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Abstract—We develop a privacy-preserving distributed algo-
rithm to minimize a regularized empirical risk function when
the first-order information is not available and data is distributed
over a multi-agent network. We employ a zeroth-order method
to minimize the associated augmented Lagrangian function in
the primal domain using the alternating direction method of
multipliers (ADMM). We show that the proposed algorithm,
named distributed zeroth-order ADMM (D-ZOA), has intrinsic
privacy-preserving properties. Most existing privacy-preserving
distributed optimization/estimation algorithms exploit some per-
turbation mechanism to preserve privacy, which comes at the
cost of reduced accuracy. Contrarily, by analyzing the inherent
randomness due to the use of a zeroth-order method, we show
that D-ZOA is intrinsically endowed with (ϵ, δ)−differential pri-
vacy. In addition, we employ the moments accountant method to
show that the total privacy leakage of D-ZOA grows sublinearly
with the number of ADMM iterations. D-ZOA outperforms the
existing differentially-private approaches in terms of accuracy
while yielding similar privacy guarantee. We prove that D-
ZOA reaches a neighborhood of the optimal solution whose size
depends on the privacy parameter. The convergence analysis
also reveals a practically important trade-off between privacy
and accuracy. Simulation results verify the desirable privacy-
preserving properties of D-ZOA and its superiority over the state-
of-the-art algorithms as well as its network-wide convergence.

Index Terms—Alternating direction method of multipliers,
differential privacy, distributed optimization, zeroth-order op-
timization methods.

I. INTRODUCTION

PERFORMING learning tasks at a central processing hub
in a large distributed network may be prohibitive due

to computation/communication costs. Collecting all data at a
central hub may also create a single point of failure. There-
fore, it is important to develop algorithms that are capable
of processing the data gathered by agents dispersed over a
distributed network [2]–[10]. Such distributed solutions are
highly demanded in many of today’s optimization problems
pertaining to statistics [2]–[4], signal processing [5]–[7], and
control [8]–[10].
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Moreover, in some real-world problems, obtaining first-
order information is hard due to non-smooth objectives [2], [8],
[9] or lack of any complete objective function, e.g., in bandit
optimization [11], in simulation-based optimization [12], or in
adversarial black-box machine learning [13]. This motivates
the use of zeroth-order methods, which only use the values
of the objective functions to approximate their gradients [14]–
[16].

However, the communications between neighboring agents
in a distributed network may lead to privacy violation issues.
An adversary may infer sensitive data of one or more agents
by sniffing the communicated information. The adversary can
be either a curious member of the network or an eavesdropper.
Therefore, it is important to develop privacy-preserving meth-
ods that allow distributed processing of data without revealing
private information. Differential privacy provides privacy pro-
tection against adversarial attacks by ensuring minimal change
in the outcome of the algorithm regardless of whether or not
a single individual’s data is taken into account.

There have been several works developing privacy-
preserving algorithms for distributed convex optimization
[17]–[28]. The work in [17] proposes two differentially private
distributed algorithms that are based on the alternating direc-
tion method of multipliers (ADMM). The algorithms in [17]
are obtained by perturbing the dual and the primal variable, re-
spectively. However, in both algorithms, the privacy leakage of
an agent is bounded only at a single iteration and an adversary
might exploit knowledge available from all iterations to infer
sensitive information. This shortcoming is mitigated in [18]–
[21]. The works in [18], [19] develop ADMM-based differen-
tially private algorithms with improved accuracy. The work in
[20] employs the ADMM to develop a distributed algorithm
where the primal variable is perturbed by adding a Gaussian
noise with diminishing variance to ensure zero-concentrated
differential privacy enabling higher accuracy compared to the
common (ϵ, δ)-differential privacy. The work in [21] develops
a stochastic ADMM-based distributed algorithm that further
enhances the accuracy while ensuring differential privacy. The
authors of [22]–[24] propose differentially-private distributed
algorithms that utilize the projected-gradient-descent method
for handling constraints. The differentially private distributed
algorithm proposed in [25] is based on perturbing the local
objective functions. However, the algorithms in [17]–[25],
[27] offer distributed solutions only for problems with smooth
objective functions.

The work in [26] addresses problems with non-smooth
objective functions by employing a first-order approximation



2

of the augmented Lagrangian with a scalar l2-norm proximity
operator. However, this algorithm is not fully distributed since
it requires a central coordinator to average all the perturbed
primal variable updates over the network at every iteration.
All the above-mentioned algorithms in [17]–[26] require some
modifications through deliberately perturbing either the local
estimates or the objective functions. This compromises the per-
formance of the algorithm by degrading its accuracy especially
when large amount of noise is required to provide high privacy
levels. The work in [28] considers privacy-preserving proper-
ties that are intrinsic, i.e., they do not require any change in
the algorithm but are associated with the algorithm’s inherent
properties. However, the approach taken in [28] considers a
privacy metric based on the topology of the communication
graph. Therefore, none of the existing algorithms are able to
offer fully-distributed solutions that are intrinsically capable
of ensuring differential privacy.

A. Contributions
In this paper, we develop a fully-distributed differentially-

private algorithm to solve a class of regularized empirical risk
minimization (ERM) problems when first-order information
is unavailable or hard to obtain. We utilize the ADMM for
distributed optimization and a zeroth-order method, called
the two-point stochastic gradient algorithm [29], to minimize
the augmented Lagrangian function in the ADMM’s primal
update step. The proposed algorithm, called distributed zeroth-
order ADMM (D-ZOA), is fully distributed in the sense
that each agent of the network communicates only with its
immediate neighbors and no central coordination is necessary.
No communication among agents is required throughout the
inner loop.

The privacy-preserving properties of the proposed D-ZOA
algorithm are intrinsic. To substantiate this novel finding, we
model the primal variable at each agent as the sum of an
exact (unperturbed) value and a random perturbation. This
enables us to address the challenging problem of approximat-
ing the distribution of the primal variable and verify that the
stochasticity inherent to the employed zeroth-order method can
adequately make D-ZOA differentially private. To this end, we
find a suitable approximation for the probability distribution of
the primal variable. Subsequently, we show that the inherent
randomness in D-ZOA enables it to preserve (ϵ, δ)-differential
privacy. Utilizing the moments accountant method [30], we
also show that the total privacy leakage over all iterations
grows sublinearly with the number of ADMM iterations. This
is particularly important as we observe that, with any similar
level of privacy, the optimization accuracy of D-ZOA is higher
compared to the existing privacy-preserving approaches, which
perturb the variables exchanged among the network agents by
adding noise.

We prove that D-ZOA reaches a neighborhood of the
optimal solution, i.e., a near-optimal solution, and the size of
the neighborhood is determined by the privacy parameter. This
gives an explicit privacy-accuracy trade-off where a stronger
privacy guarantee corresponds to a lower accuracy. Through
numerical simulations, we show that D-ZOA is competi-
tive with the state-of-the-art zeroth-order-based optimization

algorithms even though they are designed for centralized
processing. We also verify numerically that the entries of the
zeroth-order stochastic gradient are normally distributed by
illustrating the associated histograms and (quantile-quantile)
QQ plots. Simulation results also demonstrate that, with any
given level of required privacy guarantee, D-ZOA outperforms
existing privacy-preserving algorithms in terms of accuracy. To
the best of our knowledge, this is the first work on distributed
non-smooth optimization that is capable of exploiting the
inherent randomness due to the use of a zeroth-order method
and enjoy the ensuing intrinsic (ϵ, δ)-differential privacy.

B. Paper Organization

The rest of the paper is organized as follows. In Section II,
we describe the system model and formulate the distributed
ERM problem when first-order information is not available.
In Section III, we describe our proposed D-ZOA algorithm.
In Section IV, we explain the privacy issues associated with
distributed learning and we propose a solution to the very
difficult problem of characterizing the distribution of the
inherent randomness. Hence, we present the intrinsic privacy-
preserving properties of the proposed D-ZOA algorithm by
showing that the privacy leakage of each agent at any iteration
is bounded and the total privacy leakage grows sublinearly
with the number of ADMM iterations. In Section V, we
prove the convergence of D-ZOA by confirming that both
inner and outer loops of the algorithm converge. We provide
some simulation results in Section VI and draw conclusions
in Section VII.

C. Mathematical Notations

The set of natural and real numbers are denoted by N and
R, respectively. The set of positive real numbers is denoted
by R+. Scalars, column vectors, and matrices are respectively
denoted by lowercase, bold lowercase, and bold uppercase
letters. The operators (·)T, det(·), and tr(·) denote transpose,
determinant, and trace of a matrix, respectively. ∥·∥ represents
the Euclidean norm of its vector argument. In is an identity
matrix of size n, 0n is an n × 1 vector with all zeros
entries, 0n×p = 0n0

T
p , and | · | denotes the cardinality if its

argument is a set. The statistical expectation and covariance
operators are represented by E[·] and cov[·], respectively. The
notation N (µ,Σ) denotes normal distribution with mean µ
and covariance matrix Σ. For a positive semidefinite matrix
X, λmin(X) and λmax(X) denote the nonzero smallest and
largest eigenvalues of X, respectively. For a vector x ∈ Rn

and a matrix A, ∥x∥2A denotes the quadratic form xTAx. For
a function f , its subgradient and subdifferential are denoted
by f ′ and ∂f , respectively.

II. SYSTEM MODEL

We consider a network with K ∈ N agents and E ∈ N
edges modeled as an undirected graph G(V, E) where the
vertex set V = {1, . . . ,K} corresponds to the agents and
the set E represents the bidirectional communication links
between the pairs of neighboring agents. Edge ekl = (k, l) ∈ E
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indicates that agent k and l are neighbors. Agent k ∈ V
can communicate only with the agents in its neighborhood
Vk = {l ∈ V | (k, l) ∈ E}.

Each agent k ∈ V has a private dataset

Dk =
{
(Xk,yk) : Xk = [xk,1,xk,2, . . . ,xk,Nk

]T ∈ RNk×P ,

yk = [yk,1, yk,2, . . . , yk,Nk
]T ∈ RNk

}
where Nk is the number of data samples collected at agent k
and P is the number of features in each sample.

We consider the problem of estimating a parameter of
interest β ∈ RP that relates the value of an output measure-
ment stored in the response vector yk to input measurements
collected in the corresponding row of the local matrix Xk.
The associated supervised learning problem can be cast as a
regularized ERM expressed by

min
β

K∑
k=1

1

Nk

Nk∑
j=1

ℓ(xk,j , yk,j ;β) + ηR(β) (1)

where ℓ : RP → R is the loss function, R : RP → R is the
regularizer function, and η > 0 is the regularization parameter.
The ERM problem pertains to several applications in machine
learning, e.g., linear regression [2], support vector machine
[31], and logistic regression [20], [26]. We assume that the
loss function ℓ(·) and the regularizer function R(·) are both
closed and convex but at least one of them is non-smooth. Let
us denote the optimal solution of (1) by βc.

III. NON-SMOOTH DISTRIBUTED LEARNING

We first discuss the consensus-based reformulation of the
problem that allows its distributed solution through an iterative
process consisting of two nested loops. Then, we describe the
ADMM procedure that forms the outer loop and the zeroth-
order two-point stochastic gradient algorithm that constitutes
the inner loop solving the ADMM primal update step. Finally,
we discuss the related computational complexity.

A. Consensus-Based Reformulation

To solve (1) in a distributed manner, we reformulate it as
the following constrained minimization problem

min
{βk}

K∑
k=1

( 1

Nk

Nk∑
j=1

ℓ(xk,j , yk,j ;βk) +
η

K
R(βk)

)
s.t. βk = βl, l ∈ Vk, ∀k ∈ V

(2)

where {βk}Kk=1 are the primal variables representing local
copies of β at the agents. The equality constraints impose
consensus across each agent’s neighborhood Vk. To solve (2)
collaboratively and in a fully-distributed manner, we utilize
the ADMM [7]. For this purpose, we rewrite (2) as

min
{βk}

K∑
k=1

( 1

Nk

Nk∑
j=1

ℓ(xk,j , yk,j ;βk) +
η

K
R(βk)

)
s.t. βk = zlk, βl = zlk, l ∈ Vk, ∀k ∈ V

(3)

where {zlk}k∈V,l∈Vk
are the auxiliary variables yielding an

alternative but equivalent representation of the constraints in
(2). They help decouple βk in the constraints and facilitate
the derivation of the local recursions before being eventually
eliminated. Solving (3) via the ADMM requires an iterative
process that is described in the next subsection.

B. Zeroth-Order-Based Distributed ADMM Algorithm

To solve (3) by employing the ADMM, we generate the
augmented Lagrangian function by associating the Lagrange
multipliers {γ̄l

k}l∈Vk
, {γ̃l

k}l∈Vk
with the constraints in (3).

Following the steps outlined in [7], the ADMM iterations to
solve (3) in a distributed manner are given by

β
(m)
k =argmin

βk

Fk(βk) (4)

γ
(m)
k = γ

(m−1)
k + ρ

∑
l∈Vk

(
β
(m)
k − β(m)

l

)
. (5)

where

Fk(βk) =fk(βk) + hk(βk),

fk(βk) =
1

Nk

Nk∑
j=1

ℓ(xk,j , yk,j ;βk) +
η

K
R(βk),

hk(βk) =β
T
kγ

(m−1)
k + ρ

∑
l∈Vk

∥∥∥βk −
β
(m−1)
k + β

(m−1)
l

2

∥∥∥2,
γ
(m)
k =2

∑
l∈Vk

γ̄
l(m)
k ,

(6)
m is the iteration index, and all initial values {β(0)

k }k∈V ,
{γ(0)

k }k∈V are set to zero. Note that the update equations in
(4) and (5) can be implemented in a fully-distributed fashion
since they involve only the variables available within every
agent’s neighborhood.

Since the objective function in (4) is assumed to be non-
smooth, the corresponding minimization problem cannot be
solved using any first-order method. To overcome this, we
use a zeroth-order method as in [1]. We utilize the two-
point stochastic-gradient algorithm that has been proposed
in [29] for optimizing general non-smooth functions. More
specifically, we use the stochastic mirror descent method with
the proximal function 1

2 ∥·∥ and the gradient estimator at point
βk given by

Γ(βk,γ
(m−1)
k , u1, u2,ν1,ν2) = u−1

2 [Fk(βk + u1ν1

+ u2ν2,γ
(m−1)
k )−Fk(βk + u1ν1,γ

(m−1)
k )]ν2 (7)

where u1 > 0 and u2 > 0 are smoothing constants and ν1,
ν2 are independent zero-mean Gaussian random vectors with
the covariance matrix IP , i.e., ν1,ν2 ∼ N (0P , IP ).

The two-point stochastic-gradient algorithm consists of two
randomization steps where the second step is aimed at pre-
venting the perturbation vector ν2 from being close to a point
of non-smoothness [29]. This algorithm entails an iterative
procedure that consists of three steps at each iteration t. First,
J ∈ N independent random vectors {νj,k

1,t}Jj=1 and {νj,k
2,t}Jj=1
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are sampled from N (0P , IP ). Second, a k-local stochastic
gradient g(t)

k is computed as

g
(t)
k =

1

J

J∑
j=1

g
(t)
j,k (8)

where

g
(t)
j,k = Γ(β̃

(t)

k ,γ
(m−1)
k , u1,t, u2,t,ν

j,k
1,t ,ν

j,k
2,t ),

β̃
(t)

k is the tth iterate of the two-point stochastic-gradient
algorithm with the initial value β̃

(0)

k = 0 and {u1,t}∞t=1

and {u2,t}∞t=1 are two non-increasing sequences of positive
parameters such that u2,t ≤ u1,t/2. Finally, β̃

(t)

k is updated as

β̃
(t)

k = β̃
(t−1)

k − αtg
(t)
k (9)

where αt is a time-varying step-size. The step-size is computed
as

αt =
(
L
√
tP log(2P )

)−1

α0R

where α0 is an appropriate initial step-size and R is an upper
bound on the distance between the minimizer β∗

k to (4) and
the first iterate β̃

(1)

k as per [29].
We use multiple independent random samples {νj,k

1,t}Jj=1

and {νj,k
2,t}Jj=1 to obtain a more accurate estimate of the gra-

dient g(t)
k as remarked in [29]. Furthermore, no communication

among agents is needed in the inner loop.
The proposed algorithm, D-ZOA, is summarized in Algo-

rithm 1.

C. Computational Complexity

Solving D-ZOA’s inner loop, i.e., the minimization in (4),
requires multiple evaluations of the function Fk(·). The com-
putational requirement at each agent and each ADMM outer
loop iteration depends on the local objective function fk. Let
us indicate the number of computations required by D-ZOA
to carry out one iteration of the inner loop at agent k and
the number of iterations of the inner loop by mk and T ,
respectively. Hence, the total number of computations required
by D-ZOA at agent k and each ADMM outer loop iteration is
O(Tmk). However, the cost of transmission/communication
among the neighboring agents does not depend on T or mk

since the inner loop does not require any communication
among agents.

IV. INTRINSIC DIFFERENTIAL PRIVACY GUARANTEE

In this section, we consider the privacy concerns associated
with distributed learning and reveal that the inherent random-
ness due to the use of a zeroth-order method is sufficient for
the proposed D-ZOA algorithm to preserve (ϵ, δ)-differential
privacy. First, we present the attack model along with the
definition of the attacker. Second, we propose our solution
to the challenging problem of characterizing the randomness
inherent to the algorithm. Subsequently, we assess the l2-norm
sensitivity of the primal variable and compute the covariance
that the primal variable is required to have so that the privacy
leakage of a single iteration of D-ZOA is bounded at each

Algorithm 1 Distributed Zeroth-Order ADMM (D-ZOA)

At all agents k ∈ V , initialize β(0)
k = 0, γ(0)

k = 0, and
locally run
for m = 1, 2, . . . ,M do

Share β(m−1)
k with neighbors in Vk

Update γ(m)
k as in (5)

Initialize β̃
(0)

k = 0
for t = 1, 2, . . . , T do

Draw independent {νj,k
1,t}Jj=1, {ν

j,k
2,t}Jj=1 ∼ N (0P , IP )

Set u1,t = u1/t, u2,t = u1/(Pt)2

Compute g
(t)
k as in (8) and (7)

Update β̃
(t)

k = β̃
(t−1)

k − αtg
(t)
k

end for
Update β(m)

k = β̃
(T )

k

end for

agent. Finally, we prove that the total privacy leakage over
all iterations grows sublinearly with the number of ADMM
iterations.

A. Attack Model and Privacy Concerns

In Algorithm 1, the data stored at each agent, Xk and yk, is
not shared with any other agent. However, the local estimates
{β(m)

k }k∈V are exchanged within the local neighborhoods.
Therefore, the risk of privacy breach still exists as it has been
shown by the model inversion attacks [32].

In this paper, we consider the following attack model. We
assume that the adversary is able to access the local estimates
{β(m)

k }k∈V that are exchanged throughout the intermediate
ADMM iterations as well as the final output. The adversary
can be either a honest-but-curious member of the network or
an external eavesdropper. The adversary’s goal is to infer sen-
sitive data of one or more agents by sniffing the communicated
information {β(m)

k }k∈V .
We show that D-ZOA guarantees (ϵ, δ)-differential privacy

as per the below definition since it is intrinsically resistant to
such inference attacks.

Definition 1. A randomized algorithm M is (ϵ, δ)-
differentially private if for any two neighboring datasets D
and D′ differing in only one data sample and for any subset
of outputs O ⊆ range(M), we have

Pr[M(D) ∈ O] ≤ eϵPr[M(D′) ∈ O] + δ. (10)

This means the ratio of the probability distributions of M(D)
and M(D′) is bounded by eϵ.

In Definition 1, ϵ and δ are privacy parameters indicating
the level of privacy preservation ensured by a differentially
private algorithm. A better privacy preservation is achieved
with smaller ϵ or δ. On the other hand, low privacy guarantee
corresponds to higher values of ϵ, i.e., close to 1. Therefore,
it is reasonable to assume that ϵ ∈ (0, 1] as in [20], [33].

In the next subsection, we find an approximate distribution
of the primal variable, which is needed to prove that (10) holds
for our proposed D-ZOA.
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B. Primal Variable Distribution

Due to the stochasticity inherent to the zeroth-order method,
its employment for the ADMM primal update produces a
perturbed estimate. Therefore, the solution in the primal update
step in (4) at agent k using D-ZOA can be modeled as

β
(m)
k = β̆

(m)

k + ξ
(m)
k (11)

where β̆
(m)

k ∈ RP is the exact ADMM primal update and
ξ
(m)
k ∈ RP is a random variable representing the perturbation.

As in [34], the optimality condition for β̆
(m)

k is given by

0 ∈∂fk(β̆(m)
k ) + γ

(m−1)
k + 2ρ|Vk|β̆

(m)

− ρ|Vk|β(m−1)
k − ρ

∑
l∈Vk

β
(m−1)
l .

(12)

Hence, for any subgradient f ′
k(β̆

(m)

k ) ∈ ∂fk(β̆
(m)

k ), we have

f ′
k(β̆

(m)
k ) =− γ(m−1)

k − 2ρ|Vk|β̆
(m)

+ ρ|Vk|β(m−1)
k + ρ

∑
l∈Vk

β
(m−1)
l .

(13)

The model (11) represents an implicit primal variable pertur-
bation that can be contrasted with the explicit primal variable
perturbation used in [17], [20]. Using (11) and the primal
update equation in (13), the ADMM primal update step in
(4) can be expressed as

β̆
(m)

k =− 1

2ρ|Vk|
f ′
k

(
β̆
(m)

k

)
+

1

2|Vk|

(
|Vk|β(m−1)

k

+
∑
l∈Vk

β
(m−1)
l

)
− 1

2ρ|Vk|
γ
(m−1)
k (14)

β
(m)
k = β̆

(m)

k + ξ
(m)
k (15)

where β̆k is the local exact primal update at agent k and ξk
is the local perturbation of β̆k at agent k.

To prove that the inherent randomness due to employing
a zeroth-order method makes D-ZOA differentially private,
we need the knowledge of the probability distribution of
the primal variable β

(m)
k . To approximate the probability

distribution, in view of (9) and the fact that β(0)
k = 0,

we unfold β(m)
k as β(m)

k = −
∑T

t=1 αtg
(t)
k . The stochastic

gradient g(t)
k is the average of J independent random samples

{g(t)
j,k}Jj=1 that are functions of the random values {νj,k

1,t}Jj=1

and {νj,k
2,t}Jj=1 drawn from the same normal distribution.

Therefore, we assume that g
(t)
k is normally distributed with

the mean µ
(t)
k and the finite covariance matrix Ψ

(t)
k , i.e.,

g
(t)
k ∼ N (µ

(t)
k ,Ψ

(t)
k ). Thus, the probability distribution of

β
(m)
k is given by the following lemma.

Lemma 1. Given g
(t)
k ∼ N (µ

(t)
k ,Ψ

(t)
k ), the distribution of

β
(m)
k is

β
(m)
k ∼ N

(
β̆
(m)

k ,
1

J

T∑
t=1

α2
tΨ

(t)
k

)
. (16)

Proof. See Appendix A.

In the next subsection, we find an explicit expression for
the covariance of β(m)

k .
The assumption of normal distribution for g

(t)
k is a nat-

ural one as g
(t)
k is the average of stochastic variable vec-

tors {g(t)
j,k}Jj=1, which are themselves functions of normally-

distributed random variable vectors {νj,k
1,t}Jj=1 and {νj,k

2,t}Jj=1.
We provide some numerical experiments to explicitly verify
this assumption in Section VI.

The assumption is necessary to make the problem of deriv-
ing theoretical differential privacy guarantees for the proposed
algorithm tractable. Note that our analysis based on this and
other assumptions does not result in any deterministic guaran-
tee but yields a probabilistic statement for privacy guarantee
by setting a bound on a ratio of probabilities relevant in the
concept of differential privacy. Therefore, we do not require
perfectly accurate evaluations of the parameters, variables,
or statistical models involved in the analysis. Nonetheless,
we are cognizant that the reliability of the results highly
depends on the accuracy of the underlying assumptions and
approximations. Our simulation results in Section VI implicitly
corroborate the veracity of our assumptions.

C. Covariance of the Primal Variable

In this subsection, we derive an explicit expression for the
covariance of the primal variable β(m)

k . This is needed to show
that the privacy leakage of any iteration of D-ZOA is bounded
at all agents.

To make the problem more tractable, we assume that the
entries of the random vector β(m)

k are independent of each
other and have the same variance [17], [26], [33]. Let us denote
the variance of every entry of ξ(m)

k by σ2
k. Therefore, in view

of Lemma 1, we have

σ2
k =

1

JP

T∑
t=1

α2
t tr

(
Ψ

(t)
k

)
,

which can be computed as per the following lemma.

Lemma 2. There exists a constant c such that

σ2
k =

cα2
0R

2

JP log(2P )

(
s1(1 + logP ) + s2

)
− 4 ∥βc∥2

TJP
. (17)

where s1 =
∑T

t=1 t
−1, s2 =

∑T
t=1 t

−1.5, and βc is the
optimal solution.

Proof. See Appendix B.

In [29], it is shown that c = 0.5 is suitable when ν1 and ν2

are sampled from a multivariate normal distribution. Note that
s1 and s2 grow slowly with T . Hence, even for a very large
T , s1 and s2 have reasonable values. For example, with T =
2.5 × 108, we have

∑T
t=1 t

−1 < 20. A large T will increase
the computational complexity according to the discussions of
Section III.D.

D. l2-norm Sensitivity

In this subsection, we estimate the l2-norm sensitivity of
β̆
(m)

k . The l2-norm sensitivity calibrates the magnitude of
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the noise by which β̆
(m)

k has to be perturbed to preserve
privacy. Unlike the existing privacy-preserving methods where
the noise is added to the output of the algorithm [17], [20],
[26], [33], [35], [36], in D-ZOA, the noise is inherent.

We introduce the following assumption that is widely used
in the literature, see, e.g., [17], [26], [33].

Assumption 1: There exists a constant c1 such that ∥ℓ′(·)∥ ≤
c1 where ℓ(·) is the loss function defined in Section II.

Similar to the classical methods of differential privacy
analysis, e.g., [26], [33], we first define the l2 norm sensitivity.
Subsequently, we estimate the l2-norm sensitivity of β(m)

k .

Definition 2. The l2-norm sensitivity of β̆
(m)

k is defined as

∆k,2 = max
Dk,D′

k

∥∥∥β̆(m)

k,Dk
− β̆

(m)

k,D′
k

∥∥∥ (18)

where β̆
(m)

k,Dk
and β̆

(m)

k,D′
k

denote the local primal variables for
two neighboring datasets Dk and D′

k differing in only one data
sample, i.e., one row of Xk and the corresponding entry of yk.

The l2-norm sensitivity of β̆
(m)

k is an upper bound on ∆k,2

and is computed as in the following lemma.

Lemma 3. Under Assumption 1, the l2-norm sensitivity of
β̆
(m)

k is given by
∆k,2 =

c1
ρ|Vk|Nk

. (19)

Proof. See Appendix C.

E. Intrinsic (ϵ, δ)-Differential Privacy Guarantee

In this subsection, we reveal that the immanent stochasticity
imparted by the embedded zeroth-order method makes D-ZOA
(ϵ, δ)-differentially private. We provide an expression relating
the primal variable variance, σk, to the privacy parameters ϵ
and δ as well as an expression for ϵ relating it to the relevant
algorithmic parameters.

We first prove that Algorithm 1 is (ϵ, δ)-differentially private
at each iteration providing a relationship between σk and ϵ, δ.

Theorem 1. Let ϵ ∈ (0, 1] and

σk =
c1
√
2.1 log(1.25/δ)

ρ|Vk|Nkϵ
. (20)

Under Assumption 1, at each iteration of D-ZOA, (ϵ, δ)-
differential privacy is guaranteed. Specifically, for any neigh-
boring datasets Dk and D′

k and any output β(m)
k , the following

inequality holds:

Pr[β(m)
k,Dk

] ≤ eϵPr[β(m)
k,D′

k
] + δ. (21)

Proof. See Appendix D.

Theorem 1 shows that the primal variable variance is
inversely proportional to the privacy parameter ϵ. This implies
that a higher variance leads to a smaller ϵ and higher privacy
guarantee. A smaller ϵ means that the ratio of the probability
distributions of β(m)

k,Dk
and β(m)

k,D′
k

is smaller and consequently
less information is available to any sniffing/spoofing adversary
through βk hence the improved privacy [17].

We then introduce the following corollary.

Corollary 1. If {g(t)
j,k}Jj=1 are i.i.d. with g

(t)
j,k ∼ N (µ

(t)
k ,Ψ

(t)
k ),

and Assumption 1 holds, we have

ϵ =
c1

ρ|Vk|Nk

√√√√ 2.1JP log( 1.25δ )
cR2α2

0

log(2P ) (s1(1 + logP ) + s2)− 4∥βc∥2

T

.

(22)

Proof. The proof follows from equating the expressions for
σk in Lemma 2, (17), and Theorem 1, (20), and solving for
ϵ.

The equation (22) shows how the intrinsic privacy pre-
serving property of D-ZOA is affected by various involved
parameters. For example, a smaller J results in a smaller ϵ.
This is consistent with the fact that a smaller J leads to a
higher variance, which yields a higher privacy guarantee due
to the inherent randomness brought about by using a zeroth-
order method in the inner loop.

The denominator of the second factor in (22) is required to
be positive for the factor to be real. We ensure this by setting

T >
4 ∥βc∥2 log(2P )

cR2α2
0(s1(1 + log(P )) + s2)

. (23)

F. Total Privacy Leakage

In this subsection, we consider the total privacy leakage of
the proposed D-ZOA algorithm. Since D-ZOA is an M -fold
adaptive algorithm, we utilize the results of [30] together with
the moments accountant method to evaluate its total privacy
leakage. The main result is summarized in the following
theorem.

Theorem 2. Let ϵ ∈ (0, 1] and

σk =
c1
√

2.1 log(1.25/δ)

ρ|Vk|Nkϵ
. (24)

Under Assumption 1, Algorithm 1 guarantees (ϵ̄, δ)-differential
privacy where

ϵ̄ = ϵ

√
M log(1/δ)

1.05 log(1.25/δ)
. (25)

Proof. The proof is obtained by using the log moments of the
privacy loss and their linear composability in the same way as
in [26, Theorem 2].

V. CONVERGENCE ANALYSIS AND PRIVACY-ACCURACY
TRADE-OFF

We establish the convergence of D-ZOA to a near-optimal
solution by corroborating that both inner and outer loops of
the algorithm converge.
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Fig. 1. The normalized errors of D-ZOA, OR-ZO [29], and ZOO-ADMM [14]
versus the iteration number.

A. Convergence of the Inner Loop

The convergence of the inner loop can be verified follow-
ing [29, Theorem 2], i.e., it can be shown that, if Fk(·)
is Lipschitz-continuous with the Lipschitz constant L, there
exists a constant c such that, for each T representing a fixed
number of inner-loop iterations, the following inequality holds:

E[Fk(β̂
(T )

k )−Fk(β
∗
k)]

≤c
RL

√
P√

T

(
max{α0, α

−1
0 }

√
log(2P ) +

u1 log(2T )√
T

) (26)

where β∗
k is the minimizer to (4) and

β̂
(T )

k =
1

T

T∑
t=1

β̃
(t)

k .

The inequality in (26) implies that the two-point stochastic
gradient algorithm constituting the inner loop converges at a
rate of O(

√
P/T ). In [29], it is shown that c = 0.5 is suitable

when ν1 and ν2 are sampled from a normal distribution. The
function Fk(·) is the sum of fk(·), which is assumed to be
closed and convex, and hk(·) that is also both closed and
convex since it is a positive definite quadratic function. Hence,
the function Fk(·) is closed and convex in addition to being
Lipschitz-continuous [37]. Therefore the convergence result in
(26) follow from [29].

B. Convergence of the Outer Loop

The convergence of the outer loop can be proven by
verifying the convergence of a fully-distributed ADMM with
perturbed primal updates. To present the convergence result,
we rewrite (3) in the matrix form. By defining w ∈ RKP

concatenating all βk and z ∈ R2EP concatenating all zlk, (3)
can be written as

min
w,z

f(w)

s.t. Aw +Bz = 0
(27)

where

f(w) =

K∑
k=1

fk(βk),

A = [AT
1 ,A

T
2 ]

T, and A1,A2 ∈ R2EP×KP are both composed
of 2E × K blocks of P × P matrices. If (k, l) ∈ E and zlk
is the qth block of z, then the (q, k)th block of A1 and the
(q, l)th block of A2 are the identity matrix IP . Otherwise, the
corresponding blocks are 0P×P . Furthermore, we have

B = [−I2EP ,−I2EP ]
T.

To facilitate the representation, we also define the following
matrices

M+ = BT
1 +BT

2

M− = BT
1 −BT

2

L+ = 0.5M+M
T
+

L− = 0.5M−M
T
−

H = 0.5(L+ + L−)

Q =
√

0.5L−.

We construct the auxiliary sequence

r(m) =

m∑
s=0

Qw(s)

and define the auxiliary vector q(m) and the auxiliary matrix
G as

q(m) =

[
r(m)

w(m)

]
, G =

[
ρIP 0P×P

0P×P ρL+

2

]
. (28)

The convergence results of [38], [20], and [39] can now
be adapted to D-ZOA as per the following theorem that also
provides an explicit privacy-accuracy trade-off.

Theorem 3. For any M > 0, we have

E[f(ŵ(M))− f(w∗)]

≤
∥∥q(0) − q

∥∥2
G

M
+

2.1c21P log(1.25/δ)λ2
max(L+)

2ρ|Vk|2N2
k ϵ

2λmin(L−)

(29)

where q = [rT, (w∗)T]T and

ŵ(M) =
1

M

M∑
m=1

w̆(m).

Proof. See Appendix E.

Theorem 3 shows that D-ZOA reaches a neighborhood of
the optimal (centralized) solution with the size of the neigh-
borhood determined by the privacy-parameter ϵ. This discloses
a privacy-accuracy trade-off offered by D-ZOA. When the
privacy guarantee is stronger (smaller ϵ and δ), the accuracy
is lower.

Note that we do not need to solve the minimization problem
in the ADMM primal update step of the outer loop with high
accuracy [26], [34]. We perform the ADMM primal update
step in the outer loop after obtaining an inexact solution to
(4). Therefore, we select the number of inner loop iterations
T as the minimum number of iterations satisfying (23) and
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Fig. 2. The histogram and the QQ plot of g(t)
k at agent 2, the inner loop iteration t = 100, and the outer loop iteration m = 50.
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Fig. 3. The histogram and the QQ plot of g(t)
k at agent 2, the inner loop iteration t = 50, and the outer loop iteration m = 150.

entailing an accuracy that is sufficient to ensure convergence
of ADMM according to [29]. In fact, T should be chosen
as low as possible within the above-mentioned constraints
to minimize the computational complexity according to the
discussions of Section III.D.

VI. SIMULATIONS

In this section, we present some simulation examples to
evaluate the performance of the proposed D-ZOA algorithm in
comparison with the most relevant state-of-the-art algorithms
as well as the privacy-accuracy trade-off offered by the pro-
posed algorithm.

We first benchmark D-ZOA against two popular existing
algorithms for zeroth-order-based optimization, which have
originally been designed for centralized settings, i.e., those
proposed in [14] and [29] and called zeroth-order online
ADMM (ZOO-ADMM) and optimal-rate zeroth-order (OR-
ZO) algorithm, respectively. Then, we illustrate two sets of
example histograms and QQ plots to verify that the entries of
the gradient vector g(t)

k are normally distributed.

Next, we benchmark D-ZOA against some existing baseline
differentially-private algorithms: the ADMM algorithm with
primal variable perturbation (PVP) proposed in [17], [26],
the ADMM with dual variable perturbation (DVP) proposed
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Fig. 4. Normalized error of DPSGD, DP-ADMM, and D-ZOA for two values of ϵ and fixed δ for ERM with ℓ1-norm regularization.
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Fig. 5. Privacy-accuracy trade-off of DPSGD, DP-ADMM, and D-ZOA for ERM with ℓ1-norm regularization.

in [17], the ADMM-based differentially private distributed
algorithm called DP-ADMM and proposed in [26], and the dis-
tributed subgradient method proposed in [9] that is customized
to include differential privacy (DPSG). Note that DP-ADMM
is the only existing privacy-preserving distributed algorithm
for non-smooth objectives.

As for the applications, we consider a distributed version
of the empirical risk minimization problem with an ℓ1-norm
regularization (lasso penalty) and an ℓ2-norm regularization
(ridge penalty) [40].

The network-wide observations are represented by a design
matrix X ∈ RN×P and a response vector y ∈ RN×1 where
N is the number of data samples and P is the number

of features in each sample. The matrix X consists of K
submatrices Xk, i.e., X = [XT

1 ,X
T
2 , . . . ,X

T
K ]T, and the vector

y consists of K subvectors yk, i.e., y =
[
yT
1 ,y

T
2 , . . . ,y

T
K

]T
,

as the data is distributed among the agents and each agent k
holds its respective Xk ∈ RNk×P and yk ∈ RNk×1 where
N =

∑K
k=1 Nk. The parameter vector that establishes a linear

regression between X and y is β ∈ RP×1. In the centralized
approach, a lasso estimate of β is given by

βc = argmin
β

{∥Xβ − y∥2 + η ∥β∥1} (30)

while a ridge estimate of β is given by

βc = argmin
β

{∥Xβ − y∥2 + η ∥β∥2}. (31)
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Fig. 6. Normalized error of DPSGD, PVP, DP-ADMM, DVP, and D-ZOA for two values of ϵ and fixed δ for ERM with ℓ2-norm regularization.
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Fig. 7. Privacy-accuracy trade-off of DPSGD, PVP, DP-ADMM, DVP, and D-ZOA for ERM with ℓ2-norm regularization.

In the distributed setting, we solve problem (2) with
Nk∑
j=1

ℓ(xk,j , yk,j ;βk) = ∥Xkβk − yk∥2 (32)

and R(βk) = ∥βk∥1 for the lasso penalty. For the ridge
penalty, we have R(βk) = ∥βk∥

2.
We assess the performance of the D-ZOA algorithm

over a network of K = 5 agents with edge set E =
{e12, e14, e23, e34, e45}. The number of samples at each agent
is set to Nk = 20 ∀k ∈ V and the total number of samples
is N = 100. The number of features in each sample is
P = 10. For each agent k ∈ V , we create a 2P × P local
observation matrix Xk whose entries are i.i.d. zero-mean unit-

variance Gaussian random variables. The response vector y is
synthesized as y = Xω+ψ where ω ∈ RP and ψ ∈ RM are
random vectors with distributions N (0, IP ) and N (0, 0.1IN ),
respectively. The data are preprocessed by normalizing the
columns of X to guarantee that the maximum value of each
column is 1 and by normalizing the rows to enforce their l2-
norm to be less than 1 as in [26]. This is motivated by the
need for homogeneous scaling of the features. Therefore, we
have c1 = 1. The regularization parameter is set to η = 1
and the penalty parameter is set to ρ = 4. The number of
iterations of the ADMM outer loop is set to 200. For the inner
loop, the number of iterations is set to 100 and the smoothing
constant u1 to 1. We set α0 = 0.54 according to [41] and
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calculate J from equation (22) by fixing ϵ, solving for J and
rounding the solution to the nearest integer. Performance of
D-ZOA is evaluated using the normalized error between the
centralized solutions βc as per (31) and the local estimates.
It is defined as

∑K
k=1 ∥βk − βc∥2/∥βc∥2 where βk denotes

the local estimate at agent k. The centralized solution βc is
computed using the convex optimization toolbox CVX [42].
Results are obtained by averaging over 100 independent trials.

In Fig. 1, we compare the performance of the proposed D-
ZOA algorithm with that of two existing zeroth-order-based
algorithms, i.e., those proposed in [14] and [29]. The simula-
tion results show that the steady-state normalized error of D-
ZOA is comparable to those of these algorithms, even though
they are designed for centralized processing. The centralized
algorithms converge faster than Z-DOA since, unlike our fully-
distributed D-ZOA, they have all data concentrated at a central
processing hub and do not rely on diffusing information across
the network by sharing the local estimates within each agent’s
neighborhood. Note that the notion of iteration is essentially
different for each algorithm whose learning curve is shown
in Fig. 1. Thus, we provide the learning curve plots in Fig. 1
only to examine how D-ZOA performs in comparison with the
existing zeroth-order optimization algorithms notwithstanding
the underlying fundamental differences.

In Figs. 2 and 3, we provide two sets of histograms and QQ
plots for an arbitrary entry of the stochastic gradient vector
g
(t)
k , i.e., the one corresponding to agent 2, and different inner

and outer loop iterations, i.e., t = 100, t = 50, and m =
50, m = 150. The plots help us verify that the entries of
g
(t)
k are normally distributed hence attest to the validity of

our related assumption in Section IV-B. Meanwhile, we made
similar observations with other entries of g

(t)
k and iteration

numbers. However, due to space limitation, we only provide
Figs. 2 and 3 as examples.

We first benchmark our D-ZOA in the case of the ERM with
the lasso penalty. Since PVP and DVP cannot be employed
when the objective function is non-smooth, we benchmark
our algorithm only with DP-ADMM and DPSGD similar to
[26]. In Fig. 4, we plot the normalized error versus the outer
loop iteration index for D-ZOA, DP-ADMM, and DPSGD.
The plots show that all algorithms converge for two different
values of ϵ and δ. In all plots, accuracy improves as ϵ increases.
This is consistent with both Theorem 3 and [26, Theorem 3].
The hyper-parameters in DP-ADMM and DPSGD are tuned
to achieve the best accuracy and convergence rate. However,
D-ZOA has higher accuracy than DP-ADMM and DPSGD.

In Fig. 5, we illustrate the privacy-accuracy trade-off for
D-ZOA, DP-ADMM, and DPSGD. The figures show that D-
ZOA, DP-ADMM, and DPSGD achieve higher accuracy with
larger ϵ and δ. In Fig. 5(a), we show the normalized error
versus the privacy parameter ϵ̄ as given in (25) for δ = 10−6

and δ = 10−3. We observe that D-ZOA outperforms both DP-
ADMM and DPSGD in terms of accuracy likely due to its
intrinsic privacy-preserving properties. Fig. 5(b) also attests to
the superiority of D-ZOA over DP-ADMM and DPSGD when
ϵ = 0.15 and ϵ = 0.95 and δ varies between 10−6 and 10−2.

We also evaluate the performance of the D-ZOA algorithm
in comparison with the considered benchmark algorithms for

the ERM with the ridge penalty. In Fig. 6, we plot the
normalized error versus the outer loop iteration index for D-
ZOA, DP-ADMM, DPSGD, PVP, and DVP. The plots show
that D-ZOA outperforms all other considered algorithms in
terms of accuracy for different values of ϵ.

In Fig. 7, we demonstrate the privacy-accuracy trade-off for
D-ZOA, DP-ADMM, DPSGD, PVP, and DVP. As expected,
smaller values of the privacy parameters ϵ and δ lead to
lower accuracy. However, D-ZOA outperforms all the other
approaches in terms of accuracy due to its intrinsic privacy-
preserving properties.

In the considered applications of ERM with lasso and ridge
penalty, we make the following observations regarding the
complexity-accuracy trade-off of D-ZOA and the baseline
algorithms. D-ZOA outperforms all the baseline algorithms in
terms of accuracy by roughly two orders of magnitude. How-
ever, D-ZOA has a relatively high computational complexity
due to its inner loop that is run at every agent k and every
ADMM iteration. Since the number of arithmetic operations
required to evaluate the objective function is O(PNk), calcula-
tion of (8) needs O(JPNk) operations and, therefore, D-ZOA
requires O(TJPNk) operations to perform (4). The baseline
algorithms have the following computational complexities:
O(P 2Nk) for DP-ADMM and DPSGD, and O(P 2Nk + P 3)
for PVP and DVP.

VII. CONCLUSION

We proposed an intrinsically privacy-preserving consensus-
based algorithm for solving a class of distributed regularized
ERM problems where first-order information is hard or even
impossible to obtain. We recast the original problem into an
equivalent constrained optimization problem whose structure
is suitable for distributed implementation via ADMM. We
employed a zeroth-order method, known as the two-point
stochastic-gradient algorithm, to minimize the augmented La-
grangian in the primal update step. We proved that the inherent
randomness due to employing the zeroth-order method can
adequately make the D-ZOA algorithm intrinsically privacy-
preserving. In addition, we used the moments accountant
method to show that the total privacy leakage of D-ZOA
grows sublinearly with the number of ADMM iterations. We
verified the convergence of D-ZOA to a near-optimal solution
as well as studying its privacy-preserving properties through
both theoretical analysis and numerical simulations.

APPENDIX A
PROOF OF LEMMA 1

Proof. We prove this lemma in two steps. First, we prove that
E[β(m)

k ] = β̆
(m)

k . Then, we calculate the covariance of β(m)
k .

We prove that E[β(m)
k ] = β̆

(m)

k by induction over m.

Base case: Since β(0)
k = β̆

(0)

k = 0, we have E[β(0)
k ] = β̆

(0)

k .
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Induction step: We assume that E[β(m−1)
k ] = β̆

(m−1)

k as the
induction hypothesis. Considering (14) and (11), we have

E[β(m)
k ] = E[β̆

(m)

k ] + E[ξ(m)
k ]

= − 1

2ρ|Vk|
f ′
k(β̆

(m)

k ) +
1

2|Vk|

(
|Vk|β̆

(m−1)

k

+
∑
l∈Vk

β̆
(m−1)

l

)
− 1

2ρ|Vk|
γ
(m−1)
k + E[ξ(m)

k ]

= − 1

2ρ|Vk|
E[f ′

k(β̆
(m)

k )]

+
1

2|Vk|

(
|Vk|E[β(m−1)

k ] +
∑
l∈Vk

E[β(m−1)
l ]

)
− 1

2ρ|Vk|
E[γ(m−1)

k ] + E[ξ(m)
k ]

= E[β(m)
k ] + E[ξ(m)

k ],

which implies that E[ξ(m)
k ] = 0. Therefore, E[β(m)

k ] = β̆
(m)

k .
Since we have g

(t)
k ∼ N (µ

(t)
k ,Ψ

(t)
k ) and β

(m)
k =

−
∑T

t=1 αtg
(t)
k , in view of the additive property of the normal

distribution, β(m)
k is normally distributed with the mean β̆

(m)

k

and the covariance

cov[β(m)
k ] =

1

J

T∑
t=1

α2
tΨ

(t)
k . (33)

APPENDIX B
PROOF OF LEMMA 2

Proof. It is easy to verify that

tr(Ψ(t)
k ) = E

[∥∥∥g(t)
j,k

∥∥∥2]−
∥∥∥µ(t)

k

∥∥∥2 . (34)

By [29, Lemma 2], there exists a constant c such that

E
[∥∥∥g(t)

j,k

∥∥∥2] ≤ cL2P
(√u2,t

u1,t
P + 1 + log(P )

)
. (35)

Since u2,t/u1,t = P−2t−1, we have

E
[∥∥∥g(t)

j,k

∥∥∥2] ≤ cL2P
( 1√

t
+ 1 + log(P )

)
. (36)

In addition, from β
(m)
k = −

∑T
t=1 αtg

(t)
k and (11), we have

β̆
(m)

k = −
T∑

t=1

αtµ
(t)
k . (37)

Taking the Euclidean norm of both sides in (37) and using the
triangle inequality, we have∥∥∥β̆(m)

k

∥∥∥ =

∥∥∥∥∥−
T∑

t=1

αtµ
(t)
k

∥∥∥∥∥ ≤
T∑

t=1

|αt|
∥∥∥µ(t)

k

∥∥∥ . (38)

Squaring both sides of (38) and using the Cauchy-Schwarz
inequality, we get∥∥∥β̆(m)

k

∥∥∥2 ≤
( T∑
t=1

|αt|
∥∥∥µ(t)

k

∥∥∥)2

≤ T

T∑
t=1

|αt|2
∥∥∥µ(t)

k

∥∥∥2 (39)

and consequently

− 1

JP

T∑
t=1

α2
t

∥∥∥µ(t)
k

∥∥∥2 ≤ − 1

TJP

∥∥∥β̆(m)

k

∥∥∥2 . (40)

Using (36), (40), and the definition of αt after (9), we have

1

JP

T−1∑
t=1

α2
t tr(Ψ(t)

k )

≤ 1

JP

T−1∑
t=1

α2
t cL

2P
( 1√

t
+ 1 + log(P )

)
− 1

JP

T−1∑
t=1

α2
t

∥∥∥µ(t)
k

∥∥∥2
=

1

JP

cα2
0R

2

log(2P )

( T∑
t=1

1

t
√
t
+ (1 + log(P ))

T∑
t=1

1

t

)
− 1

TJP

∥∥∥β̆(m)

k

∥∥∥2 .

(41)

Defining s1 =
∑T−1

t=1 t−1 and s2 =
∑T−1

t=1 t−1.5, (41)
simplifies to

1

JP

T∑
t=1

α2
t tr(Ψ(t)

k )

≤ cα2
0R

2

JP log(2P )

(
s1(1 + log(P )) + s2

)
−

∥∥∥β̆(m)

k

∥∥∥2
TJP

.

(42)

Considering that the algorithm converges as proven in
Section V, i.e., β̆

(m)

k → βc as m → ∞, β̆
(0)

k = 0, and the
triangle inequality, for m > 0 we have

∣∣∣∥∥∥β̆(m)

k

∥∥∥− ∥βc∥
∣∣∣ ≤ ∥∥∥β̆(m)

k − βc
∥∥∥ ≤ ∥βc∥ , (43)

which implies
∥∥∥β̆(m)

k

∥∥∥ ≤ 2 ∥βc∥. Therefore, we obtain

1

JP

T∑
t=1

α2
t tr(Ψ(t)

k )

=
cα2

0R
2

JP log(2P )

(
s1(1 + log(P )) + s2

)
− 4 ∥βc∥2

TJP
.

(44)

and consequently (17).
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APPENDIX C
PROOF OF LEMMA 3

Proof. From the adopted exact primal update equation (14),
we obtain

β̆
(m)

k,Dk
=− 0.5

ρ|Vk|

( 1

Nk

Nk∑
j=1

ℓ′(xk,j , yk,j ; β̆k) + γ
(m−1)
k

)
+

0.5

|Vk|

(
β̆
(m−1)

k +
∑
l∈Vk

β̆
(m−1)

l +
ηR′(β̆k)

ρK

)
β̆
(m)

k,D′
k
=− 0.5

ρ|Vk|

( 1

Nk

Nk−1∑
j=1

ℓ′(xk,j , yk,j ; β̆k) + γ
(m−1)
k

+
1

Nk
ℓ′(x′

k,Nk
, y′k,Nk

; β̆k)
)

+
0.5

|Vk|

(
β̆
(m−1)

k +
∑
l∈Vk

β̆
(m−1)

l +
ηR′(β̆k)

ρK

)
.

(45)
Using Assumption 1, the quantity

∥∥∥β̆(m)

k,Dk
− β̆

(m)

k,D′
k

∥∥∥ is upper
bounded as follows∥∥∥β̆(m)

k,Dk
− β̆

(m)

k,D′
k

∥∥∥
=

∥∥∥ℓ′(x′
k,Nk

, y′k,Nk
; β̆k)− ℓ′(xk,Nk

, yk,Nk
; β̆k)

∥∥∥
2ρ|Vk|Nk

≤ c1
ρ|Vk|Nk

.

(46)

APPENDIX D
PROOF OF THEOREM 1

Proof. The privacy loss due to sharing β(m)
k is calculated as∣∣∣∣∣∣log Pr[β(m)

k,Dk
]

Pr[β(m)
k,D′

k
]

∣∣∣∣∣∣ =
∣∣∣∣∣∣log Pr[ξ(m)

k,Dk
]

Pr[ξ(m)
k,D′

k
]

∣∣∣∣∣∣ =
∣∣∣∣∣∣log Pr[ξ(m)

s,k,Dk
]

Pr[ξ(m)
s,k,D′

k
]

∣∣∣∣∣∣ (47)

where the first equality holds since the Jacobian matrix of the
linear transformation from β

(m)
k to ξ(m)

k is the identity matrix
and the second equality holds as the entries of ξ(m)

k , denoted
by ξ

(m)
s,k , are independent of each other, for any entry s.

Using the triangle inequality, Lemma 3, and substituting σk

in the resulting expression, we obtain∣∣∣∣∣∣log Pr[β(m)
k,Dk

]

Pr[β(m)
k,D′

k
]

∣∣∣∣∣∣ ≤ ρ|Vk|Nkϵ
2

2.1c1 log(1.25/δ)

∣∣∣∣ξ(m)
s,k +

c1
2ρ|Vk|Nk

∣∣∣∣ .
(48)

When

|ξ(m)
s,k | ≤ c1

ρ|Vk|Nk

(
2.1ϵ−1 log(1.25/δ)− 0.5

)
,

the privacy loss is bounded by ϵ. Hence, let us define

r =
c1

ρ|Vk|Nk

(
2.1ϵ−1 log(1.25/δ)− 0.5

)
.

Subsequently, we need to prove that

Pr[|ξ(m)
s,k | > r] ≤ δ

or equivalently

Pr[ξ(m)
s,k > r] ≤ 0.5δ.

Using the tail bound of the normal distribution N (0, σ2
k) [35],

we obtain

Pr[ξ(m)
s,k > r] ≤ σk

r
√
2π

exp
(
− r2

2σ2
k

)
. (49)

Since δ is assumed to be small (≤ 0.01) and ϵ ≤ 1, we have
σk < r and −r2 < 2σ2

k log(0.5
√
2πδ). Therefore, Pr[ξ(m)

s,k >

r] < 0.5δ, which implies Pr[|ξ(m)
s,k | > r] ≤ δ. By defining

A1 = {ξ(m)
s,k : |ξ(m)

s,k | ≤ r}, A2 = {ξ(m)
s,k : |ξ(m)

s,k | > r},

we have

Pr[β(m)
k,Dk

] = Pr[β̆(m)
s,k,Dk

+ ξ
(m)
s,k : ξ

(m)
s,k ∈ A1]

+ Pr[β̆(m)
s,k,Dk

+ ξ
(m)
s,k : ξ

(m)
s,k ∈ A2]

< eϵPr[β(m)
k,D′

k
] + δ,

(50)

which concludes the proof by showing that, at each iteration
of D-ZOA, (ϵ, δ)-differential privacy is guaranteed.

APPENDIX E
PROOF OF THEOREM 3

Proof. In virtue of [38, Lemma 1 and Lemma 2], w̆(m)

satisfies the following equation

f ′(w̆(m))

ρ
= 2Hξ(m)−2Qr(m)−L+(w

(m)−w(m−1)). (51)

Therefore, by using (51), [38, Lemma 3, Lemma 4 and Lemma
5], and the steps in the proof of [39, Theorem 1], we can show
that, for any r ∈ RKP and m > 0, we have

f(w̆(m))− f(w∗)

ρ
+ 2rTQw̆(m)

≤
∥∥q(m−1) − q

∥∥2
G

ρ
−

∥∥q(m) − q
∥∥2
G

ρ

−
∥∥∥Qw̆(m)

∥∥∥2 − ∥∥∥Qξ(m)
∥∥∥2 + 2(ξ(m))TQ(r(m) − r)

+ 2
(L+

2
(w̆(m) −w∗)

)T

(w(m−1) − w̆(m−1))

(52)

where q = [rT, (w∗)T]T.
For any symmetric matrix X ∈ RP×P and vector y ∈ RP ,

we have

∥y∥2 λmin(X) ≤ yTXy ≤ ∥y∥2 λmax(X)

and, for any a,b ∈ RP and τ ∈ R+, we have

2aTb ≤ τ−1 ∥a∥2 + τ ∥b∥2 .
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Therefore, (52) yields

f(w̆(m))− f(w∗)

ρ
+ 2rTQw̆(m)

≤
∥∥q(m−1) − q

∥∥2
G

ρ
−

∥∥q(m) − q
∥∥2
G

ρ
−
∥∥∥Qξ(m)

∥∥∥2
− λmin(L−)

2

∥∥∥w̆(m) −w∗
∥∥∥2 + 1

τ

∥∥∥∥L+

2
(w̆(m) −w∗)

∥∥∥∥2
+ τ

∥∥∥w(m−1) − w̆(m−1)
∥∥∥2 + 2(ξ(m))TQ(r(m) − r).

(53)
By setting

τ =
λ2

max(L+)

2λmin(L−)
,

(53) leads to

f(w̆(m))− f(w∗)

ρ
+ 2rTQw̆(m)

≤
∥∥q(m−1) − q

∥∥2
G

ρ
−

∥∥q(m) − q
∥∥2
G

ρ

+
λ2

max(L+)

2λmin(L−)

∥∥∥ξ(m−1)
∥∥∥2 + 2(ξ(m))TQ(r(m) − r).

(54)

Setting r = 0P and summing both sides of (54) over m = 1
to M gives

1

ρ

M∑
m=1

(f(w̆(m))− f(w∗)) ≤ 1

ρ

∥∥∥q(0) − q
∥∥∥2
G

+

M∑
m=1

λ2
max(L+)

2λmin(L−)

∥∥∥ξ(m−1)
∥∥∥2 + 2(ξ(m))TQr(m).

(55)

Using Jensen’s inequality [43], (17), (20), and applying the
expectation operator to both sides of (55), we obtain

E[f(ŵ(M))− f(w∗)]

≤ 1

M

∥∥∥q(0) − q
∥∥∥2
G
+

ρλ2
max(L+)

2Mλmin(L−)

M∑
m=1

E
[∥∥∥ξ(m−1)

∥∥∥2]

≤
∥∥q(0) − q

∥∥2
G

M
+

2.1c21P log(1.25/δ)λ2
max(L+)

2ρ|Vk|2N2
k ϵ

2λmin(L−)
(56)

where

ŵ(M) =
1

M

M∑
m=1

w̆(m).
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