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Abstract—This article investigates the properties, from a
nonlinear control system standpoint, of atomic force micro-
scope (AFM) systems, whenever operated in contact mode
and controlled in the vertical direction by proportional-integral
control law. By modeling the AFM as a system in which a
piezo-electric actuator and a cantilever mutually interact in
order to produce the sample topography, ensuing distortions
affecting the quality of the yielded topography measurement
are naturally cast and analyzed. The proposed investigation
considers distortions due to the inception of hysteresis and
vibrational dynamics within the piezo-actuator or provoked by
system saturation. Both hysteresis and saturation are inherently
nonlinear phenomena and are modeled as such. In spite of the
inherently nonlinear nature of the AFM dynamics, investigations
of the contact mode case from a nonlinear standpoint are lacking
within the AFM literature. As the topography yielded by the
AFM completely relies on its control algorithm, to the point that
the measurement itself corresponds to the control action v(),
it becomes of paramount importance to understand how v(t)
relates to the actual topography, and how such a relationship
is affected by the aforementioned distortions. This article hence
intends to contribute to the AFM literature, by providing a study
in which the very meaning of the image measurement yielded
by the AFM is investigated, in the light of distortions due to
nonlinear phenomena. The AFM is considered to be operated in
contact mode with a PI algorithm. Furthermore, as a byproduct
of the derived nonlinear stability analysis, a novel, model-based
algorithm for tuning the PI control gains is provided. Finally,
experimental results are presented and analyzed in view of the
derived theory.

Index Terms— Atomic force microscope (AFM) control, nonlin-
ear control, normal form, singular-perturbation form, small-gain
arguments, Tikhonov’s theorem, zero dynamics.

I. INTRODUCTION

HE atomic force microscope (AFM) is a powerful device
capable of yielding sample-surface measurements with
nanometer resolution [1], [2].
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A typical AFM setup, see Fig. 1, is composed of a sharp
tip mounted on one extremity of a cantilever, which, in turn,
is attached to a piezoelectric actuator, referred to as the
z-piezo. By receiving and processing the reflection of a laser
beam, a position-sensitive photodetector (PSPD) is employed
to detect and yield the deflection of the cantilever which is
used for feedback purposes. The cantilever deflection is the
result of the interatomic force interplay between the sample
and the cantilever in the form of attracting van der Waals
forces or repulsive Pauli forces, which are inherently nonlinear
phenomena [2, p. 910].

AFMs are usually operated in one of two distinct modes:
contact mode (static mode) or oscillating mode (dynamic
mode) [1, ch. 3]. In this article, the AFM is investigated
while operating in contact mode. In this mode, the information
about the sample topography is acquired while the cantilever’s
tip is in contact with the sample. As the sample is scanned,
interatomic force interactions produce a mismatch between
the actual cantilever’s deflection and a reference one. Such
mismatch is used within a feedback loop in order to regulate
the cantilever’s deflection toward a reference constant value.
The topography of the sample is then provided in the form
of the time history of the control effort itself employed to
pursue the regulation task.

The main task of this article is to analyze this very mea-
surement mechanism, that is, to investigate the extent to which
the time history of the control effort is capable of providing
a reliable representation of the actual sample topography. The
analysis is pursued for AFMs, whenever operated in contact
mode and controlled in the vertical direction by a PI con-
trol law. The PI algorithm, usually embedded in commercial
AFMs, is one of the most common imaging configurations.

By modeling the AFM as a nonlinear system in which a
piezo-electric actuator and a cantilever mutually interact to
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produce the sample-topography, ensuing distortions hamper-
ing the quality of the yielded topography-measurement, are
naturally cast and analyzed. This investigation considers dis-
tortions due to hysteresis and vibrational dynamics induced by
the piezo-actuator, as well system saturation. Both hysteresis
and saturation are inherently nonlinear phenomena and are
modeled as such. Indeed, in spite of the inherently nonlinear
nature of the AFM dynamics, investigations of the contact
mode case from a nonlinear standpoint have remained so far
elusive. In particular, to the authors’ knowledge, no study has
investigated the effects provoked by such distortions on the
very meaning of the yielded measurement-output displayed
on the screen: what is indeed the meaning of the measure-
ment displayed on the screen? This article hence intends to
contribute to the AFM literature by filling these gaps.

By employing nonlinear arguments originating within the
framework of the small-gain theorem [3, p. 36], and by exploit-
ing system representations such as the normal form [4, ch. 4]
and the singular-perturbation form [5, ch. 11], operational
regions within which the saturation limits are not exceeded,
are characterized in terms of invariant Lyapunov level-sets.
By then exploiting the derived stability results, and aided
by an application of Tikhonov’s theorem for infinite-time
intervals [5, p. 439], the relationship between the time history
of the control effort v (¢) and the cantilever-sample interaction
force is provided, thereby highlighting the alterations caused
by the aforementioned system’s distortions on the yielded
topography v(¢). In so doing, by dissecting and analyzing the
actual nature (i.e., its meaning) of the yielded measurement
v(t), this work exposes the inherent limitations attached to
representing the actual image-topography by using v(¢). This
result, and the concurrent nonlinear analysis carried out to
produce it, are both novelties and considered by the authors
as original contributions.

Furthermore, as a byproduct of the derived stability analysis,
a novel, model-based algorithm for tuning the PI control gains
is proposed, which provides a complementary contribution
to the article. Finally, experimental results are presented and
analyzed in light of the derived results.

The article is organized as follows: in Section II, a math-
ematical model of the AFM system is presented, along
with a formal definition of the problem under consideration.
Section III focuses on the PI-controlled cantilever dynamics,
Section IV revolves around the analysis of the piezo-actuator
vibrational dynamics, whereas in Section V the properties
of the entire closed-loop system are investigated. By then
building on the derived results, Section VI —which is central
within this work—analyzes the very “meaning” of the yielded
topography measurement in the light of the alterations on
the measurement output produced by the abovementioned
system’s distortions. Finally, in Section VII, experimental
results are provided and discussed, followed by concluding
remarks in Section VIII.

II. AFM-MODELING AND PROBLEM DEFINITION

In this section, a formal description of the dynamics govern-
ing the behavior of the AFM system, when operated in contact
mode and controlled by a PI control law, will be provided.
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To this end, the AFM system is modeled as an architecture
whereby a piezo-electric actuator and a cantilever interact in
real-time in order to form and yield the sample topography.
Within this architectural framework, the effect due to a poten-
tial system saturation on the commanded control signal v(¢)
is described by the following input—output relationship:

o(r) = o (v(1) (1)

where the operator o () models the alteration on the desired
control input caused by a possible system saturation. The oper-
ator o (s) is modeled as a uniformly bounded differentiable
real function (with a uniformly bounded derivative) of a real
argument o (s), which equals the identity operator id(-) for
|s|] < A (where A > 0 represents the system’s saturation
limit), and deteriorates nonlinearly (possibly “fast,” but yet in
a differentiable fashion) for |s| > A, and which converges to
finite values for s — —oo and s — co. An example of such
function is given by

A + p arctg (%(s — A)), fors > A

o(s) =1, for |s| < A

1
—A + f arctg (E(s—i— A)), fors < —A

where f > 0 is a parameter to be chosen according to the
modeling needs.

Remark 2.1: From the physics of the piezoelectric actua-
tors, it is known [1, p. 15] that there exists a maximum voltage
the piezoelectric ceramics are capable to withstand before
undergoing depolarization. With this being the case, while
operating the AFM for carrying out experiments, it is fun-
damental to explicitly enforce a bound—or a “saturation”—
onto the allowable range of voltages reaching the piezoelectric
actuator. Such bound may be enforced by limiting on purpose
the allowable output voltages produced by the amplifier con-
nected to the input of the piezoelectric actuator, or by setting
those limits directly within the AFM control software, or,
if the experiments are carried out by using a real-time platform
like dSpace, by placing an explicit saturation operator limiting
the output of the designed control action, at Simulink level.
Nonetheless, a form of system saturation must be necessarily
imposed to protect the piezoelectric actuator.

The voltage-control signal, from the output of (1) then
reaches the input of the piezoelectric actuator, which in turn
exerts a distortion on ©(f), whose effect is modeled here,
as in [6], by means of a hysteresis operator followed by vibra-
tional dynamics. The exerted distortion due to hysteresis is
modeled as the action of an operator ¢ (-) on o (t) whose effect
is described by the following ordinary differential equation:

g(1) = alo@)|@v(t) — q@t)) + bi(t) 2)

that is, by the Duhem model (see [7]), where & > 0 and
a > 0 in (2), and whose solution, by following [8], [9], can
be expressed in explicit form as:

q(1) = ac(v(t)) +h(@@)) 3)

where %(-) is a uniformly bounded operator. By then setting
u(t) = q(t), inspired by the work in [10], the piezo-electric



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

MESSINEO et al.: ANALYSIS OF PI-CONTROL FOR ATOMIC FORCE MICROSCOPY IN CONTACT MODE 3

Topography estimate

Interaction force

F() \_

PI Saturation
Controller

(ki7 kiﬂ)

v

Cantilever
u Vibrational .
Hysteres1s . dynamics
(Ac, Be, Ce) (w0, @)

Non-ideal effects

Fig. 2. Block diagram of the vertical AFM model and feedback loop. Brown symbols designate nonlinear effects. Linear systems are shown together with
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actuator’s vibrational dynamics is modeled by a singularly
perturbed linear system of the form

€x. = Acxe + Beu(t)
Ye = chc (4)

with A, Hurwitz and € > 0. Following [2, pp. 916-917],
the AFM cantilever is modeled as a lumped-parameters
dynamical system of the form

).61 = X2
1
B =~ —y) — R —J)+—F() (5
0 m

where x; represents the cantilever position, wy denotes the
cantilever resonance frequency, Q = (mawo/d) the quality
factor, d the damping coefficient, m the mass, whereas F(-)
describes the cantilever-sample interaction force. A block
diagram summarizing the AFM architecture proposed in this
article—along with the feedback loop—is displayed in Fig. 2.

The AFM-control task entails steering the cantilever posi-
tion to a constant, desired value, henceforth denoted by
xg. In conformity with this task, a preliminary change of
coordinates is carried out by defining a set of regulation-error
coordinates as e; = x| — X4, €2 = X, and by then rewriting
the cantilever dynamics (5) in the newly defined coordinates,
as

é1 = €
. ) 1
ey = —k(ey — yo)—d(e2 — yo)—kxa + ;F(-) (6)
where k = a)(z] and d = (wy/Q) have been defined with the
purpose of easing the notation.
Since the right-hand side of (6) displays the derivative y.,
it is convenient to perform an additional change of coordinates

in order to remove it. The new coordinate framework (e, z)7
is thus defined by keeping e; unaltered, and by setting

e =017 + aze; + a3y, (7)

where o; i = 1,...,3 are constants to be determined.
By virtue of (7), the cantilever dynamics in (6) can be given
the following formal expression:
. | . .
7= —(é2 —a2é; —03y.)
(23]

é1 = a1z + one; + azy. (8)

from which, by using (6), it follows that:
. 1
z= a—(—ke1 +kye. — d(a1z + azer + a3y.)
1

. 1
+dyc—kxq+ EF(') — a1z — a3e

— 203y — 03c)

é1 = 012 + 0ze; + a3y.. 9)

The constants a;, i = 1,...,3 are now to be selected with
the aim of removing both y. and y. from the right-hand side
of the first equation in (9). This is readily accomplished by
choosing a;, i =1, ..., 3, such that the following holds:

d}}c - 053}.% =0

ky.—dosy. — azazy. = 0. (10)

Equation (10) are fulfilled if and only if ar = (k — d?/d)
and a3 = d; moreover, for the change of coordinates in (7) to
be well defined, it is necessary that a; be different from zero.
Hence, the following conditions must be enforced in (9):

a 750
k — d?
o =
: d
o3 = d. (11)

By choosing for convenience a; > 0, by defining a =
(k/d) > 0,b = —(1/ay)(k+d((k—d?*/d))+((k—d?/d))?) and
di(-) = (1 /ay)(—kxq+(1/m) F(-)), by virtue of the conditions
in (11), after some algebra, system (9) can be rewritten in
normal form as

z = —az+be; +di(")
2

d

ér =o1z+ el +dy. (12)
with @ > 0, and where the disturbance d;(-) is uniformly
bounded by construction, since the force F(-) is a uniformly
bounded quantity (see [11]-[16]). By then choosing the fol-

lowing PI dynamical control law

é0:e1

v(t) = —kjeg — kpey (13)
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with k; > 0, k, > 0, from (1)-(4), (12), (13), the closed-loop
system to be analyzed can be given the following form:

€x. = Acxe + Beu(t)
z = —az+be +d ()

éoZél
2

ér = a1z + e; +dCex.
u(t) = ao(—kieg — kper) + h(-)

(14)

where (2) has not been explicitly included in (14) since ¢ (¢)
in (2) allows for an explicit representation from (3), and where,
by construction, u(t) = ¢(¢) in (14).

By subsequently defining a backstepping-based change of
coordinates [17] as

e =e|+oey (15)
system (14) can be written as
€x. = Acxe + Beu(t)
Z = —az + bé—baey+d; (")
ey = —oeg + &y
é va_dz~ k—d? +dC,
el = a e —a e Xe
1 12 p 1 R
— 0!260 + aé,
u(t) = ao(—(ki — aky)eg —kpér) + h(-). (16)

Finally, the following well-defined (since A, is Hurwitz)
change of coordinates is pursued:

Fe=x.+A'Bu (17)

by virtue of which, system (16) can be further rewritten as

. 1
Fe = —Afe + A7 Boai(t)
€
z = —az + bé,—baeo+d, ()
éy = —aey + &,
k—d?>_

d e —a d €y

—d CCA;IBCu(t) +dC.%. — a’ey + aé,
u(t) = ao(—(ki —ak,)eg — kpéy) + h(:)

ey = o1z +

(13)
where, by using (2) and (18), the derivative of the control
action u(¢) in (18) is seen to satisfy

oo (e)
oe

@m0 +672
e

fe) (19)

u=a

with e = —(k; — ak,)eg — kpé1, and f(-) defined as

k—d?

f() = —(kp— +k; — Otkp)é1

k—d?
+ (kpaT + kja + azkp)eo

—kponz — kpdCoXe +kpdCe AT Bou(t).  (20)

In the next three sections, the stability properties of the
dynamical system (18)—(20) describing the PI-control scheme
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applied to the AFM are investigated. By exploiting the inher-
ently modular structure within the dynamics in (18), the analy-
sis is structured in three distinct but mutually intertwined
units. In the first one (Section III), the properties of the
PI-controlled cantilever dynamics are investigated in relation
to the control gains k, and k; and to the saturation limit
A, by regarding the state %.(¢) as an exogenous disturbance.
In an analogous fashion, by regarding the states z(¢), eo(t) and
¢1(r) as incoming disturbances, the stability properties of the
actuators dynamics (in X, coordinates) are studied in relation
to the time-scale separation existing between the latter and
the forced, controlled cantilever dynamics. This is done by
determining the conditions by which € “dominates” u in the
first equation within (18). Finally, the stability properties of
the whole system are investigated in Section V, by exploiting
the derivations of the previous two sections.

IITI. PI-CONTROLLED CANTILEVER DYNAMICS

The aim of this section is to focus on the PI-controlled
cantilever dynamics within (18), and to analyze its behavior
in relation to the time-evolution of the interatomic force
interaction, of the piezo-actuator vibrational dynamics (in X,
coordinates) and the hysteresis perturbation, by regarding such
quantities as exogenous disturbances.

In view of this task, by then considering the saturation limit
A previously defined, the set of the states ey(¢) and &, (¢) not
exceeding the limit A, under the control action in (13), can
be denoted by

Se={(eo, 21) € R*: |—(ki — kpa)eg — kpéi| < A}. (21
By then defining
g() = maX{’(ki - kpa) P kp} (22)

and since | — (k; — kp,a)eg —kpéi| < g(-)(leo| +1&1]), it is seen
that if 2(-)(leg| +1&1]) < A then | — (ki —k,a)eq —k,&| < A.
This implies that the following set:

S, ={(e0.2) € R?: g()(leol +121]) = A} (23)
by construction, must necessarily fulfill
S, € S,. (24)

Moreover, by defining

= A A
Se = H(eo,él) eR?*: g()leo| < E,E(')léd < E] (25)

it immediately follows that:

5, C3,C8,. (26)

By keeping in mind property (26), consider the PI-controlled
cantilever dynamics within (18), that is,

z = —az + be;—boey+d(-)
ép = —aey + @
k—d?>_
a T
—d C.AZ'Bou(t) +dC.ie — o*ey + 0@
u(t) = ao(—(k; — ak,)eg — kpé) + h(-)

ey = o1z +

27)
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where d,(-), X, and h(-) are regarded as external disturbances
affecting (27). The analysis proceeds now by investigating
potential invariant sets with respect to the flow in (27), with
the additional property that any element within it shall not lead
to system-saturation (that is, by requiring that the invariant set
be contained within R x S, ). In view of this task, by defining

~ 1, 1( AV
lez eleR:Eelfi %

it is seen that [&;| < (A/2g(-)) if and only if &, € V;,. Then
consider the dynamics of system (27) whenever its trajectories
(z, 0, &1)T are bound to evolve solely within the set R x S,
that is, whenever the saturation limits are not exceeded; in such
cases, it is seen that the saturation operator o (-) behaves as the
simple identity operator id(-), that is, o (-) = id(:). As a result
of this, by then considering (27) along with (19) and (20),

by defining

—a —oab b 1
and by defining Z = (z, eg)”, simple algebraic manipulations
show that the cantilever’s dynamics, whenever considered to

evolve within the set R x S,, can be given the following
representation:

7= AZ+ G1&; + Gad, (")
é1 = —k,é) — kieg + a1z +dC.x. + yh(-) (30)

where y = d(—C.A;'B.) > 0, k, = bk, — (k — d*/d) — a,
ki = a(k—d?*/d)+b(k; —ak,)+a*, b =d(—C.A ' B.)a, and
where the quantities A, G| and G, are not dependent on the
gains k; and k, of the control law defined in (13). Moreover,
since the matrix A is Hurwitz (being ¢ > 0 and a > 0),
it follows that there exists a symmetric and positive-definite
matrix P such that:

(28)

PA+ATP=—1. (31)

By then defining the following quadratic form V; = z7 Pz,
and by recalling the well-known property:

Amin(P)IZI1? < 2" PZ < Amax (P) 12117 (32)

where Amin(P) and Ay (P) denote the smallest and, respec-
tively, the largest eigenvalue of P, the following sets are
defined:

A 2
Q; = [Z € R? : ZTPZ =< j~mirl(}))(%) ] (33)

and

o, L 1A Y

QzZIZER EHZ” 55(%) ] (34)

By employing the first inequality in (32) and by multiplying
both sides by (1/2)(1/Amincp)), One obtains (1/2)[Z[|> <
(1/2)(1/Amin(p))z” PZ. Because of the previous inequal-
ity, it follows that if z7PZ < Amin(P)((A/25(-)))? then
(1/2)l1zll = (1/2)((A/28(-)))?, which implies that Q; C Q..
In view of this, since, by construction, if z € €, then
leo] < (A/2g(-)), it follows that if 7 € Q; then |ey| <
(A/2g()). By following a similar reasoning, by considering

the second inequality in (32), it is seen that if |Z|| <
(min (P)/ 2max (PY))2(A /25(-)) then Z € Q. By then defin-
ing the set

| z.l-z<limin<P)(L)2]
Q; ZeRT:SIzI” < 27 (P \220) (35)
whereby Z € Q. & 2]l < ((min (P)/ Zmax (P)))'/?(A /28 ()),
and by then using the second inequality in (32), it can be read-
ily seen that Q.- € Q;. By virtue of the previous derivations,
the following set-inclusions, which will be employed in the
sequel, can be finally established:

QZ*XlegngQagQZXlegR

xS, CRxS, CRxS,. (36)

Property (36) establishes, in particular, that within the set
Q: x € the system’s saturation limits are not exceeded,
which implies in particular that, within such set, the dynamics
of system (27) simplifies to the ones in (30).

In view of the previous derivations, it is now possible to
formalize the conditions under which the system’s saturation
limits are not exceeded. This is done by demonstrating that
there exist selections of the control gains k, and k; such
that the previously defined set Q: x € 1is invariant with
respect to the flow in (30), provided that the values of the
disturbances d;(-), X. and h(-) be restricted to evolve within
certain prescribed bounds.

To this end, in the following preliminary lemma, an algo-
rithm for choosing the proportional and integral gains in the
control law in (13) is proposed. The rationale that dictates
the structure of the algorithm lies in the idea of selecting the
control gains so as to render as small as desired a quantity
which, in the sequel, will be shown to be strictly connected
to the regulation error e;. The lemma will be employed in the
forthcoming analysis and can be regarded as describing a law
by which the control gains are tuned, based on the model of
the AFM system.

Lemma 1 (Gain-Tuning Algorithm): Recall that k, =
bk, — (k — d*/d) — a, ki = bk; — ak,, and that a; and b
are positive constants, define
(o, ar, i, Ky) = max{|k, - a1}4\/§
kp
and denote m(a, a1, ki, k,) by m(:). Then, for any desired
€ > 0, and for any o > 0, there exists a positive number k¥,
such that, for any k, > k;‘,, there exists a positive gain k; such
that: the quantity m(-) is positive and satisfies m(-) < €.

Proof: The result follows directly by choosing the gains
according to the following simple algorithm.

(37)

1) Fix a to a constant, positive value.
2) Fix.k.;‘; large enough such that, for any k, > k;‘,, k, be
positive, and such that

OC]4\/§

IE,, <€ (38)
and fix once and_for all one such k,.
3) Finally fix k; in k; such that
|ki| < o (39)
O
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Define

A —min[ A !
L 2¢(-) 6m()[[ PG,

Amin(P) A 1
VT (P) 2() 61 PG| ]
Ay = min[ A E” s Amin (P)
26() HdCol”\ Toman (P)
A k,
" 2¢() 61 PG, [[41dC,| ]

A —min[ A ]E_p j~min(P) A

k, ]
X —P
6llPG14y

(40)
then let f € L:’;O, and let ||f]|, denote the ‘“asymptotic
norm of f,” that is ||f|l, = lim,_supl f] (see [18]).
Then, in view of the previous derivations and definitions,
the following theorem—which constitutes the main result of
this section—can be finally demonstrated.

Theorem 2: There exist selections of the control gains k;
and k, in (13) such that, whenever |d;(-)| < Ay, [|%:]| < A
and |A(-)] < As, then.

1) The set Q= x Q5 (within which the system’s saturation

limits are not exceeded) is invariant with respect to the
flow in (30)
2) The following asymptotic bounds hold:

lIé1ll, < max {6m(-)llPGzll i ()l

o HdCelllTell, 4y 1A Ol ]

5

k, kp

(41)
and
IZll, < max I6IIPG2|| di()lla, 6IIP Gl
41dCelllxcll, 4y 1)l
x Dt 6||PGl||yE—) .
P P

(42)

Proof: Consider the sole é;-dynamics in (30)
é1 = —kpé1 — kieo + a1z +dCcic + y h() (43)

and fix k, = k;* > 0 large enough such that k, be positive,
while regarding e, z, X, and h(-) as exogenous disturbances;
by then choosing Vs, = (1/2)&3, the following inequality can
be easily derived:

. o )
Vi, < —kpet + |ki|leollei] + a1 lz]]2 ]

+ [dCcllIxcNe] + y [hC)lle].  (44)

Since |killeol + ailz] < max{ay, ki}(leo| + |z|) and since
leo| + |z < (2)'/2]Z], then, from (44), it follows that:
Ve, < —kp&} + max{ar, k}v2lZ]1e ]

+1dCcllZcler] +y [h()ler].  (45)
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From (45), by using the definition of the function m(-)
in (37), the following property can be derived by employing
standard arguments:

: 1.
Vs, < —Zk,,é% for|e;|

4|dC.|||%
> max [z, A4
kp
4y |h(-
xiyl_(ﬂl (46)
kp
which in turn implies that
|é;] < max Iﬂe,(|é1(0)|, 1), m()|Izll
41dC %N 4y |h(
 AdCAIE N y|_()|] )
k, kp
where f; (-,-) is a class KL function such that

e (1€1(0)[,0) = 1&;(0)]. The proof proceeds now by
considering the sole Z-dynamics within (30), that is,

7= Az + G2, + Gad, (") (48)

and by regarding both &;(¢) and d,(-) as exogenous distur-
bances. By then considering the previously defined quadratic
form V; = zT PZ as a candidate Lyapunov function, it is seen
that its derivative along the trajectories of (48) satisfies

V. = —|lz1* + 22" PG &, 4+ 22" PGad, ()

(49)

from which

Z

. 1 1
V: < —§IIZ|I2 - §||Z||2 + 20zINP G llerll
1
- §||Z||2 +20ZIP G2 llldr ()1l (50)
which in turn implies that

. 1
V: < —§||Z|I2 for||Z]|

> max{6[| PGlllIé,l, 6l PG2llldi ()]} (51
From Property (51), it is possible to infer that
1zl =max{B:(I1Z(0) I, ), 6l PG ll|e1ll, 61l P G2llldi ()]}
(52)
and
IZll, = max{6l|PGlllIeill,, 61 PG2lllldi(HIl} (53)

where f:(-,-), in (52), is a class L function such that
B-(12(0)], 0) = |z(0)]; moreover, by using (52) in (47), one
obtains

&1 < max [ﬂal(lél(O)I, 1), m()p=(1Z(O0), 1)

x 6m()[PGill|er], 6m ()P G2 |lldi ()]
o HdCelll%ll 4y Ih(-)I]
k, 7k, |
The proof proceeds now by choosing the gains k, and

k; as dictated by Lemma 1 in order to fulfill the following
small-gain condition:

m(:) 6] PG|l < 1.

(54)

(55)
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By denoting by &, and k; the proportional and integral gains
fulfilling (55), without loss of generality and in order to ease
the notation, it is assumed that the already chosen proportional
gain k" satisfies kj, = k};*. Because of the small-gain inequal-
ity in (55), it is seen that 6m(-)| PG |||é;| < |&;].- Hence,
by exploiting the fact that for any positive a, b, ¢ and 6(-),
if a < max{#(a), b, c} and f(a) < a, then max{f(a), b, c} =
max{b, c} (see [3, pag. 38]), it follows that property (54) can
be replaced by the following inequality (which does not feature
any longer the term |&;| on its right-hand side):

ley] < max [ﬁé1(|51(0)|»f),m('),b)z(HZ(O)”J)

41dC.||1%
x 6m ()| PGallldi (-], Ikilllxll
P
4y |h(-)]
: T] (56)

from which the following asymptotic bound—corresponding
to inequality (41) in the theorem’s statement—can be derived:

leil, < max i6m(')||PG2|| ldi ()1l
| AdCI%ella 42 18Ol
EP EP

In a similar fashion, by using (56) in (52), one obtains

]. (57)

Izl = max iﬁz(IIZ(O)II, 1), 6llPG 15z (121(0)], 1)

x 6I[PG[m()B:(1Z(0)I, 1), 6l PG lIm(-)
x 6P G>|ldi ()], 61 PG llldi ()], 61 PGyl

41dC. ||| X, 4y |h
 ACT e 4 (>|]

P kl’
From the latter, because of the small-gain inequality
in (55) which dictates that 6||PG||m(-)6||PG,|||d\(-)] <
6IlPGlldi()]  and 6 PG [Im(-)B:(1Z(0)]I, 1) <

Lz(1Z(0)]], ¢), it is possible to derive

(58)

IZIl = max [ﬂz(IIZ(O)II, 1), 6llPGi|fz (121(0)], 1)

41dC, ||z
X 6] PGy lldy ()], 6] PGy || el
14
4y |h()|
x 6] PG| L ()] (59)
kp
and
Iz]l, < max [6||PGZ||||d1(-)||a,6||PGI||
41dC.| || %, 4y ||h
ATy e A7 IHO, ] )
kP )4

The asymptotic bound in (60) is indeed seen to correspond
to inequality (42) in the theorem’s statement. Denote now by
¢z, (+) the expression on the right-hand side of inequality (56)
and by ¢:(-) the expression on the right-hand side of inequal-
ity (59). Then, from (56) and (59), because of the properties
in (36), invariance of the set Q: x €; with respect to the
flow of system (30) is guaranteed by requiring that the set

= {2 e R : |IZ] = ¢:()} x {&1 € R : &l = g()}

be contained within Q: x €3 . This requirement is fulfilled
by requiring that the “disturbances” d;(-), X, and h(-) satisfy
ldi(-)] < Ay, || %]l < A, and |h(-)| < Aj (as per the theorem’s
statement) and by requiring that the following two additional
bounds involving the initial conditions be respected as well:

. Al
B2, 1) =< 00

B j«min(P) A 1
Pe (1€1(0)], 1) < \/Ezg(.) 6I|PG|

Conditions (61) must be enforced in conformity with the
fact that, as specified by the theorem’s statement, the initial
condition (Z(0) &(0))7 must be capable of performing range
within the whole set Q: x Qg . In view of this requirement,
because Q; C Q_, the first condition in (61) yields

A A1
2g() — 2g()m()

which can always be satisfied by choosing the control gains
as indicated in Lemma 1 so as to render 0 < m(-) < 1, and by
assuming that, without loss of generality, the previous choice
(kp, ki) = (k;,kf) fulfills such condition as well. Whereas,
by definition of €, and in view of the aforementioned
requirement, the second condition in (61) yields

A < Amin(P) A 1
28() N V j~max(P) 28() 6||PG1||

where, after some algebra, the norm || PG| in (63) is seen to
satisfy

(61)

(62)

(63)

k2
IPGil = H( | 2akd + 2k? 2a)H (©4)
From (64), and because k = a)(z) and d = (wy/0),
inequality (63) is satisfied by choosing o > 0 in the
coordinate-definition in (11) sufficiently large, and then,
in turn, a; > 0 in the backstepping-based change of coordinate
in (15) sufficiently large as well. This concludes the proof. U

IV. PIEZO-ACTUATOR VIBRATIONAL DYNAMICS

In this section, the stability properties of the piezo-actuator
vibrational dynamics are analyzed by regarding the states
z(1), ep(t), &1 (r) within (18) as exogenous disturbances. This is
done by focusing on the relationship between € and i in (18),
that is, between the “speed” of the piezo-actuator vibrational
dynamics and one of the controlled cantilever dynamics forced
by the interaction force F(-) (whose time-evolution is a
function of the horizontal scan rate).

In view of this task, by combining the first equation in (18)
with (19), the piezo-actuator dynamics within (18) can be
given the following representation:

oo (e)

fOa—a)()

60()

|
Fe=—Afe+ A 13[
€

fe )} (65)

where f(-) is defined in (20).
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From the analysis in Section III, and in particular from
Theorem 2, it is seen that in order not to exceed the system’s
saturation limits, the state variable ¥, must be bound to comply
with

%]l < Az (66)

with A, defined in (40). In analogy with Section III, the task is
to derive a potential invariant set with respect to flow in (65),
with the additional property that any element within it satisfies
the constraint in (66).

In view of this, consider the quadratic function Vi =
%T P.x, where the matrix P,, defined as a solution of

PA. A+ AP =—1 (67)

is guaranteed to exist symmetric and positive-definite, since
A, in (65) is Hurwitz. By then keeping in mind that

Amin(Pe) < X, ch < Amax (P) (68)
the following set is considered:
Q; = {% e R" : £ P < dmin(Pe) A3} (69)

By using the first inequality in (68), it is seen that if
X. € Q; then the inequality in (66) must necessarily hold,
implying that any element within Q; fulfills the constraint
in (66), as required. It is now possible to determine under
what conditions the set Qg is invariant with respect to the flow
in (65) while having all of its elements fulfill the constraint
in (66). This is done by considering the expression in (20),
by defining m»(-) as

k2
my(-) = max H k,,gd + ki —ak,
kg >
X kpag + kia + ak,)|, kpa1’
] (70)
then p(e) as
comy (-
ple) = 112—2) (71)
5(z = am())
where ¢; is a positive constant, and A;, withi =4,...,7, as
Amin(P) 1
Ay = A, M_
Jmax (Pe) p(€)
1
AS = %Azl
Ag = Ay
A7 = Ay (72)

and by demonstrating the following theorem, where the sta-
bility properties of the piezo-actuator vibrational dynamics are
established.

Theorem 3: Consider system (65); then, there exist ¢; > 0
in (71) and €* > 0, such that, for any € < €*, whenever the
“disturbances” e;, z, o (-) and k() satisfy [&1] < Ay, |Z]] <
As, lo ()| < Ag, |h(-)| < A7, then the following holds.
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1) The set Qg is invariant with respect to the flow in (65).
2) The following asymptotic bound is satisfied:

[Xcll, = max [p(6)||é1||a, pEV2Izl,

x p(e)alla(la, PR,
(73)

Proof: From (65) and (20), the derivative of V = iCT Px.
along the trajectories of system (65) reads as

Vi = —1||5cc||2 + 25" P.AT'B.
0 d
x [ a(e)f() (@—a)o()+b ”(e)f()}
(74)
from which, the following inequality can be derived:
: 1
Vi < =I5l + 2151 P.AT B
)
x [ 7O ()il —allo ()
a
( )llf()l} (75)

Since |(0a (€)/0¢e)]| is unlformly bounded, then there exists
¢> > 0 such that

0o (€)
2

2| P.AZ1B, H[ la—allo ()

oo (e)
oe
hence, by using (76), the following inequality can be estab-

lished from (75):

+1|b

H <cy (76)

. 1
Vi, < —ZIIJFCII2 + el XN f O] 7

Moreover, by choosing €* > 0 small enough such that, for
any 0 < € < €* then (1/€) — c; ma(-) > 0 [where m;(-) has
been defined in (70)], and by picking one such € > 0, then,
from the expressions in (20)—(77), it follows that:

V= (2 - emO) 15 +em Ol
(ol +12l) + cxma((@r] + ko ()
FIHODI]

moreover, since |eg| + |z| < (2)!/2])Z]|, from (78) one obtains

(78)

. 1
Vi < —(— - szz(')) IZ:1% + cama ()12 | 1%
€
+ comy(IV2IIZINZe | + @lo (leama () [1Zel
+ |h()]eama () lIZc |

from which, by using standard arguments, the following prop-
erty can be derived:

(79)

. 1/1 - 2 .
Vi = =2 (2 = emaO)) IxlPfor 1%
> max {p(©)l21], p(e)V2Iz]

x p(e)alo (), p(e)lh()I}. (80)
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Finally, from property (80), the following inequalities can
be inferred:

%]l < max {ﬁxn(llic(o)ll, 1), p(e)le

><p(f)«/zllill,p(e)&la(-)l,p(f)lh(-)l] (81)
and

[%cll, < max {p(f)llfhlla, pEV2Izl,

x p(e)allo ()l p(E)IIh(-)IIa] (82)

where Sz (-,-) in (81), is a class KL function such that
L (I%:(0)]],0) = ||%(0)]. Inequality (82) corresponds to
inequality (73) in the theorem’s statement.

Denote by 7(-) the quantity on the right-hand side of (81).
Then, from (81), invariance of the set Q: with respect
to the flow of system (65) is guaranteed by requiring
that the set S = {X, € R” %]l = r()} be
contained within Q; . By then noticing that if [|%. > <
(/Imin(Pc)//lmax(Pc))A%’ then XZPCXC = /lmin(Pc)A% (that iS,
if |%) < AZ((imin(Pc)/lmax(Pc)))l/z’ then %, € Q)’cr), then,
the aforementioned requirement is fulfilled by requiring that
the “disturbances” &, Z, o(-) and h(-) satisfy |&|] < Ay,
Izl = As, lo ()] = A, |h(-)] = A7 (as per the theorem’s
statement). This proves point 1 in the theorem’s statement and
concludes the proof. (]

V. CLOSED-LOOP DYNAMICS

By building on the results of the previous two sections,
in the following, the stability properties of the closed-loop
system (18) are derived as a function of the interplay between
the control gains k, and k;, the saturation limit A and the
“speed” € of the piezo-actuator vibrational dynamics (in X,
coordinates).

In view of this task, define

camy(+)
(3 —ama()
pi(e) = p(e)(1 + akp)
pa(e) = p(e)(ﬁ + a) ki — ak,
p3(e) = ple)

ple) =

(83)

and

. /lmin(Pc)
Agy= Ay, Ay | ———=
() mm[ P T (P)
1 ]
X

max [Pl (€)6m()IPG2l, p2(€)6[I PGl ]

. /lmin(Pc)
Apy= Az, Ay | —=
"o mm[ 3 P2 T (P)

X

1

max [Pl(f)t—z, p2(€)6|| PGy ||%, P3(6)] ]
(84)

where Ay, A,, and A3 have been defined in (40). Then
the following result, which establishes the stability properties
of the closed-loop system (18), and which constitutes the
conclusive result of the last three sections, can be proven:

Theorem 4: There exist selections of the control gains k;

and k,, in (13), €* > 0 small enough and A* > 0 large enough,
such that, for any € < €* and A > A*, whenever |d;(-)| <
Ad1(~) and |h()] < Ah(.), then.

1) The set Q: x Qp x Qg (within which, by construc-
tion, the system’s saturation limits are not exceeded) is
invariant with respect to the flow in (18).

2) The following asymptotic bounds hold for the states &;, Z

and X.:
lléill, < max H6M(')||PG2IIIId1 I llas
4y ||h(-
4 ||_()||a] )
kp
and
Izll, < max [6”PG2””d1(’)“aa 61 PG
4y |h(
Y ||_(>||a] 56)
kp

and

[Xcll, = max [ max [p1(6)6m(-)||PGz||
X pz(6)6IIPGzII]IId1(-)IIa

4 4
x max [pl(o.—y, P26 PG| =L
k, k,

X p3(6)] ”h(')”a]' (87)

3) The following asymptotic bound holds for the original
regulation error e;:

leill, < (1 + %) max I6m(')”PG2””dl(')”a

4y |\h(
y yn_()na] 58)
kp
where 6 € (0, 1).
Proof: Since within the set Q: x Q; X Q; , the operator
o (+) is such that ¢ (-) = id(-), then, within such set, the fol-
lowing bound can be easily established:
o (—(ki — akp)eo — kper)| < |(ki — akp)|lIZll|kp|l121].
(39)
Pick ¢y > 0 small enough such that, for any 0 < € < ¢
inequality (79) holds, then by using (89), from (79), the fol-
lowing property can be derived:

. 1
Vi, = =(2 = ema0)) 15 + cama()
x (14 akp) 21l %]l + coma ()
x (V2 + alki — akp DIZIIFN + coma ()

S LOlEA (90)
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from which, it follows that:
. 1/1 -2 -
Ve = =2 (2 = emO) 1% for %
S5\e
> max [13(6)(1 + akp)le|

x ple)(V2+alki — ak,y|)Izll, p(e)|h(.>|]
1)

which, in turn, leads to
Xl < max {ﬁfcr(nxc(o)”»t)»ﬁ(f)(l + ak,)le|

x pO)(V2 +alki — aky |zl ﬁ(e>|h(-)|].
92)

Fix now the Pl-control gains as (k,, k;) = (kj,, k;) so that
the results in the statement of Theorem 2 along with the deriva-
tions within its proof, hold. By then using inequalities (56)

and (59) in (92), the following expression is derived:
[l %c |l < max [ﬁza(llic(O)ll, 1)

X max Pl(E),P2(6)6||PG1||],b’é,(|51(0)|,l)

X max

pi(e)m(-), pa(e) ],Bz(HZ(O)H, 1)

X max

p1(€)6m()|PGl, p2(€)6l PG|l ]

4
x |di ()], max [Pl(f)];_ya p2(€)
p

« 6||PG1||‘,‘E—y,p3<e>]|h<.>|
)4
x max[pl(d HACel )
4

41dC.| ], .
x 6l PG| ]lecll]
kl’

93)

by then choosing 0 < €; < €y small enough such that, for any
0 < € < ¢ the following small-gain condition be fulfilled:

|dC.| | el
, p2(€) 6| PG|

kP p

max [pl(e) ] <1 (94

it is seen that, for any such 0 < € < ¢, the contribution of
the term related to ||%.| disappears from the right-hand side
of inequality (93), thereby leading to the following property:

[[ Xl < max [,32[ (IX(O)1I, 1)
X max {p1(6), p2(€)6]| PG, II]ﬁzl(I&(O)I, 1)
X max {Pl(f)m(-), Pz(E)]ﬂz(IIZ(O)II, 1)

X max {p1(6)6M(-)IIPGzII, P2(€)6[| PG|l ]
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4
x |dy()], max pl(e)];—y,pz(d
)4

4
x 6||PGI||.—y,p3(e>]|h(->|]
kp
95)
from which the following asymptotic bound, which corre-

sponds to inequality (87) in the theorem’s statement, can be
inferred:

[ %cll, = max { max [p1(6)6'n(-)llPGzll, p2(€)6
X ||PG2||]||d1(-)||a

4 4
x max[m(e)_—y,pz(e)6||PGI||.—y,p3(e)
kP kP

x ||h(-)||a]. (96)

In a similar fashion, by observing that any element on
the right-hand side of inequality (56), with the exception of
Pr (IIX:(0)]], 7)), is multiplied by the factor p(e), it follows
that there exists 0 < €, < ¢€; such that, for any 0 < € < €,
by using inequality (95) in (56) and, respectively, in (59),
the following bounds can be derived:

el = max [ﬂa(l&(o)l, 1), m()p=(I1z(0)], 1)

x HdCe |,b’(ll (0), I, 1), 6m()IIP G2 lldi ()]
P
4y 1h ()l
and
Izl < max {ﬁz(lli(o)ll, 1), 611PG1l Bz (181(0)], 1)
4ldC,
X 6[|PGil lEC lﬁ(llfc(o), I, 2), 6l PG|
P
x |di ()], 61 PGyl L()I]- (98)
P

From inequality (97), the following bound on the asymptotic
norm of &; can be inferred:

4y 1R ()l

leill, < max [6m(’)IIPGzII ldi (o T ] 99)

P
whereas from (98), the following bound on the asymptotic
norm of Z descends:

IZll, < max [6||PG2|| i ()lla> 6N PGl

4y 1h Ol
x 12 e

]. (100)
P

Inequalities (99) and (100) correspond to inequality (85)
and, respectively, inequality (86) in the theorem’s statement.

Denote by 7z (-) the expression on the right-hand side of
inequality (95), by rz(-) the expression on the right-hand side
of (97), and, finally, by r:(-) the expression on the right-hand
side of (98). Then, from inequalities (95), (97), and (98),
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invariance of the set Q: x Q; x Q;z with respect to the flow
in (18) is guaranteed by requiring that the set S, = {Z € R?:
I1ZIl = g:()} x {& € R : Jlel = qz()} x {¥c € R" : ||%| =
rz.(-)} be contained within Q; x Qz x Qg . This requirement
is fulfilled by selecting 0 < €3 < €; and A > 0 such that, for
any 0 < € < €3 and for any A > A, the “disturbances” d, (-)
and h(-) satisty |d,(-)] < Ag ) and |h(-)| < Ap (as per the
theorem’s statement), and by additionally requiring that the
following bounds involving the initial conditions be respected
as well:

Amin(P) i
jvmax(P) 28()

1 I/Imin(Pc)
X B Az
6” PGI ” jvmax(Pc)
: ]
X

max {pl(é), ()6l PG ||]

Pz (1€1(0)], 1) <min I

(101)
and
B2, 1)
< min [LL
= 20 m
/lmin(Pc) 1
Vo (PO) ]
T max {Pl(f)nic)apz(f)]
(102)
and finally

B (%Ol

. { A kp
< min{——
2g(-) 4ldC.|

Amin(P) A /E,, ]
. 103
“V e (P) 260 617G d1acy | 1Y

Conditions (101)-(103) must be enforced in conformity
with the fact that, as specified by the theorem’s statement,
the initial condition (Z(0) &(0) %.(0))7 must be capable to
range within the whole set Q: x Q; x Qg . By keeping in
mind this task, it is seen that the condition relative to the first
term on the right-hand side of inequality (101) corresponds
exactly to the second condition in (61), which, in Section III,
has been shown to hold by choosing a > 0 sufficiently large
in (11) and then, in turn, a; > O sufficiently large in (15). The
condition corresponding to the second term on the right-hand
side of inequality (101) yields

A j«min(Pc) !
280 = " () ¢
8 max (L¢ max {Pl(f)» p2(€)6 PG, H]

(104)

which is seen to hold for any 0 < € < €4, where €4 is a number
satisfying 0 < €4 < €3. The condition corresponding to the first

term on the right-hand side of inequality (102) corresponds
exactly to the first condition in (61), which has been shown
(in the proof of Theorem 2) to hold by selecting—as it has
been done—the control gains as (k,, k;) = (k;, k?). On the
other hand, the condition corresponding to the second term on
the right-hand side of inequality (102) yields

A Zomin (Pe) 1
260 = " T (P
8 maxi e max[pl(é)m(‘)alh(e)]

which is guaranteed to hold for any 0 < € < €5, where €5 is
a number satisfying 0 < €5 < €4. Finally, by noticing that the
right-hand side of (103) corresponds exactly to A,, it is seen
that inequality (103) is satisfied whenever %, € Q; . By then
fixing €* = €5 and A* = Ay, along with (kp, k;) = (k},, k7)),
claims 1 and 2 in the Theorem’s statement are proven.
Finally, consider the third equation within system (18), that

is,

(105)

ey = —aey + € (106)
along with the Lyapunov function V,, = (1/2)ej, whose
derivative along the trajectories of (106) reads as

Vo, = —0€} + &1¢y. (107)

From (107), by picking 8 € (0, 1), it is possible to derive
Ve < —a(l — 0)ef — abef + leol|é1]

which leads to the following relationship between the asymp-
totic norms of ¢y and &;:

el

leolls < v (108)
From the coordinate-definition in (15), it is seen that
leills < lleill, + alleoll, (109)
which, by using (108) in (109), leads to
1
leill, < (1 N g)nélna. (110)

By then combining inequalities (85) and (110), one obtains

leilla = (1 + é) max [6m(~)IIPGzII i) la

4y [h()lla
X - =
kp
where 0 € (0, 1). This proves the last claim in the theorem’s
statement and concludes the proof.

] (111)

O

Remark 5.1: From the previous analysis, by recalling the
definition in (22), it is seen that the role of the saturation
A on the stability properties of the closed-loop system, is the
one of impeding that both semiglobal and practical stability be
achieved at the same time: increasing the region of attraction
to any desired level, and decreasing the regulation error to
any desired amount are mutually conflicting tasks. This can be
seen in more detail by considering the set Q: x Q; x Qg ,
which, as per the results of Theorem 4, is invariant with
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respect to the flow in (18), and within which, by construction,
the system’s saturation limits are not exceeded. Then, by using
the expression in (36), which dictates that

Q: x Q; TR xS,

and by considering the definition of S, in (21), it is readily
seen that by increasing the control gains, the “size” of the
set of states not leading to saturation may correspondingly
decrease.

VI. FORMING THE TOPOGRAPHY

Because the measurement mechanism employed by the
AFM completely relies on its control algorithm, to the point
that the actually yielded topography coincides with the control
action o(r), in this section, the extent to which the signal
v(z) is indeed capable to represent the actual topography is
investigated. Such investigation is carried out by building on
the stability analysis derived so far, and in the light of the
detrimental phenomena represented by the system-saturation
and by the actuator’s vibrational dynamics and hysteresis.

The study starts by considering the dynamics in (12), and
by noticing that no actuator’s dynamics, nor saturation, nor
control-system’s dynamics is displayed within (12). Hence,
if y. were the actual commanded control signal (and, as such,
also the displayed output measurement), and if the regulation
error e; were identically equal zero, then it is easy to recognize
that system (12) would embody the best possible conditions
for v(t) to represent F(-). Indeed, by recalling that d,(-) =
(1/a1)(—kxy + (1/m)F(-)), from (12) one obtains

1 1
i = —az—(—kxd - —F(«))
aq m

aq

Ve = _FZ

(112)

thereby showing that in ideal conditions, the commanded
control signal (which is yielded as the topography measure-
ment) contains a filtered, and shifted version of the interaction
force F(-).

However, since the regulation error is not identically zero,
and since y, is not the commanded control signal, the previous
analysis must be amended by including the distortion induced
by the dynamics of the piezo-electric actuator implement-
ing the control action, along with the distortion due to the
presence of a nonzero regulation error. This will be done in
Section VI-A.

A. Distortions Due to Nonideal Conditions

To begin with, the signal y. within (12) is not indeed the
actual commanded control signal, but is in fact generated as
the output of system (4), whose input u(¢) is defined by
(1) and (3), with u(t) = ¢(¢) in (3). By then considering
system (4) along with the change of coordinates in (17) and the
X.-dynamics within system (18), an application of Tikhonov’s
theorem for infinite time-intervals [5, p. 439] to the solution
x. of system (4), yields

Xe = —AZ'Bau(r) +x(£) + 0(e) (113)
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Fig. 3.  AFM used for experiments.

from which, by using the output map of (4), it is possible to
write

t
Ye = _CcAc_chu(t) + Ccic(z) + O(E) (114)

which, because of (1) and (3), and by assuming that the
saturation bounds are not exceeded, can be specialized as

Ye = _CcAngc[dv(t) + h()] + Ccic(é) + 0(6)
(115)

that is, by solving as a function of the commanded control
signal v (), as

Ve — CcAngch(') + chc(é) + 0(6)
C.A:'Bea '

o(r) = (116)

Remark 6.1: Equation (116) captures in a compact fashion
the distortions on the AFM imaging mechanism due to the
dynamics of the piezo-electric actuator implementing the con-
trol action.

Equation (116) shows that the actual commanded control
signal v(t), appearing in system (12) by means of the rela-
tionship in (115), bears the contributions of both the transient
(%.((t/€))) and steady-state (O (¢)) of the vibrational dynamics
of the piezo-actuator. While, by construction, the effect of the
steady-state term O(€) on v(f) may be reduced by decreasing
€, a concurrent reduction of the effect of the magnitude of the
transient term X.((¢/€)) cannot be achieved. Equation (116)
highlights as well the effects of the hysteretic terms /(-) and
a on the learning mechanism, whose detrimental contribution
on the yielded topography may be mitigated by resorting to
hysteresis-compensation techniques such as the ones proposed
in [6] and [19].

In addition, by now wusing (115) within the
normal-form dynamics in (12), and by recalling that
di(-) = (1/ay)(—kxy + (1/m)F(-)), the following dynamical
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Fig. 4. AFM experiments of a calibration grating sample with step heights. The sample is scanned in contact mode using a selection of Pl-parameters k;, k.
For each selection of parameters. the topography and the control error signal are shown, along with a cross section along the x-axis. (a) k; = 0.01, k, = 2.
(b) ki =02, kp, =2.(c) ki =2, kp =2.(d) ki =9, k, =2.(e) ki =7.7, kp, =5. (D) k; =0.2, k, =10.2. (g) k; =2, k, = 9.8.

system can be derived:

1 1
Z = —az+be; + —(—kxd + —F(-))
a1 m

2

éy

—d C.AZ'B.h() +dCCiC(£) +0(e). (117)

o1z + Tel — dCCAC’IBCdz)(t)

Because of the presence of e; within (117), it is seen that a
further source of distortion on the AFM-imaging mechanism
is due to the inherent impossibility of keeping the regulation
error e; to zero. Such detrimental effect can immediately be
observed from the z-dynamics within system (117), which
shows that the information about the interaction force F(-)
contained within the output variable z, is altered by the pres-
ence of a nonzero e;. As per the stability analysis presented
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in Sections III-V, the reduction of the regulation error e; is
not only affected by the detrimental effects due to the piezo-
actuator, but by the system-saturation as well, which impedes
that both semiglobal and practical stability be achieved at the
same time.

It is also worth stressing the following:

Remark 6.2: The dynamics of the PI control law in (13) has
not produced any explicit contribution toward the derivation of
the expression in (117). This implies that the validity of (117)
extends beyond the use of a proportional-integral algorithm.
Indeed, (117) describes the inherent AFM-imaging mechanism
of any possible control algorithm employed in contact mode,
whenever the boundaries imposed by the saturation limits are
respected.

VII. EXPERIMENTAL RESULTS

In this section, which complements the theoretical contri-
butions exposed so far, a set of AFM imaging experiments is
reported, with the aim of relating the observed experimental
evidences to the derived theoretical results.

The proposed experiments were performed in contact mode
on a commercial AFM (Park Systems XE-70) displayed
in Fig. 3, which was set up to be representative of a typical
contact mode imaging experiment, and whose control loop
is reflected by the diagram shown in Fig. 1. The AFM is
controlled using a Windows desktop machine running the Park
Systems XEP software. The desktop machine is connected to
an external Park Systems SPM controller where the control
algorithm is implemented, and all input—output signals are
measured and generated. The sample positioning is con-
trolled by separate piezoelectric XY- and Z-scanners, thereby
enabling independent axis control. The XY-scanner is a
body-guided flexure scanner with a range of 50 ym x 50 pum;
the Z-scanner, mounted on the head of the AFM (above the
sample), features a movement range of 12 xm. The deflection
measurement is generated by a PSPD. The image resolution
was set to 256 x 256.

The integrated PI control law was used and set up such that
the PI gains could be specified independently. The sample used
(BudgetSensors HS-20MG) is a calibration grating with peri-
odic features of 20 nm step height. The scans were performed
over the sample’s step lines in the y-direction featuring a 5 um
pitch, at a scan-size of 16 um x 16 um area of the sample.
Thus, the performance of the control law could be observed
as the steps of the sample were scanned by the cantilever. The
scanning rate was set to 5 Hz for all imaging experiments.
The parameters of the PI control law were changed between
experiments, resulting in topography and error measurements
for a collection of PI parameters, as shown in Fig. 4.

From the experimental results reported from Fig. 4(a)
to Fig. 4(c), it is possible to observe a trend of steady
improvement of the imaging-quality as the integral gain is
increased from k; = 0.01 to k; = 2, while the proportional gain
is kept constant at k, = 2. This behavior appears compatible
with the results of Theorem 4 (along with Remark 5.1): indeed,
because of inequality (88), by definition of m(-) and k,,
Theorem 4 stipulates that by choosing the proportional gain k&,
sufficiently large, it is always possible to choose the integral
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gain k; so as to steer the regulation e; toward an attractor
whose size can be made as small as desired, provided the
boundaries imposed by the saturation mechanism be respected.

The inception of image-degradation is then observed when
at least one of the two control gains is large [from Fig. 4(d)
to Fig. 4(g)]: this is compatible with the presence of the sat-
uration mechanism, whose detrimental effect manifests itself
in the shrinking of the “size” of the set of initial conditions
not leading to saturation as the values of the control gains are
increased, as stressed within Remark 5.1.

By now considering the first equation within (18) along with
the change of variable in (17), because the experiments have
not been carried out at a high scan-rate, it can be expected
that the vibrational dynamics x, of the piezo-actuator are such
to evolve at a much faster rate than the ones of the controlled
cantilever dynamics. This is because the time-evolution of the
x.~dynamics directly depends on the interaction force F(-),
which is in turn, a function of the horizontal scan rate. That
is, it can be expected that the steady-state of the vibrational
dynamics of the piezo-actuator [represented by the term
O(¢) in (116)] is such to contribute toward the observed
image-degradation only to a minor extent. Such behavior is
furthermore reflected by having € small enough in the first
equation in (18) so as to be capable of performing off-set
the effect of ©# on the evolution of X%, or, equivalently,
so as the make the right-hand side of inequality (95) negli-
gible. On the other hand, by virtue of the analysis pursued
in Section VI-A, both the transient value %.((t/€)) of the
piezo-actuator vibrational-dynamics and the terms representing
the hysteresis perturbation in (116), are expected to provide
a nonnegligible contribution to the experimentally observed
topography-distortions.

VIII. CONCLUSION

This work has proposed an investigation of the properties,
from a nonlinear control standpoint, of AFMs operated in con-
tact mode and controlled by a PI control law. By regarding the
AFM-system as an architecture within which a piezo-electric
actuator and a cantilever mutually interact in order to produce
the sample-topography, image-degrading phenomena due to
hysteresis and vibrational-dynamics within the piezo-actuator,
or caused by system-saturation, have been naturally cast and
analyzed. In spite of the inherently nonlinear nature of the
AFM dynamics, investigations of the contact mode case from
a nonlinear standpoint had been lacking within the AFM
literature. This article has filled this gap, by providing a study
in which the very meaning of the image-measurement yielded
by the AFM—whenever operated in contact mode with a PI
algorithm—is investigated, in the light of distortions due to the
nonlinear nature of the AFM. Furthermore, as a byproduct of
the derived nonlinear stability analysis, a novel, model-based
algorithm for tuning the PI control gains has been provided.
Finally, experimental results have been presented and analyzed
in the light of the derived theory.
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