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Introduction 1

1 Introduction

Throughout the entire field of spatial statistics there is always an underly-
ing feeling that stationary models, which have the same spatial dependence
structure everywhere, cannot possibly be true and that it should be pos-
sible to do better by accounting for the lack of stationarity. This thought
provides the main motivation for the work on non-stationary models, but,
in practice, the dichotomy between stationary models and non-stationary
models is not as rigid as it might seem. There are unimaginably many
ways to introduce non-stationarity, and the question of which type of non-
stationarity that should be included in the model becomes equally impor-
tant as the question of whether one should use a non-stationary model or
not.

It is more difficult to estimate the dependence structure of a spatial
model than the mean structure, and there will be a tendency for the es-
timated dependence structure to depend on the model used. Even if we
assume that we have a single realization where the mean of the spatial pro-
cess is known, the covariances estimated between the observed locations are
dependent on the covariance model chosen for the estimation. And when
there are multiple realizations, empirical covariances are available between
the observed locations, but the model must still fill the missing covariances
between the unobserved locations. The difficulty seems intuitively reason-
able from a hierarchical modelling viewpoint since the covariance structure
is below the observation level and the spatial process level in the hierarchi-
cal model, and requires information to propagate several levels from the
observed data.

The overall goal of this thesis is to contribute new, useful, computa-
tionally efficient models that can account for spatially varying dependence
structure in spatial problems. But it is difficult to extract information
about a spatially varying dependence structure and the dependence struc-
ture has an inherent lack of identifiability. Therefore, we would like to fit
the models within a Bayesian framework to stabilise the inference, under-
stand better the a priori assumptions we put into the model and account
properly for uncertainty, but we do not yet know how to set sensible priors
on non-stationarity. This has lead to a division of the thesis into to two
strongly connected parts: the development of the models and the develop-
ment of sensible priors.
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The priors and the hyperparameters are important for non-stationary
models. This has been noted, for example, by Neto et al. (2014) who
observed that the non-stationary model of Paciorek and Schervish (2006)
was sensitive to the choice of hyperparameters. It is possible to improve
the situation by reducing the dimensionality of the non-stationarity by
only using a couple of covariates, but even for these models, prior sensitiv-
ity and computational problems have been reported (Ingebrigtsen et al.,
2014a,b). But before attacking this problem, we need to tackle one of
the fundamental problems in Bayesian spatial statistics that continues to
trouble statisticians to this day: which prior should we use for the range?
The answer to this question should form the foundation for the work on
priors for non-stationarity.

In the next sections we introduce the main concepts of spatial statistics,
and discuss the main challenges of non-stationary modelling and the con-
tributions made by the papers in this thesis. Then in Paper I we introduce
a new non-stationary model and explore the possibilities for representing
the anisotropy in a non-stationary model through a vector field. In Pa-
per II we present a large case study where we apply this model to annual
precipitation in the conterminous US and discuss the issue of how the
non-stationarity is best captured by the proposed model. The thesis ends
with Paper III, in which we discuss a new simple and theoretically justi-
fied joint prior for the range and the marginal variance in spatial models,
and extensions to priors for non-stationary models. Together the papers
in this thesis provide a solid foundation for developing sensible priors for
non-stationarity and extending the proposed models to a Bayesian frame-
work.

1.1 Spatial statistics

One of the simplest statistical models is the simple linear regression model
where each observation yi, for i = 1, 2, . . . , N , has an associated covariate
xi and is assumed to follow the model

yi = β0 + β1xi + ǫi,

where β0 is the intercept, β1 is the slope, and each ǫi is independently iden-
tically distributed as N (0, σ2). This model assumes that when the mean
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structure is known, the errors are independent, but this is an assumption
that is rarely true for spatial data. For spatial data the observations tend
to exhibit dependence simply because they are close to each other. This
might, in some cases, be caused by spatially varying structure in the mean
that is not captured in the model, but even after we have included all the
covariates we believe are relevant, there tends to be spatial dependence in
the residuals.

This motivates the inclusion of another error term in the regression
equation,

yi = β0 + β1xi + u(si) + ǫi, (1)

denoted by u(·), which is a spatially correlated random error where close
locations are more correlated than distant locations. In this model there
is a spatial dependence between the residuals of the observations even
after the mean structure is known. The inclusion of spatially correlated
effects is what characterizes the field of spatial statistics and requires the
construction of random objects that can generate spatially varying random
fields.

The most common such random object for continuously indexed phe-
nomena is called a Gaussian random field and is an extension of the finite-
dimensional multivariate Gaussian distributions to temporal and spatial
random fields.

Definition 1.1 (Gaussian random field (GRF)). Let D ⊂ R
n, then the

random field {u(s) : s ∈ D} is said to be a Gaussian random field if for
all m ∈ N for all choices of points s1, . . . , sm ∈ D, (u(s1), . . . , u(sm)) has
a multivariate Gaussian distribution.

We will ignore the technicalities associated with sample path properties
and consider a GRF to be uniquely defined by the mean value at each lo-
cation and the covariance between each pair of locations. These properties
are usually described by a mean value function and a covariance function.

Definition 1.2 (Covariance and mean value functions). Let {u(s) : s ∈
D} be a GRF, then the function c : D ×D → R defined by

c(s1, s2) = Cov[u(s1), u(s2)]
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is called the covariance function of the process and the function m : D → R

defined by

m(s) = E[u(s)]

is called the mean value function of the process.

In classical geostatistical models the covariance function is assumed
to be isotropic, which means that the covariances only depend on the dis-
tances between the locations, c(s1, s2) = r(||s2−s1||). The most commonly
used family of isotropic covariance functions is the Matérn family (Matérn
et al., 1960),

r(d) = σ2
1

2ν−1Γ(ν)
(κd)νKν(κd),

where κ is the inverse range parameter, σ2 is the marginal variance, ν is the
smoothness, and Kν is the modified Bessel function of second kind, order
ν. This family of covariance functions is considered to be a general class
of covariance functions that possess useful and good properties (Handcock
and Stein, 1993) and Stein (1999) goes as far as to strongly advocate the
use of this family of covariance functions.

GRFs are common building blocks in spatial models and when included
in generalized linear models they offer a flexible modelling tool for many
different types of data. The set-up in Equation (1) is aimed at continu-
ously indexed data, but there also exist other types of data such as dis-
cretely indexed data and spatial point process data. The continuously
indexed models and the discretely indexed models have, traditionally, de-
veloped separately with the continuously indexed models having appealing
theoretical properties and the discretely indexed models having appealing
computational properties.

The mean value function and the covariance function describe a contin-
uously indexed random object, but in computations we only observe a finite
number of points. In some cases, discretely indexed data can be handled
by Gaussian Markov random fields (GMRFs) (Rue and Held, 2005), which
are multivariate Gaussian distributions with sparse precision matrices that
can be exploited for fast computations. GMRFs have good computational
properties, but they are hard to specify in a spatially consistent way for
irregularly spaced data and thus not directly applicable for these type of
data.
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However, Lindgren et al. (2011) showed that for the Matérn models it
is possible to make a connection between the continuously indexed model
and discretely indexed GMRFs through the use of a stochastic partial
differential equation (SPDE). This connection makes it possible to combine
the best of two worlds: good theoretical properties and good computational
properties.

1.2 Computationally efficient spatial statistics

The Matérn covariance function describes the entire second-order struc-
ture of a GRF, but if we assume the classical geostatistical model in Equa-
tion (1) and use the direct approach for computations, we are forced to
form a dense N × N covariance matrix Σ containing all the pairwise co-
variances

Σi,j = r(||si − sj ||),

where si, for i = 1, 2, . . . , N , are the spatial locations of the observations.
The likelihood computations require the evaluation of the determinant of
the covariance matrix and the solution of linear systems with the covariance
matrix, and lead to a computational complexity O(N3) and is the cause of
the so-called “big-N problem” in spatial statistics. This has lead to several
approaches for making spatial models computationally feasible (Cressie
and Johannesson, 2008; Banerjee et al., 2008; Furrer et al., 2006; Stein
et al., 2004; Fuentes, 2007; Sun et al., 2012), but the starting point of the
work in this thesis is the SPDE approach introduced by Lindgren et al.
(2011), which at its core is an efficient way of doing computations with a
Matérn GRF, u(·).

The SPDE approach makes the unorthodox decision to throw away the
explicit covariance function and instead describe the covariance structure
through an SPDE. It was discovered already by Whittle (1954, 1963) that
a Matérn GRF can be generated by the SPDE

(κ2 −∆)α/2(τu(s)) = W(s), s ∈ R
2, (2)

where ∆ = ∂2

∂x2 + ∂2

∂y2
is the Laplacian, α = ν + 1, and W is standard

Gaussian white noise. The parametrization through κ, τ and α differs
from the standard parametrization through κ, σ2 and ν, but there is a
one-to-one correspondence between the two parametrizations.
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The novelty in Lindgren et al. (2011) is the combination of the above
SPDE with a finite element method (FEM) for solving it. The domain
D ⊂ R

2 of interest is first triangulated and then the GRF is expanded into
a piecewise-linear basis through

u(s) =
M
∑

k=1

wkuk(s),

where the weights w = (w1, w2, . . . , wM ) have a multivariate Gaussian
distribution, and the basis functions {u1(·), . . . , uM (·)} are constructed
such that for each node i in the triangulation the basis function ui(·) takes
the value 1 on node i, the value 0 on all other nodes and is linear on each
triangle in the triangulation. This leads to a compactly supported basis
where two basis functions only can be non-zero at the same time if they
correspond to nodes in the same triangle.

The computational benefits of this approach arise from the selection of
the precision matrix Q in

w ∼ N (0,Q−1).

The FEM leads to a spatial sparsity structure in Q that is essential for
the computational efficiency of the method. An element Qi,j is non-zero
only for neighbours of order up to and including α. This structure can
be exploited through a Cholesky decomposition of Q to reduce the com-
putational complexity of the calculations from O(N3) to O(N1.5). The
spatial models are implemented in the R package INLA (Rue et al., 2009)
for Bayesian inference.

The SPDE approach can be viewed purely as a computational tool
that makes spatial models feasible for realistically sized datasets, but this
is an unnecessarily limited viewpoint since it provides a useful tool for solv-
ing difficult problems such as constructing GRFs on spheres with natural
distance measures, multivariate GRFs (Hu et al., 2013b), GRFs with oscil-
lating covariance functions (Hu et al., 2013a), and non-stationary GRFs,
which is the main focus of this thesis.

The SPDE in Equation (2) describes an isotropic process, but this can
be relaxed to geometric anisotropy by replacing the Laplacian operator
with a non-isotropic operator. This can be done by re-writing Equation (2)
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as
(κ2 −∇ ·H∇)α/2u(s) = W(s), s ∈ R

2,

where H is a positive definite matrix. This matrix gives an anisotropic
distance measure

distance(s1, s2) =
√

(s2 − s1)TH−1(s2 − s1)

and provides a Matérn covariance function with geometric anisotropy. This
can be taken one step further by allowing κ and H to vary spatially. This
idea is explored in Papers I and II.

1.3 Background on non-stationarity

The assumption of isotropy in spatial models is in most cases an assump-
tion made out of convenience. There are infinitely many ways a covari-
ance structure could deviate from isotropy, and one could imagine sta-
tionarity like a single point in a continuum of models. But the extension
to non-stationary spatial fields is non-trivial, and requires that one de-
cides what type of non-stationarity one wants to introduce in the model.
Does one want non-stationarity in the marginal variances, non-stationarity
in the correlation structure, non-stationarity in the nugget effect, non-
stationarity in the smoothness, or maybe some combination of these types
of non-stationarities? Further, should the non-stationarity vary smoothly
over the region or should there be discontinuities in the non-stationarity?
And how does one introduce the non-stationarity in the covariance struc-
ture in practice?

Even if all the previous questions could be answered satisfactorily, there
is a fundamental inseparability between non-stationarity in the mean and
non-stationarity in the covariance structure in geostatistical models when
only a single realization is available, which often is the case with spatial
data. In classical geostatistical models the non-stationarity in the mean
is handled through linear covariates, but the non-stationarity in the co-
variance structure is ignored. For Gaussian models this does not tend to
introduce much error in the point predictions, but the prediction errors
are affected and the predictive distributions will be wrong. In the early
literature on non-stationary methods the data typically had low spatial
dimension and high temporal dimension. This made the separability of
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non-stationarity in the mean structure and the covariance structure less
of a problem, but the amount of information available on spatial struc-
ture from a low spatial dimension is limited. Strictly speaking, the data
can only inform about the covariances between observed locations and the
rest of the covariances are filled according to the assumptions we put into
the model. As a result, the estimated covariance structure will be greatly
affected by the choice of model.

The well-known deformation method of Sampson and Guttorp (1992)
fills the unobserved structure by assuming that the underlying spatial pro-
cess can be made stationary through a spatial deformation of the domain.
The assumption of the existence of a spatial deformation by itself is not
enough, and it must be combined with a parametric form for the spatial
deformation and a penalty parameter controlling how much the deforma-
tion can vary from the identity deformation. This is a flexible model where
the estimated spatial structure can be visualized from a visualization of
the spatial deformation, but it is has several issues. There is a possibility
of folding whereby two locations are mapped to the same location and
it is computationally heavy to estimate spatial deformations even for a
low number of spatial locations. The original formulation of the defor-
mation method was entirely based on the empirical covariances and used
no distributional assumption for the observations, but the method was
later extended to a Bayesian framework by Damian et al. (2001, 2003) and
Schmidt and O’Hagan (2003). These models all require replicated obser-
vations and it was not until several years later that the methodology was
extended to a single realization by Anderes and Stein (2008). Recently,
there have been developments into covariates in the covariance structure
(Schmidt et al., 2011), and to higher dimensional base spaces (Bornn et al.,
2012).

The other well-known, classical method for constructing non-stationary
spatial fields constructs a non-stationary spatial field by convolving a spa-
tially varying kernel with white noise. This approach is commonly called
the process convolution approach and started with the works of Higdon
(1998) and Higdon et al. (1999), but it was later discovered that there
exists a specific choice of the kernel function which leads to a closed form
covariance function (Paciorek and Schervish, 2006). The covariance func-
tion is a Matérn-like covariance function where the distance measure is
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defined through the arithmetic mean of positive definite matrices,

distance(s1, s2) =

√

(s2 − s1)T
(

Σ(s1) + Σ(s2)

2

)

−1

(s2 − s1),

where s1, s2 ∈ R
2 are two arbitrary spatial locations, and Σ(s1) and Σ(s2)

are positive definite matrices at locations s1 and s2, respectively. The
availability of the covariance function in closed form can be considered
a positive feature of the model since covariance functions are a familiar
concept, but the properties of the average of positive definite matrices can
be non-intuitive. If the domain consists of two parts where the left side
has long dependence in the vertical direction and the right side has long
dependence in the horizontal direction, the distance between a location
in the left side and a location in the right side behaves according to an
isotropic distance. This contradicts the intuition that the distance should
combine long vertical range on the left side with long horizontal range of
the right side in calculating the distance. The model does not include any
way to overcome the inherent computational problems of spatial methods
and is limited to a low number of spatial locations. The model described
by Paciorek and Schervish (2006) uses latent spatial fields to control the
spatially varying covariance structure, but it is also possible to use co-
variates to control the spatially varying covariance structure (Neto et al.,
2014).

1.4 Challenges in non-stationary spatial modelling

The field of non-stationary spatial modelling has several unsolved chal-
lenges such as the increased computational effort required compared with
stationary models, how to compare different methods and their estimated
covariance structures, how to visualize an estimated covariance structure,
how to visualize the uncertainty of the estimated covariance structure, and
how to set sensible priors on the non-stationarity. To provide solutions to
all of these challenges would go far beyond any single thesis and the papers
in this thesis are focused on the computational aspect and on the issue of
priors.

There does not tend to be any comparison of the results of new methods
with the results from old methods because the methods for non-stationarity
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are difficult to implement and there is a lack of availability of code, and
because the methods require tuning and long computation times. Further,
it is not clear how to compare the results from two different models beyond
predictive measures. It is difficult to visualize a non-stationary covariance
structure and there are no clear ways to compare covariance functions
or to visualize the difference between them. Making comparisons with
other methods possible requires effort from the creators of the different
methods and there was an initiative for improving the situation with a
workshop on non-stationary covariance functions at PASI 20141, but this
remains a huge challenge. Additionally, the standard deformation method
and process convolution method cannot handle the number of observations
used in Paper II and we were forced, as most other authors, to compare
with stationary models and different settings for the proposed method.

One way to overcome the computational issues of non-stationary meth-
ods is to combine an approach for non-stationarity with techniques like
covariance tapering to improve the computation times (Katzfuss, 2013),
but much of the literature has been focused on constructing complex, flex-
ible models for non-stationarity and not on increasing the computational
feasibility of the methods. The size of the problems that can be solved
has improved due to the improvements in computation hardware, but the
sizes of the available datasets have similarly increased and waiting for bet-
ter computers is not a satisfactory solution. Recently, there has been a
move away from general flexible models toward models where the covari-
ance structure is controlled by a small number of covariates (Schmidt et al.,
2011; Ingebrigtsen et al., 2014a,b; Neto et al., 2014), but reducing the num-
ber of parameters is not enough to solve the inherent problem of spatial
statistics, which is that the calculations scale cubically in the number of
observation locations.

The question of priors for non-stationarity has received little attention,
and in fact even for stationary models there is no consensus on which pri-
ors to use. The common approach in non-stationary models controlled by
covariates is to use simple priors such as Gaussian distributions and in
flexible non-stationary models it is common to use transformed Gaussian
process priors on the underlying spatially varying parameters. However,
these Gaussian process priors can be sensitive to the hyperpriors and re-

1Pan-American Advanced Study Institute on Spatio-Temporal Statistics
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quires careful selection of the hyperparameters for convergence.

Perhaps the most important question in non-stationary modelling from
an applied viewpoint is when are the non-stationary models worth the
extra effort? If there is only a marginal improvement in the predictive
distributions, it is hard to justify the extra time needed both to understand
and implement the method, and to run the models. In some cases, it
is possible to perform tests for non-stationarity (Bowman and Crujeiras,
2013; Jun and Genton, 2012; Fuentes, 2005), but even if evidence of non-
stationarity is present, it is interesting to know how much this affects the
predictive distributions.

1.5 Contributions of the thesis

The thesis is based on the following papers.

Paper I: Fuglstad, G.-A., Lindgren, F., Simpson, D., and Rue, H. (2015).
Exploring a new class of non-stationary spatial Gaussian random
fields with varying local anisotropy. Statistica Sinica, 25:115–133.

Paper II: Fuglstad, G.-A., Simpson, D., Lindgren, F., and Rue, H. (2015).
Does non-stationary spatial data always require non-stationary ran-
dom fields?. In revision.

Paper III: Fuglstad, G.-A., Simpson, D., Lindgren, F., and Rue, H.
(2015). Interpretable Priors for Hyperparameters for Gaussian Ran-
dom Fields. Technical Report.

The starting point of Paper I was to extend the recent work by Lind-
gren et al. (2011), which describes a computationally efficient method for
Gaussian Matérn fields, to non-stationary GRFs. The main goals were to
preserve the good computational properties of the SPDE approach in a
non-stationary GRF and to exploit the local definition of SPDEs to do the
non-stationary modelling in a local way by varying the coefficients of the
SPDE over the domain. The main contributions of the paper are to de-
scribe in detail the application of the finite volume method to construct a
computationally efficient discretization of the SPDE and a proof-of-concept
of the approach of controlling the range and anisotropy of the spatial field
through a vector field. The method presented in Paper I still missed some
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key features such as control of the marginal variances together with the
anisotropy and a demonstration of the inference scheme on a real-world
example.

Thus in Paper II we extended the method in Paper I with the missing
control of marginal variances and performed a large case study of annual
precipitation in the conterminous US with focus on how to model the
apparent non-stationarity in the data. The paper shows that blind ap-
plication of general flexible models for non-stationarity runs the risk of
estimating a covariance structure that to a high degree differs from sta-
tionarity due to uncaptured behaviour in the mean structure or types of
non-stationarity in the covariance structure that the model cannot cap-
ture in a good way. We find that the use of a simple model where the only
non-stationarity is a different nugget effect for the western and the eastern
regions gives predictions that are of similar quality as a computationally
much heavier general flexible model for non-stationarity. This demon-
strates the need for methods to determine what type of non-stationarity
the data exhibit.

One feature of the model discussed in Papers I and II that is shared with
the other approaches for non-stationarity using the SPDE approach (Bolin
and Lindgren, 2011; Ingebrigtsen et al., 2014a,b) is the lack of a covariance
function in closed form. In these models the implied covariance structure
must be understood through the SPDE which describes the model. This
way of modelling is unfamiliar to many and there is a need to educate
users in understanding models in different ways than through covariance
functions. But as discussed by Simpson et al. (2012), the move away
from covariance functions is a useful tool for avoiding the computational
problems of spatial statistics.

Further, the methods in Papers I and II could also be used with covari-
ates in a similar way as Ingebrigtsen et al. (2014a,b), but our approach has
a different aim than the covariate approaches. To use covariates the user
has to decide which covariates are important and in which way the covari-
ates moves the model away from stationarity. The model described in the
two first papers instead allow the underlying parameters to vary spatially
under a spline-like penalty that ensures that the functions behave regularly.
This approach is useful when it is not known which covariates should af-
fect the non-stationarity, and the estimated structure could inform about
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potential covariates that can be used in the covariance structure. However,
if covariates are available, it will always be more computationally efficient
to use a covariate-based model, which has far less parameters.

The inference in Papers I and II is done either through empirical Bayes
or through penalized likelihood, and it became apparent through the work
in Papers I and II that the prior (or penalty) on the non-stationary compo-
nent in the model has a strong impact on the estimated non-stationarity
structure. This is not completely unexpected since the model and the
types of non-stationarity it allows is important for how the model will fill
in the unobserved covariance structure. It is natural to construct a prior
that shrinks the model towards stationarity, but even for stationary mod-
els there is no consensus on which prior should be used for the parameters.
Progress has been made with reference priors for range (Berger et al., 2001;
Paulo, 2005; Oliveira, 2007; Kazianka and Pilz, 2012; Kazianka, 2013), but
these priors cannot be used as default priors in software because they are
restricted to Gaussian observation noise and because they are limited to
a low number of observations since they are computationally heavy. This
lead us to the conclusion that we cannot develop a prior for non-stationary
GRFs without first developing a prior for stationary GRFs.

Software like INLA (Rue et al., 2009), spBayes (Finley et al., 2007),
geoRGLM (Ribeiro Jr et al., 2003) and spTimer (Bakar and Sahu, 2013)
tend to use either uniform priors on a bounded interval, log-uniform priors
on a bounded interval, inverse gamma distributions or log-Gaussian dis-
tributions on range, but these are ad-hoc choices without any theoretical
justification. This means that within the common Bayesian hierarchical
modelling framework there were no practically useful, theoretically justi-
fied priors for the spatial component in common use. We attempt to rectify
this in Paper III where we develop a prior based on the Penalised Complex-
ity framework (Simpson et al., 2014). The main result is shortly included
in Simpson et al. (2014) while Paper III provides the details. The main
contribution of the paper is to provide a practically useful, theoretically
justified default joint prior for the range and the marginal variance for a
Matérn GRF, but we also discuss an extension to non-stationary models
through a formulation of the non-stationarity in the SPDE model through
a change of the geometry of the base space.
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The next step based on the work in Paper III is to extend the prior
to non-stationarity in a less ad-hoc way by taking advantage of the PC
prior framework. The first problem of interest is covariate-based models
such as Ingebrigtsen et al. (2014a,b), but there is also interest in good
priors for the models in Papers I and II. There are several ideas that have
been postponed for later during the work on the thesis: the methods in
Papers I and II are described for a regular grid, but could be extended to
triangulations, and the method could be extended to a non-separable non-
stationary spatio-temporal model through a time-derivative in the SPDE.
These are all potential future directions of the work in Papers I and II.

1.6 Papers not in the thesis

There are two papers that were worked on during the Ph.D. that are not
included in the thesis.

• Fuglstad, G.-A., Simpson, D., Lindgren, F., and Rue, H. (2013).
Non-stationary Spatial Modelling with Applications to Spatial Pre-
diction of Precipitation. Preprint. arXiv:1306.0408.

• Simpson, D., Martins, T., Riebler, A., Fuglstad, G.-A., Rue, H.,
and Sørbye, S. (2014). Penalising model component complexity:
A principled, practical approach to constructing priors. Submitted.
arXiv:1403.4630

The first paper has been superseded by Paper II that partly includes the
results of the first paper and Paper III provides the details and expands
on the results for stationary GRFs found in the second paper.
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Abstract

Gaussian random fields (GRFs) play an important part in spa-
tial modelling, but can be computationally infeasible for general co-
variance structures. An efficient approach is to specify GRFs via
stochastic partial differential equations (SPDEs) and derive Gaus-
sian Markov random field (GMRF) approximations of the solutions.
We consider the construction of a class of non-stationary GRFs with
varying local anisotropy, where the local anisotropy is introduced by
allowing the coefficients in the SPDE to vary with position. This is
done by using a form of diffusion equation driven by Gaussian white
noise with a spatially varying diffusion matrix. This allows for the
introduction of parameters that control the GRF by parametrizing
the diffusion matrix. These parameters and the GRF may be consid-
ered to be part of a hierarchical model and the parameters estimated
in a Bayesian framework. The results show that the use of an SPDE
with non-constant coefficients is a promising way of creating non-
stationary spatial GMRFs that allow for physical interpretability of
the parameters, although there are several remaining challenges that
would need to be solved before these models can be put to general
practical use.

Keywords: Non-stationary, Spatial, Gaussian random fields, Gaus-
sian Markov random fields, Anisotropy, Bayesian
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1 Introduction

Many spatial models for continuously indexed phenomena, such as temper-
ature, precipitation and air pollution, are based on Gaussian random fields
(GRFs). This is mainly due to the fact that their theoretical properties
are well understood and that their distributions can be fully described
by mean and covariance functions. In principle, it is enough to specify
the mean at each location and the covariance between any two locations.
However, specifying covariance functions is hard and specifying covari-
ance functions that can be controlled by parameters in useful ways is even
harder. This is the reason why the covariance function usually is selected
from a class of known covariance functions such as the exponential covari-
ance function, the Gaussian covariance function, or the Matérn covariance
function.

But even when the covariance function is selected from one of these
classes, the feasible problem sizes are severely limited by a cubic increase
in computation time as a function of the number of observations and a
quadratic increase in computation time as a function of the number of pre-
diction locations. This computational challenge is usually tackled either
by reducing the dimensionality of the problem (Cressie and Johannes-
son (2008); Banerjee, Gelfand, Finley, and Sang (2008)), by introducing
sparsity in the precision matrix (Rue and Held (2005)) or the covariance
matrix (Furrer, Genton, and Nychka (2006)), or by using an approximate
likelihood (Stein, Chi, and Welty (2004); Fuentes (2007)). Sun, Li, and
Genton (2012) offers comparisons of the advantages and challenges asso-
ciated with the usual approaches to large spatial datasets.

We explore a new class of non-stationary GRFs that provide both an
easy way to specify the parameters and allow for fast computations. The
main computational tool used is Gaussian Markov random fields (GM-
RFs) (Rue and Held (2005)) with a spatial Markovian structure where
each position is conditionally dependent only on positions close to itself.
The strong connection between the Markovian structure and the preci-
sion matrix results in sparse precision matrices that can be exploited in
computations. The main problem associated with such an approach is
that GMRFs must be constructed through conditional distributions, which
presents a challenge as it is generally not easy to determine whether a set
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of conditional distributions gives a valid joint distribution. Additionally,
the conditional distributions have to be controlled by useful parameters
in such a way that not only is the joint distribution valid, but also that
the effect of the parameters is understood. Lastly, it is desirable that the
GMRF is a consistent approximation of a GRF in the sense that when the
distances between the positions decrease, the GMRF “approaches” a con-
tinuous GRF. These issues are even more challenging for non-stationary
GMRFs. It is is extremely hard to specify the non-stationarity directly
through conditional distributions.

There is no generally accepted way to handle non-stationary GRFs, but
many approaches have been suggested. There is a large literature on meth-
ods based on the deformation method of Sampson and Guttorp (1992),
where a stationary process is made non-stationary by deforming the space
on which it is defined. Several Bayesian extensions of the method have
been proposed (Damian, Sampson, and Guttorp (2001, 2003); Schmidt
and O’Hagan (2003); Schmidt, Guttorp, and O’Hagan (2011)), but all
these methods require replicated realizations which might not be available.
There has been some development towards an approach for a single realiza-
tion, but with a “densely” observed realization (Anderes and Stein (2008)).
Other approaches use kernels which are convolved with Gaussian white
noise (Higdon (1998); Paciorek and Schervish (2006)), weighted sums of
stationary processes (Fuentes (2001)) and expansions into a basis such as
a wavelet basis (Nychka, Wikle, and Royle (2002)). Conceptually simpler
methods have been made with “stationary windows” (Haas (1990b,a)) and
with piecewise stationary Gaussian processes (Kim, Mallick, and Holmes
(2005)). There has also been some progress with methods based on the
spectrum of the processes (Fuentes (2001, 2002a,b)). Recently, a new type
of method based on a connection between stochastic partial differential
equations (SPDEs) and some classes of GRFs was proposed by Lindgren,
Rue, and Lindström (2011). They use an SPDE to model the GRF and
construct a GMRF approximation to the GRF for computations. An ap-
plication of a non-stationary model of this type to ozone data can be found
in Bolin and Lindgren (2011) and an application to precipitation data can
be found in Ingebrigtsen, Lindgren, and Steinsland (2013).

This paper extends on the work of Lindgren, Rue, and Lindström
(2011) and explores the possibility of constructing a non-stationary GRF
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by varying the local anisotropy. The interest lies both in considering the
different types of structures that can be achieved, and how to parametrize
the GRF and estimate the parameters in a Bayesian setting. The con-
struction of the GRF is based on an SPDE that describes the GRF as
the result of a linear filter applied to Gaussian white noise. Basically, the
SPDE expresses how the smoothing of the Gaussian white noise varies
at different locations. This construction bears some resemblance to the
deformation method of Sampson and Guttorp (1992) in the sense that
parts of the spatial variation of the linear filter can be understood as a
local deformation of the space, only with an associated spatially varying
variance for the Gaussian white noise. The main idea for computations
is that since this filter works locally, it implies a Markovian structure on
the GRF. This Markovian structure can be transferred to a GMRF which
approximates the GRF, and in turn fast computations can be done with
sparse matrices.

This paper presents a new type of model and the main goal is to
explore what can be achieved in terms of models and inference with the
model. Section 2 contains the motivation and introduction to the class
of non-stationary GRFs that is studied in the other sections. The form
of the SPDE that generates the class is given and it is related to more
standard constructions of GMRFs. In Section 3 illustrative examples are
given on both stationary and non-stationary constructions. This includes
some discussion on how to control the non-stationarity of the GRF. Then
in Section 4 we discuss parameter estimation for these types of models.
The paper ends with discussion of extensions in Section 5, and general
discussion and concluding remarks in Section 6.

2 New class of non-stationary GRFs

A GMRF u is usually parametrized through a mean µ and a precision
matrix Q such that u ∼ N (µ,Q−1). The main advantage of this for-
mulation is that the Markovian structure is represented in the non-zero
structure of the precision matrix Q (Rue and Held (2005)). Off-diagonal
entries are non-zero if and only if the corresponding elements of u are con-
ditionally independent. This can be seen from the conditional properties
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of a GMRF,

E(ui|u−i) = µi −
1

Qi,i

∑

j 6=i

Qi,j(uj − µj), Var(ui|u−i) =
1

Qi,i
,

where u−i denotes the vector u with element i deleted. For a spatial
GMRF the non-zeros of Q can correspond to grid-cells that are close to
each other in a grid, neighbouring regions in a Besag model, and so on.
However, even when this non-zero structure is determined it is not clear
what values should be given to the non-zero elements of the precision
matrix. This is the framework of the conditionally auto-regressive (CAR)
models, whose conception predates the advances in modern computational
statistics (Whittle (1954); Besag (1974)). In the multivariate Gaussian
case it is clear that the requirement for a valid joint distribution is that
Q be positive definite, not an easy condition to check.

Specification of a GMRF through its conditional properties is usually
done in a somewhat ad-hoc manner. For regular grids, a process such as
random walk can be constructed and the only major issue is to get the con-
ditional variance correct as a function of step-length. For irregular grids
the situation is not as clear because the conditional means and variances
must depend on the varying step-lengths. In Lindgren and Rue (2008) it is
demonstrated that some such constructions for second-order random walk
can lead to inconsistencies as new grid points are added, and they offer a
surprisingly simple construction for second-order random walk based on
the SPDE

−
∂2

∂x2
u(x) = σW(x),

where σ > 0 and W is standard Gaussian white noise. If the precision
matrix is chosen according to their scheme one does not have to worry
about scaling as the grid is refined, as it automatically approaches the
continuous second-order random walk. There is an automatic procedure
to select the form of the conditional means and variances.

A one-dimensional second-order random walk is a relatively simple
example of a process with the same behaviour everywhere. To approximate
a two-dimensional, non-stationary GRF, a scheme would require (possibly)
different anisotropy and correct conditional variance at each location. To
select the precision matrix in this situation poses a large problem and
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there is abundant use of simple models such as a spatial moving average

E(ui,j |u−{(i,j)}) =
1

4
(ui−1,j + ui+1,j + ui,j−1 + ui,j+1)

with a constant conditional variance 1/α. There are ad-hoc ways to extend
such a scheme to a situation with varying step-lengths in each direction,
but little theory for more irregular choices of locations.

We start with the close connection between SPDEs and some classes
of GRFs as presented in Lindgren, Rue, and Lindström (2011) that is not
plagued by such issues. From Whittle (1954), it is known that the SPDE

(κ2 −∆)u(s) = W(s), s ∈ R
2, (2.1)

where κ2 > 0 and ∆ = ∂2

∂s2
1

+ ∂2

∂s2
2

is the Laplacian, gives rise to a GRF u

with the Matérn covariance function

r(s) =
1

4πκ2
(κ||s||)K1(κ||s||),

where K1 is the modified Bessel function of the second kind of order 1.
Equation (2.1) can be extended to fractional operator orders in order to
obtain other smoothness parameters in the Matérn covariance function.
However, for practical applications, the true smoothness of the field is
very hard to estimate from data, in particular when the model is used in
combination with an observation noise model. Restricting the develop-
ment to smoothness 1 in the Matérn family is therefore unlikely to be a
major practical serious limitation. For practical computations the model
is discretized using methods similar to those in Lindgren, Rue, and Lind-
ström (2011), which does permit other operator orders. Integer orders
are easiest but, for stationary models, fractional orders are also achievable
(Lindgren, Rue, and Lindström (2011, Authors’ discussion response)). For
non-stationary models, techniques similar to Bolin (2013, Section 4.2) are
possible. This means that even though we here restrict the model devel-
opment to the special case in (2.1), other smoothnesses, e.g. exponential
covariances, are reachable by combining the different approximation tech-
niques.

The intriguing part, that Lindgren, Rue, and Lindström (2011) ex-
panded upon in (2.1), is that (κ2 − ∆) can be interpreted as a linear
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filter acting locally. This means that if the continuously indexed process
u were instead represented by a GMRF u on a grid or a triangulation,
with appropriate boundary conditions, one could replace this operator
with a matrix, say B(κ2), only involving neighbours of each location such
that (2.1) becomes approximately

B(κ2)u ∼ N (0, I). (2.2)

The matrix B(κ2) depends on the chosen grid but, after the relationship
is derived, the calculation of B(κ2) is straightforward for any κ2. Since
B(κ2) is sparse, the resulting precision matrix Q(κ2) = B(κ2)TB(κ2) for
u is also sparse. This means that by correctly discretizing the operator
(or linear filter), it is possible to devise a GMRF with approximately the
same distribution as the continuously indexed GRF. And because it comes
from a continuous equation one does not have to worry about changing
behaviour as the grid is refined.

The class of models that are studied in this paper is the one that can
be constructed from (2.1), but with anisotropy added to the ∆ operator.
A function H, that gives 2×2 symmetric positive definite matrices at each
position, is introduced and the operator is changed to

∇ ·H(s)∇ =
∂

∂s1

(

h11(s)
∂

∂s1

)

+
∂

∂s1

(

h12(s)
∂

∂s2

)

+
∂

∂s2

(

h21(s)
∂

∂s1

)

+
∂

∂s2

(

h22(s)
∂

∂s2

)

.

This induces different strengths of local dependence in different directions,
which results in a range that varies with direction at all locations. Further,
it is necessary for the discretization procedure to restrict the SPDE to a
bounded domain. The chosen SPDE is

(κ2−∇·H(s)∇)u(s) = W(s), s ∈ D = [A1, B1]×[A2, B2] ⊂ R
2, (2.3)

where the rectangular domain makes it possible to use periodic boundary
conditions. Neither the rectangular shape of the domain nor the periodic
boundary conditions are essential restrictions for the model, but are merely
the practical restrictions we choose to work with, in order to focus on the
non-stationarity itself.
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When using periodic boundary conditions when approximating the
likelihood of a stationary process on an unbounded domain, the param-
eter estimates are biased, e.g., when using the Whittle likelihood in the
two-dimensional case (Dahlhaus and Künsch (1987)). However, as Lind-
gren, Rue, and Lindström (2011, Appendix A.4) notes for the case with
Neumann boundary conditions, normal derivatives set to zero, the effect
of the boundary conditions is limited to a region in the vicinity of the
boundary. At a distance greater than twice the correlation range away
from the boundary the bounded domain model is nearly indistinguishable
from the model on an unbounded domain. Therefore, the bias due to
boundary effects can be eliminated by embedding the domain of inter-
est into a larger region, in effect moving the boundary away from where
it would influence the likelihood function. For non-stationary models,
defining appropriate boundary conditions becomes part of the practical
model formulation itself. For simplicity we ignore this issue here, leaving
boundary specification for future development, but provide some addi-
tional practical comments in Section 5.

Both for interpretation and the practical use of (2.3) it is useful to
decompose H into scalar functions. The anisotropy due to H is decom-
posed as H(s) = γI2+v(s)v(s)T, where γ specifies the isotropic, baseline
effect, and the vector field v(s) = [vx(s), vy(s)]

T specifies the direction
and magnitude of the local, extra anisotropic effect at each location. In
this way, one can, loosely speaking, think of different Matérn-like fields
locally each with its own anisotropy that are combined into a full process.
An example of an extreme case of a process with a strong local anisotropic
effect is shown in Example 3.2. The example shows that there is a close
connection between the vector field and the resulting covariance structure
of the GRF.

The main computational challenge is to determine the appropriate
discretization of the SPDE in (2.3), that is how to derive a matrix B such
as in (2.2). The idea is to look to the field of numerics for discretization
methods for differential equations, then to combine these with properties
of Gaussian white noise. We use that for a Lebesgue measurable subset A
of Rn, for some n > 0,

∫

A
W(s) ds ∼ N (0, |A|),
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where |A| is the Lebesgue measure of A, and for two disjoint Lebesgue
measurable subsets A and B of Rn the integral over A and the integral
over B are independent (Adler and Taylor (2007, pp. 24–25)). A matrix
equation such as (2.2) was derived for the SPDE in (2.3) with a finite
volume method. The derivations are quite involved and technical and
are given in a supplementary document. However, when the form of the
discretized SPDE has been derived as an expression of the coefficients in
the SPDE and the grid, the conversion from SPDE to GMRF is automatic
for any choice of coefficients and rectangular domain.

3 Examples of models

The simplest case of (2.3) is with constant coefficients. In this case one
has an isotropic model (up to boundary effects) if H is a constant times
the identity matrix or a stationary anisotropic model (up to boundary
effects) if this is not the case. In both cases it is possible to calculate an
exact expression for the covariance function and the marginal variance for
the corresponding SPDE solved over R2.

For this purpose write

H =

[

H1 H2

H2 H3

]

,

where H1, H2, and H3 are constants. This gives the SPDE

[

κ2 −H1

∂2

∂x2
− 2H2

∂2

∂x∂y
−H3

∂2

∂y2

]

u(s) = W(s), s ∈ R
2.

If λ1 and λ2 are the eigenvalues of H, then the solution of the SPDE is
actually only a rotated version of the solutions of

[

κ2 − λ1

∂2

∂x̃2
− λ2

∂2

∂ỹ2

]

u(s) = W(s), s ∈ R
2. (3.1)

Here the new x-axis is parallel to the eigenvector of H corresponding to
λ1 in the old coordinate system and the new y-axis is parallel to the
eigenvector of H corresponding to λ2.
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The marginal variance of u is

σ2

m =
1

4πκ2
√

det(H)
=

1

4πκ2
√
λ1λ2

.

A proof is given in the supplementary material. One can think of the
eigenvectors of H as the two principal directions and λ1 and λ2 as a
measure of the “strength” of the diffusion in these principal directions.
Additionally, if λ1 = λ2, which is equivalent toH being equal to a constant
times the identity matrix, the SPDE is rotation and translation invariant
and the solution is isotropic. If λ1 6= λ2, the SPDE is still translation
invariant, but not rotation invariant, and the solutions are stationary, but
not isotropic.

In our case the domain is not R
2, but [0, A] × [0, B] with periodic

boundary conditions. This means that a boundary effect is introduced
and the above results are only approximately true.

3.1 Stationary models

For a constant H the SPDE in (2.3) becomes

[κ2 −∇ ·H∇]u(s) = W(s), s ∈ [0, A]× [0, B].

This SPDE can be rewritten as

[1−∇ · Ĥ∇]u(s) = σW(s), s ∈ [0, A]× [0, B], (3.2)

where Ĥ = H/κ2 and σ = 1/κ2. From this form it is clear that σ is only a
scale parameter and that it is enough to solve for σ = 1 and then multiply
the solution with the desired value of σ. Therefore, it is the effect of Ĥ
that is most interesting to study.

It is useful to parametrize Ĥ as Ĥ = γI2 + βv(θ)v(θ)T, where v(θ) =
[cos(θ), sin(θ)]T, γ > 0, and β > 0. In this parametrization one can
think of γ as the coefficient of the second order derivative in the direction
orthogonal to v(θ) and γ+β as the coefficient of the second order derivative
in the direction v(θ). Ignoring boundary effects, γ and γ + β are the
coefficients of the second order derivatives in (3.1) and θ is how much the
coordinate system has been rotated in the positive direction.
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Example 3.1 (Stationary GMRF). Here we consider the effects of using
a constant Ĥ. Use the SPDE in (3.2) with domain [0, 20] × [0, 20] and
periodic boundary conditions, and discretize with a regular 200 × 200
grid. Two different values of Ĥ are used, an isotropic case with Ĥ = I2
and an anisotropic case with γ = 1, β = 8, and θ = π/4. The anisotropic
case corresponds to a coefficient 9 in the x-direction and a coefficient 1
in the y-direction, and then a rotation of π/4 in the positive direction.
The isotropic GMRF has marginal variances 0.0802 and the anisotropic
GMRF has marginal variances 0.0263.

Figure 1 shows one realization for each of the cases. Comparing Fig-
ure 1(a) and Figure 1(b) it seems that the direction with the higher coef-
ficient for the second-order derivative has longer range and more regular
behaviour. Compared to the corresponding partial differential equation
(PDE) without the white noise, this is what one would expect since large
values of the coefficient penalize large values of the second order deriva-
tives.

One expects that the correlation range increases when the coefficient
is increased. This is in fact what happens. Figure 2 shows the correla-
tion of the variable at (9.95, 9.95) with every other point in the grid for
the isotropic and the anisotropic case. This is sufficient to describe all
the correlations since the solutions are stationary. One can see that the
iso-correlation curves are close to ellipses with semi-axes along v(θ) and
the direction orthogonal to v(θ), and that the correlation decreases most
slowly and most quickly in the directions used to specify Ĥ, with slow-
est decrease along v(θ). It is interesting that the isotropic and the non-
isotropic cases have approximately the same length for the minor semi-axis
of the iso-correlation curves, and that the major semi-axis is longer for the
anisotropic case, lengths being connected with

√
γ and

√
γ + β.

The use of 3 parameters thus allows for the creation of GMRFs that are
more regular in one direction than the other. One can use the parameters
γ, β, and θ to control the form of the correlation function, and σ to get
the desired marginal variance.
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Figure 1: (a) Realization from the SPDE in Example 3.1 on [0, 20]2 with
a 200× 200 grid and periodic boundary conditions with γ = 1, β = 0, and
θ = 0. (b) Realization from the SPDE in Example 3.1 on [0, 20]2 with a
200 × 200 grid and periodic boundary conditions with γ = 1, β = 8, and
θ = π/4.
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Figure 2: (a) Correlation of the centre with all other points for the solution
of the SPDE in Example 3.1 on [0, 20]2 with a 200×200 grid and periodic
boundary conditions with γ = 1, β = 0, and θ = 0. (b) Correlation of the
centre with all other points for the SPDE in Example 3.1 on [0, 20]2 with
a 200 × 200 grid and periodic boundary conditions with γ = 1, β = 8,
θ = π/4.
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3.2 Non-stationary models

To make the solution of the SPDE in (2.3) non-stationary, either κ2 or H
has to be a non-constant function. One way to achieve non-stationarity is
by choosing H(s) = γI2 + βv(s)v(s)T, where v is a non-constant vector
field on [0, A]×[0, B] satisfying the periodic boundary conditions and γ > 0
and β > 0 are constants.

Example 3.2 (Non-stationary GMRF). Use the domain [0, 20]2 with a
200 × 200 grid and periodic boundary conditions for the SPDE in (2.3).
Let κ2 be 1 and let H be given as H(s) = γI2 + βv(s)v(s)T, where v is a
2-dimensional vector field on [0, 20]2 which satisfies the periodic boundary
conditions and γ > 0 and β > 0 are constants.

To create an interesting vector field, start with f : [0, 20]2 → R defined
by

f(x, y) =

(

10

π

)(

3

4
sin(2πx/20) +

1

4
sin(2πy/20)

)

.

Then calculate the gradient ∇f and let v : [0, 20]2 → R
2 be the gradient

rotated 90◦ counter-clockwise at each point. Figure 3(a) shows the values
of the function f and Figure 3(b) shows the resulting vector field v. The
vector field is calculated on a 400 × 400 regular grid, because the values
between neighbouring cells in the discretization are needed.

Figure 4(a) shows one realization from the resulting GMRF with γ =
0.1 and β = 25. A much higher value for β than γ is chosen to illustrate the
connection between the vector field and the resulting covariance structure.
From the realization it is clear that there is stronger dependence along the
directions of the vector field shown in Figure 3(b) at each point than in the
other directions. In addition, from Figure 4(b) it seems that positions with
large values for the norm of the vector field have smaller marginal variance
than positions with small values, and vice versa. This feature introduces
an undesired connection between anisotropy and marginal variances. It is
possible to reduce this interaction by reformulating the controlling SPDE,
as discussed briefly in Section 5.

From Figure 5 one can see that the correlations depend on the direc-
tion and norm of the vector field, and that there is clearly non-stationarity.
Figure 5(a) and Figure 5(c) show that the correlations with the positions
(4.95, 1.95) (4.95, 7.95) tend to follow the vector field around the point
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Figure 3: The gradient of the function illustrated in (a) is calculated
and rotated 90◦ counter-clockwise at each point to give the vector field
illustrated in (b).

(5, 5), whereas Figure 5(b) and Figure 5(d) show that the correlations with
the positions (14.95, 1.95) and (14.95, 7.95) tend to follow the vector field
away from the point (15, 5). Figure 5(e) shows that the correlations with
position (4.95, 4.95) and every other point are not isotropic, but concen-
trated close to the point itself, and Figure 5(f) shows that the correlations
with position (14.95, 4.95) have high correlation along four directions that
extend out from the point.

We see that allowing H to be non-constant can vary the dependence
structure in more interesting ways than in stationary anisotropic fields.
Using a vector field to control how H varies means that the resulting cor-
relation structure can be partially visualized from the vector field. When
γ > 0 this construction guarantees that H is everywhere positive definite.
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Figure 4: One observation and the marginal variances of the solution of
the SPDE in Equation (2.3) on a 200 × 200 regular grid of [0, 20]2 with
periodic boundary conditions, κ2 ≡ 1 and H = 0.1I2 + 25vvT, where v is
the vector field described in Example 3.2.
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4 Inference

4.1 Posterior distribution and parametrization

For inference, we introduce parameters that control the behaviour of the
coefficients in (2.3) and, in turn, the behaviour of the GMRF. This is
done by expanding each of the functions in a basis and using a linear
combination of the basis functions weighted by parameters. For κ2 only
one parameter, say θ1, is needed as it is assumed constant, but for the
function H a vector of parameters θ2 is needed. Set θ = (θ1,θ

T

2 ) and give
it a prior θ ∼ π(θ). Then for each value of θ, a discretization, described
in the supplementary document, is used to construct the GMRF u|θ ∼
N (0,Q(θ)−1). Combine the prior of θ with this conditional distribution
to find the joint distribution of the parameters and u. With a model for
how an observation y is made from the underlying GMRF, one forms a
hierarchical spatial model. The relationship between y and u is chosen to
be particularly simple, namely that linear combinations of u are observed
with Gaussian noise, y|u ∼ N (Au,Q−1

N
), where QN is a known precision

matrix.

The purpose of the hierarchical model is to do inference on θ based
on an observation of y. With a Gaussian latent model it is possible to
integrate out the latent field u exactly and this leads to the log-posterior

log(π(θ|y)) =

Const + log(π(θ)) +
1

2
log(|Q(θ)|)

−
1

2
log(|QC(θ)|) +

1

2
µC(θ)

TQC(θ)µC(θ), (4.1)

where QC(θ) = Q(θ) +ATQNA and µC(θ) = QC(θ)
−1ATQNy. In (4.1)

one sees that the posterior distribution of θ contains terms that are hard to
handle analytically. It is hard to say anything about both the determinants
and the quadratic term as functions of θ. Therefore, the inference is
done numerically. The model is of a form that could be handled by the
INLA methodology (Rue, Martino, and Chopin (2009)), but when this
was written, the R-INLA software1 did not have the model implemented.

1
www.r-inla.org
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Instead the parameters are estimated with maximum a posteriori estimates
based on the posterior density given in (4.1). Standard deviations are
estimated from the square roots of the diagonal elements of the observed
information matrix.

The parametrization ofH in the previous section employs a pre-defined
vector field together with a parameter β that controls the magnitude of
the anisotropy due to this vector field. This is a useful representation
for achieving a desired dependence structure, but in a inference setting
there may not be any pre-defined vector field. Therefore, the vector field
itself must be estimated. In this context the decomposition, H(s) = γI2+
v(s)v(s)T, is more useful. For inference it is necessary to control the
vector field by a finite number of parameters. The simple case of a constant
matrix requires 3 parameters. Use parameters γ, v1, and v2 and write

H(s) ≡ γI2 +

[

v1
v2

]

[

v1 v2
]

.

If H is not constant, it is necessary to parametrize the vector field v

in some manner. Any vector field is possible for v, so a basis that can
generate any vector field is desirable. The Fourier basis possesses this
property, but is only one of many possible choices. Let the domain be
[0, A] × [0, B] and assume that v is a differentiable, periodic vector field
on the domain. Then each component of the vector field can be written
as a Fourier series of the form

∑

(k,l)∈Z2

Ck,l exp

[

2πi

(

k

A
x+

l

B
y

)]

,

where i is the imaginary unit. But since the components are real-valued,
each of them can also be written as a real 2-dimensional Fourier series of
the form

A0,0 +
∑

(k,l)∈E

[

Ak,l cos

[

2π

(

k

A
x+

l

B
y

)]

+Bk,l sin

[

2π

(

k

A
x+

l

B
y

)]]

,

where the set E ⊂ Z
2 is given by E = (N× Z) ∪ ({0} × N).
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Putting these Fourier series together gives

v(s) =
[

A
(1)

0,0

A
(2)

0,0

]

+
∑

(k,l)∈E

[

A
(1)

k,l

A
(2)

k,l

]

cos

[

2π

(

k

A
x+

l

B
y

)]

+

∑

(k,l)∈E

[

B
(1)

k,l

B
(2)

k,l

]

sin

[

2π

(

k

A
x+

l

B
y

)]

,

where A
(1)

k,l and B
(1)

k,l are the coefficients for the first component of v and

A
(2)

k,l and B
(2)

k,l are the coefficients of the second component. This gives 2
coefficients when only the zero-frequency is included, then 18 parameters
when the (0, 1), (1,−1), (1, 0) and (1, 1) frequencies are included. When
the number of frequencies used in each direction doubles, the number of
required parameters quadruples.

4.2 Inference on simulated data

In the supplementary material, we consider data generated from known
sets of parameters for models of the type

u(s)−∇ ·H(s)∇u(s) = W(s),

where W is a standard Gaussian white noise process and H(·) is a spatially
varying 2× 2 matrix, with periodic boundary conditions on a rectangular
domain. The matrix is parameterized as H(s) = γI + v(s)v(s)T. The
results illustrate the ability to estimate the vector field controlling the
anisotropy for four test cases.

These examples focus on simple cases where specific issues can be
highlighted. The inherent challenges in estimating a spatially varying
direction and strength are equally important in the more general setting
where also κ and the baseline effect γ are allowed to vary. The estimation
of the vector field presents an important component that must be dealt
with in any inference strategy for the more general case.
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5 Extensions

To make the model applicable to datasets it is necessary to also make the
parameters κ and γ spatially varying functions. This results in some con-
trol also over the marginal variance and the strength of the local baseline
component of the anisotropy at each location. A varying κ is discussed
briefly in Section 3.2 in Lindgren, Rue, and Lindström (2011).

This comes at the cost of two more functions that must be inferred
together with the vector field v that, in turn, means two more functions
need to be expanded into bases. This could be done with a Fourier basis,
but any basis which respects the boundary condition could in principle be
used. The amount of freedom available by having four spatially varying
functions comes at a price, and it would be necessary to introduce some
apriori restrictions on their behaviour.

In the supplementary material we demonstrate the challenge with the
non-identifiability of the sign of the vector field. It would be possible
to make the situation less problematic by enforcing more structure in
the estimated vector field. For example, through spline penalties which
adds a preference for components without abrupt changes. Such apriori
restrictions make sense both from a modelling perspective, in the sense
that the properties should not change to quickly, and from a computational
perspective, in the sense that it is desirable to avoid situations as the one
encountered in the previous section where the direction of the vector field
flips.

The full model could be used in an application through a three-step
approach. First, choose an appropriate basis to use for each function
and select an appropriate prior. This means deciding how many basis
elements one is willing to use from a computational point of view, and
how strong the apriori penalties need to be. Second, find the maximum
aposteriori estimate of the functions κ, γ, v1, and v2. Third, assume the
maximum aposteriori estimates are the true functions and calculate the
predicted values and prediction variances. Full details of such an approach
are beyond the current scope. This is being studied in current work on
an application to annual rainfall data in the conterminous US (Fuglstad,
Simpson, Lindgren, and Rue (2013)).

Another way forward deals with the interactions of the functions κ, γ,
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v1, and v2. The functions interact in difficult ways to control marginal
variance and to control anisotropy. As seen in Example 3.2 the vector
field that controls the anisotropic behaviour is also linked to the marginal
variances of the field. It would be desirable to try to separate the functions
that are allowed to affect the marginal variances and the functions that
are allowed to affect the correlation structure. This may present a use-
ful feature in applications, both for interpretability and for constructing
priors.

One promising way to reduce interaction is to extend ideas presented
in Section 3.4 of Lindgren, Rue, and Lindström (2011), linking the use
of an anisotropic Laplacian to the deformation method of Sampson and
Guttorp (1992). The link is too restrictive, but the last comments about
the connection to metric tensors leads to a useful way to rewrite the SPDE
in (2.3). This is work in progress and involves interpreting the simple
SPDE

[1−∆]u = W

as an SPDE on a Riemannian manifold with an inverse metric tensor
defined through the strength of dependence in different directions, in a
similar way as the spatially varying matrix H. This leads to a slightly
different SPDE where a separate function, that does not affect correlation
structure, can be used to control marginal standard deviations. How-
ever, the separation is not perfect since the varying metric tensor gives a
curved space and thus affects the marginal variances of the solution of the
above SPDE, though the effect of the metric tensor on marginal standard
deviations appears small.

Another issue which has not been addressed is how to define rele-
vant boundary conditions. For rectangular domains, periodic boundary
conditions are simple to implement, but a naive use of such conditions is
typically inappropriate in practical applications due to the resulting spuri-
ous dependence between physically distant locations. This problem can be
partly rectified by embedding the region of interest into a larger covering
domain. It is also possible to apply Neumann-type boundary conditions
similar to the ones used by Lindgren, Rue, and Lindström (2011). These
are easier to adapt to more general domains, but they still require a do-
main extension in order to remove the influence of the boundary condition
on the likelihood. A more theoretically appealing, and computationally
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potentially less expensive, solution is to directly define the behaviour of
the field along the boundary so that the models would contain stationary
fields as a neutral case. Work is underway to design stochastic boundary
conditions to accomplish this, and some of the solutions show potential
for extension to non-stationary models.

6 Discussion

The paper explores different aspects of a new class of non-stationary GRFs
based on local anisotropy. The benefit of the formulation presented is that
it allows for flexible models with few requirements on the parameters.
Since the GRF is based on an SPDE, there is no need to worry about how
to change the discretized model in a consistent manner when the grid is
refined. This is one of the more attractive features of the SPDE-based
modelling.

The focus of the examples has been the matrix H introduced in the
Laplace-operator. The examples show that a variety of different effects
can be achieved by using different types of spatially varying matrices.
As shown in Section 3, anisotropic fields have anisotropic Matérn-like co-
variance functions, through stretching and rotating the domain, and can
be controlled by four parameters. It is possible to control the marginal
variances, the principal directions, and the range in each of the principal
directions. A spatially varying H gives non-stationary random fields. And
by using a vector field to specify the strength and direction of extra spatial
dependence in each location, there is a clear connection between the vec-
tor field and the resulting covariance structure. The covariance structure
can be partially visualized from the vector field.

There are many avenues that are not explored here. The chief mo-
tivation is to explore a class of models for what can be achieved, and
for the associated challenges of inference with the models. We show that
a vector field constitutes a useful way to control local anisotropy in the
SPDE-model of Lindgren, Rue, and Lindström (2011). What remains for
a fully flexible spatial model is to allow κ and γ to be spatially varying
functions, this is a simpler task than the anisotropy component since they
do not require vector fields. For this more complex model there are four
spatially varying functions to estimate and an expansion of each of these
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functions into a basis leads to many parameters. It remains to investi-
gate appropriate choices of priors for use in applications. This question is
connected with the discussion in Section 5 on other constructions of the
model that separate the functions allowed to affect marginal variances and
the functions allowed to affect correlation structure.
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(a) Correlations with position
(4.95, 1.95).
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(b) Correlations with position
(14.95, 2.05).
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(c) Correlations with position
(4.95, 7.95).
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(d) Correlations with position
(14.95, 7.95).
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(e) Correlations with position
(4.95, 4.95).
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(f) Correlations with position
(14.95, 4.95).

Figure 5: Correlations for different points with all other points for the
solution of the SPDE in Example 3.2.
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The supplementary material contains investigation of inference on sim-
ulated data, the derivation of the discretization of the SPDE used in the
paper, and the derivation of the marginal variance of the stationary solu-
tion.

S1 Inference on simulated data

We consider data generated from a known set of parameters. The prior
used is improper, uniform on (0,∞) for γ and uniform on R for the rest of
the parameters in H. We investigate whether it is possible to estimate the
stationary model with exactly observed data and whether the approximate
estimation scheme performs well.

Example S1.1. Use the SPDE

u(s)−∇ ·H∇u(s) = W(s), s ∈ [0, 20]× [0, 20], (S1.1)

where W is a standard Gaussian white noise process and H is a 2 × 2
matrix, with periodic boundary conditions. Let H = 3I2 + 2vvT, with

47
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Table 1: Parameter estimates for Example S1.1.
Parameter True value Estimate Std.dev.

γ 3 2.965 0.070
v1 0.707 0.726 0.049
v2 1.225 1.231 0.039

v = (1,
√
3)/2. Here H has an eigenvector v with eigenvalue 5 and an

eigenvector orthogonal to v with eigenvalue 3. Construct the GMRF on a
100× 100 grid.

One observation of the solution is shown in Figure 1(a). Assume thatH
is constant, but that its value is not known. Then using the decomposition
from the previous sections one can write

H = γI2 +

[

v1
v2

]

[

v1 v2
]

,

where γ, v1 and v2 are the parameters. Since the process is assumed to
be exactly observed, we can use the distribution of θ|u. This gives the
posterior estimates shown in Table 1. From the table one can see that all
the estimates are accurate to one digit, and within one standard deviation
of the true value. This decomposition of H is invariant to the sign of v,
so there are two choices of parameters that mean the same.

The biases in the estimates were evaluated by generating 10000 datasets
from the true model and estimating the parameters for each dataset. The
estimated bias was less than or equal to 0.1% of the true value for each
parameter. Additionally, the sample standard deviations based on the
estimation of the parameters for each of the 10000 datasets were 0.070,
0.050, and 0.039 for γ, v1, and v2, respectively. Each one corresponds well
to the corresponding approximate standard deviation, computed via the
observed information matrix, that is shown in Table 1.

It is then possible to estimate the model, but this is under the as-
sumption that it is known beforehand that the model is stationary. The
estimation is repeated for the more complex model developed in the previ-
ous sections that allows for significant non-stationarity controlled through
a vector field. The intention is to evaluate whether the more complex
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Figure 1: (a) One realization of the solution of the SPDE in Example S1.1.
(b) and (c) show two local maxima found for the vector field in Exam-
ple S1.2. The vector field in (b) has a lower value for the posterior distri-
bution of the parameters than the vector field in (c) and both have lower
value than the actual maximum.
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model is able to detect that the true model is a stationary model, and if
there are identifiability issues.

Example S1.2. Use the same SPDE and observation as in Example S1.1,
but assume that it is not known that H is constant. Add the terms in
the Fourier series corresponding to the next frequencies, (k, l) = (0, 1),
(k, l) = (1,−1), (k, l) = (1, 0) and (k, l) = (1, 1). The observation is still
assumed to be exact, but there are 16 additional parameters, 4 additional
parameters for each frequency.

Two arbitrary starting positions are chosen for the optimization: γ =

3.0 and all other parameters at 0.1; γ = 3.0, A
(1)
0,0 = 0.1, A

(2)
0,0 = 0.1, and

all other parameters equal to 0. For both starting points the optimization
converges to non-global maximums. Parameter estimates and approximate
standard deviations are not given, but Figures 1(b) and 1(c) show the two
vector fields found.

A third optimization is done with starting values close to the correct
parameter values. This gives a vector field close to the actual one, with

estimates for γ, A
(1)
0,0, and A

(2)
0,0 that agree with the ones in Example S1.1

to two digits. The other frequencies all had coefficients close to zero, with
the largest having an absolute value of 0.058.

The results illustrate a difficulty with estimation caused by the the
inherent non-identifiability of the sign of the vector field. The true vector
field is constant, and each estimated vector field has large parts which
have the correct appearance if one only considers the lines defined by
the arrows and not the direction. The positions where the vector field
is wrong are smaller areas where the vector field flips its direction. It
is difficult to reverse this flipping as it requires moving through states
with smaller likelihood, thus creating undesirable local maximums. One
approach to improving the situation would be to force an apriori preference
for vector fields without abrupt changes, to introduce a prior that forces
higher frequencies of the Fourier basis to be less desirable. This is an issue
that needs to be addressed, and is briefly discussed in the main paper.

By starting close to the true value, one can do repeated simulations
of datasets and prediction of parameters to evaluate how well the non-
stationary model captures the fact that the true model is stationary and
to see if there is any consistent bias. 1000 datasets were simulated and
the estimation of the parameters was done for each dataset with a starting
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Figure 2: Boxplot of estimated parameters for 1000 simulated datasets in
Example S1.2. Parameters 1, 2 and 11 corresponds to γ, v1 and v2, respec-
tively. The horizontal lines through the boxes specify the true parameter
values, which in most cases closely match the medians.

value close to the true value. This gives the result summarized in the
boxplot in Figure 2. There does not appear to be any significant bias and
the parameters that give non-stationarity are all close to zero.

There are issues in estimating the anisotropy in the non-stationary
model due to the non-identifiability of the sign of the vector field, but if
one avoids the local maximums the estimated model is close to the true
stationary model. There is a significant increase in computation time when
increasing the parameter space from 3 to 19 parameters; the time required
increases by a factor of approximately 10.

In situations where there is a physical explanation of the additional
dependence in one direction, it would be desirable to do a simpler model
with one parameter for the baseline isotropic effect and one parameter
specifying the degree of anisotropy caused by a pre-defined vector field.
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Figure 3: Vector field used in Example S1.3.

Table 2: Posterior inference on parameters in Example S1.3.
Parameter True value Estimate Std.dev.

γ 0.5 0.5012 0.0081
β 5 5.014 0.084

Example S1.3. Use a 100 × 100 grid of [0, 20]2 and periodic boundary
conditions for the SPDE in (S1.1). Let κ2 be 1 and let H(s) = γI2 +
βv(s)v(s)T, where v is the vector field in Figure 3.

Figure 4(a) shows one observation of the solution with γ = 0.5 and
β = 5. One expects that it is possible to make accurate estimates about
γ and β as the situation is simpler than in the previous example.

The estimated parameters are shown in Table 2. From the table one
can see that the estimates for γ and β are quite accurate, to 2 digits. As
in the previous example, the bias is estimated to be less than 0.02% for
each parameter, and the sample standard deviation from estimation over
many datasets is 0.008 and 0.08 for γ and β, respectively.

Example S1.4. Use a 100 × 100 grid of [0, 20]2 and periodic boundary
conditions for the SPDE in (S1.1). Let κ2 be 1 and let H(s) = I2 +
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(b) Example S1.4

Figure 4: (a) An observation of the SPDE in (S1.1) on a 100 × 100
regular grid of [0, 20]2 with periodic boundary conditions, κ2 = 1 and
H(s) = 0.5I2 + 5v(s)v(s)T, where v is the vector field in Figure 3. (b)
An observation of the SPDE in Example S1.4 with i.i.d. Gaussian white
noise with precision 400.
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v(s)v(s)T, where v is the vector field

v(x, y) =

[

2 + cos
(

π
10x

)

3 + 2 sin
(

π
10y

)

+ sin
(

π
10(x+ y)

)

]

.

One observation with i.i.d. Gaussian noise with precision 400 is shown
in Figure 4(b). Based on this realization it is desired to estimate the
correct value of γ and the correct vector field v in the parametrization
H(s) = γI2 + v(s)v(s)T. First use only the frequencies (0, 0), (0, 1),
and (1, 0). This gives the estimated vector field shown in Figure 5(a).
Then use the frequencies (0, 0), (0, 1), (1, 0), and (1, 1). This gives the
estimated vector field shown in Figure 5(b). The true vector field is shown
in Figure 5(c).

The estimated vector fields are quite similar to the true vector field,
and the γ parameter estimate was 1.14 in the first case and 1.09 in the
latter case. There is a clear bias in the estimate of γ, to be expected as
there is a need to compensate for the lacking frequencies. All parameter
values were estimated, but are not shown. For the first case many param-
eters are more than two standard deviations from their correct values and,
in the second case, this only happens for one parameter. If the difference
between the true H and the estimated Ĥ is calculated through

1

100

√

√

√

√

100
∑

i=1

100
∑

j=1

∣

∣

∣

∣

∣

∣
H(si,j)− Ĥ(si,j)

∣

∣

∣

∣

∣

∣

2

2
,

where si,j are the centres of the cells in the grid and || · ||2 denotes the
2-norm, the first case gives 7.9 and the second case gives 1.5.

These examples focus on simple cases where specific issues can be
highlighted. The inherent challenges in estimating a spatially varying
direction and strength are equally important in the more general setting
where also κ and the baseline effect γ is allowed to vary. The estimation
of the vector field presents an important component that must be dealt
with in any inference strategy for the more general case.
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Figure 5: True vector field and inferred vector fields in Example S1.4.
Each of the vector fields is scaled with a factor 0.3.
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S2 Derivation of precision matrix

S2.1 Formal equation

The SPDE is

(κ2(s)−∇ ·H(s))∇u(s) = W(s), s ∈ [0, A]× [0, B], (S2.1)

where A and B are strictly positive constants, κ2 is a scalar function, H is a

2×2 matrix-valued function, ∇ =
(

∂
∂x ,

∂
∂y

)

, andW is a standard Gaussian

white noise process. Here κ2 is assumed to be a continuous, strictly posi-
tive function and H is assumed to be a continuously differentiable function
which gives a positive definite matrix H(s) for each s ∈ [0, A]× [0, B].

Periodic boundary conditions are used so that opposite sides of the
rectangle [0, A]× [0, B] are identified. Thus values of κ2 must agree on op-
posite edges, and the values of H and its first order derivatives must agree
on opposite edges. Periodic boundary conditions are not essential to the
methodology presented, but we avoid the issue of appropriate boundary
conditions for now.

S2.2 Finite volume methods

In the discretization of the SPDE in (S2.1), a finite volume method is
employed. Finite volume methods are useful for creating discretizations
of conservation laws of the form

∇ · F (x, t) = f(x, t),

where ∇· is the spatial divergence operator. This equation relates the
spatial divergence of the flux F and the sink-/source-term f . The main
tool here is the use of the divergence theorem

∫

E
∇ · F dV =

∮

∂E
F · n dσ, (S2.2)

where n is the outer normal vector of the surface ∂E relative to E.
The main idea is to divide the domain of the SPDE in (S2.1) into

smaller parts and consider the resulting “flow” between the different parts.
A lengthy treatment of finite volume methods is not given, but a compre-
hensive treatment of the method for deterministic differential equations
can be found in Eymard, Gallouët, and Herbin (2000).



Non-stationary Spatial GRFs with Varying Local Anisotropy 57

S2.3 Derivation

To keep the calculations simple the domain is divided into a regular grid
of rectangular cells. Use M cells in the x-direction and N cells in the
y-direction. Then for each cell the sides parallel to the x-axis have length
hx = A/M and the sides parallel to the y-axis have length hy = B/N .
Number the cells by (i, j), where i is the column of the cell (along the
x-axis) and j is the row of the cell (along the y-axis). If the lowest row is
0 and the leftmost column is 0, then cell (i, j) is

Ei,j = [ihx, (i+ 1)hx]× [jhy, (j + 1)hy],

and the set of cells, I, is

I = {Ei,j : i = 0, 1, . . . ,M − 1, j = 0, 1, . . . , N − 1}.

Figure 6 shows an illustration of the discretization of [0, A] × [0, B] into
the cells I.

Each cell has four faces, two parallel to the x-axis (top and bottom)
and two parallel to the y-axis (left and right). Let the right face, top face,
left face and bottom face of cell Ei,j be denoted σR

i,j , σ
T
i,j , σ

L
i,j and σB

i,j ,
respectively. Additionally, denote by σ(Ei,j) the set of faces of cell Ei,j .

For each cell Ei,j , si,j gives the centroid of the cell, and si+1/2,j ,
si,j+1/2, si−1/2,j , and si,j−1/2 give the centres of the faces of the cell. Due
to the periodic boundary conditions, the i-index and j-index in si,j are
modulo M and modulo N , respectively. Figure 7 shows one cell Ei,j with
the centroid and the faces marked on the figure. Further, let ui,j = u(si,j)
for each cell and denote the area of Ei,j by Vi,j . Since the grid is regular,
all Vi,j are equal to V = hxhy.

To derive the finite volume scheme, begin by integrating (S2.1) over a
cell, Ei,j . This gives

∫

Ei,j

κ2(s)u(s) ds−

∫

Ei,j

∇ ·H(s)∇u(s) ds =

∫

Ei,j

W(s) ds, (S2.3)

where ds is an area element. The integral on the right hand side is dis-
tributed as a Gaussian variable with mean 0 and variance V for each
(i, j) (Adler and Taylor (2007, pp. 24–25)). Further, the integral on the
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Figure 6: Illustration of the division of [0, A]× [0, B] into a regular M ×N

grid of rectangular cells.



Non-stationary Spatial GRFs with Varying Local Anisotropy 59

σR
i,j

σT
i,j

σL
i,j

σB
i,j

si,j
si−1/2,j

si,j+1/2

si+1/2,j

si,j−1/2

Figure 7: One cell, Ei,j , of the discretization with faces σR
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right hand side is independent for different cells, because two different cells
can at most share a common face. Thus (S2.3) can be written as

∫

Ei,j

κ2(s)u(s) ds−

∫

Ei,j

∇ ·H(s)∇u(s) ds =
√
V zi,j ,

where zi,j is a standard Gaussian variable for each (i, j) and the Gaussian
variables are independent.

By the divergence theorem, (S2.2), the second integral on the left hand
side can be written as an integral over the boundary of the cell, so

∫

Ei,j

κ2(s)u(s) ds−

∮

∂Ei,j

(H(s)∇u(s))Tn(s) dσ =
√
V zi,j , (S2.4)

where n is the exterior normal vector of ∂Ei,j with respect to Ei,j and dσ
is a line element. It is useful to divide the integral over the boundary in
Equation (S2.4) into integrals over each face,

∫

Ei,j

κ2(s)u(s) ds−
(

WR
i,j +W T

i,j +WL
i,j +WB

i,j

)

=
√
V zi,j , (S2.5)
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where W dir
i,j =

∫

σdir
i,j
(H(s)∇u(s))Tn(s) dσ.

The first integral on the left hand side of (S2.5) is approximated by
∫

Ei,j

κ2(s)u(s) ds = V κ2i,ju(si,j) = V κ2i,jui,j , (S2.6)

where κ2i,j =
1
V

∫

Ei,j
κ2(s) ds. The function κ2 is assumed to be continuous

and κ2i,j is approximated by κ2(si,j).
The second part of (S2.5) requires the approximation of the surface

integral over each face of a given cell. The values of H are in general not
diagonal, so it is necessary to estimate both components of the gradient
on each face of the cell. For simplicity, it is assumed that the gradient is
constant on each face and that it is identically equal to the value at the
centre of the face. On a face parallel to the y-axis the estimate of the
partial derivative with respect to x is simple since the centroid of each of
the cells which share the face have the same y-coordinate. The problem
is the estimate of the partial derivative with respect to y. The reverse is
true for the top and bottom face of the cell.

It is important to use a scheme which gives the same estimate of the
gradient for a given face no matter which of the two neighbouring cells are
chosen. For σR

i,j , the approximation used is

∂

∂y
u(si+1/2,j) ≈

1

hy
(u(si+1/2,j+1/2)− u(si+1/2,j−1/2)).

where the values of u at si+1/2,j+1/2 and si+1/2,j−1/2 are linearly interpo-
lated from the values at the four closest cells. More precisely, because of
the regularity of the grid the mean of the four closest cells are used, giving

∂

∂y
u(si+1/2,j) ≈

1

4hy
(ui+1,j+1 + ui,j+1 − ui,j−1 − ui+1,j−1). (S2.7)

This formula can be used for the partial derivative with respect to y on
any face parallel to the y-axis by suitably changing the i and j indices.
The partial derivative with respect to x on a face parallel to the y-axis
can be approximated directly by

∂

∂x
u(si+1/2,j) ≈

1

hx
(ui+1,j − ui,j). (S2.8)
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Table 3: Finite difference schemes for the partial derivative with respect
to x and y at the different faces of cell Ei,j .

Face ∂
∂xu(s)

∂
∂yu(s)

σR
i,j

ui+1,j−ui,j

hx

ui,j+1+ui+1,j+1−ui,j−1−ui+1,j−1

4hy

σT
i,j

ui+1,j+ui+1,j+1−ui−1,j−ui−1,j+1

4hx

ui,j+1−ui,j

hy

σL
i,j

ui,j−ui−1,j

hx

ui−1,j+1+ui,j+1−ui−1,j−1−ui,j−1

4hy

σB
i,j

ui+1,j+ui+1,j−1−ui−1,j−1−ui−1,j

4hx

ui,j−ui,j−1

hy

In more or less the same way the two components of the gradient on
the top face of cell Ei,j can be approximated by

∂

∂x
u(si,j+1/2) ≈

1

4hx
(ui+1,j+1 + ui+1,j − ui−1,j − ui−1,j+1),

∂

∂y
u(si,j+1/2) ≈

1

hy
(ui,j+1 − ui,j).

These approximations can be used on any side parallel to the x-axis by
changing the indices appropriately.

The approximations for the partial derivatives on each face are col-
lected in Table 3. Using these, one can find the approximations needed
for the second part of (S2.5). It is helpful to write

W dir
i,j =

∫

σdir
i,j

(H(s)∇u(s))Tn(s) dσ =

∫

σdir
i,j

(∇u(s))T(H(s)n(s)) dσ,

where the symmetry of H is used to avoid transposing the matrix. As-
suming that the gradient is identically equal to the value at the centre of
the face, one finds

W dir
i,j ≈

(

∇u(cdiri,j )
)T

∫

σdir
i,j

H(s)n(s) dσ,

where cdiri,j is the centre of face σdir
i,j .
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Since the cells form a regular grid, n is constant on each face. If H be
approximated by its value at the centre of the face, then

W dir
i,j ≈ m(σdir

i,j )
(

∇u(cdiri,j )
)T (

H(cdiri,j )n(c
dir
i,j )

)

, (S2.9)

where m(σdir
i,j ) is the length of the face. Note that the length of the face

is either hx or hy and that the normal vector is parallel to the x-axis or
the y-axis.

If

H(s) =

[

H11(s) H12(s)
H21(s) H22(s)

]

,

then using Table 3 one finds the approximations

ŴR
i,j =

hy

[

H11(si+1/2,j)
ui+1,j − ui,j

hx

]

+

hy

[

H21(si+1/2,j)
ui,j+1 + ui+1,j+1 − ui,j−1 − ui+1,j−1

4hy

]

,

ŴT
i,j =

hx

[

H12(si,j+1/2)
ui+1,j+1 + ui+1,j − ui−1,j+1 − ui−1,j

4hx

]

+

hx

[

H22(si,j+1/2)
ui,j+1 − ui,j

hy

]

,

ŴL
i,j =

hy

[

H11(si−1/2,j)
ui−1,j − ui,j

hx

]

+

hy

[

H21(si−1/2,j)
ui,j−1 + ui−1,j−1 − ui−1,j+1 − ui,j+1

4hy

]

,

ŴB
i,j =

hx

[

H12(si,j−1/2)
ui−1,j + ui−1,j−1 − ui+1,j − ui+1,j−1

4hx

]

+

hx

[

H22(si,j−1/2)
ui,j−1 − ui,j

hy

]

.
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These approximations can be combined with the approximations in (S2.6)
and inserted into (S2.5) to give

V κ2i,jui,j −
(

ŴR
i,j + ŴT

i,j + ŴL
i,j + ŴB

i,j

)

=
√
V zi,j .

Stacking the variables ui,j row-wise in a vector u gives the linear system
of equations,

DV Dκ2u−AHu = D
1/2
V z, (S2.10)

where DV = V IMN , Dκ2 = diag(κ20,0, . . . , κ
2
M−1,0, κ

2
0,1, . . . , κ

2
M−1,N−1),

z ∼ NMN (0, IMN ); AH is considered more closely in what follows.

The construction of AH, which depends on the function H, requires
only that one write out the sum

ŴR
i,j + ŴT

i,j + ŴL
i,j + ŴB

i,j

and collects the coefficients of the different ua,b terms. This is not diffi-
cult, but requires many lines of equations. Therefore, only the resulting
coefficients are given. Fix (i, j) and consider the equation for cell Ei,j .
For convenience, let ip and in be the column left and right of the current
column, respectively and let jn and jp be the row above and below the
current row, respectively. These rows and columns are 0-indexed and due
to the periodic boundary conditions one has, for example, that column 0
is to the right of column M − 1. Further, number the rows and columns
of the matrix AH from 0 to MN − 1.

For row jM + i the coefficient of ui,j is given by

(AH)jM+i,jM+i =

−
hy

hx

[

H11(si+1/2,j) +H11(si−1/2,j)
]

−
hx

hy

[

H22(si,j+1/2) +H22(si,j−1/2)
]

.
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The four closest neighbours have coefficients

(AH)jM+i,jM+ip =
hy

hx
H11(si−1/2,j)−

1

4

[

H12(si,j+1/2)−H12(si,j−1/2)
]

,

(AH)jM+i,jM+in =
hy

hx
H11(si+1/2,j) +

1

4

[

H12(si,j+1/2)−H12(si,j−1/2)
]

,

(AH)jM+i,jnM+i =
hx

hy
H22(si,j+1/2) +

1

4

[

H21(si+1/2,j)−H21(si−1/2,j)
]

,

(AH)jM+i,jpM+i =
hx

hy
H22(si,j−1/2)−

1

4

[

H21(si+1/2,j)−H21(si−1/2,j)
]

.

Lastly, the four diagonally closest neighbours have coefficients

(AH)jM+i,jpM+ip = +
1

4

[

H12(si,j−1/2) +H21(si−1/2,j)
]

,

(AH)jM+i,jpM+in = −
1

4

[

H12(si,j−1/2) +H21(si+1/2,j)
]

,

(AH)jM+i,jnM+ip = −
1

4

[

H12(si,j+1/2) +H21(si−1/2,j)
]

,

(AH)jM+i,jnM+in = +
1

4

[

H12(si,j+1/2) +H21(si+1/2,j)
]

.

The rest of the elements of row jM + i are 0.

Based on (S2.10) one can write z = D
−1/2
V Au, where A = DV Dκ2 −

AH. This gives the joint distribution of u,

π(u) ∝ π(z) ∝ exp

(

−
1

2
zTz

)

π(u) ∝ exp

(

−
1

2
uTATD−1

V Au

)

π(u) ∝ exp

(

−
1

2
uTQu

)

,

where Q = ATD−1
V A. This is a sparse matrix with a maximum of 25

non-zero elements on each row, corresponding to the point itself, its 8
closest neighbours and the 8 closest neighbours of each of the 8 closest
neighbours.
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S3 Marginal variances with constant coefficients

Proposition S3.1. Let u be a stationary solution of the SPDE

κ2u(x, y)−∇ ·H∇u(x, y) = W(x, y), (x, y) ∈ R
2, (S3.1)

where W is a standard Gaussian white noise process, κ2 > 0 is a constant,

H is a positive definite 2 × 2 matrix and ∇ =
(

∂
∂x ,

∂
∂y

)

. Then u has

marginal variance

σ2
m =

1

4πκ2
√

det(H)
.

Proof. Since the solution is stationary, Gaussian white noise is stationary,
and the SPDE has constant coefficients, the SPDE is acting as a linear
filter. Thus one can use spectral theory to find the marginal variance. The
transfer function of the SPDE is

g(w) =
1

κ2 +wTHw
.

The spectral density of a standard Gaussian white noise process on R
2 is

identically equal to 1/(2π)2 so it follows that the spectral density of the
solution is

fS(w) =

(

1

2π

)2 1

(κ2 +wTHw)2
.

From the spectral density it is only a matter of integrating the density
over R2,

σ2
m =

∫

R2

fS(w) dw.

The matrix H is (symmetric) positive definite and, therefore, has a (sym-
metric) positive definite square root, say H1/2. Use the change of variables
w = κH−1/2z to find

σ2
m =

1

4π2

∫

R2

1

(κ2 + κ2zTz)2
det(κH−1/2) dz

=
1

4π2κ2
√

det(H)

∫

R2

1

(1 + zTz)2
dz

=
1

4πκ2
√

det(H)
.
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Abstract

A stationary spatial model is an idealization and we expect that
the true dependence structures of physical phenomena are spatially
varying, but how should we handle this non-stationarity in prac-
tice? We study the challenges involved in applying a flexible non-
stationary model to a dataset of annual precipitation in the conter-
minous US, where exploratory data analysis shows strong evidence
of a non-stationary covariance structure.

The aim of this paper is to investigate the modelling pipeline
once non-stationarity has been detected in spatial data. We show
that there is a real danger of over-fitting the model and that care-
ful modelling is necessary in order to properly account for varying
second-order structure. In fact, the example shows that sometimes
non-stationary Gaussian random fields are not necessary to model
non-stationary spatial data.

Keywords: Annual precipitation, Penalized maximum likelihood,
Non-stationary Spatial modelling, Stochastic partial differential equa-
tions, Gaussian random fields, Gaussian Markov random fields,

1 Introduction

There are, in principle, two sources of non-stationarity present in any
dataset: the non-stationarity in the mean and the non-stationarity in the

69
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covariance structure. Classical geostatistical models based on stationary
Gaussian random fields (GRFs) ignore the latter, but include the former
through covariates that capture important structure in the mean. The
focus of non-stationary spatial modelling is non-stationarity in the covari-
ance structure. However, it is impossible to separate the non-stationarity
in the mean and the non-stationarity in the covariance structure based on
a single realization, and even with multiple realizations it is challenging.

The Karhunen-Loève expansion states that under certain conditions a
GRF can be decomposed into an infinite linear combination of orthogonal
functions, which is weighted by independent Gaussian variables with de-
creasing variances. For a single realization these orthogonal functions will
be confounded with the covariates in the mean, and the mean structure
and the covariance structure cannot be separated. This can give apparent
long range dependencies and global non-stationarity if spatial covariates
are missing in the mean. Such spurious global non-stationarity and its
impact on the local estimation of non-stationarity is an important topic in
the paper.

However, the most important point from an applied viewpoint is the
computational costs of running a more complex model versus the scientific
gain. Non-stationarity in the mean is computationally cheap, whereas
methods for non-stationarity in the covariance structure are much more
expensive. This raises an important question: How much do we gain by
including non-stationarity in the covariance structure? Do we need non-
stationary spatial models?

The computational cost of non-stationary models usually comes from
a high number of highly dependent parameters that makes it expensive to
run MCMC methods or likelihood optimizations, but the challenges with
non-stationary models are not only computational. Directly specifying
non-stationary covariance functions is difficult and we need other ways of
constructing models. Additionally, we need to choose where to put the non-
stationarity. Should we have non-stationarity in the range, the anisotropy,
the marginal variance, the smoothness or the nugget effect? And how do
we combine it all to a valid covariance structure?
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1.1 Non-stationarity

Most of the early literature on non-stationary methods deals with data
from environmental monitoring stations where multiple realizations are
available. In this situation it is possible to calculate the empirical co-
variances between observed locations, possibly accounting for temporal
dependence, and finding the required covariances through, for example,
shrinkage towards a parametric model (Loader and Switzer, 1989) or kernel
smoothing (Oehlert, 1993). It is also possible to deal efficiently with a sin-
gle realization with the moving window approach of Haas (Haas, 1990a,b,
1995), but this method does not give valid global covariance structures.

However, the most well-known method from this time period is the
deformation method of Sampson and Guttorp (1992), in which an un-
derlying stationary process is made non-stationary by applying a spatial
deformation. The original formulation has been extended to the Bayesian
framework (Damian et al., 2001, 2003; Schmidt and O’Hagan, 2003), to
a single realization (Anderes and Stein, 2008), to covariates in the co-
variance structure (Schmidt et al., 2011) and to higher dimensional base
spaces (Bornn et al., 2012).

Another major class of non-stationary methods is based on the process
convolution method developed by Higdon (Higdon, 1998; Higdon et al.,
1999). In this method a spatially varying kernel is convolved with a white
noise process to create a non-stationary covariance structure. Paciorek
and Schervish (2006) looked at a specific case where it is possible to find
a closed form expression for a Matérn-like covariance function and Neto
et al. (2014) used a kernel that depends on wind direction and strength to
control the covariance structure. The process convolution methods have
also been extended to dynamic multivariate processes (Calder, 2007, 2008)
and spatial multivariate processes (Kleiber and Nychka, 2012).

It is possible to take a different approach to non-stationarity, where
instead of modelling infinite-dimensional Gaussian processes one uses a
linear combination of basis functions and models the covariance matrix
of the coefficients of the basis functions (Nychka et al., 2002, 2014). One
such approach is the fixed rank kriging method (Cressie and Johannes-
son, 2008), which uses a linear combination of a small number of basis
functions and estimates the covariance matrix for the coefficients of the
linear combination. This approach leads to a continuously indexed spatial
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process with a non-stationary covariance structure. The predictive pro-
cesses (Banerjee et al., 2008) corresponds to a specific choice of the basis
functions and the covariance matrix, but does not give a very flexible type
of non-stationarity. All such methods are variations of the same concept,
but lead to different computational schemes with different computational
properties. The dimension of the finite-dimensional basis is in all cases
used to control the computational cost and the novelty of each method lies
in how the basis elements are selected and connected to each other, and
the computational methods used to exploit the structure.

An overview of the literature before around 2010 is given in Sampson
(2010). This overview also includes less known methods such as the piece-
wise Gaussian process of Kim et al. (2005), processes based on weighted
linear combination of stationary processes (Fuentes, 2001, 2002a,b; Nott
and Dunsmuir, 2002).

Recently, a new class of methods based on the SPDE approach intro-
duced by Lindgren et al. (2011) is emerging. This class of methods is
based on a representation of the spatial field as a solution of a stochas-
tic partial differential equation (SPDE) with spatially varying coefficients.
The methodology is closely connected with Gaussian Markov random fields
(GMRFs) (Rue and Held, 2005) and is able to handle more observations
than is possible with the deformation method and the process convolution
method. In a similar way as a spatial GMRF describes local behaviour for
a discretely indexed process, an SPDE describes local behaviour for a con-
tinuously indexed process. This locality in the continuous description can
be transferred to a GMRF approximation of the solution of the SPDE, and
gives a GMRF with a spatial Markovian structure that can be exploited
in computations.

This type of methodology has been applied to global ozone data (Bolin
and Lindgren, 2011) and to annual precipitation in Norway with covariates
in the covariance structure (Ingebrigtsen et al., 2014). Additionally, Sigrist
et al. (2012) used similar type of modelling to handle a spatio-temporal
process where wind direction and strength enters in the covariance struc-
ture.

Despite all the work that has been done in non-stationary spatial mod-
elling, it is still an open field where no model stands out as the clear
choice. However, we believe that modelling locally such as in the SPDE-
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based models is more attractive than modelling globally such as in the
deformation method and the process convolution method. Therefore, we
choose to use an extension of the model by Fuglstad et al. (2015) that
allows for both a spatially varying correlation structure and a spatially
varying marginal variance. This method is closely connected to the al-
ready well-known deformation method of Sampson and Guttorp (1992)
and the Matérn-like process convolution of Paciorek and Schervish (2006),
but is focused at the local behaviour and not the global behaviour.

In a similar way as in the model of Paciorek and Schervish (2006)
the global structure is defined through the combination of ellipses at each
location that describe anisotropy. However, their model only combines
the ellipses at two and two locations and does not account for the lo-
cal behaviour between locations. The new model incorporates the local
anisotropy everywhere into the covariance for each pair of locations and is
not the same as the model of Paciorek and Schervish (2006). The model
works in a similar way as the deformation method. However, instead of
describing a global deformation, the ellipses augment the local distances
around each point and describe locally a change of distances such that
lengths are different in different directions, but does not, in general, lead
to a deformation of R

2 to R
2. Such local modelling tends to lead to a

deformation in an ambient space of dimension higher than 2. The interest
of this paper is to study the challenges and results of applying the method
to a dataset of annual precipitation in the conterminous US.

1.2 Annual precipitation in the conterminous US

This case study of non-stationarity will use the measurements of monthly
total precipitation at different measurement stations in the conterminous
US for the years 1895–1997 that are available at http://www.image.ucar.
edu/GSP/Data/US.monthly.met/. This dataset was chosen because it is
publicly available in a form that is easily downloaded and loaded into soft-
ware, and because the large spatial scale of the dataset and the complexity
of the physical process that generates weather makes it intuitively feels like
there must be non-stationarity in the dataset.

In total there are 11918 measurement stations in the dataset, but mea-
surements are only available at a subset of the stations each month and the
rest of the stations have in-filled data (Johns et al., 2003). For each year,
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we aggregate the monthly data at those stations which have measurements
available at all months in that year and produce a dataset of yearly to-
tal precipitation. This gives a different number of locations for each year.
We then take the logarithm of each observation to create the transformed
data that is used in this paper. Figure 1 shows the transformed data at
the 7040 stations available for 1981. The only covariate available in the
dataset is the elevation at each station, and since the focus of the paper
is on the covariance structure, no work was done to find other covariates
from alternate sources. However, if the focus was to model this data in the
best possible way, it would, in general, be good to look for more covariates
or consider alternatives such as spatially heterogeneous coefficients before
using a full non-stationary model.

We will assume that the transformed data can be treated as Gaussian,
which is a reasonable assumption because we are modelling annual pre-
cipitation data. However, it would not be a reasonable assumption, for
example, for daily data, and it would be necessary to consider not only
how to deal with non-stationarity, but also how to deal with the lack of
Gaussianity. Bolin and Wallin (2013) compare the predictions made by a
stationary Gaussian model, a stationary Gaussian model for transformed
data and two stationary non-Gaussian models for monthly precipitation for
two different months from the same dataset as in this paper. They apply
the non-stationary model of Bolin (2014), but do not find clear evidence
that one model perform better than the others. The approach of Bolin
(2014) is built on the same principles as the approach in this paper and
a possible extension of the presented non-stationary model would be to
non-Gaussian data.

The main motivation for focusing on the year 1981 is that Paciorek
and Schervish (2006) previously studied the annual precipitation in the
subregion of Colorado for this year. They did not see major improvements
over a stationary model and our preliminary analysis showed that there
was little non-stationarity left in the subregion after introducing a joint
mean and elevation. However, Colorado constitutes a small part of the
conterminous US, and as shown in Figure 2 there are large differences in
the topography of the western and the eastern part of the conterminous
US. A large proportion of the western part is mountainous whereas in the
eastern part a large proportion is mostly flat. This varied topography is a
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Figure 1: The logarithm of total yearly precipitation measured in millime-
tres at 7040 locations in the conterminous US for the year 1981.

strong indication that the process cannot possibly be stationary.

To substantiate our claims of non-stationarity we explore the differ-
ence in the covariance structure in the western and eastern part through
variograms. The data from years 1971–1985 is selected and divided into
two regions: longitude less than 100 ◦W and longitude greater than or
equal to 100 ◦W. For each year the variogram of each region is calcu-
lated. Figure 3 shows that there is no overlap between the variograms of
the western region and the eastern region. There is significant variation
within each region, but the overall appearance clearly indicates different
covariance structures within the regions. Based on the evidence of non-
stationarity seen in the variograms for the full region, we want to know if
a non-stationary model will improve the predictions. It has been observed
by several authors (Schmidt et al., 2011; Neto et al., 2014) and it has
also been the experience of the authors that non-stationary models do not
lead to much difference in the predicted values, and that the differences are
found in the prediction variances. However, predictions should always have
associated error estimates and when we write improved predictions, we are
interested in whether the predictive distributions, summarized by the pre-
dicted values and their associated prediction variances, better describe the
observed values.



76 Fuglstad, G.-A., Simpson, D., Lindgren, F., and Rue, H.

Longitude (°)

L
a

ti
tu

d
e

 (
°
)

US elevation

 

 

−130 −120 −110 −100 −90 −80 −70

25

30

35

40

45

50

0

1000

2000

3000

4000

Figure 2: Elevation in the US measured in meters. Data from GLOBE
data set (Hastings et al., 1999)
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Figure 3: Estimated semi-variograms for the years 1971 to 1985 using the
locations with longitudes less than 100 ◦W coloured in blue and marked
with circles and with longitudes greater than 100 ◦W coloured in red and
marked with crosses.
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There are two cases of interest: a single realization and multiple real-
izations. In the former it is impossible to separate the non-stationarity in
the mean and in the covariance structure, and the non-stationary model
might be more accurately described as adaptive smoothing, but many spa-
tial datasets are of this form and a non-stationary model might still per-
form better than a stationary model. We will investigate both of these
cases and evaluate whether the non-stationary model improves predictions
and whether the computational costs are worth it. It is clear that station-
arity is not the truth, but that does not mean that it does not necessarily
constitutes a sufficient model for predictions.

1.3 Overview

The paper is divided into five sections. Section 2 describes how we model
the data. We discuss what type of non-stationarity is present in the model
and how it is specified, how we parametrize the non-stationarity and how
we perform computations with the non-stationary model. Then in Sec-
tion 3 a hierarchical model incorporating the non-stationary model is ap-
plied to annual precipitation in a single realization setting, and in Section 4
the data is studied from a multiple realizations perspective. The differences
between the estimated covariance structures and the prediction scores for
the different models are discussed. The paper ends with discussion and
concluding remarks in Section 5.

2 Modelling the data

Before analyzing the data we need to introduce the model that will be used.
Particularly, we need to say which types of non-stationarity that will be
present in the model and how this non-stationarity will be modelled. A
good spatial model should provide a useful way to do both the theoretical
modelling and the associated computations. We first discuss the theoretical
part, and then discuss how to do the computations and how to parametrize
the non-stationary.
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Figure 4: Example of a correlation function caused by varying local be-
haviour. For each location marked with a black cross, the 0.9, 0.7, 0.5,
0.25 and 0.12 level contours of the correlation function are shown.

2.1 Modelling the non-stationarity

It is difficult to specify a global covariance function when one only has
intuition about local behaviour. Consider the situation in Figure 4. The
left hand side and the right hand side have locally large “range” in the
horizontal direction and somewhat shorter “range” in the vertical direction,
and the middle area has locally much shorter “range” in the horizontal
direction, but slightly longer in the vertical direction. We write “range”
with quotation marks because the concept of a global range does not have
a well-defined meaning in non-stationary modelling. Instead we will think
of range as a local feature and use the word to mean what happens to
dependency in a small region around each point. From the figure one can
see that for the point in the middle, the chosen contours look more or less
unaffected by the two other regions since they are fully contained in the
middle region, but that for the point on the left hand side and the point on
the right hand side, there is much skewness introduced by the transition
into a different region.

It would be hard to specify a fitting global correlation function for
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this situation. However, if one instead starts with an isotropic process
and then stretches the left hand side and the right hand side in the x-
direction, the task is much easier. This is a flexible way to create interesting
covariance structures and is the core of the deformation method (Sampson
and Guttorp, 1992), but can be challenging since one has to create a valid
global deformation. We present instead a model where the modelling can be
done locally without worrying about the global structure. We let the local
structure automatically specify a valid global structure. In this example
one would only specify that locally the range is longer in the horizontal
direction in the left hand side and the right hand side, and then let this
implicitly define the global structure without directly modelling a global
deformation.

In the SPDE-based approach the correlation between two spatial lo-
cations is determined implicitly by the behaviour between the spatial lo-
cations. If there are mountains, the model could specify that locally the
distances are longer than they appear on the map and the correlation will
decrease more quickly when crossing those areas, and if there are plains,
the model could specify that distances are shorter than they appear on
the map and the correlation will decrease more slowly in those areas. A
major advantage of this approach is that the local specification naturally
leads to a spatial GMRF with good computational properties. It is pos-
sible to approximate the local continuous description with a local discrete
description. The result is a spatial GMRF with a very sparse precision
matrix

The starting point for the non-stationary SPDE-based model is the
stationary SPDE introduced in Lindgren et al. (2011),

(κ2 −∇ · ∇)u(~s) = σW(~s), ~s ∈ R
2, (1)

where κ > 0 and σ > 0 are constants, ∇ = ( ∂
∂x ,

∂
∂y )

T and W is a stan-
dard Gaussian white noise process. The SPDE describes the GRF u as
a smoothed version of the Gaussian white noise on the right hand side of
the equation. Whittle (1954, 1963) showed that any stationary solution of
this SPDE has the Matérn covariance function

r(~s1, ~s2) =
σ2

4πκ2
(κ||~s2 − ~s1||)K1(κ||~s2 − ~s1||), (2)
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where K1 is the modified Bessel function of second kind, order 1. This
covariance function is a member of the commonly-used Matérn family of
covariance functions, and one can see from Equation (2) that one can
first use κ to select the range and then σ to achieve the desired marginal
variance. In some methods for non-stationarity it is possible to spatially
vary the smoothness, but this is not a feature that is available in the non-
stationary model presented here. However, with the flexibility present in
the rest of the non-stationarity it is not clear if the smoothness would be
jointly identifiable.

The next step is to generate a GRF with an anisotropic Matérn covari-
ance function. The cause of the isotropy in SPDE (1) is that the Laplacian,
∆ = ∇ · ∇ is invariant to a change of coordinates that involves rotation
and translation. To change this a 2 × 2 matrix H > 0 is introduced into
the operator to give the SPDE

(κ2 −∇ ·H∇)u(~s) = σW(~s). (3)

This choice is closely related to the change of coordinates ~̃s = H1/2~s (see
Fuglstad et al. (2015, Section 3)) and gives the covariance function

r(~s1, ~s2) =
σ2

4πκ2
√

det(H)
(κ||H−1/2(~s2 − ~s1)||)K1(κ||H

−1/2(~s2 − ~s1)||).

(4)
Compared to Equation (2) there is a change in the marginal variance and
a directionality is introduced through a distance measure different than
the standard Euclidean distance. Figure 5 shows how the eigenpairs of H
and the value of κ act together to control range. One can see that the
construction leads to elliptic iso-covariance curves. In what follows σ is
assumed to be equal to 1 since the marginal variance can be controlled by
varying κ2 and H together.

The final step is to construct a non-stationary GRF where the local
behaviour at each location is governed by SPDE (3) with σ = 1 and
the values of κ2 and H varying over the domain. The intention is to
create a GRF by chaining together processes with different local covariance
structures. The SPDE becomes

(κ2(~s)−∇ ·H(~s)∇)u(~s) = W(~s). (5)
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Figure 5: Iso-correlation curve for the 0.6 level, where (λ1, ~v1) and (λ2, ~v2)
are the eigenpairs of H.

For technical reasons concerned with the discretization in the next sec-
tion, κ2 is required to be continuous and H is required to be continuously
differentiable. This does not present any problems and is easily achieved
by using continuously differentiable basis functions for κ2 and H. The
restricted form where κ2 is constant was investigated in Fuglstad et al.
(2015), but this restricted form only allows for varying local anisotropy
without control over the marginal variances. This extended model allows
for spatially varying “range”, anisotropy and marginal variance.

2.2 Discrete model for computations

SPDE (5) describes the covariance structure of a GRF, but before the
model can be used in practice the description must be brought into a form
which is useful for computations. The first thing to notice is that the
operator in front of u only contains multiplications with functions and
first order and second order derivatives. All of these operations involve
only the local properties of u at each location. This means that if u is dis-
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cretized using a finite-dimensional local basis expansion, the corresponding
discretized operators (matrices) should only involve variables close to each
other. This can be exploited to create a sparse GMRF which possesses ap-
proximately the same covariance structure as u. The arguments above are
not applicable for all smoothnesses, but we are constructing a model where
the smoothness is fixed to 1 and the range is allowed to vary spatially (See
discussion in Fuglstad et al. (2015, p. 5)). A detailed description of the
basis function expansion, the choice of mesh, and the theoretical properties
of the methods described in this section in Lindgren et al. (2011); Simpson
et al. (2012, 2011).

The first step in creating the GMRF is to restrict SPDE (5) to a
bounded domain,

(κ2(~s)−∇ ·H(~s)∇)u(~s) = W(~s), ~s ∈ D = [A1, B1]× [A2, B2] ⊂ R
2,

where B1 > A1 and B2 > A2. This restriction necessitates a boundary
condition to make the distribution useful and proper. For technical rea-
sons the boundary condition chosen is zero flux across the boundaries,
i.e. at each point of the boundary the flux H(~s)∇~nu(~s), where ~n is the
normal vector of the boundary at that point, is zero. The derivation of
a discretized version of this SPDE on a grid is involved, but for periodic
boundary conditions the derivation can be found in the supplementary ma-
terial to Fuglstad et al. (2015). The boundary conditions in this problem
involve only a slight change in that derivation.

For a regular m× n grid of D, the end result is the matrix equation

A(κ2,H)~u =
1

√
V
~z,

where V is the area of each cell in the grid, ~u corresponds to the values of u
on the cells in the regular grid stacked column-wise, ~z ∼ Nmn(~0, Imn) and
A(κ2,H) is a discretized version of (κ2 −∇ ·H∇). This matrix equation
leads to the multivariate Gaussian distribution

~u ∼ Nmn(~0,Q(κ2,H)−1), (6)

where Q(κ2,H) = A(κ2,H)TA(κ2,H)V . The precision matrix Q is proper
and has up to 25 non-zero elements in each row, corresponding to the point
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itself, its eight closest neighbours and the eight closest neighbours of each
of the eight closest neighbours. Since the approximation is constructed
from an SPDE, it behaves consistently over different resolution and con-
verges to a continuously indexed model for small resolutions. Changing
the resolution changes which features can be represented by the model,
but does not induce large changes to the covariance structure.

This construction alleviates one of the largest problems with GMRFs,
namely that they are hard to specify in a spatially coherent manner. The
computational benefits of spatial GMRFs are well known, but a GMRF
needs to be constructed through its conditional distributions and it is noto-
riously hard to do this for non-stationary models. But with the derivation
outlined above it is possible to model the problem with an SPDE and then
do the computations with the computational benefits of a spatial GMRF.

2.3 Parametrizing the non-stationarity

Before we can turn the theoretical and computational description of the
non-stationary model into a statistical model, we need to describe the
non-stationarity through parameters. This means both decomposing the
model into parameters and connecting the parameters together through a
penalty.

The first step is to decompose the function H, which must give positive
definite 2× 2 matrices at each location, into simpler functions. One usual
way to do this is to use two strictly positive functions λ1 and λ2 for the
eigenvalues and a function φ for the angle between the x-axis and the
eigenvector associated with λ1. However, with a slight re-parametrization
H can be written as the sum of an isotropic effect, described by a constant
times the identity matrix, plus an additional anisotropic effect, described
by direction and magnitude.

Express H through the scalar functions γ, vx and vy by

H(~s) = γ(~s)I2 +

[

vx(~s)
vy(~s)

]

[

vx(~s) vy(~s)
]

,

where γ is required to be strictly positive. The eigendecomposition of
this matrix has eigenvalue λ1(~s) = γ(~s) + vx(~s)

2 + vy(~s)
2 with eigenvector

~v1(~s) = (vx(~s), vy(~s)) and eigenvalue λ2(~s) = γ(~s) with eigenvector ~v2(~s) =
(−vy(~s), vx(~s)). From Figure 5 this means that for a stationary model, γ
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affects the length of the shortest semi-axis of the iso-correlation curves and
~v specifies the direction of and how much larger the longest semi-axis is.
The above decomposition through γ, vx and vy is general and is valid for
every symmetric positive-definite 2× 2 matrix.

Since we want flexible covariance structures, some representation of the
functions κ2, γ, vx and vy is needed. To ensure positivity of κ2 and γ, they
are first transformed into log(κ2) and log(γ). Each of these functions will
be expanded in a basis, and requires a penalty that imposes regularity and
makes sure the function is not allowed to vary too much. The choice was
made to give log(κ2), log(γ), vx and vy spline-like penalties. The steps
that follow are the same for each function. Therefore, they are only shown
for log(κ2).

The function log(κ2) is given a penalty according to the distribution
generated from the SPDE

−∆ log(κ2(~s)) = Wκ(~s)/
√
τκ, ~s ∈ D, (7)

where τκ > 0 is the parameter controlling the penalty, with the Neumann
boundary condition of zero derivatives at the edges. This extra requirement
is used to restrict the resulting distribution so it is only invariant to the
addition of a constant function, and the penalty parameter is used to
control how much log(κ2) can vary from a constant function. The penalty
defined through SPDE (7) is in this paper called a two-dimensional second-
order random walk due to its similarity to a one-dimensional second-order
random walk (Lindgren and Rue, 2008).

The first step of making the above penalty applicable for the computa-
tional model is to expand log(κ2) in a basis through a linear combination
of basis functions,

log(κ2(~s)) =
k

∑

i=1

l
∑

j=1

αijfij(~s),

where {αij} are the parameters and {fij} are real-valued basis functions.
For convenience, the basis is chosen in such a way that all basis functions
satisfy the boundary conditions specified in SPDE (7). If this is done,
one immediately satisfies the boundary condition. The remaining tasks
are then to decide which basis functions to use and what the resulting
penalties on the parameters are.
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Due to a desire to make H continuously differentiable and a desire to
have “local” basis functions, the basis functions are chosen to be based
on 2-dimensional, second-order B-splines (piecewise-quadratic functions).
The basis is constructed as a tensor product of two 1-dimensional B-spline
bases constrained to satisfy the boundary condition.

The penalty is based on the distribution defined by SPDE (7), so the
final step is to determine a Gaussian distribution for the parameters such
that the distribution of log(κ2) is close to a solution of SPDE (7). The
approach taken is based on a least-squares formulation of the solution
and is described in Appendix A. Let ~α be the {αij} parameters stacked
row-wise, then the result is that α should be given a zero-mean Gaussian
distribution with precision matrix τκQRW2. This matrix has rank (kl−1),
due to the Neumann boundary conditions, and the distribution is invariant
to the addition of a vector of only the same values, but for convenience the
penalty will still be written as ~α ∼ Nkl(~0,Q

−1
RW2/τκ).

2.4 Hierarchical model

Observations y1, y2, . . . , yN are made at locations ~s1, ~s2, . . . , ~sN . The ob-
served value at each location is assumed to be the sum of a fixed effect due
to covariates, a spatial “smooth” effect and a random effect. The covariates
at location ~si are described by the p-dimensional row vector ~x(~si)

T and
the spatial field is denoted by u. This gives the observation equation

yi = ~x(~si)
T~β + u(~si) + ǫi,

where ~β is a p-variate random vector for the coefficients of the covariates
and ǫi ∼ N (0, 1/τnoise) is the random effect for observation i, for i =
1, 2, . . . , N .

The u is modelled and parametrized as described in the previous sec-
tions and the GMRF approximation is used for computations. In this
GMRF approximation the domain is divided into a regular grid consisting
of rectangular cells and each element of the GMRF approximation de-
scribes the average value on one of these cells. So u(~si) is replaced with
the approximation ~e(~si)

T~u, where ~e(~si)
T is the mn-dimensional row vec-

tor selecting the element of ~u which corresponds to the cell which contains
location ~si. In total, this gives

~y = X~β +E~u+ ~ǫ, (8)
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where ~y = (y1, y2, . . . , yN ), the matrix X has ~x(~s1)
T, . . . , ~x(~sN )T as rows

and the matrix E has ~e(~s1)
T, . . . , ~e(~sN )T as rows. In this equation the

spatial effect is approximated with a discrete model, but the covariate has
not been gridded and is at a higher resolution than the grid.

The model for the observations can also be written in the form

~y|~β, ~u, log(τnoise) ∼ NN (X~β +E~u, IN/τnoise).

The parameter τnoise acts as the precision of a joint effect from measure-
ment noise and small scale spatial variation (Diggle et al., 2007). We make
the underlying model for the p-dimensional random variable ~β proper by
introducing a weak Gaussian penalty,

~β ∼ Np(~0, Ip/τβ).

The penalty can be made stronger, but we do not believe it will have a
strong effect on the estimates for this dataset with only an intercept and
one covariate.

To describe the full hierarchical model, we introduce symbols to denote
the parameters that control the spatial field u. Denote the parameters
that control log(κ2), log(γ), vx and vy by ~α1, ~α2, ~α3 and ~α4, respectively.
Further, denote the corresponding penalty parameters for each function
by τ1, τ2, τ3 and τ4. With this notation the full model becomes

Stage 1: ~y|~β, ~u, log(τnoise) ∼ NN (X~β +E~u, IN/τnoise)

Stage 2: ~u|~α1, ~α2, ~α3, ~α4 ∼ Nnm(~0,Q−1), ~β ∼ Np(~0, Ip/τβ)

Stage 3: ~αi|τi ∼ Nkl(~0,Q
−1
RW2/τi) for i = 1, 2, 3, 4,

where τ1, τ2, τ3, τ4 and τβ are penalty parameters that must be pre-
selected.

An important model choice when constructing the GMRF approxima-
tion of the spatial process is the selection of the resolution of the approxi-
mation. The approximation does not allow for variation of the spatial field
within a grid cell and the spatial resolution must be chosen high enough
to capture variations on the scale at which observations were made. The
variation at sub-grid scale cannot be captured by the approximation and
will be captured by the nugget effect.
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2.5 Penalized likelihood and inference

The two things of main interest to us in this case study are the covariance
parameters ~θ = (~α1, ~α2, ~α3, ~α4, log(τnoise)) and the predictive distributions
for unmeasured locations. To estimate the covariance parameters, we need
the integrated likelihood where the latent field consisting of the coeffi-
cients of the fixed effects and the spatial effect are integrated out. This
integration can be done explicitly because the spatial field by construction
is Gaussian and the parameters of the fixed effects are Gaussian due to the
choice of a Gaussian penalty.

First, collect the fixed effect and the spatial effect in ~z = (~uT, ~βT). The
model given the value of ~θ can then be written as

~z|~θ ∼ Nmn+p(~0,Q
−1
z )

and
~y|~z, ~θ ∼ NN (S~z, IN/τnoise),

where

S =
[

E X
]

and Qz =

[

Q 0

0 τβIp

]

.

We then use the fact that both these distributions are Gaussian to integrate
out ~z from the likelihood, as shown in Appendix B. This gives the full
penalized log-likelihood

log(π(~θ|~y))

= Const−
1

2

4
∑

i=1

~αT
i QRW2~αi · τi +

1

2
log(det(Qz)) +

N

2
log(τnoise)+

−
1

2
log(det(QC))−

1

2
~µT
CQz~µC −

τnoise

2
(~y − S~µC)

T(~y − S~µC), (9)

where QC = Qz + STS · τnoise and ~µC = Q−1
C ST~y · τnoise.

The first step of the inference scheme is to estimate the covariance pa-

rameters ~θ with the value ~̂θ that maximizes Equation (9). This value is
then used to calculate predictions and prediction standard deviations at

new locations ~y∗ by using the predictive distribution ~y∗|~̂θ, ~y. However, the
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penalty parameters that control the penalty of the covariance parameters
are difficult to estimate. The profile likelihoods are hard to calculate and
there is not enough information on such a low stage of the hierarchical
model to estimate them together with the covariance parameters. Thus
they have to be pre-selected, based on intuition about how much the covari-
ance structure should be allowed to vary, or chosen with a cross-validation
procedure based on a scoring rule for the predictions.

During implementation of the inference scheme it became apparent
that an analytic expression for the gradient was needed for the optimiza-
tion to converge. Its form is given in Appendix C, and its value can be
computed for less cost than a finite difference approximation of the gra-
dient for the number of parameters used in the application in this paper.
The calculations require the use of techniques for calculating only parts of
the inverse of a sparse precision matrix (Rue and Held, 2010).

3 Non-stationarity in a single realization

3.1 Adaptive smoothing framework

We begin by considering the common situation in spatial statistics where
only a single realization is available. In this situation it is theoretically
impossible to separate non-stationarity in the mean and in the covariance
structure, and the non-stationary model is better described as adaptive
smoothing. The non-stationary model allows the degree of smoothing to
vary over space, and areas with long range will have high smoothing and
areas with short range will have low smoothing. The non-stationary model
will necessarily include part of the non-stationarity in the mean in the
covariance structure, but this is not necessarily a problem and might lead
to better predictions. The main interest is finding out whether the complex
non-stationary model improves predictions at unobserved locations and
whether the computational costs are worth it.

We select the year 1981 which has 7040 measurement stations and
want to predict the annual precipitation in the entire conterminous US
with associated prediction standard deviations. Two covariates are used:
a joint mean and elevation. This means that the design matrix, X, in
Equation (8) has two columns. The first column contains only ones, and
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Table 1: Estimated values of the parameters and associated approximate
standard deviations for the stationary model.

Parameter Estimate Standard deviation

log(κ2) −1.75 0.15
log(γ) −0.272 0.042
vx 0.477 0.053
vy −0.313 0.057
log(τnoise) 4.266 0.030

corresponds to the joint mean, and the second column contains elevations
measured in kilometres. There should be strong information about the
two covariates and a weak penalty is applied to the coefficients of the fixed
effects, ~β ∼ N2(~0, I2 · 10

4).

3.2 Stationary model

The spatial effect is constructed on a rectangular domain with longitudes
from 130.15 ◦W to 60.85 ◦W and latitudes from 21.65 ◦N to 51.35 ◦N. This
is larger than the actual size of the conterminous US as can be seen in
Figure 1, and is chosen to reduce boundary effects. The domain is dis-
crectized into a 400 × 200 grid and the parameters log(κ2), log(γ), vx,
vy and log(τnoise) are estimated. In this case the second order random
walk penalty is not used as no basis (except a constant) is needed for the
functions. The estimated values with associated approximate standard de-
viations are shown in Table 1. The approximate standard deviations are
calculated from the observed information matrix.

From Section 2.1 one can see that the estimated model implies a co-
variance function approximately equal to the Matérn covariance function

r(~s1, ~s2) = σ̂2

∣

∣

∣

∣

∣

∣

∣

∣

(

Ĥ/κ̂2
)−1/2

(~s2 − ~s1)

∣

∣

∣

∣

∣

∣

∣

∣

K1

(∣

∣

∣

∣

∣

∣

∣

∣

(

Ĥ/κ̂2
)−1/2

(~s2 − ~s1)

∣

∣

∣

∣

∣

∣

∣

∣

)

,

where σ̂2 = 0.505 and

Ĥ

κ̂2
=

[

5.71 −0.86
−0.86 4.96

]

,
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Figure 6: The 0.95, 0.70, 0.50, 0.36, 0.26, 0.19, 0.14 and 0.1 level correlation
contours of the estimated covariance function for the stationary model.

together with a nugget effect with precision τ̂noise = 71.2. Figure 6 shows
contours of the estimated covariance function with respect to a chosen
location. One can see that the model gives high dependence within a
typical-sized state, whereas there is little dependence between the centres
of different typically-sized states.

Next, the parameter values are used together with the observed log-
arithms of annual precipitations to predict the logarithm of annual pre-
cipitation at the centre of each cell in the discretization. The elevation
covariate for each location is selected from bilinear interpolation from the
closest points in the high resolution elevation data set GLOBE (Hastings
et al., 1999). The predictions and prediction standard deviations are shown
in Figure 7. Since there only are observations within the conterminous US
and this is the area of interest, the locations outside are coloured white.

3.3 Non-stationary model

The parameters τ1, τ2, τ3 and τ4, that appear in the penalty for the func-
tions log(κ2), log(γ), vx and vy, respectively, have to be chosen before the
rest of the inference is started. The parameters are chosen with 5-fold
cross-validation based on the log-predictive density. The data is randomly
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(b) Prediction standard deviations

Figure 7: Predicted values and prediction standard deviations for the sta-
tionary model.
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divided into five parts and in turn one part is used as test data and the
other four parts are used as training data. For each choice of τ1, τ2, τ3 and
τ4 the cross-validation error is calculated by

CV(τ1, τ2, τ3, τ4) = −
1

5

5
∑

i=1

log(π(~y∗i |~yi, ~̂θi),

where ~y∗i is the test data and ~̂θi is the estimated covariance parameters
based on the training data ~yi using the selected τ -values. The cross vali-
dation is done over log(τi) ∈ {2, 4, 6, 8} for i = 1, 2, 3, 4. We selected four
values for each parameter to have a balance between the need to test strong
and weak penalties and to make the problem computationally feasible.
Controlling the penalty on non-stationarity is important, but appropriate
penalty values are not easily deduced from the model. Therefore, different
values were tested to determine values of τi that corresponds to a weak
penalty and a strong penalty and then four points were chosen linearly on
log-scale since τi acts as a scale parameter. We use the same domain size
as for the stationary model, but reduce the grid size to 200 × 100 with
8 × 4 basis functions for each function. The choice that gave the small-
est cross-validation error was log(τ1) = 2, log(τ2) = 4, log(τ3) = 2 and
log(τ4) = 8.

After the penalty parameters are selected, the grid size is increased to
400 × 200 and each of the four functions in the SPDE is given a 16 × 8
basis functions. Together with the precision parameter of the random
effect this gives a total of 513 parameters. These parameters are estimated
together based on the integrated likelihood. Note that there are not 513
“free” parameters as they are connected together in four different penalties
enforcing slowly changing functions. This means that an increase in the
number of parameters increases the resolutions of the functions, but not
directly the degree of freedom in the model.

The nugget effect is estimated to have a precision of τ̂noise = 107.4. The
estimates of κ2 and H are not shown since the exact values themselves are
not interesting. We calculate instead the marginal standard deviations
for all locations and 0.7 level correlation contours for selected locations
in Figure 8(a) and Figure 8(b), respectively. From these figures one can
see that the estimated covariance structure is different from the estimated
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covariance structure for the stationary model shown in Figure 6. In the
non-stationary model we have a much longer range in the eastern part and
a much short range in the mountainous areas in the west.

The estimated covariance structure implies strong smoothing of in the
eastern region and weak smoothing in the western region. This must be
understood to say something about both how well the covariates describe
the data at different locations and the underlying non-stationarity in the
covariance structure of the physical phenomenon. In this case there is a
good fit for the elevation covariate in the mountainous areas in the western
part, but it offers less information in the eastern part. From Figure 1 one
can see that at around longitude 97◦W there is an increase in precipita-
tion which cannot be explained by elevation, and thus is not captured by
the covariates. This jump must therefore be explained by the covariance
structure, and in this case it is explained by having the covariates fit well
in the western region and explaining the high values in the eastern region
as being caused, randomly, by a spatial process with a long range.

In the same way as in Section 3.2 the logarithm of annual precipi-
tation is predicted at the centre of each cell in the discretization. This
gives predictions for 400 × 200 regularly distributed locations, where the
value of the elevation covariate at each location is selected with bilinear
interpolation from the closest points in the GLOBE (Hastings et al., 1999)
dataset. The prediction and prediction standard deviations are shown in
Figure 9. As for the stationary model, the values outside the conterminous
US are coloured white. One can see that the overall look of the predic-
tions is similar to the predictions from the stationary model, but that the
prediction standard deviations differ. The prediction standard deviations
vary strongly over the spatial domain because of the extreme differences
in spatial range for the estimated non-stationary model.

3.4 Evaluation of predictions

The predictions of the stationary model and the non-stationary model are
compared with the continuous rank probability score (CRPS) (Gneiting
et al., 2005) and the logarithmic scoring rule. CRPS is defined for a uni-
variate distribution as

crps(F, y) =

∫ ∞

−∞
(F (y)− ✶(y ≤ t))2 dt,



94 Fuglstad, G.-A., Simpson, D., Lindgren, F., and Rue, H.

Longitude (°)

L
a
ti
tu

d
e
 (

°
)

Marginal standard deviations of the spatial field

 

 

−130 −120 −110 −100 −90 −80 −70

25

30

35

40

45

50

0.5

1

1.5

2

(a) Marginal standard deviations

−130 −120 −110 −100 −90 −80 −70

25

30

35

40

45

50

Contours of the correlation functions

Longitude (°)

L
a

ti
tu

d
e

 (
°
)

(b) Correlation structure

Figure 8: Estimated covariance structure of the spatial field. (a) Marginal
standard deviations (b) Contours of 0.7 correlation for selected locations
marked with red crosses
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Figure 9: Predictions and prediction standard deviations for the non-
stationary model for the logarithm of annual precipitation in the conter-
minous US in 1981 measured in millimetres.
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where F is the distribution function of interest, y is an observation and
✶ is the indicator function. This gives a measure of how well a single
observation fits a distribution. The total score is calculated as the average
CRPS for the test data,

CRPS =
1

N

N
∑

i=1

crps(Fk, yk),

where {yk} is the test data and {Fk} are the corresponding marginal pre-
dictive distributions given the estimated covariance parameters and the
training data. The logarithmic scoring rule is based on the joint predictive
distribution of the test data ~y∗ given the estimated covariance parameters

~̂θ and the training data ~y,

LogScore = − log π
(

~y∗|~̂θ, ~y
)

.

The comparison of the models is done using holdout sets where each
holdout set consists of 20% of the locations chosen randomly. The re-
maining 80% of the locations are used to estimate the parameters and to
predict the values at the locations in the holdout set. This procedure is
repeated 20 times. For each repetition the CRPS, the logarithmic score
and the root mean square error (RMSE) are calculated. From Figure 10
one can see that measured by both log-predictive score and CRPS the
non-stationary model gives better predictions, but that the RMSE does
not show any improvement.

However, the RMSE is based only on the point predictions and does
not incorporate the prediction variances. The log-predictive score and the
CRPS are more interesting since they say something about how well the
predictive distributions fit. The difference in log-predictive score is large
and indicates that the non-stationary model is better, but the difference in
CRPS is small and indicates only a small improvement. The likely cause
for this is that the log-predictive score evaluates the joint predictive dis-
tributions and there are difference which are not showing in the univariate
predictive distributions.

The full cross-validation procedure for selecting the penalty parameters
is expensive and takes weeks and must be evaluated against the potential
gain in any application. The results shows that the choice of scoring rule
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has a strong influence on the conclusion of whether the non-stationary
model was worth it. The CRPS does not show evidence that all the extra
computation time was worth it, but according to the log-predictive score
there is a large improvement.

3.5 Criticism

The log-predictive score and CRPS are better for the non-stationary model
for each hold-out set, but the covariance structure shown in Figure 8 is
troubling. The range was estimated long and the marginal variances were
estimated high in the eastern part because this was the “best” way to
explain the changes observed, but we do not truly believe the estimates.
The long estimated range means that most of the eastern part is highly
correlated and the high marginal variance means that next year there might
be a large change in the level in the eastern part. Whereas the low marginal
variance in the west means that there will be far less changes in the spatial
field there the next year. This is clearly wrong since the data for different
years do not show huge changes, which are compatible with the estimated
standard deviations of the spatial field, in the level of precipitation between
years in the eastern region.

It is well-known that the range and the marginal variance of the sta-
tionary Matérn model are not identifiable from a fixed-size observation
window (Zhang, 2004), and the situation is not likely to improve for a
complex model with spatially varying marginal variances and covariance
structure, but what we are seeing is the result of forcing the model to
include mean structure in the covariance structure. Based on data from
multiple years it is clear that the difference in level between the western
and eastern region is actually caused by a change in the mean. Further,
the short range in the west is also problematic because it means that few
of surrounding data points are being used to predict values in this part
of the domain. This could mean that the spatial effect is weak in this
region, but the estimated covariance structure gives evidence that we need
to investigate the cause more thoroughly.

This makes an important point regarding the worth and usefulness of
the non-stationary model. Whether we have improved the CRPS and the
log-predictive score is not the only question worth asking. We have gained
understanding about issues in the estimated covariance structure that we
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Figure 10: Scatter plots of prediction scores from the stationary and the
non-stationary model. 20% of the locations are randomly chosen to be held
out and the remaining 80% are used to estimate parameters and predict
the 20% held out data. This was repeated 20 times. For values below the
line the non-stationary model is better, and conversely for values above
the line.
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need to investigate to understand where the non-stationarity is coming
from and whether it is correctly captured in the model. In this case we
have gained something more than an improvement in prediction scores. We
have identified two potential issues with the model: the wrongly specified
mean, which we knew about, and the weak spatial effect in the western
region, which we need investigate.

4 Non-stationarity in multiple realizations

4.1 Non-stationary modelling framework

If we use multiple realizations, the non-stationarity in the mean and the
non-stationarity in the covariance structure are separable. Modelling them
separately goes beyond adaptive smoothing and is a situation where the
term non-stationary modelling is accurate. The goal in this section is to
separate out the non-stationarity in the mean and to investigate the two
issues we discovered in the analysis of a single year in the previous section:
over-smoothing in the eastern region and under-smoothing in the western
region.

We repeat the analysis using data from the years 1971–1985, and we
want to see how much the predictions improve and how the estimated non-
stationary changes with a better model for the mean. Ideally, one could fit
a full spatio-temporal model to these years, but since the focus is on the
spatial non-stationarity we will assume that the 15 years are independent
realizations of the same spatial process. Since we are using precipitation
data aggregated to yearly data, the temporal dependence is weak and this
is a reasonable simplification.

4.2 De-trending

The first step in the analysis is to de-trend the dataset. Each year has
a different number of observations and some observations are at different
locations, which means that there will be different missing locations for
each year. The de-trending is done with a simple model that assumes that
each year is an independent realization of a stationary spatial field and is
observed with measurement noises with the same variance. The model is
estimated based on the observations, and the values at locations of interest
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at each year is filled in based on the posterior marginal conditional means.
Then we take the average of the fitted values over the 15 year period as
an estimate of the true mean.

The simple model is fitted using the R package INLA, which is based
on the INLA method of (Rue et al., 2009). The model used is

y(~si, t) = µ+x(~si)β+ut(~si)+at+ǫi,t, i = 1, 2, . . . , Nt, t = 1971, . . . , 1985,

where µ is the joint mean for all observations, x(~si) is the elevation at
location ~si and β is the associated coefficient for the covariate, ut for
t = 1971, 1972, . . . , 1985 are independent realizations of the spatial ef-
fect for each year, at is an AR(1) process supposed to capture temporal
changes in the joint mean between years, and ǫi,t are independent Gaus-
sian measurement errors. The spatial effect is approximately Matérn with
smoothness parameter ν = 1. The model is estimated and used to pre-
dict the values at all locations of interest in all 15 years. The estimate of
the true mean µ̂(~s), at location ~s, is found by taking the average over the
estimated value at each year.

In the rest of the section we focus on the residuals y(~si, t)− µ̂(~si). This
means that the estimate of the mean is assumed to be without uncertainty.
The intention is to remove most of the non-stationarity in the mean and
then evaluate whether there is remaining non-stationarity in the covariance
structure of the de-trended data that benefits from being modelled with a
non-stationary model. The de-trended data for 1981 is shown in Figure 11.
The de-trended data can be compared to the original data in Figure 1. One
clear difference between the two figures is that the de-trended data does
not have an obvious shift in the level of the precipitation between the
western and eastern sides.

4.3 Fitting the non-stationary model

We fit a stationary model (STAT1) and a non-stationary model (NSTAT1)
as in Section 3, but without covariates and with the assumption that there
are 15 independent replications of the residuals. Each year has observations
at potentially different locations, but this does not pose any problems in the
SPDE-based model since the entire field is modelled explicitly through the
values on each cell in the discretization. The observations are mapped to
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Figure 11: De-trended observations of log-transformed total annual pre-
cipitation measured in millimeter for 1981.

statements about the values on the grid cells in each year and the inference
proceeds in a similar way as for the adaptive smoothing application that
used only the year 1981.

The penalty parameters τ1, τ2, τ3 and τ4 should be changed, but with
15 realizations the cross-validation becomes far more computationally ex-
pensive. Therefore, we performed an exploratory analysis where the fits
for low, medium and high smoothing were compared, and we decided to
use log(τ1) = 10, log(τ2) = 10, log(τ3) = 10 and log(τ4) = 10. This might
not lead to the highest possible decrease in the prediction scores, but at
this point the main interest lies in the qualitative changes in the estimated
structure. And, it would, potentially, be a waste of time to put in the
required effort before we are certain that there are not major components
missing in the model.

The parameters were estimated in the same way as in Section 3, and
the maximum penalized likelihood estimates for non-stationarity were used
to give the predictions shown in Figures 12 and 13. The figures show both
the predictions and the prediction standard deviations for STAT1 and
NSTAT1. There are several interesting features in these plots. First, the
predicted values are similar for the two models and the main difference
is found in the prediction standard deviations. Second, the prediction
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standard deviations for the western region is troubling for NSTAT1. The
range appears to be too short and the spatial effect appears to be close to
independent measurement noise in this area. This is not consistent with
Figure 11, which appears to have a spatial effect in this region as well.

The problem can be seen clearly when looking at the estimated covari-
ance structure shown in Figure 14. The correlation structure in the eastern
part looks regular after de-trending the data, but the correlation structure
in the western region is almost degenerating to independent noise. This
is a problem from a computational perspective, since the discretization of
the SPDE requires that the range is not too small compared to the size of
the grid cells, and from a modelling perspective, since the parameters are
supposed to describe a slowly changing spatial dependence structure. In
the case that the spatial range is that low, the SPDE models requires a
high resolution to properly capture the dependence between neighbouring
grid cells in the discretization, but if the range is that low, a spatial effect
might not be needed. Furthermore, Figure 14(a) shows that the variance
of the spatial field is higher in the western region. This indicates that the
nugget effect in the western region needs to be different from the nugget
effect in the eastern region.

The fits of STAT1 and NSTAT1 are compared with the log-predictive
score, the CRPS and the RMSE. The scores are calculated by randomly
dividing the data in each year in five parts and then holding out the first
part from each year and do the entire fitting and prediction of this data
using only the remaining part of the data. Then holding out the second
part of the data in each year and so on, for a total of 5 values. This
process was then repeated three more times for a total of 20 values of the
scores. Scatter plots comparing the scores for the two models are shown
in Figure 15.

NSTAT1 has a lower log-predictive score and CRPS than STAT1, but
the RMSE is higher. The conclusions based on the log-predictive score and
the CRPS is the same as for the single realization analysis in Section 3.4.
However, the consistently higher RMSE values indicate that there is a
problem with the model. The problem lies in the western region where the
range is too low, which leads to worse point estimates because the spatial
dependence is not exploited. The flexible non-stationary model is able to
detect that a higher variance is required for the nugget effect in the western
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(b) Prediction for NSTAT1

Figure 12: Prediction for de-trended data for year 1981 based on the 15
year period 1971–1985. (a) shows the prediction for STAT1, (b) shows the
prediction for NSTAT1.
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Figure 13: Prediction for de-trended data for year 1981 based on the 15
year period 1971–1985. (a) shows the prediction standard deviations for
STAT1 and (b) shows the prediction standard deviations for NSTAT1.



Does non-stationary spatial data always require non-stationary RFs? 105

Longitude (°)

L
a

ti
tu

d
e

 (
°
)

Marginal standard deviations

 

 

−130 −120 −110 −100 −90 −80 −70

25

30

35

40

45

50

0.15

0.2

0.25

0.3

0.35

(a) Marginal standard deviations

−130 −120 −110 −100 −90 −80 −70

25

30

35

40

45

50

Contours of the correlation functions

Longitude (°)

L
a

ti
tu

d
e

 (
°
)

(b) Estimated correlation structure

Figure 14: (a) Estimated marginal standard deviations and (b) estimated
0.7 level contour curves for the correlation functions with respect to the
locations marked with red crosses for the spatial effect in NSTAT1.
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region, but is not able to achieve this in the correct way. Even with all the
freedom available in the model it is impossible to have spatial dependence
and different nugget effects because we have put the non-stationarity in
the wrong components of the model. We need to treat the nugget effects
in the western and eastern regions separately.

4.4 Removing the under-smoothing in the western part

The results in Section 4.3 indicate that the nugget effect is different in the
western and the eastern part of the conterminous US. Therefore, we fit
a stationary model (STAT2) and a non-stationary model (NSTAT2) with
separate nugget effects for locations with longitudes lower than 100 ◦W

and for locations with longitudes higher than or equal to 100 ◦W . The
placement of the frontier at 100 ◦W is motivated by the change from moun-
tainous regions to plains seen in Figure 2 and the change from low to high
range seen in Figure 14(b), but we do not believe it would be particularly
sensitive to the exact placement as long as it is in the area of transition
from mountainous regions to plains. Except for this change, the models
are unchanged, and we use the same penalties τ1, τ2, τ3 and τ4 for the
non-stationarity structure. The intention is to see how much the predic-
tions and the estimated dependence structure change with different nugget
effects, but the same penalties.

The predictions and prediction standard deviations are shown in Fig-
ures 16 and 17, respectively. Figure 17 show that the prediction standard
deviations for NSTAT2 do not have the strange artifacts in the western
region that are present in Figure 13 for NSTAT1, but one can notice
that there is a sharp change in prediction standard deviations at longi-
tude 100 ◦W . This is by construction due to the use of different nugget
effects for the two parts of the conterminous US. STAT2 has an estimated
standard deviation for the nugget effect of 0.17 in the western part and of
0.083 in the eastern part and for NSTAT2 the estimated standard devia-
tion for the nugget effect is 0.16 in the western part and is 0.083 in the
eastern part.

The estimated spatial dependence structure of NSTAT2 is shown in
Figure 18. The clearest change from the dependence structure of NSTAT1
shown in Figure 14 is that the non-stationarity in the correlation structure
is mostly gone. The appearance is much more reasonable than for NSTAT1
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Figure 15: Scatter plots of (a) Log-predictive score, (b) CRPS and (c) Root
mean square error for STAT1 and NSTAT1. The estimates were calculated
with hold-out sets where 20% of the locations were held-out from each year
as described in Section 4.3.
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Figure 16: Prediction for de-trended data for year 1981 based on the 15
year period 1971–1985. (a) shows the prediction for STAT2, (b) shows the
prediction for NSTAT2.
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Figure 17: Prediction for de-trended data for year 1981 based on the 15
year period 1971–1985. (a) shows the prediction standard deviations for
STAT2 and (b) shows the prediction standard deviations for NSTAT2.
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since the entire dependence structure is changing slowly and there are
no areas with unreasonably large or small ranges. Some non-stationarity
still remains in the marginal standard deviations, but together these plots
indicate that the simple model STAT2, which does not use a complex
non-stationary spatial field, should fit these data well.

We compare the predictions of STAT2 and NSTAT2 by the RMSE, the
CRPS and the log-predictive score. The results are given in Figure 19.
NSTAT2 performs better according to all of the scores. The scatter plots
of the scores show that NSTAT2 performs better for all the hold-out sets,
but that the differences in scores are small.

4.5 Discussion of models

The prediction scores for STAT1, NSTAT1, STAT2 and NSTAT2 are shown
in Figure 20. The figure shows that the model performing the best accord-
ing to all scores is NSTAT2, but is the extra computation time worth
the effort in this case? The much simpler model STAT2 is performing
almost as good as NSTAT2 and requires only one extra parameter. The
cost of including one extra parameter is far less than the cost of intro-
ducing the flexible non-stationary model. Additionally, one can see that
even though the expensive flexible model makes NSTAT1 consistently bet-
ter than STAT1 in the log-predictive score and the CRPS, STAT2 makes
an even greater improvement from STAT1 for the cost of only a single
parameter.

The predictions and prediction standard deviations for STAT2 and
NSTAT2 in Figures 16 and 17 are showing less extreme differences than
the predictions and prediction standard deviations for STAT1 and NSTAT1
shown in Figures 12 and 13, but there is still some differences in the pre-
diction standard deviations. Some further gain is possible by selecting the
penalty parameters controlling the non-stationarity more carefully. We
saw some improvement by trying different penalty parameters, but no ma-
jor changes that would change the conclusion. When we take computation
time into account, STAT2 appears to be the better choice. There is some
gain with the flexible non-stationary model in NSTAT2, but it comes at a
high computational cost.

The physical cause of the difference in the nugget effect between the
western region and the eastern region is not known, but it is unlikely
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Figure 18: (a) Estimated marginal standard deviations and (b) estimated
0.7 level contour curves for the correlation functions with respect to the
locations marked with red crosses for the spatial effect in NSTAT2.
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Figure 19: Scatter plots of (a) log-predictive score, (b) CRPS and (c) Root
mean square error for STAT2 and NSTAT2. The estimates were calculated
with hold-out sets where 20% of the locations were held-out from each year
as described in Section 4.3.
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Figure 20: Comparison of STAT1 (blue), NSTAT1 (red), STAT2 (green)
and NSTAT2 (black) based on (a) Log-predictive score, (b) CRPS and (c)
RMSE. The estimates were calculated with hold-out sets where 20% of the
locations were held-out from each year as described in Section 4.3.
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to be caused only by differences in the measurement equipment. It is
more likely that it is caused by differences in the small-scale behaviour
of the process generating the weather in the two different regions that
is not captured by the model, but it has not been our intention to find
the physical explanation. The intention has been to demonstrate how
such a phenomenon can affect the estimation of general flexible models for
non-stationarity and the need to carefully evaluate the fitted covariance
structures.

5 Discussion

The question of whether we need non-stationary spatial models or not,
is a deeper question than it might seem initially. The first step of the
analysis should be to decide whether it is likely that non-stationarity is
present in the data or not, and in this context simple data exploration,
such as variograms, and formal tests (Fuentes, 2005; Jun and Genton,
2012; Bowman and Crujeiras, 2013) are useful tools. The second step is to
decide which non-stationary model we want to use and it can be tempting
to look for complex models that allow for spatial fields that have large
amounts of flexibility in the covariance structure. We then apply these
models with the hope that the high degree of flexibility means that we
will be able to capture any non-stationarity present in the data, but the
analysis of the annual precipitation data shows that blindly applying such
a model might not capture the non-stationarity in the correct and best
way.

The case study clearly indicates the need to go beyond simply deter-
mining whether or not non-stationarity is present in the data. We need to
determine what type of non-stationarity that is present in the data. A flex-
ible model will try to adapt to the non-stationarity, but if the flexibility is
available in the wrong parts of the model, the model might have to do sub-
optimal things to improve the predictive distributions. For example, imi-
tate a spatially varying nugget effect by decreasing the range and varying
the marginal variances. This adaptation gives severe undersmoothing, but
simply expanding the model with a smoothly varying nugget effect would
make the model difficult to identify together with the rest of the flexibil-
ity. Therefore, we should determine what is causing the non-stationarity
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we are seeing before deciding which non-stationary model to use.

The first and most obvious source of non-stationarity in a dataset is
the mean structure, and not accounting for this source of non-stationarity
will confound the non-stationarity in the mean structure with the non-
stationarity in the covariance structure. For example, unmeasured co-
variates can lead to the apparent long range dependence and global non-
stationarity that we observed in the analysis of a single realization. The
method presented in this paper is aimed at modelling local non-stationarity
and is not appropriate for modelling this type of global non-stationarity.
We handle this apparent structure in the covariances by de-trending the
data, but it is also possible to model jointly the mean structure and the
covariance structure. A simple example of the latter would be to combine
the SPDE models with a small number of global basis functions to form
a hybrid of fixed-rank kriging and the SPDE models, where the SPDE
models captures the short range dependence and local non-stationarity,
and the basis functions capture the long range dependence and global
non-stationarity. Whichever approach is taken, the paper demonstrates
the need to remove the global non-stationarity before modelling the local
non-stationarity.

After we have removed the global non-stationarity induced by the mean
structure we can model the remaining local non-stationarity, for which the
Markovian structure of the SPDE models offers a good modelling tool. In
the SPDE models we construct a consistent global covariance structure by
tying together the local behaviour specified by the SPDE at each location,
and the covariance between any two locations will be a combination of the
local behaviour at all locations in the model. We believe that this approach
is a good way to model local non-stationarity that provides a more flexible,
more computationally efficient and easier to parametrize approach than
the deformation method, while still having a geometric interpretation of
varying the local distance measures.

But modelling local non-stationarity requires information on the small-
scale directional behaviour of the observations, and we would be hesitant to
estimate flexible non-stationary models for sparser datasets. Methods such
as the deformation method is routinely applied to much sparser datasets,
but there is no way around the fact that for patches where we do not have
observations we have no idea how the covariances behave. For sparse data



116 Fuglstad, G.-A., Simpson, D., Lindgren, F., and Rue, H.

it is possible to imagine multiple covariance structures that could give
rise to the observed empirical covariances and the unobserved structure
must be filled by the model based on the assumptions and restrictions
that we have put into the model. This can, potentially, lead to highly
model dependent estimates since in non-stationary modelling the missing
covariances do not directly affect the observations, and it is important to
not allow too much freedom in the covariance structure compared to the
sparseness of the data, and to realize that the features seen in the estimated
covariance structure will depend on the sparseness of the data.

In an analogous way as for other finite-dimensional methods, there
is a confounding of the nugget effect and the resolution chosen for the
finite-dimensional approximation. For predictive processes there exists a
solution (Finley et al., 2009), but for the SPDE models it is an active field
of research. In a GRF model the nugget effect is a combination of the small-
scale behaviour and the measurement error, where small-scale behaviour is
behaviour below the scale which the data can inform about. The sparser
the data is, the more small-scale variation will be confounded with the
nugget effect, but for the SPDE models the interpretation of the nugget
effect is also tied to the discretization and is a combination of measurement
error, small-scale variation and sub-grid variation. The approximation
cannot capture variation within the grid cells and these variations increase
the nugget variance and decrease the process variances, but this is only
a worry when interpreting these parameters. If the precipitation data
were sparser, the confounding between small-scale variation and the nugget
effect would make it difficult to detect different nugget effects in the western
region and the eastern region, and the approach might lead to a different
conclusion about the nugget effect.

In each of the three cases studied, the flexible non-stationary model per-
forms better according to the log-predictive score and the CRPS, but when
we target directly the non-stationarity in the nugget effect, we can apply
a much simpler model just using two nugget effects. Does this mean that
the flexible non-stationary model was not useful? No, we were able to use
the flexible non-stationary model to estimate a covariance structure that
could be used to help determine possible sources of the non-stationarity.
We could then include these sources directly and fit a simpler model per-
forming almost equally well, and we could make the same changes to the
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flexible non-stationary model and fit it again to become confident that
there were no other major uncaptured sources of non-stationarity. The
idea that the nugget might be the source of heterogeneity is not new (Zim-
merman, 1993), but the case study demonstrates the dangers of putting
the heterogeneity in the wrong components in the model.

If there were knowledge available about what was physically generating
the non-stationarity, it would be possible to make simpler models where we
reduce the flexibility and control the the covariance structure by covariates.
The use of two nugget effects is an extreme case of this, but covariates in
the covariance structure has been a recent direction of research within
all the major families of approaches such as the deformation method, the
process convolution method and the SPDE-based method (Schmidt et al.,
2011; Neto et al., 2014; Ingebrigtsen et al., 2014). However, even if we
intend to use covariates, the more general non-stationary models could be
used to gain intuition about which covariates should be selected and what
type of non-stationarity they should control.

The comparison of the different models shows that the scoring rule used
to evaluate the predictions has a large influence on the conclusion. The use
of a non-stationary model instead of a stationary model mainly affects the
prediction variances and not the predicted values. Therefore, the largest
improvements are seen in the log-predictive score and the CRPS, and not
the RMSE that only evaluates point predictions. However, consistently
higher RMSE values for the flexible non-stationary model compared to
the simple stationary, as observed when fitting the models using a single
nugget effect to de-trended data, is useful to detect problems with the
model such as undersmoothing.

One of the major reasons not to use general non-stationary models un-
less they are absolutely needed is that they are computationally expensive.
The covariate-based approach is less expensive, but requires assumptions
about how the non-stationarity varies. Another approach would be to es-
timate the model locally in different parts of the domain and then try to
piece everything together for predictions, but looking for the most efficient
way to estimate the model is not the goal of this paper and the more com-
plex one makes the model, the more computationally expensive it will be.
The point we are trying to make is that in applications, time might in
many cases be better spent on considering how to put the non-stationarity
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into the model than on developing more complex flexible models and ways
to compute them.

Non-stationarity in the covariance structure of spatial models is needed
even after the non-stationarity in the mean has been removed, but we need
to think carefully about how we handle the non-stationarity. We need
to go beyond determining whether there is non-stationarity or not, and
determine what type of non-stationarity is present and if possible target
this non-stationarity directly instead of using a general flexible model. But
in this context the estimated covariance structure from a general flexible
model can in some cases be a useful tool to determine how to do this.
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A Derivation of the second-order random walk

prior

Each function, f , is a priori modelled as a Gaussian process described by
the SPDE

−∆f(~s) =
1
√
τ
W(~s), ~s ∈ D = [A1, B1]× [A2, B2], (A.1)

where A1 < B1, A2 < B2 and τ > 0, W is standard Gaussian white noise
and ∆ = ∂2

∂x2 +
∂2

∂y2
, with the Neumann boundary condition of zero normal

derivatives at the edges. In practice this is approximated by representing
f as a linear combination of basis elements {fij} weighted by Gaussian
distributed weights {αij},

f(~s) =
K
∑

i=1

L
∑

j=1

αijfij(~s).

The basis functions are constructed from separate bases {gi} and {hj} for
the x-coordinate and the y-coordinate, respectively,

fij(~s) = gi(x)hj(y). (A.2)

For convenience each basis function is assumed to fulfill the boundary
condition of zero normal derivative at the edges.

Let ~α = vec([αij ]ij), then the task is to find the best Gaussian distri-
bution for ~α. Where “best” is used in the sense of making the resulting
distribution for f “close” to a solution of SPDE (A.1). This is done by a
least-squares approach where the vector created from doing inner products
of the left hand side with −∆fkl must be equal in distribution to the vector
created from doing the same to the right hand side,

vec ([〈−∆f,−∆fkl〉D]kl)
d
=vec ([〈W,−∆fkl〉D]kl) . (A.3)

First, calculate the inner product that is needed

〈−∆gihj ,−∆gkhl〉D = 〈∆gihj ,∆gihj〉D

=

〈(

∂2

∂x2
gi

)

hj + gi
∂2

∂y2
hj ,

(

∂2

∂x2
gk

)

hl + gk
∂2

∂y2
hl

〉

D

.



120 Fuglstad, G.-A., Simpson, D., Lindgren, F., and Rue, H.

The bilinearity of the inner product can be used to expand the expression
in a sum of four innerproducts. Each of these inner products can then be
written as a product of two inner products. Due to lack of space this is
not done explicitly, but one of these terms is, for example,

〈(

∂2

∂x2
gi

)

hj ,

(

∂2

∂x2
gk

)

hl

〉

D

=

〈

∂2

∂x2
gi,

∂2

∂x2
gk

〉

[A1,B1]

〈hj , hl〉[A2,B2]
.

By inserting Equation (A.2) into Equation (A.3) and using the above
derivations together with integration by parts one can see that the left
hand side becomes

vec ([〈−∆f,−∆fkl〉D]kl) = C~α,

where C = G2 ⊗H0 + 2G1 ⊗H1 +G0 ⊗H2 with

Gn =

[

〈

∂n

∂xn
gi,

∂n

∂xn
gj

〉

[A1,B1]

]

i,j

and

Hn =

[

〈

∂n

∂yn
hi,

∂n

∂yn
hj

〉

[A2,B2]

]

i,j

.

The right hand side is a Gaussian random vector where the covariance
between the position corresponding to αij and the position corresponding
to αkl is given by

〈−∆fij ,−∆fkl〉D.

Thus the covariance matrix of the right hand side must be C and Equa-
tion (A.3) can be written in matrix form as

C~α = C1/2~z,

where ~z ∼ NKL(~0, IKL). This means that ~α should be given the precision
matrix Q = C. Note that C might be singular due to invariance to some
linear combination of the basis elements.
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B Conditional distributions

From the hierarchical model

Stage 1: ~y|~z, ~θ ∼ NN (S~z, IN/τnoise)

Stage 2: ~z|~θ ∼ Nmn+p(~0,Q
−1
z ),

the posterior distribution π(~θ|~y) can be derived explicitly. There are three
steps involved.

B.1 Step 1

Calculate the distribution π(~z|~θ, ~y) up to a constant,

π(~z|~θ, ~y) ∝ π(~z, ~θ, ~y)

= π(~θ)π(~z|~θ)π(~y|~θ, ~z)

∝ exp

(

−
1

2
(~z −~0)TQz(~z −~0)−

1

2
(~y − S~z)TIN · τnoise(~y − S~z)

)

∝ exp

(

−
1

2

(

~zT(Qz + τnoiseS
TS)~z − 2~zTST~y · τnoise

)

)

∝ exp

(

−
1

2
(~z − ~µC)

TQC(~z − ~µC)

)

,

where QC = Qz+STS ·τnoise and µC = Q−1
C ST~y ·τnoise. This is recognized

as a Gaussian distribution

~z|~θ, ~y ∼ NN (~µC,Q
−1
C ).

B.2 Step 2

Integrate out ~z from the joint distribution of ~z, ~θ and ~y via the Bayesian
rule,

π(~θ, ~y) =
π(~θ, ~z, ~y)

π(~z|~θ, ~y)

=
π(~θ)π(~z|~θ)π(~y|~z, ~θ)

π(~z|~θ, ~y)
.
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The left hand side of the expression does not depend on the value of ~z,
therefore the right hand side may be evaluated at any desired value of ~z.
Evaluating at ~z = ~µC gives

π(~θ, ~y) ∝
π(~θ)π(~z = ~µC)π(~y|~z = ~µC, ~θ)

π(~z = ~µC|~θ, ~y)

∝ π(~θ)
|Qz|

1/2|IN · τnoise|
1/2

|QC|1/2
exp

(

−
1

2
~µT
CQz~µC

)

×

× exp

(

−
1

2
(~y − S~µC)

TIN · τnoise(~y − S~µC)

)

×

× exp

(

+
1

2
(~µC − ~µC)

TQC(~µC − ~µC)

)

.

B.3 Step 3

Condition on ~y to get the desired conditional distribution,

log(π(~θ|~y)) = Const + log(π(~θ)) +
1

2
log(det(Qz)) +

N

2
log(τnoise)+

−
1

2
log(det(QC))−

1

2
~µT
CQz~µz −

τnoise

2
(~y − S~µC)

T(~y − S~µC).

(B.1)

C Analytic expression for the gradient

This appendix shows the derivation of the derivative of the log-likelihood.
Choose the evaluation point ~z = ~0 in Appendix B.2 to find

log(π(~θ, τnoise|~y))

= Const + log(π(~θ, τnoise)) +
1

2
log(det(Qz))+

+
N

2
log(τnoise)−

1

2
log(det(QC))−

τnoise

2
~yT~y +

1

2
~µT
CQC~µC.

This is just a rewritten form of Equation (B.1) which is more convenient for
the calculation of the gradient, and which separates the τnoise parameter
from the rest of the covariance parameters. First some preliminary results
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are presented, then the derivatives are calculated with respect to θi and
lastly the derivatives are calculated with respect to log(τnoise).

Begin with simple preliminary formulas for the derivatives of the con-
ditional precision matrix with respect to each of the parameters,

∂

∂θi
QC =

∂

∂θi
(Q+ STS · τnoise) =

∂

∂θi
Q (C.1)

and

∂

∂ log(τnoise)
QC =

∂

∂ log(τnoise)
(Q+ STS · τnoise) = STS · τnoise. (C.2)

C.1 Derivative with respect to θi

First the derivatives of the log-determinants can be handled by an explicit
formula (Petersen and Pedersen, 2012)

∂

∂θi
(log(det(Q))− log(det(QC))

= Tr(Q−1 ∂

∂θi
Q)− Tr(Q−1

C

∂

∂θi
QC)

= Tr

[

(Q−1 −Q−1
C )

∂

∂θi
Q

]

.

Then the derivative of the quadratic forms are calculated

∂

∂θi

(

−
1

2
~yT~y · τnoise +

1

2
~µCQC~µC

)

= 0 +
∂

∂θi

(

1

2
~yTτnoiseSQ

−1
C STτnoise~y

)

= −
1

2
~yTτnoiseSQ

−1
C

(

∂

∂θi
QC

)

Q−1
C STτnoise~y

= −
1

2
~µT
C

(

∂

∂θi
Q

)

~µC.
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Combining these gives

∂

∂θi
log(π(~θ, τnoise|~y))

=
∂

∂θi
log(π(~θ, τnoise)) +

1

2
Tr

[

(Q−1 −Q−1
C )

∂

∂θi
Q

]

−
1

2
~µT
C

(

∂

∂θi
Q

)

~µC

C.2 Derivative with respect to log(τnoise)

First calculate the derivative of the log-determinants

∂

∂ log(τnoise)
(N log(τnoise)− log(det(QC)))

= N − Tr

(

Q−1
C

∂

∂ log(τnoise)
QC

)

= N − Tr
(

Q−1
C STS · τnoise

)

.

Then the derivative of the quadratic forms

∂
(

−1
2~y

T~y · τnoise +
1
2~µCQC~µC

)

∂ log(τnoise)

= −
1

2
~yT~y · τnoise +

∂

∂ log(τn)

1

2
~yTτnoiseSQ

−1
C STτnoise~y

= −
1

2
~yT~y · τnoise + ~yTτnoiseSQ

−1
C S

(

∂τnoise

∂ log(τnoise)

)

~y

−
1

2
~yTτnoiseSQ

−1
C

(

∂

∂ log(τnoise)
QC

)

Q−1
C STτnoise~y

= −
1

2
~yT~y · τnoise + ~µT

CS
T~y · τnoise −

1

2
~µT
CS

TS~µC · τnoise

= −
1

2
(~y −A~µC)

T(~y −A~µC) · τnoise.
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Together these expressions give

∂ log(π(~θ, τnoise|~y))

∂ log(τnoise)

=
∂

∂ log(τnoise)
log(π(~θ, τnoise)) +

N

2
−

1

2
Tr

[

Q−1
C STS · τnoise

]

−
1

2
(~y −A~µC)

T(~y −A~µC) · τnoise

C.3 Implementation

The derivative ∂
∂θi

Qc can be calculated quickly since it is a simple functions
of θ. The trace of the inverse of a matrix A times the derivative of a matrix
B only requires the values of the inverse of A for non-zero elements of B. In
the above case the two matrices have the same type of non-zero structure,
but it can happen that specific elements in the non-zero structure are zero
for one of the matrices. This way of calculating the inverse only at a subset
of the locations can be handled as described in Rue and Held (2010).
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Abstract

Gaussian random fields (GRFs) are important building blocks
in hierarchical models for spatial data, but there is no practically
useful, principled approach for selecting the prior on their hyperpa-
rameters. The prior is typically chosen in an ad-hoc manner, which
lacks theoretical justification, despite the fact that we know that the
hyperparameters are not consistently estimable from a single real-
ization and that there is sensitivity to the choice of the prior.

We first use the recent Penalised Complexity prior framework to
construct a practically useful, tunable, weakly informative joint prior
on the range and the marginal variance for Matérn GRFs with fixed
smoothness. We then discuss how to extend this prior to a prior for
a non-stationary GRF with covariates in the covariance structure.

Keywords: Bayesian, Gaussian random fields, Spatial models, Pri-
ors, Range, Variance, Penalised Complexity, Non-stationary

1 Introduction

Gaussian random fields (GRFs) are fundamental building blocks in spa-
tial statistics and non-parametric modelling. They provide a simple and
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powerful tool for modelling data with spatial or temporal dependence, but
the Gaussian assumption is in many cases too stringent and they are em-
bedded within a hierarchical structure as one of multiple components that
controls the behaviour of the observations. In this context, the behaviour
of the GRF is usually controlled through a few parameters such as range,
marginal variance and smoothness, but, even though GRFs are a standard
modelling tool, the choice of prior distribution for the parameters remains a
challenge. The prior is difficult to choose: a well-chosen prior will stabilise
the inference and improve the predictive performance, whereas a poorly
chosen prior can be catastrophic. Due to the infinite-dimensional nature
of GRFs, it is difficult to construct a good prior and in most applications
the prior is chosen in an ad-hoc fashion. In this paper we focus on Matérn
GRFs with fixed smoothness, but the methods we develop are more widely
applicable.

The lack of practically useful, theoretically founded priors is troubling
since there is a ridge in the likelihood along which the value of the like-
lihood decreases slowly (Warnes and Ripley, 1987), and since the range
and the marginal variance for the Matérn family of covariance functions
cannot be estimated consistently under in-fill asymptotics (Zhang, 2004).
The behaviour of the prior on the ridge will strongly affect the behaviour
of the posterior on the ridge and no matter how many points are observed
in a bounded observation window, there is a limit to the amount of in-
formation that can be learned about these parameters. For example, if a
one-dimensional GRF with an exponential covariance function is observed
on [0, 1], it is only the ratio of the range and the marginal variance that
can be estimated consistently, and not the range and the marginal variance
separately (Ying, 1991). When we move along the ridge towards large val-
ues of the range and the marginal variance, we change the distribution of
the level of the points, but the distribution of the spread around the level
changes only slightly. Figure 1 shows how the level moves, but the pattern
of the points around the level remains stable for increasing values of the
range and the marginal variance.

In some sense, the lack of identifiability is alleviated by the fact that
there is a connection between what we can learn from observations and
what can affect the predictive distributions, and in this example it is the
ratio of the range and the marginal variance that is the important quantity



Interpretable Priors for Hyperparameters for GRFs 135

0.0 0.4 0.8

−
0
.5

0
.0

0
.5

1
.0

(a) ρ = σ
2
= 1

0.0 0.4 0.81
5
.0

1
6
.0

(b) ρ = σ
2
= 1000

0.0 0.4 0.8

5
1
4
.0

5
1
5
.0

(c) ρ = σ
2
= 1000000

Figure 1: Simulations with the exponential covariance function c(d) =
σ2e−d/ρ for different values of ρ = σ2 using the same underlying realization
of independent standard Gaussian random variables. The patterns of the
values are almost the same, but the levels differ.

for the asymptotic properties of the predictions (Stein, 1999). But even
though there is a place for intrinsic models in spatial statistics, a prac-
titioner who observes the values in Figure 1a is unlikely to believe that
the ranges and marginal variances that can generate Figures 1b and 1c
are correct even if the spread is consistent with the observed pattern. In
this problem the likelihood by itself is not informative enough to properly
control the sizes of the credible intervals, therefore, the practitioner should
be provided with a prior that allows control, in an interpretable way, of
how far the posterior is allowed to move along the ridge.

Despite this, to our knowledge, the only principled approach to prior
selection for GRFs was introduced by Berger et al. (2001), who derived
reference priors for a GRF partially observed with no noise. These priors
fundamentally depend on the design of the experiment, which makes them
inappropriate as “blind” default priors or when data is being analysed in a
sequential fashion. This work has been extended by several authors (Paulo,
2005; Kazianka and Pilz, 2012; Kazianka, 2013) – critically Oliveira (2007)
allowed for Gaussian observation noise – however, these papers have the
same design dependence as the original work. Furthermore, the priors are
not applicable as default priors for hierarchical models because the assump-
tion of Gaussian observation noise is insufficient in many situations and
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there are currently no extensions of spatial reference priors to other obser-
vation processes. In the more restricted case of a GRF with a Gaussian
covariance function van der Vaart and van Zanten (2009) showed that the
inference asymptotically behaves well with an inverse gamma distribution
on range, but they provide no guidance on which hyperparameters should
be selected for the prior.

In practice, the range is commonly given a uniform distribution on a
bounded interval, a log-uniform distribution on a bounded interval or an
inverse gamma distribution with infinite variance and the mean placed at
an appropriate location. These priors have little theoretical foundation
and are ad-hoc choices based on the idea that they will allow reasonable
ranges, but Berger et al. (2001) noted that the posterior inference can be
sensitive to the choice of cut-off for the uniform prior, and it is necessary
with careful sensitivity analysis. The bounded intervals are necessary be-
cause improper prior distributions cannot be applied without great care
as they tend to lead to improper posterior distributions. From a Bayesian
modelling perspective this is an unsatisfactory situation because the prior
is supposed to encode the user’s uncertainty about the parameters and not
be an ad-hoc choice made out of convenience without theoretical justifica-
tion.

We apply the recent Penalised Complexity (PC) prior framework de-
veloped by Simpson et al. (2014) to construct a new, principled joint prior
for the range and the marginal variance of a Matérn GRF. The PC prior
framework ignores the observation process entirely and focuses instead on
the geometry of the parameter space induced by the infinite-dimensional
GRF. This is more technically demanding than considering only the finite-
dimensional observation, like for the reference priors, but we are able to
use the resulting prior for any spatial design and any observation pro-
cess. The second key difference between the reference priors and the PC
prior approach is that while the former is “non-informative” in a techni-
cal sense, PC priors are weakly informative and, therefore, require specific
information from the user. In particular, PC priors need a point in the
parameter space, considered a base model, and hyperparameters indicating
how strongly the user wishes to shrink towards the base model. Simpson
et al. (2014) showed that the resulting inference was quite robust against
the specification of the hyperparameters.
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The reference prior makes the posterior decay slowly along the ridge
since predictions are not heavily influenced by the near intrinsicness in the
level, but the PC-prior is weakly informative and allows the user to force
the posterior to decay quicker along the ridge. When we incorporate a
prior belief that the marginal standard deviation is below a specific value,
we cannot move much past this value on the ridge without violating the
prior belief. In this way it is possible to obtain more realistic parameter
estimates and smaller and more meaningful credible intervals than with
the reference priors. The reference priors are fully based on the likelihood
and have no options for controlling how far the spatial model is allowed to
move towards near-intrinsic models with large ranges and large variances
even if they do not make sense for the application at hand.

The drawbacks and insufficiencies of noninformative priors for spatial
models have already been commented by other authors and the arguments
are well summarized by Palacios and Steel (2006) who wrote:

Thus we need to think carefully about our priors and try to use
as much information as we have available in eliciting reason-
able prior distributions. In this particular context [Bayesian
geostatistical models], we feel that this strategy is preferable
to relying on automatic noninformative priors like the reference
prior (if such priors are at all available; . . . ).

The prior for stationary GRFs provides a strong foundation for the
development of priors for non-stationary GRFs. The covariance structure
of a GRF is only observed indirectly through the values of the process
and for locations without observations there is no information about the
covariances. Therefore, the estimated covariance structure can be highly
model-dependent and it would be useful and important to have an inter-
pretable prior that provides understanding about the a priori assumptions
that we put into the non-stationary model. We extend the prior for the
stationary GRF to a prior for a non-stationary GRF with covariates in the
covariance structure. The prior is motivated by the PC prior framework,
but has ad-hoc components.

We start by deriving the new, joint PC prior for the range and the
marginal variance for a Matérn GRF with fixed smoothness parameter in
Section 2. Then in Section 3 the frequentist coverage is studied through
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a simulation study and compared with the coverage when using the Jef-
freys’ rule prior and ad-hoc uniform and log-uniform priors. In Section 4
we study the behaviour of the joint posterior under the PC-prior and the
Jeffreys’ rule prior and discuss the difference in behaviour. Then the fre-
quentist properties of spatial logistic regression are studied in Section 5 to
demonstrate the applicability of the PC prior for a non-Gaussian obser-
vation process. In Section 6 we discuss how to extend the prior for the
stationary model to a prior for a non-stationary GRF. The paper ends
with discussion and concluding remarks in Section 7.

2 Penalised complexity prior

2.1 Background

The principle idea of the PC-prior framework is to think of a model com-
ponent as a flexible extension of the base model, which is chosen to be the
simplest or least flexible state of the model component. For example, a
random effect is an extension of a random effect with zero variance, i.e. no
random effect. After selecting the base model, one derives a distance mea-
sure from the base model to the models described by other parameter val-
ues. This distance from the base model describes how much more flexible
each model is than the base model and provides a measure of complexity
for the model component, and the prior is set directly on the distance from
the base model instead of on the parameters of the model. This provides
a useful tool for setting priors on parameters for which it is hard to have
intuition. For example, correlation parameters close the border values −1,
0 and 1, or the range in spatial models.

To put this idea into practice, it is necessary to decide which measure
of complexity to use and which prior to put on the resulting distance.
We measure the extra complexity of each model compared to the base
model through the Kullback-Leibler divergence (KLD). The KLD of the
probability density f from the probability density g is defined by

DKL(f ||g) =

∫

χ
f(x) log

(

f(x)

g(x)

)

dx,

and expresses the information lost when g is used to approximate f . The
asymmetry of the KLD fits well with the choice of the base model as the
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favoured model, and we turn the KLD into a uni-directional distance from
the base model g to the model f through d(f ||g) =

√

2KLD(f ||g).
The remaining key point is which distribution to put on the derived

distance and Simpson et al. (2014) provide three principles for selecting
the prior on the distance: Occam’s razor, constant rate penalisation and
user-defined scaling. Occam’s razor is achieved by constructing a prior
that penalises deviations from the base model and favours the base model
until the data provides evidence against it. This suggests that the prior
density should have its peak at distance 0 and less and less density for
higher distances. The constant rate penalisation is achieved by making
the prior on the distance, d, satisfy the relationship

π(d+ δ)

π(d)
= rδ, d, δ ≥ 0,

for a constant decay-rate 0 < r < 1. This means that the relative change in
the prior when the distance increases by δ does not depend on the current
distance d, and leads to the exponential distribution

π(d) = λ exp(−λd).

After deciding on this distribution we apply the final principle of user-
defined scaling to determine the hyperparameter λ. We transform the
distance back to an interpretable size Q(d) and include prior information
through

P(Q(d) > U) = α or P(Q(d) < L) = α,

where U or L is an upper or lower limit, respectively, and α is the prob-
ability in the upper or lower tail of the prior distribution. By selecting U

or L, and α the user combines prior belief with a prior derived from the
geometry of the parameter space.

We want to extend the approach outlined above to Gaussian Matérn
fields with fixed smoothness. These GRFs have the covariance function

C(d) = σ2 1

Γ(ν)2ν−1

(√
8νd

ρ

)ν

Kν

(√
8νd

ρ

)

,

where ρ is the spatial range, σ2 is the marginal variance and ν is a fixed
smoothness. The first thing we need to decide is what the base model
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should be; what type of model do we want to shrink towards? It seems
clear that we want to shrink towards zero standard deviation, or no effect,
but the GRF is controlled by two parameters and we need to describe how
the range behaves as the marginal variance goes to zero. We choose to
shrink the range simultaneously towards infinity with the goal of achieving
shrinkage towards a constant random field with variance zero.

The GRFs possess a technical difficulty not present for finite dimen-
sional distributions. Imagine that the spatial field is observed at all points
in a bounded observation window, for example, [0, 1]2, then the KLD be-
tween the distributions specified by two choices of parameters (ρ0, σ

2
0) and

(ρ1, σ
2
1) is in general infinite. This means that we must be careful in our

prior construction and understand which changes corresponds to infinite
KLD. To facilitate the construction of the prior, we select a parametriza-
tion of the spatial field that more accurately describes what can be and
what cannot be estimated from a bounded observation window. We intro-
duce the parameters κ =

√
8ν/ρ and

τ =
Γ(ν)

(4π)d/2Γ(ν + d/2)σ2κ2ν
.

These parameters arise from a slight re-parametrization of the SPDE
in Lindgren et al. (2011),

(κ2 −∆)α/2(
√
τu(s)) = W(s), s ∈ R

d, (1)

where ∆ = ∂2

∂x2 + ∂2

∂y2
is the Laplacian and W is standard Gaussian white

noise. If κ and τ are chosen as above, this SPDE specifies a Matérn
GRF with range ρ, marginal variance σ2 and smoothness ν = α − d/2.
In this parametrization τ can be consistently estimated from a bounded
observation window, whereas κ cannot. If κ is kept fixed and the value
of τ changes, the KLD is infinite, but if the value of τ is kept fixed and
the value of κ changes, the KLD is finite. This parametrization allows us
to use a two-step procedure where we first set a prior on κ based on the
distribution of the GRF through the KLD and then set a prior on τ given
the value of κ through a consideration of finite-dimensional observations.
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2.2 Joint prior on range and marginal variance

We first construct a joint prior for κ and τ through the densities π(κ) and
π(τ |κ), and then transform the resulting joint prior to a joint prior on ρ and
σ2. The prior on κ is constructed using the limit of a re-scaled form of the
KLD, but the details are technical and the derivation is, therefore, given
in Appendix A. The result is a description of how much more complex the
models with κ > 0 are compared to the intrinsic model κ = 0 for a fixed
τ . If we ignore the multiplicative constants, the resulting distance is

d(κ) = κd/2. (2)

The distance in Equation (2) expresses how far the distribution of the
GRF is from the intrinsic GRF as a function of κ and solves the highly
non-trivial problem of describing how much a Matérn GRF varies as a
function of range. Since ρ =

√
8ν/κ, the distance in Equation (2) implies

that the range can be made arbitrarily large without making large changes
in the distribution if the marginal variance increases in such a way that τ

is kept constant. This increase in marginal variance will be controlled by
the prior for τ |κ, which will disallow unreasonably large marginal variances
and thus near-intrinsic models.

An exponential prior on the distance from the base model gives

π(κ) = λ1 exp(−λ1d(κ))

∣

∣

∣

∣

d

dκ
d(κ)

∣

∣

∣

∣

=
λ1d

2
κd/2−1 exp(−λ1κ

d/2), κ > 0, (3)

where λ1 is determined by controlling the a priori probability that the
range is below a specific limit,

P

(√
8ν

κ
< ρ0

)

= α1,

i.e.

λ1 = − log(α1)

(

ρ0√
8ν

)d/2

.
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The calibration of the prior requires the selection of two values: the lower
range, ρ0, and the probability in the lower tail, α1.

The prior on τ cannot be derived from the distribution of the process
on a bounded observation window since this parameter is completely de-
termined by the values of the process on the observation window. It would
be meaningless to put a prior on τ if we observed all values in the obser-
vation window, and we must instead choose a situation in which a prior
is necessary. We make the assumption that we are interested in observing
finite-dimensional quantities from the spatial field.

With κ fixed the joint distribution of a finite number of observations
is a multivariate Gaussian distribution of the form

π(u) ∝ exp
(

−
τ

2
uTΣ−1u

)

,

where Σ is a fixed matrix. In this distribution τ acts as a precision param-
eter and we can use the prior constructed by (Simpson et al., 2014),

π(τ) =
λ2

2
τ−3/2 exp(−λ2τ

−1/2), τ > 0, (4)

where λ2 is determined by controlling the a priori probability that the
marginal variance exceeds a specific level,

P

(

C(ν)

τκ2ν
> σ2

0

∣

∣

∣

∣

κ

)

= α2, (5)

where

C(ν) =
Γ(ν)

Γ(ν + d/2)(4π)d/2

is the constant needed to make the left-hand side of the inequality equal
to the marginal variance of the GRF.

Since the calibration criterion in Equation (5) is conditional on the
value of κ, it introduces dependence between κ and τ in the joint prior.
We write Equation (5) as

P

(

τ <
C(ν)

κ2νσ2
0

∣

∣

∣

∣

κ

)

= α2
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and find

exp

(

−λ2

(

C(ν)

κ2νσ2
0

)−1/2
)

= α2,

λ2 =
λ3

κν
,

where λ3 absorbs the other constants in λ2. We insert this into Equa-
tion (4) and find the conditional distribution

π(τ |κ) =
λ3τ

−3/2

κν
exp(−λ3κ

−ντ−1/2). (6)

This implies that the dependence between κ and τ is affected by the value
of the smoothness ν.

The joint prior on κ and τ is found by combining Equation (3) and
Equation (6), and is given by

π(κ, τ) = π(κ)π(τ |κ)

=
λ1λ3d

2
τ−3/2κd/2−1−ν exp(−λ1κ

d/2 − λ3κ
−ντ−1/2).

There is a one-to-one correspondence between κ and τ , and ρ and σ2,

[

ρ

σ2

]

=

[ √
8ν
κ

C(ν)
κ2ντ

]

,

which can be exploited to transform the joint prior for κ and τ to the joint
prior for ρ and σ2,

π(ρ, σ2) =

[

dλ4

2
ρ−1−d/2 exp

(

−λ4ρ
−d/2

)

] [

λ5

2
σ−1 exp (−λ5σ)

]

, (7)

where λ4 and λ5 are selected according to the a priori statements

P(ρ < ρ0) = α4 and P(σ2 > σ2
0) = α5,

which give

λ4 = −ρ
d/2
0 log(α4) and λ5 = −

log(α5)

σ0
.
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3 Frequentist coverage

The series of papers on reference priors for GRFs starting with Berger
et al. (2001) evaluated the priors by studying frequentist properties of the
resulting Bayesian inference. If a prior is intended as a default prior, it
should lead to good frequentist properties such as a frequentist coverage
of the equal-tailed 100(1−α)% Bayesian credible intervals that is close to
the nominal 100(1 − α)%. We replicate their simulation study with one
key difference: we do not include covariates and measurement noise. The
reference priors are not proper distributions and the goal of the series of
papers was to derive them for different situations such as a spatial field
combined with covariates, and a spatial field combined with covariates and
Gaussian measurement noise. However, in this paper we construct a prior
for the GRF component itself and we are not constructing a prior for the
GRF together with covariates or together with covariates and Gaussian
measurement noise. This is possible because the PC-prior is a proper
distribution and can be applied to a spatial field together with covariates
and arbitrary observation processes without worrying about the properness
of the posterior.

The study uses an isotropic GRF, u, with an exponential covariance
function c(d) = exp(−2d/ρ0) observed at the locations shown in Figure 2.
The observation locations were randomly selected within the domain [0, 1]2

and are distributed in an irregular pattern. The study is performed for two
values of the nominal range: a short range, ρ0 = 0.1, and a long range,
ρ0 = 1. We generate multiple realizations and for each realization we
assume that the field is observed directly and fit the model

yi = u(si), i = 1, 2, . . . , 25,

where u is a GRF with an exponential covariance function with param-
eters ρ and σ2. We apply four different priors: the PC-prior (PriorPC),
the Jeffreys’ rule prior (PriorJe), a uniform prior on range on a bounded
interval combined with the Jeffreys’ prior for variance (PriorUn1) and a
uniform prior on the log-range on a bounded interval combined with the
Jeffreys’ prior for variance (PriorUn2). The full expressions for the priors
are given in Table 1.

For each choice of prior and hyperparameters we generate 1000 ob-
servation vectors y = (y1, y2, . . . , y25) and estimate the equal-tailed 95%
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Figure 2: Spatial design for the simulation study of frequentist coverage.
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Table 1: The four different priors used in the study of frequentist coverage.
The Jeffreys’ rule prior uses the spatial design of the problem through
U = ( ∂

∂ρΣ)Σ
−1, where Σ is the correlation matrix of the observations (See

Berger et al. (2001)).

Prior Expression Parameters

PriorPC π1(ρ, σ) = λ1λ2ρ
−2 exp

(

−λ1ρ
−1 − λ2σ

)

ρ, σ > 0
Hyperparameters:
αρ, ρ0, ασ, σ0

PriorJe π2(ρ, σ) = σ−1

(

tr(U2)−
1

n
tr(U)2

)1/2 ρ, σ > 0
Hyperparameters:
None

PriorUn1 π3(ρ, σ) ∝ σ−1
ρ ∈ [A,B], σ > 0
Hyperparameters:
A, B

PriorUn2 π4(ρ, σ) ∝ σ−1 · ρ−1
ρ ∈ [A,B], σ > 0
Hyperparameters:
A, B
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credible interval for each observation by running an MCMC-chain. The
number of times the true value is contained within the estimated credible
interval is divided by 1000 and given as the estimate of the frequentist
coverage. We tried MCMC chains of length 25000 with 5000 iterations
burn-in and MCMC chains of length 125000 with 25000 burn-in. The re-
sults for PriorPC, PriorUn1 and Prior2 were stable, but the chains for
PriorJe showed in some cases notoriously high autocorrelation and un-
stable results and we re-ran with MCMC chains of length 1500000 with
300000 iterations as burn-in.

PriorJe has no hyperparameters, but PriorPC, PriorUn1 and PriorUn2
each has hyperparameters that need to be set before using the prior. For
PriorUn1 and PriorUn2 it is hard to give guidelines about which values
should be selected since the main purpose of limiting the prior distributions
to a bounded interval is to avoid an improper posterior and the choice
tends to be ad-hoc. For PriorPC, on the other hand, there is a calibration
criterion to help choosing the hyperparameters, which helps give an idea
about which prior assumptions the chosen hyperparameters are expressing.

For PriorPC we make a decision about the scales of the range and the
marginal variance. The prior is set through four hyperparameters that
describe our prior beliefs about the spatial field. We use

P(ρ < ρ0) = 0.05

for ρ0 = 0.025ρT, ρ0 = 0.1ρT, ρ0 = 0.4ρT and ρ0 = 1.6ρT, where ρT is
the true range. This covers a prior where ρ0 is much smaller than the true
range, two priors where ρ0 is smaller than the true range, but not far away,
and one prior where ρ0 is higher than the true range. For the marginal
variance we use

P(σ2 > σ2
0) = 0.05,

for σ0 = 0.625, σ0 = 2.5, σ0 = 10 and σ0 = 40. We follow the same
logic as for range and cover too small and too large σ0 and two reasonable
values. For PriorUn1 and PriorUn2, we set the lower and upper limits
for the nominal range according to the values A = 0.05, A = 0.005 and
A = 0.0005, and B = 2, B = 20 and B = 200. Some of the values are
intentionally extreme to see the effect of misspecification.

The results for PriorPC, PriorUn1 and PriorUn2 are shown in Tables 2
and 5, Tables 3 and 6, and Tables 4 and 7, respectively. The results for
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Table 2: Frequentist coverage of 95% credible intervals for range and
marginal variance when the range ρ0 = 0.1 using PriorPC, where the
average lengths of the credible intervals are shown in brackets.

(a) Range

ρ0\σ0 40 10 2.5 0.625

0.025 0.768 [0.25] 0.749 [0.24] 0.760 [0.20] 0.693 [0.17]
0.1 0.965 [0.35] 0.976 [0.29] 0.961 [0.27] 0.937 [0.21]
0.4 0.990 [0.45] 0.989 [0.41] 0.993 [0.33] 0.987 [0.25]
1.6 0.717 [0.98] 0.692 [0.82] 0.756 [0.54] 0.807 [0.34]

(b) Marginal variance

ρ0\σ0 40 10 2.5 0.625

0.025 0.941 [1.5] 0.952 [1.4] 0.957 [1.3] 0.918 [0.97]
0.1 0.953 [1.6] 0.966 [1.5] 0.944 [1.4] 0.927 [0.98]
0.4 0.953 [2.0] 0.952 [1.8] 0.960 [1.5] 0.943 [1.1]
1.6 0.904 [3.9] 0.906 [3.2] 0.939 [2.2] 0.972 [1.3]

Table 3: Frequentist coverage of 95% credible intervals for range and
marginal variance when the true range ρ0 = 0.1 using PriorUn1, where
the average lengths of the credible intervals are shown in brackets.

(a) Range

A\B 2 20 200

5 · 10−2 0.901 [0.95] 0.901 [8.6] 0.847 [122]
5 · 10−3 0.935 [0.92] 0.918 [7.7] 0.887 [110]
5 · 10−4 0.948 [0.93] 0.929 [7.9] 0.893 [110]

(b) Marginal variance

A\B 2 20 200

5 · 10−2 0.952 [3.5] 0.941 [29] 0.895 [460]
5 · 10−3 0.945 [3.3] 0.937 [27] 0.907 [410]
5 · 10−4 0.953 [3.3] 0.925 [27] 0.921 [412]
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Table 4: Frequentist coverage of 95% credible intervals for range and
marginal variance when the true range ρ0 = 0.1 using PriorUn2, where
the average lengths of the credible intervals are shown in brackets.

(a) Range

A\B 2 20 200

5 · 10−2 0.986 [0.47] 0.979 [0.84] 0.988 [1.1]
5 · 10−3 0.976 [0.44] 0.950 [0.81] 0.966 [1.0]
5 · 10−4 0.932 [0.40] 0.945 [0.70] 0.944 [1.3]

(b) Marginal variance

A\B 2 20 200

5 · 10−2 0.949 [2.0] 0.962 [2.9] 0.965 [3.6]
5 · 10−3 0.968 [1.8] 0.960 [2.6] 0.959 [3.2]
5 · 10−4 0.948 [1.7] 0.960 [2.4] 0.949 [3.7]

Table 5: Frequentist coverage of 95% credible intervals for range and
marginal variance when the true range ρ0 = 1 using PriorPC, where the
average lengths of the credible intervals are shown in brackets.

(a) Range

ρ0\σ0 40 10 2.5 0.625

0.025 0.950 [12] 0.945 [7.1] 0.906 [3.2] 0.821 [1.4]
0.1 0.977 [15] 0.966 [8.2] 0.962 [3.6] 0.866 [1.5]
0.4 0.965 [26] 0.981 [13] 0.992 [5.1] 0.988 [1.8]
1.6 0.159 [74] 0.349 [31] 0.700 [11] 0.954 [3.3]

(b) Marginal variance

ρ0\σ0 40 10 2.5 0.625

0.025 0.944 [11] 0.956 [6.2] 0.933 [2.8] 0.797 [1.1]
0.1 0.957 [13] 0.966 [7.2] 0.954 [3.1] 0.865 [1.2]
0.4 0.943 [23] 0.957 [11] 0.987 [4.4] 0.972 [1.5]
1.6 0.441 [68] 0.534 [29] 0.797 [9.1] 0.984 [2.5]
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Table 6: Frequentist coverage of 95% credible intervals for range and
marginal variance when the true range ρ0 = 1 using PriorUn1, where
the average lengths of the credible intervals are shown in brackets.

(a) Range

A\B 2 20 200

5 · 10−2 0.995 [1.5] 0.831 [18] 0.593 [188]
5 · 10−3 0.996 [1.5] 0.818 [18] 0.539 [188]
5 · 10−4 0.994 [1.5] 0.844 [18] 0.537 [188]

(b) Marginal variance

A\B 2 20 200

5 · 10−2 0.979 [2.0] 0.857 [20] 0.614 [208]
5 · 10−3 0.979 [2.0] 0.821 [20] 0.585 [205]
5 · 10−4 0.969 [2.0] 0.828 [20] 0.561 [206]

Table 7: Frequentist coverage of 95% credible intervals for range and
marginal variance when the true range ρ0 = 1 using PriorUn2, where
the average lengths of the credible intervals are shown in brackets.

(a) Range

A\B 2 20 200

5 · 10−2 0.980 [1.5] 0.959 [12] 0.933 [69]
5 · 10−3 0.974 [1.5] 0.954 [12] 0.954 [67]
5 · 10−4 0.964 [1.5] 0.953 [13] 0.956 [68]

(b) Marginal variance

A\B 2 20 200

5 · 10−2 0.955 [1.8] 0.952 [12] 0.945 [61]
5 · 10−3 0.962 [1.8] 0.943 [12] 0.941 [60]
5 · 10−4 0.939 [1.8] 0.946 [12] 0.953 [60]
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PriorJe was 97.0% coverage with average length of the credible intervals
of 0.86 for range and 96.0% coverage and average length of the credible
intervals of 2.7 for marginal variance for ρ0 = 0.1, and 95.4% coverage
with average length of the credible intervals of 445 for range and 94.4%
coverage with average length of the credible intervals of 355 for variance for
ρ0 = 1. It is clear from the tables that for PriorPC, PriorUn1 and PriorUn2
the coverage and the length of the credible intervals are dependent on
the choice of hyperparameters. This is not surprising since there are few
observation and there is a ridge in the likelihood where the behaviour is
strongly dependent on the the prior. The length of the credible intervals
are, in general, more well-behaved for ρ0 = 0.1 than for ρ0 = 1 because
there is more information available about range when the range is short
compared to the domain size.

For PriorUn1 the coverage and the length of the credible intervals is
strongly dependent on the upper limit in the prior. The prior has the
undesirable property of including stronger and stronger prior belief in high
ranges when the upper limit is increased. One might argue that the upper
limit would never be selected as extreme as in the example, but it verifies
the observation of Berger et al. (2001) that the inference is sensitive to
the hyperparameters for this prior. For PriorUn2 the coverage is good
in both the short range and long range situation, but the lengths of the
credible intervals are sensitive to the upper limit of the prior. The new
PriorPC exhibit sensitivity in the coverage and the lengths of the credible
intervals, but for this prior it is caused by explicitly including information
that conflicts with the true value, whereas for PriorUn1 and PriorUn2 it is
not immediately clear what information is included through the different
choices of hyperparameters.

The coverage of PriorJe is good, but the credible intervals seem exces-
sively long and the prior is more computationally expensive than the other
priors. PriorJe is only computationally feasible for low amounts of points
since there is a cubic increase in complexity as a function of the number
of observations. The average length of the credible intervals for ρ0 = 1
for marginal variance is 355, which imply unreasonably high standard de-
viations. The high standard deviations do not seem consistent with an
observation with values contained between −3 and 3. We study the credi-
ble intervals for PriorPC and PriorJe closer for a specific realization in the
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next section to gain intuition about why this happen.

With respect to computation time and easy of use versus coverage and
length of credible intervals PriorUn2 and PriorPC appear to be the best
choices. If coverage is the only concern, PriorUn2 performs the best, but
if one also wants to control the length of the credible intervals by disal-
lowing unreasonably high variances, PriorPC offers the most interpretable
alternative. Based on one of the realizations in this simulation study we
are unlikely to believe that the spatial field could have a standard devia-
tion greater than 4, and by encoding this information in PriorPC we can
limit the upper limits of the credible intervals both for range and marginal
variance.

4 Behaviour of the joint posterior

The sensitivity of the length of the credible intervals to the prior and the
extreme length of the credible intervals seen for the Jeffreys’ rule prior
are not entirely surprising due to the ridge in the likelihood, but they
are troubling. In the previous section we only looked at properties of the
marginal credible intervals, but these do not tell the entire story because
there is strong dependence between range and marginal variance in the
joint posterior distribution. We study this dependence by studying the
posterior distribution for the realization shown in Figure 3. The true
range used to simulate the realization is 1. We draw samples from the
joint posterior using the PC-prior with parameters αρ = 0.05, ρ0 = 0.1,
ασ = 0.05 and σ0 = 10, and we draw samples from the joint posterior
using the Jeffreys’ rule prior.

Figure 4 shows that the upper tails of the posteriors when the Jeffreys’
rule prior is used are heavier than the upper tails of the posteriors when
the PC-prior is used. The lower endpoints of the credible intervals are
similar for both priors, but there is a large difference in the upper limits
because the likelihood decays slowly along the ridge and the behaviour
of the prior on the ridge is important for the behaviour of the posterior.
The marginal posterior distributions do not show the full story about the
inference on range and marginal variance because the two parameters are
strongly dependent in the posterior distribution. The PC-prior for range
has a heavy upper tail for range and the upper tail of the posterior of
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Figure 3: One realization of a GRF with the covariance function c(d) =
exp(−2d) at 25 selected locations.

range is controlled through the prior on marginal variances. The large
difference in the marginal posterior for the nominal range in Figure 4a can
be explained by the behaviour of the joint posterior.

Figure 5 shows the strong posterior dependence between nominal range
and standard deviation in the tail of the distribution. The extreme tail
of the Jeffreys’ rule prior corresponds to movement far along the ridge in
the likelihood. Stein (1999) showed that the ratio of range and marginal
variance is the important quantity for asymptotic predictions with the
exponential covariance function, which means that long tails are not a ma-
jor concern for predictions, but for interpretability of range and marginal
variance this heavy tail presents a problem. The values of all the obser-
vations in Figure 3 lie in the range −1 to 3 and it is unlikely that the
true standard deviation should be on the order of 20. After conditioning
on data the effect of using a near intrinsic GRF with simultaneously large
values for range and marginal variance is almost the same as a GRF with
meaningful values for range and marginal variance. Intrinsic models have
a place in statistics, but the results show that the Jeffreys’ rule prior has
the, potentially, undesirable behaviour of favouring intrinsic GRFs with
large marginal standard deviations and ranges. The PC prior offers a way
to introduce prior belief about the marginal standard deviations, and thus
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Figure 4: Marginal posteriors of the logarithm of range and the logarithm
of marginal standard deviation. The dashed lines shows the posterior and
the credible intervals when the PC-prior is used and the solid line shows
the posterior and the credible intervals when the Jeffreys’ rule prior is used.
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Figure 5: Samples from the joint posterior of range and marginal standard
deviation. The red circles are samples using the PC-prior and the black
circles are samples using the Jeffreys’ rule prior.

a way to avoid the intrinsic GRFs and keep the standard deviation at
reasonable (according to prior belief) values.

5 Example: Spatial logistic regression

What makes the PC prior more practically useful than the reference prior,
beyond the computational benefits and interpretability, is that the prior
is applicable in any hierarchical model and does not have to be re-derived
each time a component is removed or added, or the observation process
is changed. We consider a simple spatial logistic regression example to
demonstrate the applicability of the PC prior beyond direct observations
or Gaussian measurement noise.

We select the 25 locations in Figure 2 and generate realizations from
the model

yi|pi ∼ Binomial(20, pi), i = 1, 2, . . . , 25,

where

probit(pi) = u(si),
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where u is a GRF with the exponential covariance function with parame-
ters ρ = 0.1 and σ = 1. For each realization the parameters ρ and σ2 are
assumed unknown and must be estimated. The posterior of the parame-
ters is estimated with an MCMC chain and the equal-tailed 95% credible
intervals are estimated from the samples of the MCMC-chain after burn-in.
We repeat the procedure above 500 times and report the number of times
the true value is contained in the credible interval and the average length
of the credible interval.

The experiment is repeated for 64 different settings of the prior: the
hyperparameter ρ0 varies over ρ0 = 0.0025, 0.01, 0.04, 0.16 and the hyper-
parameter σ0 varies over σ0 = 40, 10, 2.5, 0.625. This covers a broad range
of values from too small to too large. The values in Table 8 are similar to
the values in Table 2 except that the credible intervals are slightly longer.
The longer credible intervals are reasonable since the binomial likelihood
gives less information about the spatial field than direct observation of the
spatial field. The coverage for marginal variance is good even for grossly
miscalibrated priors, but the coverage for range is sensitive to bad calibra-
tion for range and the coverage is somewhat higher than nominal for the
well-calibrated priors. This is a feature also seen in the directly observed
case in Section 3.

6 Priors on non-stationarity

The development of practically useful, interpretable priors for stationary
GRFs is important and useful, but the need for such priors is even stronger
for non-stationary GRFs. The covariance structure estimated with a non-
stationary GRF can be strongly dependent on the a priori assumptions on
the non-stationarity. It can be difficult to understand the implications of
the a priori assumptions that we put into non-stationary models because
it is difficult to understand how the distribution of a GRF varies as a
function of the parameters. The two main challenges are to construct a
prior, which accounts for the highly non-trivial geometry of the parameter
space, and to calibrate the prior in an interpretable way. Therefore, the
PC prior framework is an appealing starting point with properties that fit
well for developing such a prior.

There exists different models for non-stationary data and they in-
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Table 8: Frequentist coverage of the 95% credible intervals for range and
marginal variance when the true range is 0.1 and true marginal variance is
1, where the average length of the credible intervals are given in brackets,
for the spatial logistic regression example.

(a) Range

ρ0\σ0 40 10 2.5 0.625

0.025 0.804 [0.29] 0.790 [0.24] 0.774 [0.22] 0.726 [0.19]
0.1 0.974 [0.41] 0.986 [0.37] 0.974 [0.33] 0.956 [0.24]
0.4 0.996 [0.61] 0.982 [0.57] 0.996 [0.43] 0.992 [0.30]
1.6 0.648 [1.4] 0.604 [1.2] 0.722 [0.67] 0.762 [0.44]

(b) Marginal variance

ρ0\σ0 40 10 2.5 0.625

0.025 0.942 [2.0] 0.946 [1.9] 0.948 [1.7] 0.912 [1.2]
0.1 0.920 [2.3] 0.942 [2.0] 0.964 [1.8] 0.922 [1.2]
0.4 0.952 [2.7] 0.962 [2.4] 0.968 [1.9] 0.928 [1.2]
1.6 0.904 [5.3] 0.936 [4.1] 0.966 [2.7] 0.982 [1.5]
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corporate non-stationarity in different ways. For example, in the de-
formation method (Sampson and Guttorp, 1992; Schmidt and O’Hagan,
2003; Damian et al., 2001, 2003) a stationary GRF is made non-stationary
through a spatial deformation, in the process convolution method (Haas,
1990b,a; Paciorek and Schervish, 2006) a spatially varying kernel function
is convolved with Gaussian white noise, and in the stochastic partial dif-
ferential equation (SPDE) approach (Bolin and Lindgren, 2011; Fuglstad
et al., 2015a,b) a non-stationary GRF is specified through an SPDE with
spatially varying coefficients. Each of these types of models has had exten-
sions to covariates in the covariance structure (Schmidt et al., 2011; Neto
et al., 2014; Ingebrigtsen et al., 2014a,b).

Ideally, we would derive a prior that could deal with any type of non-
stationarity and be applicable for any model for non-stationarity, but, in
practice, this is not feasible. For the purpose of this discussion the starting
point is the sub-class of the SPDE models (Lindgren et al., 2011) consisting
of the model discussed in Ingebrigtsen et al. (2014a). This model uses
covariates, and thus needs fewer parameters and is less computationally
expensive than a model with a more flexible covariance structure. The
model is an extension of the stationary SPDE in Equation (1) with a
slightly different parametrization and coefficients that vary spatially,

[κ(s)2 −∆](τ(s)u(s)) = W(s), D ⊂ R
d, (8)

with Neumann boundary conditions. We have fixed α = 2 to get a prac-
tically feasible model, but with a spatially varying range it is unlikely to
pose a large practical limitation to fix the smoothness ν = 1.

We make the assumption that the priors on the correlation structure
and the marginal variances can be set independently in an analogous way
to the stationary GRF. This means we must solve two challenges: covari-
ates must be included separately in the correlation structure and in the
marginal variances, and practically useful, interpretable priors must be
developed for the covariates in the correlation structure and for the co-
variates in the marginal variances. Thus setting priors on non-stationarity
is not only a question about which prior to set after the parametrization
is decided, but a question of how to parametrize the non-stationarity and

how to set priors on the parameters in the parametrization.
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6.1 Parametrizing the non-stationarity

Ingebrigtsen et al. (2014a) expands log(κ(·)) and log(τ(·)) in Equation (1)
into low-dimensional bases, but experience numerical problems and prior
sensitivity to the priors for the weights in the basis expansions. Ingebrigt-
sen et al. (2014b) attempt to solve this by setting the hyperparameters of
the priors based on the properties of the spatially varying local ranges and
marginal variances. The procedure improves the calibration step of the
prior specification compared to Ingebrigtsen et al. (2014a), but does not
solve the inherent problem that κ(·) affects both the correlation structure
and the marginal variances of the spatial field. We aim to improve their
procedure by first improving the parametrization of the non-stationarity,
and then setting and calibrating the prior using the improved parametriza-
tion.

The model used by Ingebrigtsen et al. (2014a) introduces spatial vari-
ation in the covariance structure by varying the coefficients of the SPDE,
but there exists another way to introduce non-stationarity. Instead of vary-
ing the coefficients of the SPDE, one can vary the geometry of the space
in a similar way as the deformation method. If E is the Euclidean space
R
2, the simple SPDE

(1−∆E)u(s) =
√
4πWE(s), s ∈ E, (9)

generates a stationary Matérn GRF with range ρ =
√
8, marginal variance

σ2 = 1 and smoothness ν = 1. Instead of introducing spatially varying
coefficients, we introduce spatially varying distances in the space on which
the SPDE is defined. We take a two-dimensional manifold E = R

2 and
give the space geometric structure according to the metric tensor g(s) =
R(s)−2I2, where R(·) is a strictly positive scalar function. This means that
distances are locally scaled by a factor R(s)−1, or more specifically,

dσ2 =
[

ds1 ds2
]

g(s)

[

ds1
ds2

]

= R(s)−2(ds21 + ds22), (10)

where dσ is the line element, and s1 and s2 are the two coordinates of
E = R

2.
The line element in two-dimensional Euclidean space

√

ds21 + ds22 is
everywhere scaled according to the function R(·), and Equation (10) de-
scribes the non-stationary through a spatially varying geometry, which



160 Fuglstad, G.-A., Lindgren, F., Simpson, D., and Rue, H.

results in a curved two-dimensional manifold that must be embedded di-
mension higher than 2 to exist in Euclidean space. The SPDE is not
stationary on this space and does not lead to constant marginal variance
because the curvature of the space is non-constant unless R(·) is a constant
function, but there will be less interaction between R(·) and the marginal
variance than κ(·) and the marginal variance. And for a slowly varying
R(·) the variation in marginal variances is small.

The above construction gives geometric intuition about what type of
non-stationarity the equation can generate, but it is not directly useful for
implementation. We can relate the Laplace-Beltrami operator in E to the
usual Laplacian in R

2 through

∆E =
1

√

det(g)
∇R2 · (

√

det(g)g−1∇R2) = R(s)2∆R2 ,

and the Gaussian standard white noise in E to the Gaussian standard
white noise in R

2 through

WE(s) = det(g)1/4WR2(s) = R(s)−1WR2(s).

Thus the equivalent SPDE in R
2 can be written as

R(s)−2
[

1−R(s)2∆R2

]

u(s) = R(s)−1
√
4πWR2(s), s ∈ R

2

where the first factor is needed because the volume elements of the spaces
differ, dVE =

√

det(g)dVR2 . We use the SPDE

(R(s)−2 −∆R2)u(s) =
√
4πR(s)−1WR2 , s ∈ R

2, (11)

in Euclidean space, but can interpret the SPDE through the implied metric
tensor. The SPDE is similar to setting κ(·) = R(·)−1 in Equation (8), but
has an extra factor on the right-hand side of the equation to reduce the
variability of the marginal variances.

For example, the space [0, 9]× [0, 3] with the Euclidean distance metric
can be visualized as a rectangle, which exists in R

2, or as a half cylinder
with radius 3/π and height 9, which exists in R

3, but if the space is given
the spatially varying metric tensor according to the local range function

R(s1, s2) =











1 0 ≤ s1 < 3, 0 ≤ s2 ≤ π,

(s1 − 2) 3 ≤ s1 < 6, 0 ≤ s2 ≤ π,

4 6 ≤ s1 ≤ 9, 0 ≤ s2 ≤ π,

(12)
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Figure 6: Half cylinder deformed according to the spatially varying met-
ric tensor. The lines formed a regular grid on the half cylinder before
deformation.

the space cannot be embedded in R
2. With this metric tensor, the space

is no longer flat, but it can be embedded in R
3 as the deformed cylinder

shown in Figure 6. Thus, solving Equation (11) with the spatially varying
coefficient is the same as solving Equation (9) on the deformed space. This
means that unlike the deformation method, a spatially varying R(·) does
not correspond to a deformation of R

2 to R
2, but rather from R

2 to a
higher-dimensional space.

However, the SPDE does not completely describe a deformation since
solving the “stationary” SPDE on a curved space leads to changes in the
marginal variances, but if R(·) does not vary too much, the marginal vari-
ances are close to 1. We can, therefore, introduce a separate function S(·)
that controls the marginal variances of the process and limit the SPDE to
a region of interest, D, with Neumann boundary conditions,

(R(s)−2 −∆R2)

(

u(s)
√

S(s)

)

=
√
4πR(s)−1WR2(s), s ∈ R

2.

This introduces boundary effects as was discussed in the paper by Lindgren
et al. (2011), but we will not discuss the effects of the boundary in this
paper.

This SPDE is different than the SPDE in Equation (8) beyond a re-
parametrization, and allows for greater separation of the parameters that
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affect correlation structure and the parameters that affect marginal vari-
ances than the SPDE in Equation (8). This demonstrates that even though
two SPDEs are similar and able to capture similar types of behaviour, one
can be more useful for setting priors. The SPDE derived based on the met-
ric tensor allows for separate priors for correlation structure and marginal
variances through expansions of log(R(·)) and log(S(·)) into bases.

6.2 Setting priors on the non-stationarity

A stationary GRF described through a range ρ and a marginal variance
σ2 will constitute the base model when we work with non-stationarity. We
want to shrink the non-stationary GRF towards the stationary GRF that
has the PC prior developed in Section 2 for the range and the marginal
variance. Denote the parameters that describe the departure from the base
model by θ, where θ = 0 corresponds to the stationary GRF. Following
the idea of the PC prior framework, we want to give the “distance” from
stationarity a prior conditional on the current stationary model π(θ|ρ, σ2).
The construction will be based on the ideas of the PC prior framework,
but will not be based on a distance calculated from a formal measure of
complexity, and the prior will be an ad-hoc prior that is motivated by
theoretical principles.

We parametrize the local distance factor, R(·), and the approximate
marginal variances, S(·), through

log(R(s)) = log

(

ρ
√
8

)

+

n1
∑

i=1

θ1,if1,i(s), s ∈ D,

log(S(s)) = log(σ2) +

n2
∑

i=1

θ2,if2,i(s), s ∈ D,

(13)

where {f1,i} is a set of basis functions for the local range centred such
that 〈f1,i, 1〉D = 0, for i = 1, 2, . . . , n1, and {f2,i} is a set of basis func-
tions for the marginal variances centred such that 〈f2,i, 1〉D = 0 for i =
1, 2, . . . , n2. We collect the parameters in vectors θ1 = (θ1,1, . . . , θ1,n1

) and
θ2 = (θ2,1, . . . , θ2,n2

) such that θ1 controls the local ranges and θ2 controls
the marginal variances.

A simple way to account for different scales and dependencies among
the basis functions is to give the non-stationary effect in the correlation
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structure and the non-stationary effect in the marginal variances indepen-
dent g-priors (Zellner, 1986) with g = 1,

θ1 ∼ N (0, τ−1
1 S−1

1 ) and θ2 ∼ N (0, τ−1
2 S−1

2 )

where S1 is the Gramian,

S1,i,j = 〈f1,i, f1,j〉D , for i, j = 1, 2, . . . , n1,

and S2 is the Gramian,

S2,i,j = 〈f2,i, f2,j〉D , for i, j = 1, 2, . . . , n2.

In this set-up the Gramians account for the structures of the basis func-
tions and the strengths of the effects are reduced to two precisions param-
eters τ1 and τ2. We choose to give the precision parameters the PC prior
for precision parameters for Gaussian distributions developed by Simpson
et al. (2014), which is designed to shrink towards the base model of zero
effect. Because of our a priori ansatz of a priori independence between
the correlation structure and the marginal variances, we set independent
priors

π(τ1) =
λ1

2
τ
−3/2
1 exp

(

−λτ
−1/2
1

)

andπ(τ2) =
λ2

2
τ
−3/2
2 exp

(

−λ2τ
−1/2
2

)

.

In this way we have implicitly described the effect in the correlation struc-
ture and the effect in the marginal variances through an ad-hoc distance
and shrunk the effects towards the base model, which is stationarity.

We calibrate the priors based on the a priori relative variations they
allow for the local range and for the marginal variance through the a priori

statements,

Prob

(

max
s∈D

∣

∣

∣

∣

log

(

R(s)

ρ/
√
8

)∣

∣

∣

∣

> C1

)

= α1,

Prob

(

max
s∈D

∣

∣

∣

∣

log

(

S(s)

σ2

)∣

∣

∣

∣

> C2

)

= α2.

These statements are only based on the relative differences in the local
range and the marginal variance from a stationary model, and we can
see from Equation (13) that the relative differences do not depend on the
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parameters of the stationary model. This means that the prior on the
non-stationary GRF separates as

π(ρ, σ2,θ) = π(ρ)π(σ2)π(θ|ρ, σ2)

= π(ρ)π(σ2)π(θ1,θ2)

= π(ρ)π(σ2)π(θ1)π(θ2),

where the first equality uses the conditional prior constructed, the second
equality uses that the calibration does not introduce dependence with the
parameters for the stationary part of the GRF, and the last equality uses
that the priors on the spatially varying part of the local range and the
marginal variance are independent.

The above conditions control the probability that the relative differ-
ences from the stationary model in the local range and the marginal vari-
ance exceed pre-specified levels, and allow the user to control the priors
based on beliefs about the variability expected in the local range and the
marginal variance. The calibration is slightly different than the one used
by Ingebrigtsen et al. (2014b). The approach derived is fundamentally ad-

hoc, but makes several theoretical improvements over the approach in In-
gebrigtsen et al. (2014b) due to the new form of the SPDE that reduces
the interaction between the correlation structure and the marginal vari-
ances in the prior specification, and due to the use of priors on the effects
that follow the PC prior framework principle of shrinking towards the base
model.

7 Discussion

In this paper we have presented an answer to an important, open question
in Bayesian spatial statistics that previously had no satisfactory answer:
which prior should we put on the range and the marginal variance for a
Matérn GRF? The range and the marginal variance have seemingly clear
interpretations and ideally one would hope that it were possible to infer
them from a single observation of the spatial field, but in reality there
are no consistent estimators of the range and the marginal variance under
in-fill asymptotics and the posterior distributions do not contract even for
a complete observation of the process in a bounded observation window.
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There is a ridge in the likelihood where the posterior distribution of the
parameters always will be affected by the prior on the parameters.

For Matérn GRFs objectivity, through noninformative priors such as
the reference priors, is not necessarily the correct answer because it can lead
to posterior inference that is not sensible. For in-sample predictions, the
near-intrinsic models do not negatively affect predictions and it is possible
to use the reference priors if they are applicable for the model. However,
if the purpose is to infer the range and the marginal variance, to do out-
of-sample predictions, or to generate new scenarios from the model using
the posterior distribution of the parameters as the prior distribution, the
objective approach can lead to meaningless answers that are not compat-
ible with subjective beliefs about the model. The three GRFs in Figure 1
are similar if they are used to predict the unobserved values within the
interval [0, 1], but they are highly different if we want to understand the
process that generated the data or use this process to generate new data
using the parameter posterior.

In practice, we are likely to have subjective knowledge making high
marginal variances unreasonable even when the value of the range is high.
With the PC-prior developed in this paper this knowledge can be com-
bined with the geometry of the parameter space through two statements
of prior belief about the spatial field. In this way it is possible to not just
encode the information about geometry contained in the likelihood, but
also prior belief about the range and the marginal variance. For example,
it is possible to encode prior belief that the marginal standard deviations
are unlikely to exceed a specific upper limit. This information disallows
the near-intrinsic models far along the ridge of the likelihood and lead to
shorter and more meaningful credible intervals than an objective prior such
as the reference prior.

The PC prior is weakly informative and like all subjective priors there
is a danger that putting prior mass in the wrong place can negatively
affect the inference. The calibration of the PC-prior will by design affect
the posterior distribution, but since the prior is not just an ad-hoc choice,
the hyperparameters of the prior have a clearly defined meaning through
information that could potentially be elicited from experts. The study
of frequentist properties showed that there were negative consequences of
being one order wrong in the prior specification, but the examples only had
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25 observations and in realistical settings there will be more information
available than this, and with more observations, the sensitivity to the prior
specification is likely to be less severe. Further, it is when the true range
is long compared to the domain size that the likelihood is insufficient for
getting physically meaningful estimates and that it is most important to
limit the behaviour of the posterior through an interpretable prior.

The greatest benefits of the PC-prior over the reference priors are that
there is no dependence on the sampling design, it works with any ob-
servation process and can be used in hierarchical models, it is easy to
implement, and it is computationally cheap. The benefits over the ad-hoc

priors is that it has theoretical justification, and that the hyperparame-
ters are interpretable and connected to prior belief about the scale that
the parameters are on. This makes the PC prior useful in practice as op-
posed to the impractical reference priors, while at the same time having
the theoretically justification that is lacked by the practical, but ad-hoc

priors.

The PC prior is extended to a prior for a non-stationary GRF based on
an SPDE model using ideas from the PC prior framework, but the exten-
sion has ad-hoc elements and is specialized to a GRF that can de-couple
the parameters controlling the correlation structure and the parameters
controlling the marginal variances. It would be desirable to derive a dis-
tance from stationarity to non-stationarity by using the KLD in a similar
way as for the stationary GRF and not be restricted to a specific non-
stationary GRF, but this is difficult because certain properties of the co-
variance structure of GRFs are identifiable under in-fill asymptotics while
others are not.

For SPDE models, a seemingly desirable way to be independent of
the parametrization would be to restrict oneself to the approximation of
the model used for computations. In computations, one uses a finite-
dimensional approximation of the GRF derived through a finite element
approximation on a triangulation of the domain. The multivariate Gaus-
sian distribution of the values at the nodes in the triangulation completely
describes the distribution of the approximation of the spatial field and we
can compute the distances between non-stationary spatial fields by com-
puting the KLDs between multivariate Gaussian distributions.

However, if we do this, a change in κ(·) can be handled, but a change
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in τ(·) makes the KLD diverge to infinity as the mesh is refined. Thus, we
can use the KLD to construct a prior for the parameters in κ(·), but there
is still work left in understanding how the KLD behaves as a function of
parameters in τ(·) when the mesh is refined. If one can understand more
about the identifiability of τ(·) as the mesh is refined, one can use this
knowledge to re-scale the KLD in a meaningful way, and separate out the
constants and the asymptotic behaviour as a function of τ(·), but this
remains an unsolved challenge.

For stationary GRFs, the paper makes significant progress by find-
ing sensible priors for Matérn GRFs through a practically useful, weakly
informative joint prior on range and marginal variance. The important re-
maining question is shared with the other priors derived with the PC prior
framework, namely, how easy is it for a user to set the hyperparameters?
The hyperparameters have a clear connection to understandable quanti-
ties, but the users are still required to gain intuition about setting priors
based on the probability of exceeding or being below a chosen value. This
is a question we expect to gain experience with when the new prior is im-
plemented within the INLA package (Rue et al., 2009). For non-stationary
GRFs the paper makes progress by providing a motivated, but ad-hoc con-
struction of a prior. However, a construction fully based on the PC prior
framework remains future work.
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A The theoretical details for the derivation of the

prior for κ

If we consider the distribution of a Matérn GRF, parametrized through
κ =

√
8ν/ρ and

τ =
Γ(ν)

(4π)d/2Γ(ν + d/2)σ2κ2ν
,

where ρ is the range, σ2 is the marginal variance, and ν is the smoothness,
on a bounded observation window, the KLD between the distributions for
two choices of parameters κ, κ0 > 0 is always finite and it is possible to use
the KLD to describe how different the distributions are. The distributions
are not absolutely continuous with respect to a Lebesgue measure and
we need to describe the KLD in terms of measures. The KLD of the
probability measure Q from the probability measure P is defined by

DKL(P ||Q) =

∫

χ
log

(

dP

dQ

)

dP, (14)

where dP/dQ is the Radon-Nikodym derivative of P with respect to Q,
and expresses the information lost when Q is used to approximate P .

We base the constructions in this section on spectral densities and not
directly on covariance functions. Fix τ and ν and consider the Matérn
GRF uκ for different values of κ. Lindgren et al. (2011) showed that this
GRF can be expressed as a solution of the stochastic partial differential
equation (SPDE)

(κ2 −∆)α/2(
√
τuκ(s)) = W(s), s ∈ R

d, (15)

where α = ν + d/2 and W is standard Gaussian white noise. The SPDE
can be used to show that the spectral density of uκ is given by

fκ(w) =

(

1

2π

)d 1

τ(κ2 +wTw)α
. (16)

The continuous spectrum in Equation (16) is difficult to use directly
and we make an intermediate step through a periodic approximation of
the GRF. Restrict SPDE (15) to the domain D = [−L/2, L/2]d and apply
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periodic boundary conditions. This leads to an approximation ũκ of uκ
that can be written as

ũκ(s) =
∑

k∈Zd

zke
i〈2πk/L,s〉,

where {zk} are independent Gaussian random variables with variances
given by

λk(κ) =
1

τ(κ2 + ||2πk/L||2)α
Var[〈W, ei〈2πk/L,s〉〉D]

〈ei〈2πk/L,s〉, ei〈2πk/L,s〉〉2D

=
1

τ(κ2 + ||2πk/L||2)α
Ld

L2d

=
1

Ld

1

τ(κ2 + ||2πk/L||2)α
. (17)

Using this approximation we calculate the KLD between ũκ and ũκ0

(based on Bogachev (1998, Thm. 6.4.6)),

2KLD(κ||κ0) =
∑

k∈Zd

[

λk(κ0)

λk(κ)
− 1− log

λk(κ0)

λk(κ)

]

=
∑

k∈Zd

[

(κ20 + ||2πk/L||2)α

(κ2 + ||2πk/L||2)α
− 1− log

(κ20 + ||2πk/L||2)α

(κ2 + ||2πk/L||2)α

]

,

(18)

which is a simple expression involving only the spectral densities of the
processes. If we add scaling with step-size, it becomes a Riemann sum,
and we can write

2

(

2π

L

)d

KLD(κ||κ0)

=
∑

k∈Zd

(

2π

L

)d [(κ20 + ||2πk/L||2)α

(κ2 + ||2πk/L||2)α
− 1− log

(κ20 + ||2πk/L||2)α

(κ2 + ||2πk/L||2)α

]

=

∫

Rd

[

fκ(w)

fκ0
(w)

− 1− log
fκ(w)

fκ0
(w)

]

dw + E(L, κ0),

where E(L, κ0) is the error in the Riemann sum.
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Since we want the base model κ0 = 0, which corresponds to infinite
range, we need to be careful about how the error E(L, κ0) behaves as
κ0 → 0. If L is fixed, the zero frequency gives an infinite term in the
summand. Thus the rate at which L tends to infinity must be related to
the rate at which κ0 tends to zero. If the summand for k = 0 tends to
zero, the Riemann sum converges and E(L, κ0) → 0. The zero-frequency
term

(

2π

L

)d [(
κ20
κ2

)α

− 1− α log
κ20
κ2

]

,

converges to zero if L = o(κ−1
0 ). We apply this relationship between L and

κ0 and introduce the scaled KLD

˜KLD(κ||0) = lim
κ0→0

(

2π

L

)d

KLD(κ||κ0)

=
1

2

∫

Rd

[

(wTw)α

(κ2 +wTw)α
− 1− log

(wTw)α

(κ2 +wTw)α

]

dw.

We perform the change variables w = κy and find

˜KLD(κ||0) =
1

2

∫

Rd

[

(yTy)α

(1 + yTy)α
− 1− log

(yTy)α

(1 + yTy)α

]

κddy

= κd ˜KLD(1||0)

∝ κd, (19)

if ˜KLD(1||0) exists.

However, ˜KLD(1||0) does not exist for all dimensions d. Perform a
change of coordinates to n-dimensional spherical coordinates to find

˜KLD(1||0) = Cd

∫ ∞

0

[(

r2

1 + r2

)α

− 1− log

(

r2

1 + r2

)α]

rd−1dr, (20)

where Cd is a constant that varies with dimension. There are two issues:
the behaviour for small r and the behaviour for large r. For d = 1,

˜KLD(1||0) ≤ −C1α

∫ ∞

0
log

r2

1 + r2
dr = παC1,
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and we can conclude that the behaviour around 0 is not a problem for any
d ≥ 1. The behaviour for large r can be studied through an expansion in
(1 + r2)−1. The integrand in Equation (20) behaves as

α2

2

1

(1 + r2)2
+O

(

1

(1 + r2)3

)

.

This means that we can find an 0 < r0 < ∞ such that

∫ ∞

0

[(

r2

1 + r2

)α

− 1− log

(

r2

1 + r2

)α]

rd−1dr

≤ Const +

∫ ∞

r0

[

α2

2

1

(1 + r2)2
+

C

(1 + r2)3

]

dr,

where C ≥ 0 is a constant. For d ≤ 3 both terms on the right hand side are
finite and based on this and the boundedness for d = 1, we can conclude
that ˜KLD(1||0) is finite for d ≤ 3.

B Calculation of the Kullback-Leibler divergence

for a one-dimensional GRF with exponential

covariance function

B.1 Goal

Let uκ be a stationary GRF with the exponential covariance function,

c(d) =
1

2κ
e−κd, (21)

where κ > 0. This way of writing the exponential covariance function dif-
fers from the traditional parametrization using the range and the marginal
variance, and is chosen because the KLD between the distributions de-
scribed by different values κ > 0 is finite. The parametrization describes
how to move in the parameter space while keeping the KLD finite. The
goal of this appendix is to calculate the KLD between the distributions of
uκ and uκ0

on the interval [0, L]
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B.2 Discretization

The direct computations for the interval [0, L] are difficult. So we first
consider the KLD for the distributions of uκ and uκ0

at the observation
points ti = i∆t, for i = 0, 1, . . . , N , where ∆t = L/N . The spatial field
uκ can be described as a stationary solution of the stochastic differential
equation

duκ(t) = −κuκ(t)dt+ dW (t),

where W is a standard Wiener processes, and written explicitly as

uκ(t) =

∫ t

−∞
e−κ(t−s) dW (s).

This expression shows that

uκ(ti+1)|uκ(ti) ∼ N (e−κ∆tuκ(ti), σ
2
κ),

where

σ2
κ = Var[uκ(t+∆t)|uκ(t)] =

∫ t+∆t

t
e−2κ(t+∆t−s) ds =

1− e−2κ∆t

2κ
.

This is an AR(1) process with initial condition uκ(t0) ∼ N (0, (2κ)−1),
which means that uκ = (uκ(t0), . . . , uκ(tN )) has a multivariate Gaussian
distribution with mean 0 and precision matrix

Qκ =
1

σ2
κ















1 −e−κ∆t

−e−κ∆t 1 + e−2κ∆t −e−κ∆t

. . .
. . .

. . .

−e−κ∆t 1 + e−2κ∆t −e−κ∆t

−e−κ∆t 1















.

(22)

B.3 Kullback-Leibler divergence

The vectors uκ0
and uκ have multivariate Gaussian distributions and the

KLD from the distribution described by κ0 to the distribution described
by κ is

KLD(κ||κ0) =
1

2

[

tr(Qκ0
Q−1

κ )− (N + 1)− log

(

|Qκ0
|

|Qκ|

)]

.
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We are interested in taking the limit ∆t → 0 to find the value correspond-
ing to the KLD from uκ0

to uκ. This is done in two steps: first we consider
the trace and the N + 1 term, and then we consider the log-determinant
term.

B.3.1 Step 1

Let fκ = 1/σ2
κ, then the trace term can be written as

tr(Qκ0
Σκ)

= fκ0

[

2cκ(0) +

N−1
∑

i=1

(1 + e−2κ0∆t)cκ(0)− 2
N
∑

i=1

e−κ0∆tcκ(∆t)

]

= fκ0

[

2cκ(0) + (N − 1)(1 + e−2κ0∆t)cκ(0)− 2Ne−κ0∆tcκ(∆t)
]

.

We extract the first summand and parts of the last summand, and combine
with 2 from the N + 1 term, to find the limit

2fκ0
[cκ(0)− e−κ0∆tcκ(∆t)]− 2 = 2fκ0

1− e−(κ+κ0)∆t

2κ
− 2

=
κ+ κ0

κ

fκ0
/∆t

fκ+κ0
/∆t

− 2

→
κ0 − κ

κ
.
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For the remaining summands and the remaining N − 1 from the N + 1
term, we can simplify the expression as

S3(∆t)

= (N − 1)fκ0

[(

1 + e−2κ0∆t
)

cκ(0)− 2e−κ0∆tcκ(∆t)
]

− (N − 1)

= (N − 1)fκ0

[

(

1 + e−2κ0∆t
) 1

2κ
− 2

e−(κ0+κ)∆t

2κ

]

− (N − 1)

= (N − 1)fκ0

1

2κ

[

1 + (1− 2κ0∆t+
4κ20(∆t)2

2
)

− 2(1− (κ0 + κ)∆t+
(κ0 + κ)2(∆t)2

2
) + o((∆t)2)

]

− (N − 1)

= (N − 1)fκ0

1

2κ

[

(−2κ0 + 2(κ0 + κ))∆t

+ (2κ20 − (κ0 + κ)2)(∆t)2 + o((∆t)2)

]

− (N − 1)

= (N − 1)fκ0

[

∆t+
2κ20 − (κ0 + κ)2

2κ
(∆t)2 + o((∆t)2)

]

− (N − 1)

=

(

L

∆t
− 1

)(

1

∆t
+ κ0 + o(1)

)[

∆t

+
2κ20 − (κ0 + κ)2

2κ
(∆t)2 + o((∆t)2)

]

−

(

L

∆t
− 1

)

,

and see that the products involving o(1) tend to zero

S3(∆t) = L

[

1

∆t
+

2κ20 − (κ0 + κ)2

2κ
−

1

∆t

]

+ Lκ0 − [1 + o(1)] + 1

= L
4κ20 − (κ0 + κ)2

2κ
+ Lκ0 + o(1)

= L

(

κ0 +
κ20
2κ

− κ0 −
κ

2

)

+ o(1).

Thus the limit is

tr(Qκ0
Σκ)− (N + 1) →

κ0

κ
− 1 + L

(

κ20
2κ

−
κ

2

)

.
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B.3.2 Step 2

The determinant of the matrix in Equation (22) can be found by summing
rows upwards, and we see that

|Q| = σ−2(N+1)(1− e−2κ∆t) = 2κσ−2N .

Note that in the limit κ → 0, f → ∆t so the determinant behaves asymp-
totically as κ. This means that

log

(

|Qκ0
|

|Qκ|

)

= log

(

2κ0f
N
κ0

2κfN
κ

)

= log
(κ0

κ

)

+N log

(

fκ0

fκ

)

and we need to find the limit of the second part,

N log

(

fκ0

fκ

)

=
L

∆t

[

log
1

fκ
− log

1

fκ0

]

=
L

∆t

[

log

(

1

2κ

(

1− e−2κ∆t
)

)

− log

(

1

2κ0

(

1− e−2κ0∆t
)

)]

=
L

∆t

[

log
(

∆t− κ(∆t)2 + o((∆t)2)
)

− log
(

∆t− κ0(∆t)2 + o((∆t)2)
)]

=
L

∆t
[log (1− κ∆t+ o(∆t))− log (1− κ0∆t+ o(∆t))]

=
L

∆t
[−κ∆t+ κ0∆t+ o(∆t)]

Thus the limit is

log

(

|Qκ0
|

|Qκ|

)

→ log
(κ0

κ

)

+ L(κ0 − κ)
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B.4 Full KLD

The combination of the limits from the two steps gives the full KLD,

KLD(κ||κ0) =
1

2

[

κ0

κ
− 1 + L

(

κ20
2κ

−
κ

2

)

− log
(κ0

κ

)

− L(κ0 − κ)

]

=
1

2

[

κ0

κ
− 1− log

(κ0

κ

)

+ L

(

κ20
2κ

− κ0 +
κ

2

)]

. (23)

B.5 Comparison with the integral expression

The integral in Appendix A gives the expression

1

2

∫ ∞

−∞

((

κ20 + w2

κ2 + w2

)

− 1− log

(

κ20 + w2

κ+ w2

))

dw = π

(

κ20
2κ

− κ0 +
κ

2

)

.

If we divide by 2π, this is the same expression as the one that is multiplied
with L in Equation (23). This is what we would expect because the integral
is derived under the assumption that L ≫ 1/κ0 and “absorbs” the constant
2π/L.
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