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Abstract
We first review some main results for phase-type distributions, including a discussion
of Coxian distributions and their canonical representations. We then consider the
extension of phase-type modeling to cover competing risks. This extension involves
the consideration of finite state Markov chains with more than one absorbing state,
letting each absorbing state correspond to a particular risk. The non-uniqueness of
Markov chain representations of phase-type distributions is well known. In the paper
we study corresponding issues for the competing risks case with the aim of obtaining
identifiable parameterizations. Statistical inference for the Coxian competing risks
model is briefly discussed and some real data are analyzed for illustration.

Keywords Phase-type distribution · Coxian distribution · Competing risks ·
Identifiability

1 Introduction

Aphase-type distribution can be defined to be the distribution of the time to absorption
for an absorbing finite state Markov chain in continuous time. Initially, phase-type
distributions received most attention in applied probability, in particular in queuing
theory, generalizing the Erlang distribution. A much cited introduction to phase-type
distributions is Neuts (1981). Important theoretical contributions are found in Cumani
(1982) and a series of papers by O’Cinneide (e.g., O’Cinneide 1989). Aalen (1995)
and (Aalen et al. 2008, Ch. 10) provide useful introductions aimed at applications in
survival analysis.

There have recently appeared a number of articles involving the use of phase-type
distributions in statistical modeling and inference. In particular there seems to be a
particular interest in the use of so-called Coxian phase-type models, first suggested
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by Cox (1955). Their usefulness stems from the fact that they are able to model
phenomena where the individuals go through stages (phases) in a specified order, and
may transit to the absorbing state (corresponding to the event of interest) from any
phase. Another reason for using Coxian phase-type models is that they apparently can
be modeled by considerably fewer parameters than a general phase-type distribution.
They are hence also better suited when covariates are included in the models. Coxian
phase-type models have recently been successfully applied in health care studies. For
example, Faddy et al. (2009), McGrory et al. (2009), Tang et al. (2012) and Rizk et al.
(2021) model hospital length of stay by Coxian phase-type models.

The problem of fitting more general phase-type distributions to lifetime data has
been considered in a frequentist setting using the EM-algorithm by Asmussen et al.
(1996) and in a Bayesian setting using MCMC by Bladt and Gonzalez (2003), Aslett
and Wilson (2011) and Laache (2014). Slud and Suntornchost (2014) advocated the
use of parametric models based on phase-type distributions with a low number of
parameters. One of their conclusions was that simple phase-typemodels can do almost
as well as nonparametric methods in many lifetime studies.

The main purpose of the present paper is to study how the phase-type methodology
can be modified to include competing risks, extending earlier work in this direction by
Lindqvist (2013) and Lindqvist and Kjølen (2018). One then considers a finite state
Markov chain with more than one absorbing state, each of which corresponds to a
particular risk. The relevant observation will be the pair (T , C) where T is the time
of absorption, while C denotes the absorbing state. This corresponds exactly to the
observation of a classical competing risks model. Standard functions from the theory
of competing risks (Lawless 2003, Ch. 9), (Aalen et al. 2008, Ch. 3) can now be given
in terms of the transition matrix of the underlying Markov chain, see Sect. 3.1.

We will be particularly concerned with the uniqueness of parameterizations of
phase-type models for competing risks. This will extend the study of Lindqvist and
Kjølen (2018), who considered models with two transient states. It will also extend
results from Cumani (1982), Telek and Horváth (2007) and Rizk et al. (2019) who
considered uniqueness properties of parameterizations in the ordinary Coxian phase-
type case.

Phase-type models with multiple absorbing states have earlier been considered by,
e.g.,McClean et al. (2010) andRizk et al. (2021) in themodeling of patient pathways in
hospitals. The former paper is concernedwith the calculation of some key performance
indicators like absorption probabilities and expected length of stay. The latter paper
considers patient movements between a series of stations, each with the option of
leaving the hospital. Their approach will be further considered in Sect. 3.4.

A large part of the present paper, particularly Sect. 2, concerns basic theoretical
results and approaches on phase-type distributions that are essentially known and
treated in several articles and books. They are needed here in order to explain their
extensions to the competing risks case. For these purposes, it has also been neces-
sary to handle different approaches and viewpoints in the literature. This applies to,
for example, representations in terms of Laplace transforms involving poles, versus
representations using transition matrices, involving eigenvalues.

The rest of this paper is organized as follows. In Sect. 2 we review basic results
for ordinary phase-type distributions with a view towards uniqueness of their Markov
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chain representations. Representations for Coxian distributions are considered in par-
ticular. We also review briefly the basic functions of classical competing risks theory.
In Sect. 3 we consider phase-type modeling for competing risks and show how results
for the single absorbing state case are extended to multiple absorbing states. An exam-
ple of fitting a Coxian competing risks model to real data is given. Some concluding
remarks are given in Sect. 4. The paper is ended by an Appendix presenting techni-
cal derivations and discussions related to matrices, as well as the proof of one of the
theorems.

2 Background theory

We shall let vectors and matrices be given by bold letters, respectively lowercase and
uppercase. Vectors will always be assumed to be column vectors. We shall use I to
mean the identity matrix, where the dimension will be clear from the connection. This
also applies to the use of the vectors 0 and 1 which are, respectively, vectors of all 0s
and all 1s. Transposes of vectors will be marked by ′, e.g. p′. A vector of length r will
for short be called an r -vector.

2.1 Phase-type distributions

Phase-type distributions canbe described in termsof a continuous timeMarkovprocess
{X(t); t ≥ 0}, where the system moves through some or all of m transient states, or
phases, before moving to a single absorbing state m + 1. The time of absorption, T ,
is then said to have a phase-type distribution.

The infinitesimal transition matrix A of the Markov chain that produces the phase-
type distribution, is an (m + 1) × (m + 1) matrix given in block form as

A =
[
Q �

0′ 0

]
. (1)

HereQ is the m × m matrix corresponding to transitions between the transient states;
� is the m-vector defining direct transition intensities from the transient states to
the absorbing state. Letting P(t) be the matrix of transition probabilities Pi j (t) =
P(X(t) = j |X(0) = i) it is well known (e.g., Ross 2010, Chapter 5) that

P(t) = eAt =
∞∑

i=0

t i

i !A
i ,

and it is then straightforward to show that (1) implies

P(t) =
[

eQt Q−1(eQt − I)�
0′ 1

]
. (2)
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Now let p be the m-vector with entries pi = P(X(0) = i) for i = 1, . . . , m, where∑m
i=1 pi = 1. Thus p defines the initial distribution of the Markov chain, assuming

that the chain starts in a transient state.
Note that the transition matrixA is completely determined byQ. This is because all

row sums of A are 0 so that � = −Q1. Hence a phase type distribution is determined
by the pair (p,Q).

By using (2) we are able to express the standard functions describing the proba-
bility distribution of T in terms of the given matrix representation. The cumulative
distribution function of T is

F(t) = P(T ≤ t) = P(X(t) = m + 1) = p′Q−1(eQt − I)�.

Taking the derivative with respect to t we get the density function

f (t) = p′eQt�. (3)

The survival function S(t) can be found from S(t) = 1 − F(t), or by noting that

S(t) = P(T > t) = P(X(t) ∈ {1, 2, . . . , m}) = p′eQt1. (4)

This leads in turn to the following expression for the hazard function of T ,

λ(t) = p′eQt�

p′eQt1
. (5)

2.2 Representations and identifiability

As is well known, representations (p,Q) of phase-type distributions are not unique.
The representation (p,Q) where Q is an m × m matrix, is said to be of dimension
m. Following standard notation, the order of a phase-type distribution is the minimal
dimension of all its representations.

The unique way of representing a phase-type distribution is through its Laplace
transform, f ∗(s) = E(e−sT ). It was shown by O’Cinneide (1990) that a distribution
on the non-negative real numbers which is not the point mass at zero is a phase-type
distribution if and only if (a) it has a strictly positive continuous density on the positive
reals, (b) it has a rational Laplace transform with a unique pole of maximal real part.

For a given representation (p,Q), the Laplace transform can be written as

f ∗(s) = p′(sI − Q)−1(−Q)1 (6)

which is hence a rational function of s, i.e., of the form f ∗(s) = N (s)/D(s) for
polynomials N (s) and D(s) (see Example 1 below for a simple case). The degree of
the denominator polynomial, D(s), after having canceled possible equal factors in the
numerator and denominator, is called the degree of the phase-type distribution. It was
shown by O’Cinneide (1990) that the order of a phase-type distribution is at least as
large as its degree, but that it may be strictly larger.
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Fig. 1 The phase-type model of
Example 1

By the non-uniqueness of representations of phase-type distributions, it is of interest
to consider the identifiability problem for these distributions, i.e., the problem of
determining whether two representations (p(a),Q(a)) and (p(b),Q(b)) lead to the same
phase-type distribution in the sense of having the same Laplace transform. In general,
the problem of identifying representations (p,Q) for a given Laplace transform is
a difficult one, where general recipes are still lacking. We refer to the concluding
remarks in Sect. 4 for a further discussion of this.

We present below a theorem given by Telek and Horváth (2007) which compares
two representations (p(a),Q(a)) and (p(b),Q(b)) of the same dimension. Following
Telek and Horváth (2007), we shall say that a representation (p,Q) of dimension m
is nonredundant if the degree of the corresponding phase-type distribution is m. For
intuition, we may think of nonredundancy as a way of excluding representations of
phase-type distributions where there are also representations with a lower dimension.
Some simple illustrations are given in Example 1 below.

Example 1 (Redundant phase-type distributions) Let m = 2 and consider the repre-
sentation (p,Q) given by

p′ = (p, 1 − p), Q =
(−3 2

0 −a

)
, (7)

where 0 ≤ p ≤ 1 and a > 0. Figure 1 illustrates the corresponding Markov chain. A
calculation using (6) leads to

f ∗(s) = (a(1 − p) + p)

(
s + 3a

a(1−p)+p

)
(s + 3)(s + a)

. (8)

Putting a = 1, this equals 1/(s + 1) which implies that (p,Q) is redundant for any
value of p, with T having the standard exponential distribution. This may in fact be
concluded directly from Fig. 1 by letting a = 1 and observing that the transition rate
to the absorbing state is 1 from each transient state.

Letting instead a = 5, it can be seen that (p,Q) is redundant for p = 1/2 and
p = 0. The resulting Laplace transforms are then, respectively, 1/(s+3) and 1/(s+5),
corresponding to exponential distributions with respective rates 3 and 5.
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Theorem 1 (Telek and Horváth 2007) Let (p(a),Q(a)) and (p(b),Q(b)) represent two
nonredundant phase-type distributions with the same dimension m. Let their cumula-
tive distribution functions be F (a)(t) and F (b)(t), respectively. Then F (a)(t) = F (b)(t)
for all t if and only if there exists a nonsingular m × m matrix B with B1 = 1, such
that p(b)′ = p(a)′B and Q(b) = B−1Q(a)B.

For the proof, we refer to Telek and Horváth (2007). A further discussion of the result
and the assumption of nonredundancy is given in Appendix A2. As a corollary to the
result, Telek and Horváth (2007) stated the following result, which is also well known
from the literature, e.g., O’Cinneide (1999).

Theorem 2 (Telek and Horváth 2007) A general nonredundant phase-type distribution
of order m can be fitted by 2m − 1 independent parameters.

This result is indeed of special interest for phase-type modeling, since apparently a
representation (p,Q) would need m2 + m − 1 independent parameters.

The following example illustrates the result of Theorem 1. It shows in particular
that B need not be nonnegative.

Example 2 (Equivalent nonredundant phase-type distribution) LetQ(a) be the matrix
in (7) with a = 5 and let a 2 × 2-matrix B be given by

B =
(

2 −1
−1 2

)
. (9)

This matrix is nonsingular with row sums 1, as required in Theorem 1. Let

Q(b) = B−1Q(a)B =
(−11/3 4/3

2/3 −13/3

)
.

Lettingp(a)′ = (3/5, 2/5) andp(b)′ = p(a)′B = (4/5, 1/5), it follows fromTheorem1
that (p(a),Q(a)) and (p(b),Q(b)) represent the same phase-type distribution.

2.3 Triangular and Coxian phase-type distributions

2.3.1 Canonical representations of Coxian distributions

The class of Coxian phase-type distributions are defined via Markov chains with m
transient states, where the possible transitions from a transient state i is either to state
i + 1 or to the absorbing state m + 1. More specifically, a Coxian distribution can be
represented by the pair (p,Q) with p = (1, 0, . . . , 0)′ and Q given on the form

Q =

⎛
⎜⎜⎜⎝

−λ1 α12 0 · · · 0
0 −λ2 α23 · · · 0
...

...
...

. . .
...

0 0 0 · · · −λm

⎞
⎟⎟⎟⎠ (10)
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Fig. 2 The path of the canonical representation for an upper triangular distribution using (p̃, Q̃)

It is seen that the Coxian distribution is then represented by 2m − 1 parameters (see
Theorem 2). Fig. 1 illustrates the special case m = 2.

Coxian phase-type distributions are, however, more general than they might look.
In fact, O’Cinneide (1990) proved the remarkable result that any probability measure
on (0,∞) with rational Laplace transform with only real poles, and with a continuous
positive density on (0,∞), is a Coxian distribution.

The matrixQ in (10) is in particular upper triangular. The subfamily of phase-type
distributions with upper triangularQ are of special interest in applications, since they
represent non-cyclic Markov chains X(t). A special treatment of these distributions
is found in the much cited paper Cumani (1982) (see also Bobbio and Cumani 1992
for a review of the main results). Working with Laplace transforms, Cumani (1982)
proved that any phase-type distribution with an upper triangularQ can be represented
uniquely in the form (p̃, Q̃) where Q̃ is given by

Q̃ =

⎛
⎜⎜⎜⎝

−λm λm 0 · · · 0
0 −λm−1 λm−1 · · · 0
...

...
...

. . .
...

0 0 0 · · · −λ1

⎞
⎟⎟⎟⎠ (11)

with λ1 ≥ λ2 ≥ . . . ,≥ λm , and where p̃ = (pm, pm−1, . . . , p1)′ is a probability
vector. Figure 2 illustrates the representation. Observe that there are 2m − 1 free
parameters.

The representation (p̃, Q̃) suggests a way of calculating the Laplace transform
for the absorption time T . The distribution of T given X(0) = m − i + 1 is now
a convolution of i independent exponential variables with rates λ1, λ2, . . . , λi (see
Fig. 2). It hence follows that the Laplace transform of T is

f ∗(s) =
m∑

i=1

pi g
∗
(i)(s), (12)

where pi = P(X(0) = m − i + 1) and

g∗
(i)(s) = λ1λ2 · · · λi

(s + λ1)(s + λ2) · · · (s + λi )
(13)

is the Laplace transform of the appropriate convolution. We may hence write f ∗(s)
in the form N (s)/D(s), where D(s) = ∏m

i=1(s + λi ), which is the general form
considered in Sect. 2.2.
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Consider now an arbitrary phase-type distribution with a given upper triangular
Q and Laplace transform N̂ (s)/D̂(s), say. As demonstrated by Cumani (1982), this
model may be put in the above canonical form by letting D(s) = D̂(s) and deriving
the pi in (12) by equating coefficients in the identity

∑m
i=1 pi g∗

(i)(s) = N̂ (s)/D̂(s).
Cumani (1982) noted that the resulting set of equations for the pi can be put in
triangular form and is hence easy to solve and gives a unique solution with pi ≥ 0
and

∑
i pi = 1. The example below gives a simple illustration.

Example 3 Consider the representation (p,Q) in Example 1 with a = 5, p = 1. The
resulting Laplace transform is by (8),

f ∗(s) = s + 15

(s + 3)(s + 5)
.

We now want to put this in canonical form (p̃, Q̃). Then λ1 = 5, λ2 = 3 and hence

g∗
(1)(s) = 5

s + 5
, g∗

(2)(s) = 15

(s + 5)(s + 3)
.

We finally need to find p1, p2 so that (12) holds. A straightforward calculation gives
p1 = 1/5, p2 = 4/5.

The Coxian distributions as defined by (10) and having initial vector p =
(1, 0, . . . , 0) are apparently still of main interest for statistical modeling and inference,
see for example the references given in the Introduction. Actually, the representation
using (10) with p = (1, 0, . . . , 0) and assuming the ordering λ1 ≥ λ2 ≥ . . . ≥ λm , is
presented by Cumani (1982) as an equivalent canonical version for upper triangular
distributions, having a one-to-one explicit connection with the representation (p̃, Q̃).
Note that the ordering of the λi on the diagonal are opposite in the two matrices Q
and Q̃.
Example 3 (cont.) The canonical Coxian representation of the distribution in the first
part of this example is

Q =
(−5 4

0 −3

)
, (14)

The representation (14) is hence equivalent to the representation from (7), where the
diagonal elements are interchanged.

Apparently, theCoxian representation (10) iswell defined alsowhen the eigenvalues
λi on the diagonal are ordered differently from the decreasing order. This is true, but
it turns out that the set of phase-type distributions represented by the matrix (10), with
any other predetermined order of the diagonal elements, may not contain all upper
triangular phase-type distributions (see remark at the end of Example 4 below). This
fact is inherent in Cumani (1982). Equivalently, the canonical representation of Fig. 2
requires an increasing order of the λi from left to right.
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2.3.2 Redundancy of Coxian distributions

Consider a Coxian distribution given in canonical form using (10). It is clear that if
αk,k+1 = 0 for some k ∈ {1, 2, . . . , m − 1}, then this representation is redundant.
In fact, the distribution can be represented by a matrix in the form (10) of dimension
k. The above is, moreover, equivalent to having pk+1 = pk+2 = . . . = pm = 0 in
the representation using Q̃. As seen from the following example due to O’Cinneide
(1989), the possible redundancy of Coxian phase-type distributions does, however,
not always arise from cases where p j = 0 from some j on.

Example 4 (O’Cinneide 1989) Let the canonical representation (p̃, Q̃) be given by
m = 4, p̃ = (1/2, 0, 0, 1/2)′ and λ1 = 4, λ2 = 3, λ3 = 2, λ4 = 1. Hence pm �= 0,
so we cannot use the above observation to conclude redundancy. A calculation of the
Laplace transform shows, however, redundancy because a factor (s + 4) is common
in numerator and denominator. O’Cinneide (1989) pointed to the remarkable fact that,
despite the redundancy, there is still no Markov chain representation with dimension
m = 3 of the underlying phase-type distribution. This can be seen by solving for the
pi in (12), where a negative value is found for p3, hence implying no proper solution.

As an additional observation from this example, the underlying phase-type distri-
bution cannot be represented by a Coxian representation Q where the ordering of the
λi is reversed.

2.3.3 Identifiability properties of Coxian phase-type distributions

The above shows that when using Coxian models one should be careful about the
ordering of the λi on the main diagonal of (10). Knowing the λi , there is always a
valid and unique version of (10) with the λi in decreasing order. If the λi are put
in another order, then valid representations may still be found, for example using
Theorem 1. As noted above, however, changing the order of the λi on the diagonal
may lead to non-valid representations. Rizk et al. (2019) considered this problem and
presented an algorithm that for any matrix of the form (10) finds all permutations of
the diagonal entries that lead to valid representations in Coxian form. From Cumani
(1982) follows that there is always at least one such representation, which however
may be the only one as shown by an example in Rizk et al. (2019).

The algorithm of Rizk et al. (2019) is based on their Theorem 2, which we restate in
the following theorem. This theorem gives an often useful condition for identifiability
of Coxian phase-type models.

Theorem 3 (Rizk et al. 2019) LetQ(a) andQ(b) of same dimension m represent nonre-
dundant Coxian phase-type distributions as given by (10), with diagonal elements
ordered in the same way and with initial distributions p(a) = p(b) = (1, 0, . . . , 0)′.
Let the corresponding cumulative distribution functions be F (a)(t)and F (b)(t), respec-
tively. Then if F (a)(t) = F (b)(t) for all t , we have Q(a) = Q(b)
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2.4 Classical competing risks

In competing risks, one observes the time to an event, T , in addition to the cause
C ∈ {1, 2, . . . , K } for a positive integer K . The observation is hence a pair (T , C),
where the joint distribution is completely specified by the subdistribution functions
and the subdensities, given by respectively,

Fj (t) = P(T ≤ t, C = j), f j (t) = F ′
j (t)

for j = 1, 2, . . . , K . The interpretation of Fj (t) is as the probability of failing from
cause j before time t . The Fj (t) are also called cumulative incidence functions.

As an extension of the concept of hazard function of a lifetime distribution, one
considers the cause-specific hazard functions,

λ j (t) = lim
Δt→0

P (t < T ≤ t + Δt, C = j | T > t)

Δt
= f j (t)

S(t)
,

where S(t) = P(T > t). The interpretation is that λ j (t) is the hazard rate from cause
j conditional on survival up to time t .

3 Phase-typemodels for competing risks

Consider the general setup of Sect. 2.1 where the Markov chain {X(t); t ≥ 0} moves
among m transient states before it is absorbed in state m +1. Suppose now instead that
there are K > 1 absorbing states, named m + 1, m + 2, . . . , m + K , say. Let T be the
time of absorption in any one of the absorbing states, and let the cause C represent the
state where absorption occurs, defining C = j if X(T ) = m + j; j = 1, 2, . . . , K .
Then the pair (T , C) can be viewed as an observation from a classical competing risks
case with possible causes 1, . . . , K .

The ordinary Coxian phase-type model can now be extended to the competing risks
case by allowing transitions to any of the K absorbing states m + 1, . . . , m + K from
each of the transient states. The case K = 2 is illustrated in Fig. 3.

3.1 Representation of phase-type distributions for competing risks.

By extending the matrix (1) to include K absorbing states, we obtain the infinitesimal
transition matrix of the modified Markov process to be the (m + K )× (m + K )matrix
given in block form as

A =
[
Q L
01 02

]
. (15)

HereQ is the m × m matrix corresponding to transitions between the transient states,
while the m-vector � is replaced by the m × K matrix L of transition intensities from
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Fig. 3 A Coxian phase-type model for K = 2 competing risks

the transient states to the absorbing states. Further, 01 and 02 are, respectively, K × m
and K × K matrices of zeros.

Similarly to the derivation of (2), we obtain the matrix of transition probabilities
Pi j (t) given by

P(t) =
[

eQt Q−1(eQt − I)L
01 I

]
. (16)

Let the m-vector p be the initial distribution of the Markov chain. The triple (p,Q,L)

thus determines a competing risks distribution.
Observe that � ≡ L1 is the vector of transition rates from the transient states to the

lumped set of absorbing states, and hence corresponds to the vector � of the ordinary
phase-type model considered in Sect. 2.1. It follows that L1 = −Q1. Thus the m × K
matrix L satisfies m conditions given by Q and has hence K m − m = (K − 1)m free
parameters. Adding these to the 2m − 1 parameters of (p,Q), we have (K + 1)m − 1
parameters in the representation (p,Q,L).

From (16) we obtain expressions for the subdistribution functions, given by

Fj (t) = P(T ≤ t, C = j) = P(X(t) = m + j) = p′Q−1(eQt − I)� j

for j = 1, . . . , K , where p is the m-vector defining the initial distribution of the
Markov chain and � j is the j th column ofL. By differentiation we get the subdensities

f j (t) = F ′
j (t) = p′eQt� j , (17)
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while the cause-specific hazard rates are given by

λ j (t) = lim
Δt→0

P(T ≤ t + Δt, C = j |T > t)

Δt
= f j (t)

S(t)
= p′eQt� j

p′eQt1
. (18)

We shall below also need the Laplace transforms of the subdensities f j (t). Similarly
to (6) we get

f ∗
j (s) = p′(sI − Q)−1� j . (19)

3.2 Identifiability of phase-typemodels for competing risks

Let (p,Q,L) be a phase-typemodel for competing risks.We shall call it nonredundant
if (p,Q) is a nonredundant phase-type model as defined in Sect. 2.1.

The next theorem extends the result of Theorem 1 to the competing risks case. The
proof is given in Appendix A3.

Theorem 4 Let (p(a),Q(a),L(a)) and (p(b),Q(b),L(b)) be two nonredundant phase-
type representations for competing risks, having subdistribution functions F (a)

j (t) and

F (b)
j (t), respectively. Then F (a)

j (t) = F (b)
j (t) for all t and j if and only if there exists a

nonsingular m ×m matrix B with B1 = 1 such that p(b)′ = p(a)′B, Q(b) = B−1Q(a)B
and L(b) = B−1L(a).

3.3 Coxian phase-typemodels for competing risks

In the present subsection we specialize to the case of Coxian phase-type distri-
butions for competing risks. These will be defined as the triple (p,Q,L) where
p = (1, 0, . . . , 0), Q is given by (10), and L is an m × K matrix defined in the
same way as in Sect. 3.1. Recalling thatQ has 2m − 1 parameters, it follows from the
reasoning of the cited subsection that the Coxian model has (K +1)m −1 parameters.

We can now prove the following result which extends Theorem 3 and is a simple
consequence of Theorem 4. As for Theorem 3, we build upon the reasoning in Rizk
et al. (2019).

Theorem 5 Consider two non-redundant Coxian phase-type distributions for com-
peting risks, given by (p(a),Q(a),L(a)) and (p(b),Q(b),L(b)), where p(a) = p(b) =
(1, 0, . . . , 0)′. Assume further that the diagonals of Q(a) and Q(b) are ordered in the
same way. Then if F (a)

j (t) = F (b)
j (t) for all t > 0 and j = 1, 2, . . . , K , we have

Q(b) = Q(a)

L(b) = L(a)

Proof Let B be the invertible matrix obtained by using Theorem 4 for the present
situation. Corollary 1 of Rizk et al. (2019) shows that if p(a) = p(b) = (1, 0, . . . , 0)′,
then the matrix B is lower triangular. Moreover, they show that if the ordering of the
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diagonal elements of Q(a) and Q(b) are the same, then B is the identity matrix and
hence Q(a) = Q(b). Since B is the identity matrix, we conclude from Theorem 4 that
L(b) = L(a) and we are done. ��
Example 5 (An example of non-uniqueness) Lindqvist and Kjølen (2018) considered
the following situation. Let m = K = 2 and consider the two Coxian models with
p(a) = p(b) = (1, 0)′ and, respectively,

Q(a) =
(−4 1

0 −5

)
, L(a) =

(
2 1
3 2

)
(20)

and

Q(b) =
(−5 2

0 −4

)
, L(b) =

(
2 1
5/2 3/2

)
(21)

It was shown that these different representations lead to the same subdensities,
namely

f1(t) = 5e−4t − 3e−5t (22)

f2(t) = 3e−4t − 2e−5t (23)

Since Q(a) �= Q(b) this shows that the condition of equally ordered diagonals in
Theorem 5 cannot be removed. Note also that Theorem 4 can be used to show that
the two representations of (20) and (21) give rise to the same competing risks model,
using the matrix

B =
(

1 0
−1 2

)
.

3.4 Canonical representation of Coxian competing risks distributions

The recent article by Rizk et al. (2021) motivates an extension of the canonical model
(p̃, Q̃) of Sect. 2.3 to the case of multiple absorbing states. These authors model an
emergency departmentwith patientsmoving through a series of service stations, where
each station is modeled by a Coxian phase-type distribution. Then in order to model
the movement between stations, they include an additional absorbing state in each
station. Hence one absorbing state represents patients leaving the hospital, while the
other represents movement to the next station. Their clue is to model the case with
two absorbing states using a mixture of two series models like the one considered in
Fig. 2. As they note, this approach facilitates statistical inference and the inclusion
of covariates. For example, matrix exponentials can then be avoided in the likelihood
function.

In the following we use their idea to extend the canonical model of Sect. 2.3 to
involve an arbitrary number K of absorbing states, thus obtaining a canonical model
for the Coxian competing risks situation. We also demonstrate below that properties
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Fig. 4 The two possible paths of the canonical representation for Coxian competing risks models with
K = 2 absorbing states. Here λ1 ≥ λ2 ≥ . . . ≥ λm and

∑
i, j pi j = 1

of the single absorbing state case (Sect. 2.3) imply that this is a valid representation
for any competing risks representation (p,Q,L) with upper triangular Q.

As indicated above, the idea is essentially to involve one canonical model of the
form (p̃, Q̃) (or see Fig. 2) for each absorbing state, and then consider a mixture of
them to represent the full competing risks situation. This is illustrated in Fig. 4 for
the case K = 2. Let pi j be the probability of entering the system in state m − i + 1
(i = 1, 2, . . . , m) and being absorbed in state m + j ( j = 1, 2, . . . , K ). Once entered,
the transition rates leading to the absorbing states are identical for each subchain. The
parameters of the model are now the pi j , which sum to 1 and hence contribute K m −1
parameters, in addition to them transition rates λi . Altogether, this gives (K +1)m −1
parameters.

In a similar way as for the single absorbing state case, the Laplace transforms of the
subdensities f j (t) of the above representation, can be given in the form [recall (12)]

f ∗
j (s) =

m∑
i=1

pi j g
∗
(i)(s) (24)

where the g∗
(i)(s) are as given by (13).

Consider then an arbitrary representation (p,Q,L) where Q is upper triangular.
The corresponding Laplace transforms, defined in (19), are of the form

f̂ ∗
j (s) = N̂ j (s)

D̂(s)

with D̂(s) = ∏m
i=1(s + λi ). O’Cinneide (1989) pointed out that the canonical repre-

sentation (p̃, Q̃) of Cumani (1982) also holds for subdensities (actually, O’Cinneide
in his papers has included the possibility of a positive probability for T = 0). This
proves that there are nonnegative pi j such that

f̂ ∗
j (s) =

m∑
i=1

pi j g
∗
(i)(s),
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which by (24) implies that the representation presented above is equivalent to the
(p,Q,L). Indeed, the nonnegativeness of the pi j is guaranteed by the result byCumani
(1982) and is a consequence of requiring λ1 ≥ λ2 ≥ . . . ≥ λm . That the pi j sum to 1,
follows since

∑K
j=1 f̂ ∗

j (s) is the Laplace transform for the absorption time T , which
is given in (12). Validity and uniqueness of the new representation can now be proven
in the same manner as for the single absorbing state case as shown in Cumani (1982).
Note the requirement that λ1 ≥ λ2 ≥ . . . ≥ λm .

In a way similar to the single absorbing state case, an equivalent version of the
above canonical model can be given in the form of a Coxian competing risks model
with Q as given in (10) and λ1 ≥ λ2 ≥ . . . ≥ λm . Rizk et al. (2021) present formulas
for going from the above canonical representation to the Coxian model representation
for the case K = 2.
Example 5 (cont.)Weshowhow toderive the canonical representation of the competing
risks model considered in the first part of Example 5. First, calculate the Laplace
transforms corresponding to f1(t) and f2(t) in (22) and (23),

f ∗
1 (s) = 5

s + 4
− 3

s + 5
= 2s + 13

(s + 4)(s + 5)

f ∗
2 (s) = 3

s + 4
− 2

s + 5
= s + 7

(s + 4)(s + 5)

With notation as above, we further get by letting λ1 = 5, λ2 = 4,

g∗
(1)(s) = λ1

s + λ1
= 5

s + 5

g∗
(2)(s) = λ1λ2

(s + λ1)(s + λ2)
= 20

(s + 5)(s + 4)

By equating coefficients on each side of (24) with the above functions, we arrive at

p11 = 0.40, p21 = 0.25, p12 = 0.20, p22 = 0.15.

The alternative canonical Coxian model turns out to be simply (Q(b),L(b)), given
in the beginning of Example 5.

3.5 Maximum likelihood estimation in the canonical model

As noted by Rizk et al. (2021), the representation for Coxian competing risks models
given in the previous subsection, turns out to beverywell suited for statistical inference.
We consider below for simplicity the case of right-censored competing risks data
without covariates, while a note on the inclusion of covariates is given in the end,
following the suggestion of Rizk et al. (2021).
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Let the observed survival time for individual k (k = 1, 2, . . . , N , say) be Tk and let
Dk be the corresponding status variable, where

Dk =
{
0 if Tk is a (right) censoring time
j if Tk is the time of absorption in state m + j, j = 1, 2, . . . , K

.

Consider the modeling of these data using the model of Sect. 3.4. The param-
eters are hence pi j for i = 1, . . . , m; j = 1, 2, . . . , K , noting that pmK =
1 − ∑

(i, j) �=(m,K ) pi j , and λ1, . . . , λm . For the latter parameters, we shall assume
strict inequalities in λ1 > . . . > λm , which simplifies the likelihood and which seems
reasonable when there is no apriori modeled connection between the λi .

Several authors have suggested using the EM-algorithm for maximum likelihood
estimaton in phase-type models (see, e.g., Asmussen et al. 1996). The clue is then to
let the states visited by the Markov chain on the way to absorption, define the latent
observations. This simplifies the full likelihood and its maximization in the M-step,
while the E-step is usually also rather straightforward to perform. As we shall see, the
canonical representation considered here allows a very simple and transparent use of
the EM-algorithm.

Let then the (latent) starting state for individual k be defined by the vector

Xk = (Xk,i j ; i = 1, . . . , m, j = 1, . . . , K ),

where Xk,i j = 1 if the kth individual starts in state m − i + 1 in the j th subchain,
while the other entries in Xk equal 0.

The likelihood contribution for an item that starts in state m − i + 1 with i ∈
{1, 2, . . . , m} and is absorbed in state m + j for j ∈ {1, 2, . . . , K } after a time t is

pi j g(i)(t;λ),

where pi j is defined in Sect. 3.4, g(i)(t;λ) is the density of U1 + . . . + Ui when U�

for � = 1, 2, . . . , m is the waiting time in state �, which is exponentially distributed
with rate λ�, and λ = (λ1, . . . , λm). The density g(i) is given by

g(i)(t;λ) =
i∑

�=1

∏i
u=1 λu∏i

u �=�(λu − λ�)
e−λ�t .

For right censored observations, the likelihood contribution for an item that starts in
state m − i + 1 in the j th subchain, and is right censored at time t , is

pi j S(i)(t;λ).

Here, S(i)(t;λ) is the survival function of U1 + . . . + Ui , given by

S(i)(t;λ) =
i∑

�=1

∏i
u=1,u �=� λu∏i

u �=�(λu − λ�)
e−λ�t .
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The contribution to the log-likelihood function from a single individual k can then
be written

Lk =
K∑

j=1

m∑
i=1

Xk,i j I (Dk = j)(log(pi j ) + log(g(i)(Tk;λ)))

+
K∑

j=1

m∑
i=1

Xk,i j I (Dk = 0)(log(pi j ) + log(S(i)(Tk;λ))),

so the full log-likelihood function for the data plus latent variables is L = ∑N
k=1 Lk .

For the E-step of the algorithm we get for j = 1, . . . , K ,

E(Xk,i j |Dk = j, Tk = t) = g( j)(t;λ)pi j∑m
�=1 g(�)(t;λ)p� j

and

E(Xk,i j |Dk = 0, Tk = t) = S( j)(t;λ)pi j∑m
�=1

∑K
r=1 S(�)(t;λ)p�r

.

The M-step is a maximization of the log-likelihood function L with respect to the
parameters pi j and λ, with the restriction λ1 > λ2 > . . . λm .

Following Rizk et al. (2021), if zk is a covariate vector for individual k, then we
may let the covariates influence the rates λi in the way λi exp{β ′zk}. In particular, this
will maintain the inequalities between the λ-parameters for each individual.

Example 6 (Real data case) As an illustration we fitted competing risks data from
Beyersmann et al. (2012, Ch. 1). The data are observations from an intensive care unit,
with the purpose to examine the effect of hospital-acquired infections. We analyzed
the data for patients without pneumonia at admission to the unit. The time variable
was length of stay at the intensive care unit, with two outcomes of interest, either alive
discharge (D = 1) or hospital death (D = 2). There were 650 patients in these data,
with 589 being discharged alive, 55 dead in hospital, and 6 right censored.

Using the model of Fig. 4 with m = 3, we obtained the estimates p̂31 = 0.8712,
p̂21 = 0.0410, p̂32 = 0.0878, p̂11 = p̂22 = p̂12 = 0.0000, λ̂1 = 1.5147, λ̂2 =
0.6938, λ̂3 = 0.0946.

Figure 5 shows the estimated cumulative incidence functions obtained from the
phase-type model, together with nonparametric estimates found by using the Aalen–
Johansen estimators (see, e.g., Borgan 1998). With the nonparametric curve serving
as a “benchmark”, the fit seems very good for the outcome ‘hospital death’, while the
model with m = 3 is seemingly not able to pick up completely the steepness of the
first part of the cumulative incidence function for the outcome ‘alive discharge’. A
seemingly better fit was obtained, on the other hand, using a model with m = 4 in
Lindqvist and Kjølen (2018).
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Fig. 5 Estimated cumulative incidence functions for the data example. The upper pair of curves is for the
outcome ‘alive discharge’ and the lower pair is for ‘hospital death’. Solid curves are estimates from the
phase-type model; dashed curves are estimates using the nonparametric Aalen–Johansen estimator

4 Concluding remarks

In this paper we have studied the concept of phase-type distributions and how they
can can be extended to cover the modeling of competing risks in survival analysis.
For a proper treatment of the competing risks case it has been necessary to review
some basic parts of the theory of ordinary phase-type distributions, and in particular
the so-called Coxian phase-type distributions.

As already indicated in the Introduction, there appears currently to be a consid-
erable research activity in the field of phase-type distributions. Indeed, the increased
opportunity of handling large data sets using complicatedmodels, has led to an interest
in the use of phase-type models for example in health studies. One of the first papers
of this kind was Faddy et al. (2009) who claimed the superiority of Coxian phase-type
models over common parametric models like gamma and lognormal.

The new applications have also motivated new theoretical developments and exten-
sions of the classical models. For example, while the present study has been limited to
phase-type modeling via homogeneous Markov chains, there have recently been pub-
lished papers which involve nonhomogenous Markov chains (Bladt and Yslas 2020),
semi-Markov models (Garcia-Maya et al. 2021), and models including unobserved
heterogeneity (Surya 2016). Guihenneuc-Jouyaux et al. (2000) considered a Markov
model of disease progression with a single absorbing state, where noisy biomarker
measurements, depending on the state of the Markov chain, were available.
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The main emphasis of the present paper has been on identifiability of phase-
type models and their extensions to competing risks, with motivation from statistical
inference. A basic problem has been to characterize representations (p(a),Q(a)) and
(p(b),Q(b))which lead to the same phase-type distribution. Most of the discussion has
involved representations of the same dimension, which perhaps is of most interest in
practical statistical modeling. The case of upper triangular matrices Q, where phase-
type distributions can be represented by simple canonical versions, is seemingly well
understood, see Cumani (1982) and the more recent paper by He and Zhang (2006).
On the other hand, the general case, which may include complex eigenvalues (poles),
seems to have less established general results. For example, it is not known whether
there exist a kind of canonical representation for such cases (see, e.g., O’Cinneide
1999).

Some remarkable, but seemingly not much developed, results for equivalence of
representations (p(a),Q(a)) and (p(b),Q(b)) of different dimensions were given by
Ryden (1996). The results were obtained by specializing more general results from
Ito et al. (1992) for discrete timeMarkov chains. The underlying idea was that a phase-
type distribution can be represented as an aggregated Markov chain, where there are
two compartments in the aggregated process, {1, 2, . . . , m} and {m + 1}. There is
hence a natural extension to the competing risks case. A further study in this direction
will certainly be of interest.
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Appendix

A1. Matrix functions

Let A be a m × m matrix. Let the distinct eigenvalues of A be ρk for k = 1, 2, . . . , v,
and let their multiplicities of the minimal polynomial (Horn and Johnson 2013, Ch.
3.3) be, respectively, mk . Then for an analytic function f we can write (Dunford and
Schwartz 1958, Theorem 8, Chapter VII)

f (A) =
v∑

k=1

mk−1∑
r=0

f (r)(ρk)

r ! (A − ρkI)rZk (25)
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where thematricesZk are polynomials inAwhich do not depend on f and furthermore
satisfy

(a) Zk �= 0

(b) Z2
k = Zk and ZkZ� = 0 for k �= �

(c)
∑v

k=1 Zk = I

(d) (A − ρkI)mkZk = 0

A2. More on nonredundancy of (p,Q) and its consequences

Referring to Sect. 2.1, wemay express the Laplace transform (6) using (25), obtaining

f ∗(s) = 1 − p′
{

v∑
k=1

mk−1∑
r=0

s(s − ρk)
−r−1(Q − ρkI)rZk

}
1. (26)

Writing this using a common denominator, the denominator will be of the form

v∏
k=1

(s − ρk)
mk ,

which is a polynomial of degree
∑v

k=1 mk ≤ m. Thus nonredundacy of (p,Q), as
defined in Sect. 2.2, requires that the mk sum to m, which means that the minimal
polynomial equals the characteristic polynomial.

It next follows that if (p,Q) is nonredundant, then

p′(Q − ρkI)mk−1Zk1 �= 0 (27)

for k = 1, 2, . . . , v. This is seen from (26), since the definition of nonredundancy
implies that the term s(s − ρk)

−mk must have a nonzero coefficient.
Now suppose that (p(a),Q(a)) and (p(b),Q(b)) represent the same phase-type dis-

tribution. Then by (4) we have

p(a)′eQ(a)t1 = p(b)′eQ(b)t1

Since for any p and Q, by (25),

p′eQt1 =
v∑

k=1

mk−1∑
r=0

tr eρk t

r ! p′(Q − ρkI)rZk1, (28)

it follows from (27) thatQ(a) andQ(b) must have the same eigenvalues with the same
multiplicities. Moreover, (27) together with

∑
k mk = m implies that Q(a) and Q(b)

must have the same Jordan block representation (Horn and Johnson (2013), Ch.3.1),
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where there is exactly one Jordan block for each eigenvalue. This implies in turn that
Q(a) and Q(b) are similar in the sense that there is an invertible matrix B such that

Q(b) = B−1Q(a)B,

see the proof of Theorem 1 in Telek and Horváth (2007). Furthermore, the above
property of the Jordan representation is shown by Telek and Horváth (2007) to imply
that B can be chosen so that B1 = 1.

O’Cinneide (1989) introduced the notion of a simple phase-type generator Q. Let
PH(Q) be the set of all phase-type distributions with representation (p,Q) for some
p. Then Q is called simple if each distribution in PH(Q) has a unique representation
(p,Q). It can be shown (He and Zhang 2006) that Q is simple if and only if the
minimal polynomial ofQ equals the characteristic polynomial. Thus, nonredundancy
of (p,Q) implies that Q is simple.

O’Cinneide (1989) showed that for two simple matricesQ(a) andQ(b) of the same
dimension, PH(Q(a)) = PH(Q(b)) if and only if there is a permutation matrixU such
that Q(a)U = UQ(b). This condition is considerably stronger than the one of Telek
and Horváth (2007) provided in our Theorem 1, where however the latter is concerned
with comparison of two single distributions instead of two sets of distributions.

A3. Proof of Theorem 4

Suppose F (a)
j (t) = F (b)

j (t) for all t > 0. Then the corresponding cumulative distri-
bution functions of T satisfy

F (a)(t) =
K∑

j=1

F (a)
j (t) =

K∑
j=1

F (b)
j (t) = F (b)(t).

Theorem 1 then implies that there is an m × m invertible matrix B such that

B1 = 1

p(b)′ = p(a)′B
Q(b) = B−1Q(a)B

It follows by (17) that

f (b)
j (t) = p(b)′eQ(b)t�

(b)
j

= p(a)′BB−1eQ
(a)tB�

(b)
j

= p(a)′eQ(a)tB�
(b)
j

= p(a)′eQ(a)t�
(a)
j (29)
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where the last equality follows since, by the assumption of the theorem, f (b)
j (t) =

f (a)
j (t). The question is therefore whether the above implies B�

(b)
j = �

(a)
j for each j ,

or equivalently, whether BL(b) = L(a).
We are done if we can show that, for any nonredundant representation (p,Q) and

m-vector g,

p′eQtg = 0 for all t > 0

implies g = 0. Thus assume

p′eQtg =
v∑

k=1

mk−1∑
r=0

tr eρk t

r ! p′(Q − ρkI)rZkg = 0 for all t > 0, (30)

By linear independence of the involved functions of t it follows that

p′(Q − ρkI)rZkg = 0 for k = 1, . . . , v; r = 0, . . . , mk − 1. (31)

This amounts to m conditions for g, each involving an m-vector

c′
kr = p′(Q − ρkI)rZk .

We now show that ckr �= 0 for each k, r . This follows from (27). More precisely, (27)
first implies that p′(Q − ρkI)mk−1Zk �= 0, and then by using that Zk commutes with
(Q − ρkI)mk−1 (itself being a polynomial in Q), it follows that p′(Q − ρkI)rZk �= 0
for r = 0, 1, . . . , mk − 1.

Now let C be the m × m matrix with rows all the c′
kr . Then (31) is simply

Cg = 0

and we are done if we can show that C is invertible. We do this by showing that the
vectors c′

kr are linearly independent. Thus assume that

v∑
k=1

mk−1∑
r=0

γkrp′(Q − ρkI)rZk = 0.

Multiplying from the right by Z� for � ∈ {1, 2, . . . , v} and using properties (a)–(b) of
Appendix A1 we get

m�−1∑
r=0

γ�rp′(Q − ρ�I)rZ� = 0 (32)
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Multiplying this from the right by (Q − ρ�I)m�−1 and using (d) of “Appendix A1”
with A = Q, we get

γ�0p′(Q − ρ�I)m�−1Z� ≡ γ�0c′
�,m�−1 = 0

and hence γ�0 = 0 since c′
�,m�−1 �= 0. Putting γ�0 = 0 in (33) and multiplying from

the right by (Q − ρ�I)m�−2, we get γ�1 = 0. Continuing in this way we prove that
γ�r = 0 for r = 0, 1, . . . , m� − 1. Then this can be done for any � = 1, 2, . . . , v and
the necessity part of Theorem 4 is proven. To prove sufficiency is, on the other hand,
straightforward.
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