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Abstract. The physics-based modeling has been the workhorse for many decades in many
scientific and engineering applications ranging from wind power, weather forecasting, and
aircraft design. Recently, data-driven models are increasingly becoming popular in many
branches of science and engineering due to their non-intrusive nature (i.e., they are equation-
free) and online learning capability. Despite the robust performance of data-driven models,
they are faced with challenges of poor generalizability and difficulty in interpretation. These
challenges have encouraged the integration of physics-based models with data-driven models,
herein denoted hybrid analysis and modeling (HAM). We propose two different frameworks
under the HAM paradigm for applications relevant to wind energy in order to bring the physical
realism within emerging digital twin technologies. The physics-guided machine learning (PGML)
framework reduces the uncertainty of neural network predictions by embedding physics-based
features from a simplified model at intermediate layers and its performance is demonstrated for
the aerodynamic force prediction task. Our results show that the proposed PGML framework
achieves approximately 75% reduction in uncertainty for smaller angle of attacks. The interface
learning (IL) framework illustrates how different solvers can be coupled to produce a multi-
fidelity model and is successfully applied for the Boussinesq equations that govern a broad class
of transport processes. The IL approach paves the way for seamless integration of multi-scale,
multi-physics and multi-fidelity models (M3 models).

1. Introduction
Some of the major challenges in realizing the potential of wind energy to meet the global
electricity demand are the need for a deeper understanding of the physics of the atmospheric flow,
science, and engineering of these large dynamic rotating machines and synergistic optimization
and control of fleets of wind farms within the electricity grid [1]. The decades of research
and development in fluid dynamics, systems engineering, manufacturing processes, material
discovery can now be complemented with unprecedented amounts of data generated from in-
situ measurements, lab experiments, and numerical simulations to tackle these challenges. The
combination of physics-based and data-driven models is increasing in every branch of science
leading to the hybrid analysis and modeling (HAM) approach for many scientific applications.

The HAM paradigm can be applied to a variety of tasks related to wind research, such as
digital twinning for the optimization and real-time control of wind farms. A digital twin is
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defined as a virtual replica of a physical system enabled through data collected from sensors
and simulations in real-time to solve problems such as control, optimization, monitoring,
and improved decision-making [2]. The advancement in multiphysics solver, computational
infrastructure, big data, and artificial intelligence has allowed us to make a digital replica of
large physical systems such as wind farms [3]. The digital twin lets us examine what if scenarios,
evaluate the system’s response, and select the corresponding mitigation strategies. For example,
the digital twin of wind farms can be useful for different purposes such as optimal control of
wind turbines to achieve the maximum performance, accurate forecast of the power production,
wind farm optimization [4], and improved decision-making. The data collected from IoT sensors
can provide insights into when the equipment maintenance is anticipated and help to plan in
advance. Figure 1 illustrates the typical digital twin framework for a wind farm where the HAM
becomes the key enabler for modeling physics of the system.

Figure 1: Digital twin of the wind farm can allow us to evaluate different scenarios using hybrid
models. The big data collected from IoT sensors can be continuously assimilated to correct
hybrid models and improve the state estimation.

The success of the digital twins depends upon the type of approach that we employ for
modeling the system. The ability of the HAM to combine the generalizability of physics-based
approaches and the automatic pattern-identification feature of data-driven approaches makes it
an attractive choice to model virtual replica of physical systems in digital twins. For example,
there are several turbine wake models that capture the flow in the wake of a single turbine and
these models predict sufficiently accurate aerodynamics of a single turbine [5, 6]. However, these
models are not enough to capture the flows in wind farm due to wake superposition, complex
terrains, deep array effects, and neglected physics [7, 8, 9]. The observational data collected
from a variety of sensors can be assumed to comprise of these complex flow interactions and the
manifestation of all physical processes. Therefore, the hybrid model will aid in the robustness
of the digital twin rather than a pure physics-based or pure data-driven approach.

In this work, we introduce two different frameworks under the umbrella of HAM. The
first framework is called physics-guided machine learning (PGML) where information from
simplified physics-based models is incorporated within neural network architectures to improve
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the generalizability of data-driven models [10]. The second framework is our interface learning
approach that deals with coupling different solvers and mathematical descriptions using
statistical inference tools [11, 12, 13]. One of the potential applications of this framework can
be to specify the physically accurate inlet boundary condition for the wind farm simulation. For
example, it is very common to use a coarse-grid solver to resolve the atmospheric boundary layer
flow and employ the fine-grid solver to resolve the flow field around wind turbines in the wind
farm. For such problems, it is very important to exchange the information between two solvers
that leads to physically consistent boundary conditions, and statistical tools like deep learning
can be exploited for this.

Concisely, bringing physical realism in digital twins will need

• new modelling approaches that are accurate and certain, generalizable, computationally
efficient, and trustworthy,

• seamless integration of multi-scale, multi-physics and multi-fidelity models (M3 models).

To this end, we propose two HAM approaches that address the above needs. While the first
approach PGML provides a mechanism to guide the learning of a machine learning algorithm
using simplified physics, the second approach IL enables coupling of M3 models.

2. Physics-guided machine learning
A wide variety of problems in wind energy such as aerodynamic performance prediction [14, 15]
for optimal control, design optimization, uncertainty quantification requires the prediction of the
quantity of interest in real-time. The prediction of flow around an airfoil is a high-dimensional,
and nonlinear problem that can be solved using high-fidelity methods like computational
fluid dynamics (CFD). However, these methods are computationally infeasible for real-time
prediction. On one hand, in certain flow regimes, the simplified methods like panel codes
come with a non-negligible difference between the actual dynamics and approximate models for
real-world problems. On the other hand, the full-order CFD simulations are computationally
demanding, thus limiting their use in many inverse modeling methodologies that require a
model run to be performed in each iteration. To overcome these challenges, combining CFD
models with machine learning to build a non-intrusive surrogate model is gaining widespread
popularity [16, 17]. One of the main challenges with these non-intrusive models is their
predictive capabilities for unseen data and their interpretation. Even though there are methods
to predict the uncertainty estimate in the prediction of machine learning models [18, 19], the
generalizability of non-intrusive models is not on par with physics-based models. Meanwhile,
the simplified models like the Blasius boundary layer model in fluid mechanics are highly
generalizable across different conditions. Therefore, it is important to incorporate the domain
knowledge into learning, and to this end, we exploit the relevant physics-based features from
panel methods through the PGML framework to enhance the generalizability of data-driven
surrogate model.

We now introduce different components of the PGML framework depicted in Figure 2(a). In
supervised machine learning, the input vector x ∈ Rm is fed to the machine learning model (for
example, the neural network in our case), and the mapping from the input vector to the output
vector y ∈ Rn is learned through training. The neural network is trained to learn the function
Fθ, parameterized by θ, that includes the weights and biases of each neuron. The parameters
of the neural network are optimized using the backpropagation algorithm to minimize the cost
function. Usually, for the regression problems, the cost function is the mean squared error
between true and predicted output, i.e., C(x, θ) = ||y − Fθ(x)||2. The features extracted from
simplified physics-based models are embedded into hidden layers along with latent variable.
Therefore, in the PGML framework, the neural network is augmented with the output of the
simplified physics-based model. This is in contrast to admitting physics-based features at the
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Figure 2: Physics guided machine learning (PGML) framework to train a learning engine
between processes A and B: (a) a conceptual PGML framework which shows a predictor-
corrector approach to incorporate physics into machine learning models through embedding
simplified theories directly into neural network models, and (b) the representative neural network
architecture of the PGML framework used in this study for aerodynamic forces prediction task.

input layer in conventional neural network architectures, which might lead to underestimation
of the effect of such physical information, especially for high dimensional systems. For example,
imagine stacking a few parameters to an input vector of a dimension of O(103 − 106). It is
highly probable that the learning algorithm overlooks the effect of such prior knowledge in
the minimization algorithm, and a modification of the cost function becomes necessary. In the
PGML, a proper latent space is first identified and the information from the physics-based model
aids the neural network in constraining its output to a manifold of physically realizable models.

The training data for the neural network is generated using a series of numerical simulations
performed in XFOIL [20]. We highlight here that the the neural network can also be trained
using the data gathered from CFD simulations or wind-tunnel experiments. The lift coefficient
data were obtained for different Reynolds numbers Re between 1× 106 and 4× 106 and several
angles of attacks α in the range of −20 to +20. A total of 168 sets of two-dimensional airfoil
geometry were generated from NACA 4-digit, NACA210, NACA220, and NACA250 series for
training the neural network. Each airfoil is represented by 201 points. The maximum thickness
of all airfoils in the training dataset was between 6% to 18% of the chord length. We use the
NACA23012 and NACA23024 airfoil geometry as the test dataset to evaluate the predictive
capability of the trained neural network. The simplified model used to generate the physics-
based feature corresponds to the Hess-Smith panel method [21] based on potential flow theory.
We note here that our testing airfoils are selected not only from a different NACA230 series
(i.e., not used in the training dataset), but also the maximum thickness of 24% is well beyond
the thickness ratio limit included in the training dataset.

The adopted neural network architecture has four hidden layers with 20 neurons in each
hidden layer. The physical parameters, i.e., the Reynolds number and the angle of attack are
concatenated at the third hidden layer along with the latent variables at that layer. In the
PGML model, we augment the latent variables at the third layer with the lift coefficient and
the pressure drag coefficient predicted by the panel method along with physical parameters of
the flow (i.e., the Reynolds number and angle of attack). Therefore, the third layer of the
neural network in the PGML framework has 24 latent variables. The representative neural
network for the PGML framework to predict the aerodynamic forces on an airfoil is displayed
in Figure 2(b). We utilize the deep ensembles method to predict the epistemic uncertainty
[22, 23]. In this mehtod, the weights and biases of each model are initialized using the Glorot
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uniform initializer and different random seed numbers are used to ensure that different values
of weights and biases are assigned for each model. The inference from ensemble of all these
models indicates the model uncertainty estimate of the predicted lift coefficient. Figure 3 shows
the actual and predicted lift coefficient for the NACA23012 and NACA23024 airfoil geometry.
The reference True performance is obtained by XFOIL. The ML corresponds to a simple feed-
forward neural network that uses the airfoil x and y coordinates as the input features, and the
physical parameters of the flow are concatenated at the third hidden layer along with the latent
variables at that layer.
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Figure 3: Actual versus predicted lift coefficient (CL) for NACA23012 and NACA23024 airfoils
at Re = 3 × 106 using ML and PGML framework. The dashed blue curve represent the
average of the predicted lift coefficient by all data-driven models (i.e., testing runs with different
initialization seeds). The uncertainty band represent the two standard deviation in the prediction
from ensemble of neural networks.

As shown in Figure 3, we can see that the uncertainty in the prediction of the lift coefficient by
the PGML model is considerably less than the ML model for both NACA23012 and NACA23024
airfoils. The proposed PGML framework provides significantly more accurate predictions with
uncertainty reduced approximately by 75% especially for the angle of attacks between -10 and
+12 degrees. This further illustrates the viability of the proposed PGML framework, since
the physics embedding considered here employs constant source panels and a single vortex to
approximate the potential flow around the airfoil. We can also notice that the uncertainty
is higher for the angle of attacks outside the range of -10 to +12 degrees. This finding is
not surprising as the Hess-Smith panel method is a proven method for analysis of inviscid
flow over airfoil for the smaller angle of attacks regime. The maximum thickness of an airfoil
included in the training dataset is 18% of the chord length. Therefore, the uncertainty in the
prediction of the lift coefficient by the ML model is higher for the NACA23024 airfoil compared
to the NACA23012 airfoil. These results clearly show the potential of the PGML framework for
building trustworthy models that can enable the digital twin of physical systems.
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3. Interface learning
The second framework we are introducing under the umbrella of HAM is the interface learning
(IL). Multi-scale, multi-physics and multi-fidelity models (M3 models) are the main beneficiaries
from the IL methodology. Many complex systems relevant to scientific and engineering
applications include multiple spatiotemporal scales and comprise a multifidelity problem sharing
an interface between various formulations or heterogeneous computational entities. We refer the
readers to our previous discussion about the potential of IL approaches, with demonstrations
on truncated domains [12], and micro-macro scale solvers coupling [11]. In the present study,
we are interested in situations where part of the domain, physics, or scales are characterized by
repeating coherent structures, and can thus be represented by a reduced order model (ROM) for
computational speed-up. In the meantime, a high-fidelity full order model (FOM) is dedicated
for the rest of domain/dynamics for accuracy requirements. However, both solvers are coupled
and information should be communicated and matched at their interface. To this end, we
present a robust HAM approach combining a physics-based FOM and a data-driven ROM to
form the building blocks of an integrated approach among mixed fidelity descriptions toward
predictive digital twin technologies. This is depicted in Figure 4(a), where HAM approaches are
introduced at the interface (marked in orange) to efficiently couple the ROM solvers (in blue)
with the FOM ones (in red).

Figure 4: Hybrid analysis and modeling (HAM) as a key enabler for ROM-FOM coupling
problems toward predictive digital twins: (a) an overview, and (b) proposed ROM-FOM coupling
frameworks (Section 3.1).

3.1. ROM-FOM coupling framework
In order to demonstrate the ROM-FOM coupling framework, we consider a coupled system as
follows,

∂u

∂t
= f1(u;µ1) + g1(u, v;µ1, µ2), (1)

∂v

∂t
= f2(v;µ2) + g2(u, v;µ1, µ2), (2)

where u and v are the coupled variables and g1 and g2 define this coupling, while µ1 and µ2
denote the set of system’s parameters. We highlight that the coupled variables might represent
the state variables at different regions of the domain (e.g., multi-component systems), different
physics (e.g., fluid-structure interactions) and/or different scales within the same domain (e.g.,
multiscale systems). We suppose that the dynamics of u can be approximated by a ROM while
a FOM resolves v and both solvers need to communicate information to satisfy the coupling.
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3.1.1. Reduced order model Introducing a spatial discretization to Eq. (1), it can be rewritten
in a semi-discrete continuous-time as follows,

du

dt
= F(u,v;µ) = L1u + L2v +N (u,v), (3)

where the boldfaced symbols represent the arrangement of discretized variables in a column
vector, µ defines the system’s parameters, and F is a deterministic operator with linear and
nonlinear components L, and N , respectively. We exploit the advances in ROM techniques to
build surrogate models to economically resolve portions of domain and/or physics. The ROM
solution can thus be used to infer the flow conditions at the interface so that a FOM solver can
be efficiently employed for the regions of interest. The standard Galerkin ansatz is applied for
the dynamics of u as u(t) ≈ Φα(t), where the columns of matrix Φ = [φ1, φ2, . . . , φr] form the
orthonormal bases of a reduced subspace, and α defines their amplitudes. Proper orthogonal
decomposition (POD) is one popular technique to systematically construct Φ such that the
solution manifold preserves as much variance as possible when projected onto the subspace
spanned by Φ [24]. By substituting this approximation into Eq. (3), performing the inner
product with Φ, and making use of the quadratic nonlinearity in most fluid flow systems, we get
the following,

dα

dt
= Lα + αTNα + C, (4)

where L and N signify the model coefficients while C defines the contribution of v into the
ROM of u. At the interface, we introduce a long short-term memory network to bridge the
low-fidelity descriptions to high-fidelity models in various forms of interfacial error correction
or prolongation. An array of interface modeling paradigms is sketched in Figure 4(b) and
summarized as follows (see [13] for more details),

(i) DPI: Direct Prolongation Interface. The DPI approach provides an estimate of the flow
variables at the interface from the ROM solution. Indeed, this prolongation map naturally
results from the Galerkin ansatz, without any interference from the ML side. However, it is
known that truncated Galerkin ROMs might yield erroneous and even unstable predictions
for complex systems [25]. Therefore, the solution from the DPI approach is potentially
inaccurate, and a correction needs to be introduced.

(ii) CPI: Correction followed by Prolongation Interface. The CPI methodology works by
introducing the correction in the latent subspace and addresses the deviation in modal
coefficients predicted from solving the Galerkin ROM, known as closure error. Specifically,
the LSTM for CPI takes the values of modal coefficients acquired from integrating Eq. (4)
and predicts the discrepancy between these values and their optimal values. We highlight
here that the size of the input and output vectors is O(r), independent of the FOM
resolution, which offers a potential flexibility dealing with 2D and 3D problems.

(iii) UPI: Uplifted Prolongation Interface. Although the CPI methodology cures the closure
error and provides a stabilized solution, it does not address the projection error. Unless a
large number of modes are resolved, the projection error can be significant. An uplifting
ROM has been proposed [25], where both closure and projection errors are taken care
of. In addition to the closure modeling, the ROM subspace is expanded to recover some
of the smaller scales missing in the initial subspace as u ≈ Φα + Ψβ, where Ψ forms
orthonormal basis for a q-dimensional subspace complementing that spanned by Φ and
with β being the corresponding amplitudes. Indeed, we define Φ as the first r POD modes
and Ψ as the following q modes, as they are orthogonal by construction. We highlight
that the Galerkin ROM equations only solve for α to keep the computational cost as low
as possible. Therefore, a complementary model for β has to be constructed so that the



EERA DeepWind'2021
Journal of Physics: Conference Series 2018 (2021) 012031

IOP Publishing
doi:10.1088/1742-6596/2018/1/012031

8

uplifting approach can be employed. A mapping from the first r modal coefficients to the
next q modes is assumed to exist and we exploit the LSTM learning capabilities to infer
this map from data. In particular, the UPI architecture is trained to read the Galerkin
ROM prediction for the first r modal coefficients as input, and return the true coefficients
of the first r + q modes, defined as projection of the FOM data onto the first r + q POD
modes. The latter represents the optimal solution that can be obtained using the subspace
spanned by the first r+ q basis. Thus, it provides a closure correction for the first r modes
and a superresolution effect for the next q modes, simultaneously in a single network.

3.2. Demonstration using Boussinesq equations
The dimensionless form of the 2D incompressible Boussinesq equations can be represented by
the following two coupled transport equations in vorticity-streamfunction formulation,

∂ω

∂t
+ J(ω, ψ) =

1

Re
∇2ω + Ri

∂θ

∂x
, (5)

∂θ

∂t
+ J(θ, ψ) =

1

RePr
∇2θ, (6)

where ω, ψ and θ denote the dimensionless vorticity, streamfunction and temperature fields,
respectively. We utilize the 2D Boussinesq equation to illustrate the ROM-FOM coupling
in multi-fidelity environments. In particular, we suppose that we are more interested in the
temperature field predictions. Thus, we dedicate a FOM solver for Eq. (6). However, the
solution of this equation requires evaluating the streamfunction field at each time step. The
kinematic relationship between vorticity and streamfunction is given by the Poisson equation
(i.e, ∇2ψ = −ω), the solution of which consumes significant amount of time and computational
resources and is considered the bottleneck for most incompressible flow solvers. Therefore, we
consider a ROM solver for the voriticity dynamics and FOM solver for the temperature field.

For demonstration, we explore the lock-exchange problem, defined by a fluid in a rectangular
domain (x, y) ∈ [0, 8] × [0, 1] with a vertical barrier dividing the domain at x = 4, keeping the
temperature of the left half at 1.5 and temperature of the right half at 1. Initially, the flow
is at rest, with uniform temperatures at the right and left regions, and the barrier is removed
at t = 0. Reynolds number of Re = 104, Richardson number of Ri = 4, and Prandtl number
of Pr = 1 are set. For FOM simulations, a Cartesian grid of 4096 × 512 with a timestep of
∆t = 5× 10−4 are used to capture the dynamical evolution up to t = 8.

A two-layer LSTM with 20 hidden units in each LSTM cell constitutes our ML architecture.
We store 800 time snapshots for POD basis construction and we retain r = 8 modes for the
Galerkin ROM solver. We also utilize the dataset of the stored 800 snapshots for LSTM training
and validation. During the testing phase, the trained neural networks are deployed to enforce
the ROM-FOM coupling at each timestep. Figure 5 shows the predictions of the temperature
field at final time (i.e., t = 8) computed from DPI, CPI, and UPI approaches compared to the
FOM field. We emphasize that the ROM-FOM coupling results correspond to the solution of the
vorticity equation with a ROM solver, which feeds the FOM solver with streamfunction to solve
the temperature equation only as opposed to the FOM results which comes from the solution of
both equations using a fully FOM simulation. Although the CPI results are better than those
of DPI, we can observe that the fine details of the flow field are not accurately captured. On
the other hand, the implementation of the UPI approach with r = 8 and q = 8 recovers an
increased amount of the fine flow structures that are not well-represented by the first r = 8
modes. We note that the CPI and UPI have similar computational speed-ups as they both
involve the same steps which are as follows; (1) solution of Galerkin ROM with r modes for the
vorticity and streamfunction fields, (2) deployment of LSTM prediction with similar architecture
and complexity, and (3) solution of FOM equation for temperature fields. Nonetheless, DPI is
slightly faster because it does not require any neural network predictions.
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(a) Temperature fields at t = 8 (b) `2 norm at different times

Figure 5: Final temperature fields as obtained from different ROM-FOM coupling approaches
at final time t = 8, compared to the FOM solution (a), and the `2 norm of the ROM-FOM
solutions at different times (b).

4. Concluding remarks
The data-driven methods are increasingly being applied in many branches of science and
engineering due to their success in automatic pattern-identification using the data collected
from sensors and numerical simulations. Even though they offer an alternative to physics-based
modeling derived from phenomenological arguments, they are usually black box in nature and
lack generalizability. The hybrid analysis and modeling (HAM) is a newly emerging paradigm
that combines physics-based and data-driven modeling to deliver robust and generalizable models
that can enable the digital twins of large scale physical systems.

The major contributions of this work towards HAM paradigm are

• A novel deep neural network architecture that makes it possible to inject physics during
the training process. This resulted in a significant reduction of uncertainty.

• An interface learning technique that makes seamless coupling of multi fidelity models
possible.

The physics-guided machine learning (PGML) framework enhances the generalizability of
the neural network based surrogate model and its performance is illustrated for real time
aerodynamic performance prediction task. The interface learning (IL) framework allows
integration of two different models seamlessly to build multi-fidelity models that are orders
of magnitude faster than full order physics-based models. Although PGML approach was
demonstrated to work with deep neural network, it can easily be extended to other machine
learning algorithms. Likewise the interface learning technique that was demonstrated to couple
multi-fidelity models can be used for coupling multiscale and multiphysics models.
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