude evaluations that turn out infeasible, and report the number of
infeasible evaluations as a seperate data point. This is done as the company
would in reality manage to solve these infeasibility issues while incurring
some minor penalties. Additionally, setting infeasible evaluations’ values to
zero or −∞ and incorporating them in the candidate solution’s average would
heavily reduce the interpretability of said average. All of the feasibility issues
we encounter are caused by activity constraints requiring a deployment, but
the company cannot deploy biomass without breaching the company wide
MAB. Moreover, the gap between the best and worst outcome for both the
objective values and harvest volumes for all candidate solutions is less than
5 % in all instances. Indicating that the choice of candidate solution does
not lead to any catastrophic results, given that a feasible solution is found.

To start off we note that the objective values and harvest volumes have
decreased compared to the deterministic no-lice study, which is expected as
lice treatments reduce growth rates and increase mortality rates. If we com-
pare the average objective value for the different smolt combinations with
the corresponding objective value provided by the RHH relax 2y solution
in the no-lice study, we find decreases between 6.4 and 7.2 %. Moreover,
we see that the differences between the average objective values and harvest
volumes have increased compared to our no-lice study. This is expected as
the use of out of sample sampling might require exploitation of the harvest
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Table 9.3: Results of the stochastic study. Gap measurements given in paren-
thesis.

Smolt Types Cand.
Sol.

Avg. Objective
Value

Avg. Harvest
Volumes # Infeasible Avg. HOG

Harv. Weight SRCL LRCL Avg. Solution
Time [s]

Reg. 1 82,609.13 (2.86 %) 82,618.46 (2.85 %) 0 4,027.27 17.09 18.50 4,325.27 (49.08 %)
Reg. 2 82,562.61 (2.55 %) 82,595.58 (2.63 %) 1 3,948.72 16.99 18.40 4,149.00 (55.20 %)
Reg. 3 82,162.06 (3.49 %) 82,201.67 (3.49 %) 0 3,934.12 17.14 18.43 4,078.87 (43.34 %)
Reg. All 82,441.92 (3.68 %) 82,469.09 (3.76 %) 1 3,970.52 17.08 18.44 4,185.18 (59.25 %)
Reg. & Mono 1 89,576.80 (2.44 %) 89,584.67 (2.47 %) 0 4,071.29 16.22 18.00 14,553.00 (46.96 %)
Reg. & Mono 2 90,241.45 (2.68 %) 90,266.37 (2.63 %) 0 4,099.53 16.28 17.79 15,992.00 (31.54 %)
Reg. & Mono 3 89,440.69 (2.38 %) 89,445.83 (2.38 %) 0 4,076.53 16.42 17.83 14,395.07 (53.33 %)
Reg. & Mono All 89,752.98 (3.72 %) 89,765.62 (3.72 %) 0 4,082.45 16.31 17.87 14,980.02 (55.19 %)
All 1 89,760.98 (2.89 %) 89,766.33 (2.84 %) 1 4,076.22 15.97 17.63 34,563.86 (34.34 %)
All 2 90,843.79 (4.71 %) 90,844.38 (4.71 %) 0 4,090.22 16.05 17.61 34,812.67 (27.66 %)
All 3 89,894.52 (2.31 %) 89,912.98 (2.31 %) 1 4,051.16 16.05 17.87 35,494.64 (24.40 %)
All All 90,182.18 (4.71 %) 90,190.14 (4.71 %) 2 4,072.95 16.02 17.70 34,953.70 (34.34 %)

volume relaxations to achieve feasibility.

To sanity check our results we compare the results of the regular smolt type
only combination with historic production data. Eidsfjord Sjøfarm has his-
torically produced around 15,000 HOG tonnes annually, giving 15,000

0.84
· 5 =

89, 285.71 tonnes of sea weight harvest volumes over five years. Our results
show the regular smolt type combination’s harvest volumes to be on average
7.6 % lower than the historical harvest volume benchmark. We are contempt
with this discrepancy, as the historical benchmark is an approximate number,
and fluctuations in production volumes are to be expected over a five year
period. We note that the harvest volumes we obtained in the deterministic
no-lice study are within a 1.5 % range of the historical benchmark.

As expected, when we increase the amount of available smolt types, both
the average objective value and harvest volumes increase. However, as with
the no-lice study most, if not all, of the increase can be achieved by introduc-
ing mono-gender smolt, and specifically mono-male smolt. When comparing
the average objective value over the candidate solutions within the all smolt
type combination with the average over the regular smolt type only combi-
nation, we see an increase of 9.2 %, which is within 0.3 percentage points of
the increase seen in the no-lice study using RRH relax 2y. Indicating that
the value of having several smolt types available is fairly similar in the de-
terministic no-lice and stochastic setting.

We observe that the average harvest weight does not vary much between
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Figure 9.2: Breakdown of deployment volumes per smolt type for all re-
alizations of the three different candidate solutions of the all smolt type
combination.

the different smolt combinations, but tends to be somewhat higher when
multiple smolt types are available. The largest difference in average har-
vest weight is between the combination with regular and mono-gender smolt
and the regular smolt only combination, with an increase of a mere 2.8 %
or 112 grams. However, the rearing cycle lengths are clearly reduced when
we introduce the novel smolt types. The average short rearing cycle length
(SRCL) is reduced by more than a month when all smolt types are available
compared to when only the regular smolt type is available, while the long
rearing cycle length (LRCL) is reduced by 0.74 months. This indicates that
novel smolt types increase production volumes by reducing the rearing cy-
cle lengths, while maintaining similar harvest weights compared to the case
where only the regular smolt type is available.

In general we find that the mono-male smolt is the most utilized smolt type
when available, with cooled eggs a distant second when available. Figure 9.2
gives the deployment volumes for each smolt type for all evaluations of each
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Figure 9.3: Breakdown of harvest volumes per smolt type for all evaluations
of the three candidate solutions for the all smolt type combination.

candidate solution of the all smolt type combination. We have included the
infeasible evaluations, as they cut of after their infeasibility becomes apparent
their values are severely lowered compared to a feasible evaluation. Interest-
ingly, candidate solution 1 and 3 are infeasible for two seperate evaluation
runs, meaning that there is not one specifically difficult evaluation run that
causes infeasibility. Figure 9.3 provides a similar breakdown for harvest vol-
umes. Note that the regular smolt type’s harvest volumes mostly stem from
the initial conditions, as only small volumes of regular smolt are deployed
during the planning horizon. Moreover, the early maturation smolt is not
used at all, and the mono-female smolt is barely used.

Figure 9.4 shows the breakdown of employed biomass for each location and
smolt type over the planning horizon for an evaluation of the first candidate
solution with all smolt types available. The patterns visible in this specific
evaluation are similar to other evaluations of both the same candidate solu-
tion and the two other candidate solutions. An interesting aspect to note is
the relatively low utilization of the locations Hagebergan, Haukøya Ø, and
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Figure 9.4: Breakdown of employed biomass over time per location and smolt
type for an evaluation of the first candidate solution with all smolt types
available.

Russelva, which are situated in the coldest and northern most region, which
also is the region least affected by lice outbreaks. Showing that the model
prefers to deploy smolt at locations with higher temperatures, even though
they are more plagued by lice. This indicates that higher growth rates out-
weighs the higher risk of lice treatments.

9.3.3 Value of Stochastic Planning

In the stochastic study presented above, we use scenario trees to plan for the
future. An interesting aspect to examine, is whether this actually adds any
value, compared to planning under the assumption that no lice treatments
will occur. In this subsection we use only one scenario in our scenario trees
with all ζsit = 0, except for when we realize the central period where we
use the realizations that we sampled in subsection 9.3.2 for the time periods
contained in the central period, but we still have ζsit = 0 for the forecast
period of the scenario. Hence, we choose to run the RHH evaluation scheme
15 times using these realizations of the central periods. However, we choose
to not generate a common candidate solution, as the scenario tree used to
generate candidate solutions would be equal, i.e. ζsit = 0 for all nodes in all of
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Table 9.4: Deterministic planning compared to stochastic planning when
maximizing harvest volumes.
Smolt Types Planning Avg. Objective

Value
Avg. Harvest

Volumes # Infeasible Avg. HOG
Harv. Weight SRCL LRCL Avg. Solution

Time [s]
Reg. Stoch. 82,441.92 (3.68 %) 82,469.09 (3.76 %) 1 3,970.52 17.08 18.44 4,185.18 (59.25 %)
Reg. Det. 81,910.36 (4.07 %) 81,912.82 (4.08 %) 4 3,779.05 14.51 15.34 150.64 (39.90 %)
Reg. & Mono Stoch. 89,752.98 (3.72 %) 89,765.62 (3.72 %) 0 4,082.45 16.31 17.87 14,980.02 (55.19 %)
Reg. & Mono Det. 90,231.82 (3.11 %) 90,253.05 (3.11 %) 0 3,855.87 16.03 17.25 589.20 (66.82 %)
All Stoch. 90,182.18 (4.71 %) 90,190.14 (4.71 %) 2 4,072.95 16.02 17.70 34,953.70 (34.34 %)
All Det. 91,325.47 (3.17 %) 91,328.26 (3.17 %) 0 3,732.01 15.72 17.39 1,445.20 (41.22 %)

the trees. This can be viewed as generating one candidate solution for each
of the 15 evaluation runs, and only evaluating the candidate solution once.
To be clear this study differs from the RHH relax 2y applications in the no-
lice study, only in that the realization of the central period is now stochastic.

The results of this study are presented and compared to the stochastic study
presented in the previous subsection in Table 9.4. As the average objective
value of the stochastic solution is never greater than 0.65 % of the deter-
ministic planning solution’s average objective value, we conclude there is
little value in planning using stochastic programming compared with plan-
ning under the assumption that no lice treatments will be necessary. In fact,
the objective values even increase on average for the the regular and mono-
gender smolt types combination, and for the all smolt types combination.
However, we see that in the case of the regular smolt type combination, the
deterministically produced plans turn out infeasible in 4 out 15 evaluations,
which is considerably higher than when planning stochastically, where the
evaluations turned out infeasible in 1 out 45 evaluations. This indicates that
deterministic planning likely plans with much less safety margin with regards
to the company MAB.

In general the model seems to plan more aggressively when we use deter-
ministic planning, which is expected as it tries to take advantage of knowing
the precise growth and mortality rates a priori. This can be seen through
the fact that we now deploy early gender maturation salmon. Early gender
maturation smolt has a very short harvest phase consisting of two months
where it enjoys its growth boost, however, these two months also have a
high risk of lice treatments. Thus, there is a considerable risk of signifi-
cant biomass losses during these two months. Graphical depictions of the
deployment and harvest volumes per smolt types can be found for the all
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Figure 9.5: Average monthly relative prices computed based on data from
NASDAQ Salmon Index for the years 2014-2019.

smolt types combination in Appendix B. Moreover, we see a noticeable drop
in rearing cycle lengths and average harvest weights when planning deter-
ministically compared to planning stochastically. For the regular smolt type
only combination we see the short rearing cycle length (SRCL) drop by a
staggering 2.57 months when the evaluations turn out feasible.

9.4 Maximizing for Relative Price
We now turn to maximizing for relative prices as discussed in section 4.3 and 5.4.
We take the monthly relative prices we computed in section 5.4 and average
them over the years 2014 – 2019, the results of which are presented in Fig-
ure 9.5. The main change in the relative price instances compared to the
instances maximizing harvest volumes is that heavier salmon becomes rela-
tively worth more, especially during late summer and fall. In this instance
we skip the deterministic no-lice study and head straight to the stochastic
study, before finishing off by studying the value of stochastic planning in a
relative price setting.
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Table 9.5: Results of the stochastic relative price study.
Smolt Types Cand.

Sol.
Avg. Objective

Value
Avg. Harvest

Volumes # Infeasible Avg. HOG
Harvest Weight SRCL LRCL Avg. Solution

Time [s]
Reg. 1 81,060.11 (3.80 %) 82,310.50 (3.93 %) 1 4,063.67 17.08 18.23 3,868.71 (34.07 %)
Reg. 2 80,832.92 (3.16 %) 82,015.61 (3.35 %) 0 4,118.08 17.12 18.29 4,301.40 (42.70 %)
Reg. 3 80,629.83 (3.00 %) 81,823.90 (3.23 %) 1 4,077.42 17.23 18.44 3,887.64 (64.71 %)
Reg. All 80,840.76 (3.92 %) 82,049.20 (4.30 %) 2 4,047.61 17.15 18.32 4,025.81 (66.14 %)
Reg. & Mono 1 88,444.66 (2.94 %) 89,256.56 (3.30 %) 0 4,227.85 16.38 17.93 15,503.87 (37.74 %)
Reg, & Mono 2 88,133.43 (2.73 %) 88,787.96 (3.07 %) 0 4,316.79 16.49 17.97 16,139.93 (45.14 %)
Reg. & Mono 3 87,767.47 (2.30 %) 88,376.33 (2.20 %) 0 4,253.26 16.37 17.89 15,382.27 (37.42 %)
Reg. & Mono All 88,115.18 (3.40 %) 88,806.95 (4.06 %) 0 4,265.97 16.41 17.93 15,675.36 (49.39 %)
All 1 89,443.10 (2.80 %) 90,336.82 (2.41 %) 0 4,131.63 16.19 17.84 38,134.27 (25.13 %)
All 2 88,774.65 (6.20 %) 89,399.31 (6.02 %) 0 4,258.45 16.26 17.83 38,718.67 (29.94 %)
All 3 89,314.57 (2.44 %) 90,117.25 (2.74 %) 0 4,234.12 16.10 17.71 38,514.67 (26.05 %)
All All 89,177.44 (6.39 %) 89,951.12 (6.52 %) 0 4,208.07 16.18 17.79 38,455.87 (29.94 %)

9.4.1 Stochastic Study Maximizing for Relative Prices

The results of the relative price study are presented in Table 9.5. On a high
level the results are very similar to the results we obtained in the stochastic
study maximizing harvest volumes. Due to the use of relative prices in the
objective function, the objective values of this study should not be directly
compared to the objective values obtained in the maximizing harvest vol-
umes study. An interesting thing to note, is that the average harvest weight
is not significantly higher than when optimizing for raw harvest volumes,
even though heavier salmon is relatively worth more in this study.

In Figure 9.6 we compare the HOG harvest volumes of the relative price
study with the maximizing harvest volumes study, broken down per weight
class and month when averaged over all evaluations of the all smolt type com-
bination. We observe that there is a small increase in harvest volumes for
heavier weight classes during August and September, when heavier salmon
fetch relatively higher prices. However, we do not see any significant shift in
harvest behaviors. In fact, the two sub-figures are extremely similar, indicat-
ing that the increased price achieved by letting the salmon spend more time
at sea to grow, seldomly compensates for the increased rearing cycle length,
even though we do not account for feeding costs in our case. We also note
the general tendency to harvest during months where temperatures and thus
growth rates are higher.

Moreover, we observe similar increases in objective values and harvest vol-
umes when we make more smolt types available to the farmer, as we have
seen in our previous studies. When breaking down the deployment volumes
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Figure 9.6: Comparison of harvest volumes between maximizing harvest vol-
umes and relative prices, broken down per weight class and month averaged
over all evaluations of the all smolt type combination.

per smolt type for the combination where all smolt types are available we
see a similar picture as when maximizing harvest volumes, as can be seen in
Figure 9.7.

9.4.2 Value of Stochastic Planning in a Relative Price
Landscape

We now examine the value of stochastic planning in a relative price setting.
This study is similar to the one we performed in the maximizing harvest
volumes study. However, as we now maximize with respect to relative prices,
the timing of harvest volumes with respect to weight class has increased im-
portance. As such, we expect stochastic planning to have greater value in the
relative price setting compared to the case were we simply maximize harvest
volumes. As Table 9.6 shows, this is indeed the case. The average objective
value is greater when using stochastic planning for all smolt combinations.
However, the increase in average objective value is modest, as we see an in-
crease of 0.43 % in the regular and mono-gender combination, and 1.3 % in
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the all smolt type combination.

It is clear that using deterministic planning causes a significant increase in
infeasibility issues when only the regular smolt type is available. In fact,
when using deterministic planning 9 out of 15 evaluations turn out infeasi-
ble compared to 2 out of 45 when using stochastic planning. This is also
a stark increase compared to the maximizing harvest volumes study, where
only 4 out of 15 evaluations turned out infeasible when using deterministic
planning. The increase is likely caused by the deterministic plan trying to
aggressively allocate harvest volumes of heavier weight classes during August
and September. Reducing the available flexibility to change plans when the
central period is realized. However, this pattern disappears when we intro-
duce multiple smolt types. We hypothesize that this is attributable to the
flexibility obtained through being able to control growth and mortality rates,
by picking and mixing between different smolt types differing in growth and
mortality rates.
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Table 9.6: Comparison of results when performing deterministic and stochas-
tic planning when optimizing for relative prices.
Smolt Types Planning Avg. Objective

Value
Avg. Harvest

Volumes # Infeasible Avg. HOG
Harv. Weight SRCL LRCL Avg. Solution

Time [s]
Reg. Stoch. 80,840.76 (3.92 %) 82,049.20 (4.30 %) 2 4,077.42 17.15 18.32 4,025.81 (66.14 %)
Reg. Det. 80,031.08 (2.59 %) 81,437.61 (2.44 %) 9 3,967.27 16.76 17.95 134.50 (33.11 %)
Reg. & Mono Stoch. 88,115.18 (3.40 %) 88,806.95 (4.06 %) 0 4,265.97 16.41 17.93 15,675.36 (49.39 %)
Reg. & Mono Det. 87,738.94 (3.79 %) 88,923.16 (3.80 %) 0 4,082.61 16.27 17.47 434.20 (58.08 %)
All Stoch. 89,177.44 (6.39 %) 89,951.12 (6.52 %) 0 4,208.07 16.18 17.79 38,455.87 (29.94 %)
All Det. 87,981.59 (3.67 %) 89,362.18 (3.39 %) 0 4,073.66 15.97 17.34 1,481.27 (65.84 %)
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Chapter 10

Further Research

In this chapter we outline some potential avenues for further research. The
most obvious next step is to apply the model to real world data from seawater
trials of the cooled eggs and early maturation smolt type. In the following
we discuss avenues that are not mere applications of existing work to new
data.

One path of further study is to increase the scope, granularity, detailed-
ness of the model. One natural extension of this thesis is to incorporate
different cost aspects in the objective function, such as feeding, deployment
and harvesting costs. Another possible extension is to account for a larger
part of the value chain, such as the fresh water stage and slaughtering and
processing operations. Additionally, increasing the granularity of the model
by including the concept of net-pens, and possibly modeling at a weekly or
bi-weekly level during the early parts of the planning horizon, could increase
the usefulness of the model as a real world decision support tool.

Another dimension that needs improvement is solution methods for the cur-
rent model. One possibility is to use integer programming methodologies
such as column generation and Benders’ decomposition, to reduce compute
time and thus allow for incorporation of more stages and scenarios in the
program. However, we believe it would be interesting to try and utilize ma-
chine learning methods such as reinforcement learning to bypass the use of
traditional integer programming techniques as branch and cut. One could
also develop heuristics to generate feasible solutions as a starting point for
a neighborhood search or as a supplement to traditional branch and cut

97



in an integer program solver, which could reduce the needed solution time
drastically.
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Chapter 11

Concluding Remarks

In this thesis we formulate a multi-stage stochastic mixed integer linear pro-
gram for the seawater stage of the Atlantic salmon farming value chain. We
develop a biomass development model based on the thermal growth coeffi-
cient that account for mortality. Moreover, we developed a scenario gen-
eration algorithm for salmon lice treatments, which consider dependencies
between different salmon farms. We simplify the multi-stage program into a
two-stage stochastic program due to computational constraints. We evaluate
the first-stage solutions of this program through a rolling horizon heuristic
based simulation framework, and investigate the potential benefits of in-
troducing novel smolt types. Additionally, we examine the value of taking
uncertainty into consideration when performing tactical production planning.

We study two different objective functions, one maximizing raw harvest vol-
umes, and the other maximizing harvest volumes weighted by relative price
according to weight classes. Our results show that introducing novel smolt
types when maximizing for raw harvest volumes can increase the objective
values by approximately 9.4 %, while we see an increase of 10.3 % when
maximizing with respect to relative prices. The operational plan result-
ing from maximizing with respect to relative prices shows a small increase
in harvest volumes of heavier weight classes during August and September
compared to when maximizing for raw harvest volumes. Interestingly, we
find that using stochastic programming and accounting for uncertainty in
lice treatments during production planning has few benefits with respect to
increasing objective values, compared to planning under the assumption that
no lice treatments will be necessary. However, using stochastic programming
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when planning tends to produce more robust production plans when only the
regular smolt type is available, and particularly in the case of maximizing for
relative prices with only the regular smolt type available.
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Appendix B

Deterministic Planning
Maximizing Harvest Volumes
Deployment and Harvest Volumes
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Figure B.1: Breakdown of deployment volumes per smolt type for all evalu-
ation runs of deterministic planning when maximizing harvest volumes with
the all smolt type combination.

112



1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Evaluation

0

20000

40000

60000

80000

100000

To
nn

es

Regular Mono-Female Mono-Male Cooled Eggs Early Maturation

Figure B.2: Breakdown of harvest volumes per smolt type for all evaluation
runs of deterministic planning when maximizing harvest volumes with the
all smolt type combination.
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