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Abstract: Data-driven data science challenges our conceptualization of “data.” Significantly beyond capturing a 

given phenomenon, data, increasingly, are the phenomenon. Data may be iteratively manipulated 

algorithmically, undermining the “faithfulness” of data to any originating phenomenon.  Crucially, data that are 

not “faithful” are inherently uncertain as data risk becoming meaningless symbols.  We empirically study how a 

community of commercially based geoscientists grapple with the phenomenon of offshore oil and gas reservoirs 

residing kilometers below the seabed. The data available about these reservoirs are algorithmically manipulated 

sensor-based Internet of Things data. Our main contribution is the articulation of three patterns of work practices 

detailing how inherently uncertain data are woven into consequential work practices: (i) accumulating, the 

cumulative process of supporting and triangulating one set of data with supplementary ones; accumulating 

captures the conservative approach of backing up existing interpretations of the data, (ii) reframing, the process 

where  existing interpretations are contested by new data or models; reframing captures how there are limits to 

how far data may be pulled by their hair and (iii) prospecting,  the cultivation of competing, incompatible data 

interpretations; with the former two patterns essentially attempting to regulate uncertainty, prospecting is about 

embracing it. Our concept of data-centric knowing is constituted by these three interleaved, ongoing practices. 
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1 Introduction  

Easily mistaken for a purely philosophical concern, data’s representational capacity, i.e., data’s capacity to 

represent a phenomenon (Zuboff 1988; Burton-Jones 2014; Kallinikos 2007; Borgmann 1999), increasingly is 

recognized as being at the core of discourses over big data, data science, and data-driven machine learning 

(Alaimo et al., 2020; Alaimo & Kallinikos 2020; Markus 2017, Zuboff 2019). Initially referring to a physical 

object, process, or quality, data iteratively are sliced, recombined, and algorithmically manipulated, taking them 

increasingly away from their originating physical referents (Kallinikos et al., 2013; Orlikowski & Scott 2016; 

Lusch & Nambisan 2015). Increasingly, data are the phenomena, i.e., “signs” (Knorr Cetina, 1999) or “symbols” 

(Bailey et al., 2012) of events that otherwise are inaccessible. 

However, data’s representational capacity is exactly that – a capacity. It may, but most certainly need not, be 

actualized in the sense that data are woven into everyday, data-driven, consequential work practices (Günther et 

al., 2017). With data’s representational capacity but modestly exercised, the conditions for actualization are 

reasonably well-understood: data need to be a “faithful” (Burton-Jones & Grange, 2013) representation with a 

“tight coupling” with the phenomenon (Bailey et al., 2012, p. 1500), as “seeing is believing” (Leonardi, 2012, p. 

14). What remains unaccounted for, is how data that no longer faithfully represent a phenomenon are actualized 

(Kallinikos, 1999; cf. also Kitchin, 2014). This paucity in the literature, of increasing empirical relevance and 

significance with expanding datafication (Newell & Marabelli, 2015), is the focus of our paper. Rather than 

delegating this to a new role of “data translators” (Henke et al., 2018), we analyze the work practices involved.  

Crucially, data no longer faithfully representing phenomena are inherently uncertain as their meaning is not (yet) 

fixed (Alaimo et al., 2020). Actualizing data thus involves practices of sense-making (Weick, 1985) in situations 

mired in uncertainty. We pose the research question: how, and under what organizational conditions, are 

inherently uncertain data actualized in consequential work practices?  

We empirically study how a commercially based community of geoscientists grapple with the phenomenon of 

offshore oil and gas reservoirs residing kilometers below the seabed. For all practical purposes, the data and 

algorithmic representations of the reservoirs are the reservoirs in everyday work practices. The available data 

about the oil reservoirs are largely algorithmically manipulated sensor-based Internet of Things (IoT) data with 

inherent epistemic uncertainty. We analyze the work practices of the geoscientists grappling with incomplete, 

inconsistent and inherently uncertain data. Their work practices emerge from conflicting tensions where 
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professionally acquired quasi-scientific approaches run up against the commercial push for operational decision-

making. 

We contribute with the articulation of three patterns of work practices detailing how inherently uncertain data are 

actualized. First, accumulating, which is the cumulative process of supporting and triangulating one set of data 

with supplementary ones. Accumulating captures the conservative approach of backing up existing 

interpretations of the data. Second, reframing, which is the process where existing interpretations are contested 

by new data or models. Reframing captures how there are limits to how far data may be pulled by their hair. 

Third, prospecting1, which is the process of cultivating competing, incompatible data interpretations. With the 

former two patterns essentially attempting to regulate uncertainty, prospecting is about embracing it. The 

concept of data-driven knowing, then, is a short-hand for the interleaving of these three ongoing patterns of work 

practices. 

The remainder of our paper is organized as follows. Section 2 develops our theoretical framework on 

understanding the concept of data. We review and discuss relevant perspectives on pressing data’s 

representational capacity beyond that of faithful representation. Section 3 provides context to our case together 

with an account of research methods. Our empirical findings are presented in Section 4, organized around the 

three patterns of practices developed in the data analysis from the preceding section. The discussion in Section 5 

pursues two threads. First and foremost, drawing on existing literature, we discuss the theoretical implications of 

the three interleaved patterns work practices constituting data-centric knowing by critically discussing their 

enabling conditions. Second, in further pursuing the conditions for data-centric knowing, we analyze the 

institutional fabric necessary to actualize data. By way of concluding, Section 6 reflects on the relevance of and 

boundary conditions for data-centric knowing beyond our case, in addition to offering comments on future 

research.  

2 Conceptualizing Data 

2.1 Data are “Cooked” 

Traditionally, a representational view has data corresponding directly with some given, pre-existing physical 

object, process, or quality. Such a view, Jones (2019) reminds us, is still evident, albeit in an implicit and diluted 

 
1 Our use of the term prospecting comes from its analogy with geological prospecting, which is an open-ended, conflictual 
search for competing, very often mutually inconsistent geological interpretations. In contrast, Slota et al. (2020) use the term 
to denote the rendering of data amendable to data science methods.  
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form. For instance, a textbook defines data as “raw facts that describe a particular phenomenon” (Haag & 

Cummings, 2009, p. 508), while the Royal Society (2012, p. 12) defines data as “numbers, characters, or images 

that designate an attribute of a phenomenon” (both definitions are cited in Jones (2019)). However, such a naïve, 

referential view of data has several problems, as we will discuss.   

Contrary to big data hype, in which “the numbers [data] speak for themselves” (Andersen, 2008), considerable, 

ongoing work is needed to craft data into data. The notions of “gathering” or “collecting” data are misleading in 

that they promote the misconception that data speak for themselves. This downplays to the level of non-

existence the way that data provenance – i.e., the methods, procedures, and technologies employed to generate 

the data – shapes data use and interpretation (Porter, 1996). As Gitelman (2013, p. 3) succinctly puts it, data “are 

always already ‘cooked’ and never entirely ‘raw’.’”  

Thus, both collecting and curating data involve work. Data involve developing and maintaining procedures for 

cleaning, filtering, and “massaging” them (Leonelli, 2014). Edwards (1999) examined the comprehensive data-

gathering process informing climate-change research and reports that measurement devices, such as 

thermometers, must be calibrated constantly to ensure their readings’ validity. In this context, maintaining 

calibration involves adhering to protocols that compare a given thermometer with a master device and 

systematically adjusting historic measurement values after discovering that a thermometer is uncalibrated. 

A significant source of “big” data, not the least of which is in industrial settings, is sensor based IoT data (Singh 

et al., 2014). Contrary to appearances, sensors’ measurements do not “capture” physical reality 

straightforwardly. IoT measurements are highly constructed renderings of selected aspects of a physical 

situation, fitted for designated purposes. Anything but “natural,” what you know from sensors is highly mediated 

– materially as well as epistemologically (Monteiro and Parmiggiani, 2019; Helmrich, 2019). 

2.2 The Representational Capacity of Data 

Data are inherently editable, re-combinable, and subject to re-purposing (Kallinikos et al., 2013; Alaimo et al., 

2020). This underpins discussions about datafication (Newell & Marabelli, 2015; Markus, 2017; Sugimoto et al., 

2016). Numerous observations and concepts tap into the same idea, including, but not limited to, Kallinikos’ 

(2007) “increasingly self-referential rendition of reality,” Orlikowski and Scott’s (2016) “algorithmic 

phenomenon,” “digital objects” (Baskerville et al., 2020), and Nambisan and Lusch’s (2015; see also Monteiro 

& Parmiggiani, 2019) “liquefaction,” which denotes data’s capacity to decouple from their originating physical 

objects, processes, or qualities.  
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Taking a step back, the idea here is to conceptualize data’s representational capacity beyond the realm of naïve 

realism outlined above. Zuboff (1988) early and influentially analyzed data’s representational capacity (cf. also 

Weick, 1985). Her work generated a wealth of interest, but focusing mainly on her analysis of the conditions for 

engaged, learning-oriented relationship with technology (“informate”, as opposed to “automate” in her 

vocabulary).  This is a pity, Burton-Jones (2014, p. 72) notes, as “[Zuboff 1988] may have an even stronger story 

to tell now than it did when first published” given the proliferation of empirical cases of datafication, i.e., cases 

exercising data’s representational capacity beyond the faithful (Alaimo et al., 2020; Alaimo & Kallinikos, 2020; 

Burton-Jones, 2014; Burton-Jones & Grange, 2013; Monteiro & Parmiggiani, 2019). 

Knorr Cetina (2009) offers a helpful way to approach the issue of data’s representational capacity. Her seminal 

book is based on an ethnography of high-energy physicists’ work at the CERN particle collider in Geneva, 

Switzerland, an example of knowledge work completely immersed in the data of phenomena, but indirectly 

observable (see also Venters et al., 2014). Knorr Cetina (1999) differentiates (analytically, not necessarily 

empirically) between three manifestations of data. Physical phenomena, first and traditionally, may be staged to 

produce data that “correspond” with phenomena directly. Second, the physical conditions are manipulated to 

yield processed, partial versions of data that are “equivalent” or similar. Third, and most radically, physical 

phenomena are mere “signatures” and “footprints” of events, yielding data as signs. Bailey et al. (2012) arrive at 

essentially the same taxonomy of three manifestations of data. Drawing on Peirce’s semiotics, they identify data 

that are indices (a direct correspondence, similar to Knorr Cetina’s staged data), icons (similar or equivalent, as 

with Knorr Cetina’s processed, partial data), and symbols (no link to referents, as Knorr Cetina’s data as signs).  

Data as signs (Knorr Cetina, 1999) or symbols (Bailey et al., 2012) demonstrate the potential – but crucially not 

necessarily the actualization – of data’s representational capacity. Several scholars have grappled with the 

conditions under which data as signs or symbols actually are woven into work practices, i.e., the conditions 

under which data become more than mere symbols i.e., what Kallinikos (1999) calls “referential attribution”. In 

her empirical study of digital transformation of pulp factories from experience-based, embodied, tactile 

handcraft – smelling, tasting, and feeling the temperature of the pulp – into a remotely operated, digitally 

enabled control room, Zuboff (1988) notes the unease stemming from data “replacing a concrete reality” (p. 63), 

how data “replace the sense of hands-on” (p. 65) and seek to “invent ways to conquer the felt distance of the 

referential function [i.e., the decoupling of data from the physical referent].” A lack of sensory feedback 

undermines the expertise and knowledge from physical, hands-on interaction with the technology. Similarly, 

Turkle’s (2009) work emphasizes the dangers of simulation-based renditions of reality, with their strong, 
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seductive capabilities (cf. Baudrillard, 1994). As users gradually are immersed into simulations, “[f]amiliarity 

with the behavior of [simulation data] can grow into something akin to trusting them, a new kind of witnessing” 

(Turkle 2009, p. 63). Also, Burton-Jones and Grange (2013), with their focus on data representations being 

faithful, voice concerns over representational capacity’s limits, as data need to “faithfully represent some domain 

because they provide a more informed basis for action than unfaithful representations do” (2013, p. 636). 

2.3 Toward Data-centric Knowing Under Uncertainty 

To take stock, data’s representational capacity is reasonably well understood as long as this capacity is but 

modestly exercised, i.e., as long as data is a faithful representation of the “tight coupling” (Bailey et al., 2012) 

with their physical referent. The problem, however, is that datafication of our lifeworld – the slicing, dicing and 

algorithmic manipulation of data that undermine the faithfulness of the data – leaves an expanding empirical 

phenomenon inadequately accounted for. The aim and ambition of our concept of data-centric knowing is to 

address this paucity in the literature, a theoretical paucity with growing empirical relevance. Our aim is in line 

with the call made by Lyytinen and Grover (2017, p. 229) “to critically evaluate how we approach and think 

about data, its provenance, privacy, and related organizational practices.”.  

Several theoretical problems, resonating with our subsequent empirical analysis, motivate our development of 

data-centric knowing. Navigating in a situation with, as it were, no stable or fixed ground, data-centric knowing 

is centered around fallible knowing practices hence tenets of pragmatic action (Dewey, 1930). Without faithful 

representation, inherent uncertainty exists as to what data signify, if anything (Alaimo et al., 2020). A principal 

task, then, for data-centric knowing is to detail how users navigate with inherent epistemic uncertainty. 

Ours is a case of data-driven work practices. A defining, somewhat ironic, aspect is that users drown in data at 

the same time as knowing is always under-determined by the data. So how do users cope? Pragmatism, again, 

offers a starting point for data-driven knowing.   

Abductive reasoning, i.e., neither inductive nor deductive, is particularly relevant in navigating with epistemic 

uncertainty (Dunne & Dougherty, 2016). Abduction involves short-cutting searches for “innumerable possible 

hypotheses all accounting for the data at hand” (Brown, 1983 p. 401). The parsimony or satisficing principle 

(March 1994) regulating abduction sets boundaries (e.g., resources, time) for an otherwise open-ended process. 

Good-enough solutions ensure arriving at a decision within set limits. However, the satisficing principle assumes 
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that you know what you are looking for. In many situations, you are not looking for “known unknowns,” but 

rather “unknown unknowns2” (Loch et al., 2011). 

Thus, data-centric knowing addresses what remains under-specified in extant literature viz. detailing the 

interleaved patterns of work practices that go into grappling with different levels of and forms of uncertainty in 

the data underpinning operational action- and decision-making. Our case provides a particularly vivid empirical 

illustration to develop an understanding of data-centric knowing.  

  

3 Method 

3.1 Case Context 

Our case studies exploration, i.e., the practice of searching for commercially viable oil and gas reservoirs 

through a European-based, internationally oriented, upstream oil operator dubbed OilComp. Distinctly different 

from its historic, roughneck origins, oil exploration in our case is a decisively knowledge-intensive, data-driven 

endeavor that represents the most significant investment in OilComp, typically 10-20% of total investments. Oil 

exploration is fiercely competitive. Exploration is the most strategically important activity for an oil operator, 

strongly influencing long-term viability and global competitiveness.  

Empirically, we study the community of “explorationists,” a term that they use to refer to themselves collectively 

(in Norwegian: tolkere). Explorationists comprise about 2,000 of OilComp’s 20,000 employees worldwide. They 

are organized into projects of 7-10 people each, and we followed three projects. Explorationists comprise several 

professional disciplines within the geosciences, including geology, geo-physics, reservoir engineering, petroleum 

engineering, and petrochemical engineering. We focus empirically on explorationists working in areas already 

identified by OilComp as commercially interesting3. Co-located with the explorationists are several “data 

managers” that support explorationists’ work. The data managers help locate, prepare, and present the geo-data 

that explorationists require (Mikalsen & Monteiro, 2018). There is approximately one data manager for every 10 

explorationists.  

The hydrocarbon reservoirs that OilComp explores in our case study lie 3-5 kilometers below the seabed and are 

knowable largely through sensor-based IoT data, notably seismic (acoustic reflection measurements and 

 
2 Then-Secretary of Defense Donald Rumsfeld (in)famously used the phrase during his briefing on the Iraq situation. 
3 This corresponds to so-called license exploration. Prior to this, there is screening i.e. deliberations about whether or not 
OilComp should enter into an area.  
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processing), well logs (electromagnetic and radioactive measurements of rock properties), and production data 

(real-time measurements of flow volume, temperature, pressure, and chemical composition). The work practices 

of explorationists rely on a portfolio of specialized digital tools for algorithmically manipulating the sensor-

based IoT data. Prominent tools include seismic processing (for velocity determination, 2D and 3D seismic 

imaging in either time or depth), geological modeling (to correlate well logs, build cross-sections and create 

geological maps), petrophysical tools (to load and manage well logs) and simulation tools (to estimate present 

and future hydrocarbon reservoirs, but also to interpret, model and validate traps). 

For all practical purposes, the physical phenomenon the explorationists struggle to know in their everyday work 

practices – oil and gas reservoirs kilometers below the seabed hence not directly accessible – is a data-driven 

algorithmic phenomenon (Bond 2015). What the explorationists know is how they know it (Monteiro & 

Parmiggiani, 2019), which is through sensor-based IoT data thoroughly manipulated algorithmically.  

The explorationists know only too well that there are inherent epistemic uncertainties from lack of completeness, 

accuracy, and consistency in sensor-based IoT data, but they have no option but to rely on them. Consider 

accuracy. With a sigh, one explorationist explained that a down-hole pressure sensor’s lifespan “is about two 

years,” before which “calibration will be off.” Consistency across data types is challenging for several reasons, 

including the fact that data granularity varies. Explorationists draw heavily on seismic data. The attraction of 

seismic data for the explorationists is that they cover wide geographical areas (several square kilometers) thus 

providing a much-needed overview of the geophysical conditions. The problem, however, is that seismic data is 

also crude in the sense that the resolution cannot distinguish between entities smaller than a cube with sides 100 

meters (i.e., entities smaller than the size of a 15-story building). In contrast, well log data are fine-grained with 

resolution down to a meter, but necessarily only covering the well’s pinpointed location (Figure 1 illustrates 

these data types). 

--- Figure 1 about here --- 

Data quality is a chronic concern, not only due to error-prone IoT measurements, but also because data are 

shaped by the purpose of their collection. For instance, a couple of decades ago, well-logging focused on deep 

levels, as these corresponded to the geological era of identified interest, Jura4. However, more recently, 

explorationists have become interested in earlier geological eras too, i.e., well logs’ shallower stratigraphic 

 
4 In this area, rivers have transported and sedimented matters in layers. The layers accordingly indicate age.  
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layers, “but when we go back in time, the shallow levels were not logged properly [i.e., data quality is poor 

here], [in contrast to] the deep levels.”  

Oil exploration entails data-driven predictions about, in their vocabulary, a “prospect5,” i.e., a candidate for an 

oil reservoir in a particular geographical location and geological formation. Verifying predictions by actually 

drilling an oil well can be many years away, if at all, with the cost of drilling at about USD$100 million. 

Acquiring new seismic data to learn more about prospects is also costly, albeit less so than drilling. 

Explorationists’ work, then, revolves around identifying, evaluating, and prioritizing these predictions by 

working with the data at hand in the hope that one day their prospects will indeed by validated by actual drilling.  

Oil exploration is a search for particular geological conditions, what they call a play. A play fulfills three 

conditions: a source rock (from organic material, geothermally transformed into hydrocarbons); a migration path 

(avoiding the fate of most hydrocarbons, to evaporate or dissolve); and a trap (a rock sealing hydrocarbon into a 

reservoir)6. The search takes one of two distinctly different forms. Akin to a search for the proverbial needle in a 

haystack, you start from “proven plays” in the area, i.e., particular configurations of rocks and formations that, 

through drilling, have already demonstrated oil discoveries. The other type of search entails working with an 

“unproven play,” in which you need to develop the concept first, essentially an understanding that contains the 

three necessary conditions above. It is, as one explorationist explained “about [traveling] into the unknown, 

toward a new concept.”  

Oil exploration in OilComp is regulated by a formally defined, staged funnel model (see Figure 2) 

- - - Figure 2 about here - - - 

The first stage entails deciding what region (an area the size of about 100 square kilometers) to consider, then 

zooming in on (several) potential prospects before deciding whether to drill one or more of the prospects. 

Finally, if a significant discovery is made, the discovery is appraised, which can entail the drilling of delineation 

wells to determine the size of the oil field more accurately and how best to develop it and produce oil cost-

effectively. A plan for development then must be submitted to national petroleum authorities for approval before 

operations can commence. 

 
5 The naming of our third pattern of data-centric knowing, prospecting, is inspired by the work with geological prospects. 
However, we use prospecting (the verb) for the third pattern and prospect (the noun) for concrete, empirical prediction the 
explorationists are working with. 
6 This is true for traditional or “conventional” oil exploration. Hydrocarbons in “unconventionals”, such as shale gas 
produced by fracking, is different. There is no trap in unconventionals. The migrating path is a rock with high porosity where 
very low permeability traps the hydrocarbons. The explorationists we study are searching for conventional oil only.  
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At each stage (“decision gate”) in OilComp’s funnel process, there are different, formal requirements for 

actualizing data from exploration and the character of the decision-making. When proceeding further into the 

funnel – and, thus, closer to a potential heavy investment – the decision-making process, not unexpectedly, 

becomes more elaborate, as we illustrate. 

 

3.2 Access to Case 

Access to our case was non-trivial and negotiated. The oil and gas sector also in Northern Europe increasingly is 

globalized, both in its own activities, as well as through international collaborations and ventures. Traditionally 

open to research collaborations, the companies, especially larger ones such as OilComp, gradually have 

regulated and tightened collaborations by imposing more formal managerial approval procedures. As a 

consequence, access to the case on which we report in this paper had to be negotiated. Access was granted by 

“packaging” it as one element within a larger research center involving several researchers (including the second 

author) and industrial partners (including OilComp). Piggy-backing onto the technological prototyping that the 

research center focused on, our access came as a response to the research center’s need to understand the 

demand side of their prototypes supporting oil exploration. Our access to the case accordingly relies on two 

pillars. The second author’s long-standing relationship with the research center’s partners was crucial. In 

addition, we had to make ourselves useful within the research center by facilitating the communication of 

concerns, demands, and experiences from users (explorationists and data managers included) back to researchers 

engaged in prototyping. Thus, we prepared presentations of preliminary results and participated in meetings and 

workshops.  

3.3 Data Collection 

Our data collection spans more than four years (February 2013 – October 2017) and proceeded in rounds. 

Starting broadly, we studied the work processes and key concerns of actors implicated in oil exploration and 

their mode of collaboration. We derived a sense of the cross-pressures in which oil exploration gets caught up, 

such as defending tall investments, working with deadlines, and grappling with incomplete data of variable 

quality. Following a suggestion from van Maanen (1988), we took extensive field notes, ensuring that we 

separated informants´ data from our own comments, reflections, and questions. We gradually focused on the 

explorationists’ work practices, including their use of digital tools and collaboration patterns. During the final 

round, we focused specifically on how the explorationists use their data, growing steadily more aware of the 

convoluted relationship between data and decision-making in oil exploration. 
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We rely on three types of data (see Table 1 for an overview). The first author collected most of the data, but the 

second author also participated, especially during the later rounds. Notably, the second author also draws on 

background data from more than a decade of sustained research on digitalization in the oil and gas sector.   

- - Table 1 about here - - 

- - Figure 3 about here - - 

First, we rely on participant observations. As the details of explorationists’ strategies are core assets, we initially 

were given office space with the data managers, embedded within the exploration unit. The field researcher spent 

time getting to know the data managers, asked questions when things happened at the office, had breaks with 

them, interviewed them, had lunch and dinners with them. Data managers were tasked with finding, preparing, 

and presenting the required data to explorationists. This provided an effective entry into explorationists’ 

practices. We observed data managers’ everyday work, including their close interactions with explorationists. 

With most offices’ walls decorated with maps and geological illustrations of 2D seismic and well logs, a 

constant buzz from informal conversations can be heard. Explorationists regularly would stroll over to the data 

managers for a cup of coffee or pop into someone’s office to explain what data urgently were needed for a 

certain purpose.  

From our initial home among the data managers, we also gradually got to know the explorationists. Participant 

observations of data managers accordingly were a resource for identifying and recruiting new informants. 

Spending time with our informants during their everyday work allowed us to examine nuances, unclarities, and 

questions that might linger after interviews. In informal conversations over coffee or lunch, we could pick up 

questions or puzzles that we were unable to pursue within the more fixed boundaries of semi-structured 

interviews. For instance, we would inquire into why and how searching, in the age of googling, was complicated 

by different naming conventions across oil fields and professional sub-communities of explorationists. We also 

conducted participant observations through a variety of meetings, workshops, and seminars. Some formal, but 

most less so, these events gave us a chance to observe how explorationists backed up their interpretations, how 

they were challenged and how agreement on how to proceed emerged.  

Second, we conducted semi-structured interviews that lasted 45-90 minutes each, with most lasting a little over 

an hour. Interviews were transcribed. As indicated above, we exploited the interleaving of participant 

observations and interviews. We conducted the interviews in the informants’ workspaces, which allowed 
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informants to draw on examples of problems and concerns as evident in how tools presented geo-data. Typically, 

they would point to their screens while explaining it all to us.  

Third, we relied on electronic and paper-based documents, collecting both internal and external documents. 

Internal documents included memos, slide presentations, and reports. External documents covered public 

information on drill results (drill operations, results, and tests conducted), reclassified interpretations (final well 

reports, core photos, and well logs), and public reports on OilComp discoveries and recoverable reserves. The 

documents, especially the internal ones, e.g., from presentations, were particularly useful in identifying concerns 

and discussions. Examples of internal documents include prospects, workflow descriptions, tool screenshots and 

guides, data types, databases, and procedures and issues concerning database querying and results presentation. 

We used 150 pages of internal documents in our analysis.  

3.4 Data Analysis 

Our data analysis process was interpretative (Walsham, 1995) as we sought to capture the perceptions on data 

actualization from the actors involved in exploration. Data analysis was iterative. Data collection overlapped 

with data analysis thus granting us the flexibility to continuously consider our partial interpretations towards a 

gradually growing amount of data, as well as to refine our interpretations together with the actors in the case 

(Klein & Myers, 1999). Our data analysis may be reconstructed into four main stages.  

The first round of coding was open-ended (Wiesche et al., 2017). We sought overview of relevant actors, 

organizational routines and prominent concerns within the unit of exploration. The first author, who collected 

most of the data, immersed himself in the data. During this round, we attached initial labels, consisting of 

sentences and paragraphs capturing salient aspects of the work of explorationists. An example of a label is “well 

and seismic data turn indications into leads” (with empirical excerpts including; “The process is such that you 

get many ideas when you are looking at the seismic. 100 ideas, perhaps 200. Beneath them we have different 

branches, and out of them we have been able to concretize approximately 100 to something that can be a 

precursor to a prospect, what we call a lead, that means, we set a polygon on a map, you can define an area, you 

can calculate a volume, and you can calculate probabilities”, and “We use well and seismic data. It is very rarely 

gravitational data and magnetometric data, here the level of detail is poorer”).  We manually coded data using 

word processing software. We used bold text for descriptive codes and entered the data under the codes. We 

collected descriptive codes and illustrative empirical data in tables. We developed 432 descriptive codes.   
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The second round of analysis involved both authors. In this round, we focused on the work practices of 

explorationists as a particular category of data (Wiesche et al., 2017), looking closer at their use of digital tools 

in general and the sense in which they worked with data in particular. Using the tables with the open codes from 

the previous rounds as a starting point, we selectively coded the data. We created a 10-page data analysis 

document with selective codes and empirical examples. This document served as a basis for discussion between 

the authors, but also with our research group to refine our understanding by challenging our preliminary 

interpretations. Through 16 iterations, where codes and data were compared and challenged, we gradually 

unpacked the professional community of ‘explorationists’: they consist of a heterogenous set of more than ten 

professional disciplines with different roles and tasks. The heterogeneity of professional disciplines under the 

umbrella term ‘explorationist’ was mirrored in the extensive list of specialized digital tools used by the 

explorationists. There were corporate databases for seismic data (including navigation data, faults, horizons and 

grids), well data (such as drilling data, well logs, geochemical analysis and core sample images) and production 

data (volume, pressure, temperature). The three principal data types we found were used by explorationists are 

illustrated in Figure 1. In addition, there are extensive, public repositories for all oil activities (exploration, 

drilling, production, maintenance) on the Norwegian continental shelf (cf. Table 1), a feature of the political and 

institutional history of North Europe distinctly different from that in North America. We developed an 

understanding for the collaborative practices within the units explorationists work in, but also why and when 

they interact with outside specialists or management. We analyzed how explorationists refined and quality 

controlled their predictions i.e., prospects. 

The third round focused on how explorationists implicated data in their work practices, an under-researched 

theme in IS research on data science (Günther et al., 2017; Sivarajah et al., 2017). Through a form of memoing 

(Wiesche et al., 2017), we wrote up concepts, categories and the relationship between them, We generated, over 

the life-cycle of prospects for oil reservoirs, visual illustrations and tables depicting how the chronological 

development of a prospect occurs, including the different units involved, their main goals, the data used, the 

digital tools used, the actors involved, their assumptions, their evaluation procedures - i.e., an overview of the 

data that explorationists consume and produce at certain times in the exploration process, and how they use it.  

In the fourth round, we engaged with theoretical imports to conceptualize patterns of work practices detailing 

how data are actualized in oil exploration. Anything but clean slates (Suddaby, 2006), our prior experience 

influenced our analysis. Our long-standing interests in work practices, knowledge work and organizational 

change were resources. This round may be characterized as largely inductive but with formative, deductive 
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injections. We were early puzzled by the sparse and under-determined data underpinning exploration: logging 

from a few wells are literally like pin needles on a vast map together with coarse-grained seismic images. How 

were these data actualized (Knorr Cetina, 1999) in the work practices of explorationists, we asked ourselves. 

Clearly, it was not because they “faithfully” represented (geological) reality (Burton-Jones & Grange, 2012; 

Zuboff, 1989). A principal reason, we inductively found, was the gradual supporting through supplementing data 

(cf. Leonelli, 2014).  

This conservative, cumulative process is captured by the first of our three identified patterns of work practices, 

accumulating. It empirically represents the dominant pattern of working. Although rarer, the continuous work of 

accumulating does occasionally get punctuated. Similar to pragmatic action, our second practice, reframing, 

captures how new geo-data regularly contest prevalent models and interpretations. 

Our third practice, prospecting, emerged to capture the strikingly provisional nature of the geological 

interpretations underpinning the oil prospects. Agreement never arrived. At every juncture, competing 

interpretations were voiced and mobilized. OilComp, however, surely is no debating club. For operational 

reasons, in the absence of anything close to agreement, provisional agreement was forged for the purpose of 

deciding what to do (Kellog et al., 2006; Mol 2002; Oborn et al., 2011). Multiple interpretations are the norm 

and ‘agreement’ is but a provisional arrangement to solve the what-to-do-next imperative of pragmatic action. 

Figure 4 summarizes the interpretative template resulting from our process of data analysis. It outlines our three 

patterns of work practices with concepts aggregated from the coding together with illustrative empirical 

excerpts. The subsequent Findings section is organized around the three patterns of work practices. 

--- Figure 4 about here --- 

4 Findings 

4.1 Accumulating: Gathering Organizationally Credible Evidence  

A team of explorationists works extended periods of time, typically years, with its “prospects,” i.e., its 

candidates for yet-to-be-discovered oil reservoirs. A prospect is essentially a prediction about an oil reservoir’s 

location – including risk, volume, and value estimates – should the prospect be considered for drilling at a later 

stage. Working in co-located teams organized in the same corridor of an office building that is part of OilComp’s 

headquarters, explorationists’ everyday work that we have studied revolves around refining interpretations of 

data that underpin prospects, interweaving individual work with informal discussions between fellow team 
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members. Few bother to close their office doors, making it easy to drop by for consultations about a matter at 

hand. Small groups of explorationists regularly engage in informal discussions around the whiteboard in 

someone’s office. 

For long stretches of time, explorationists work in areas with proven plays. This can be areas where they have 

producing fields already.  Producing fields creates assumptions, they know what they are looking for. In a given 

area, a proven play is a particular geological configuration in which necessary (but not sufficient) conditions for 

an oil reservoir – i.e., source rock, migration paths, and traps – are known to exist (cf. Section 3.1 Case Context). 

Working with a proven play, exploration focuses on gaps, i.e., areas where discoveries have not been made yet, 

but where they believe hydrocarbons may have migrated. As an exploration team leader explained, “In this area 

[pointing to his screen], we knew that in the southern [name of the basin], which in this case is 250 kilometers 

north-south, a lot of hydrocarbons have been generated. So, how far east can those hydrocarbons migrate?”       

However, turning opportunities into more credible prospects involves actualizing data as evidence that a gap 

may contain commercially interesting amounts of hydrocarbons. Working with a proven play implies that large 

amounts of well and seismic data are available (namely all historic discoveries with that play). Dealing with the 

vast amount of available, sensor-based IoT data, the team of explorationists mobilize data and, thus, accumulate 

evidence that its prospect fits the proven play. One of our informants was struggling in front of his screen using a 

petrophysical analysis tool filled with well-log data. The old well data he had available did not support his 

prospect. Was he or the data wrong? The data dated from when the well was drilled back in the 1970s. As he 

explained to us, the knowledge that injecting mud into the borehole while drilling influences the temperature 

readings in the well “was learned only in the 1980s.” Instead of simply contradicting his prospect, he assigned a 

mark signifying that the data were of low quality to indicate their lack of relevance. To be able to do this, one 

explorationist explains, experience from parts of exploration work is necessary, e.g., such as creating well logs: 

“You need to feel confidence in the data you work with. Or else they are but lines on a sheet. And then you will 

in turn start to feel insecurity when you drive a concept forward.” Thus, the work practice implicated in 

accumulating evidence include ironing out contradictory data.     

An important task in determining a prospect’s credibility is to see whether assumptions made fit with several 

types of data, i.e., what effectively corresponds to a form of triangulation.  So-called “well tie-ins” are a 

particularly important way in which this triangulation operates. Digital interpretation tools are used to determine 

the relationship between boundaries in the well logs and seismic reflections, consequently producing a 

relationship between the well logs (measured by depth) and the seismic reflections (measured in time). A well 
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tie-in is an effort to find consistency between the broad, but crude, overview provided by seismic data with the 

much-more-detailed well data that come from measurements from the specific, pinpointed location of an oil 

well. Perfect consistency between seismic and well data occurs rarely, if ever. Consistency is crafted through 

well tie-ins, which are labor-intensive endeavors. We sat down with one of the explorationists tasked with a well 

tie-in and visually superimposed well data onto seismic data (see Figure 1). “We see it in that the definitions of 

anticlines, faults and irregularities do not match what you see on the seismic, it does not match,” he noted. He 

did not despair, however, as this could be understood as “[i]t matters how old the wells are, what types of data 

were collected, how far away the wells are. If they are close, that is obviously beneficial.” He keeps working. 

The inconsistency between seismic and well data is compounded by the fact that they are measured with 

different scales: Seismic data are measured as the time that it takes an echo of a particular sound wave to travel 

back to the sensors after being refracted by subsurface rocks, while well data are measured relative to the depth 

(distance in meters) into the well where they were recorded. As the speed of acoustic waves differs with different 

types of rocks, the time-to-depth conversion is non-linear and is about gaining a sense of subsurface “non-

conformities.” Non-conformities result from geological processes such as fault lines stemming from earthquakes. 

As our informant explained, “[i]f you have very steep non-conformities, [the non-conformities] can jump several 

hundred meters back and forth from time to depth.” 

4.2 Reframing: Contesting Prevalent Predictions 

The account above is one of continuity in the sense that explorationists gradually accumulate evidence to support 

a prospect (prediction) in a given geological formation with a proven play. Thus, the actualizing of data amounts 

to crafting the fitting of data to your predictions or ironing out inconsistencies. The explorationists painstakingly 

fill in the gaps to back up their leads and prospects, with data marshalled into (more) organizationally credible 

evidence. Explorationists “stretch” their data, seeking to strengthen, rather than defeat, their predictions. This 

essentially conservative approach is at times punctuated by new data that can neither be accommodated nor 

dismissed, which leads us to our second pattern of work practices. 

With a bit of drama, one explorationist exclaims, “[A]ny new well can change the basin evolution; any new well 

can change our predictions!” He knows that a change in the basin evolution is a radical change. The basin model 

that the explorationists rely on when searching in an area is effectively the prevailing understanding of that 

area’s geological history – the result of extensive efforts – and represents significant sunk investment in terms of 

earlier work. One key activity in substantiating a prospect is modelling (“basin modelling”) the history of the 
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area’s geological evolution. Once a basin model is conceptualized, it is tested against existing well data for 

consistency. However, in practice, consistency is never fully achieved. Working on a basin model, one 

explorationist explains how the team selects 200 reference wells out of a sample of 1,000 wells to support this 

consistency check. Well data is inconsistent, so they use heuristics such as the well’s age (assuming new wells 

have better data quality than older ones), then consider how much work went into calibrating the data, noting 

that often, “we must go in and calibrate the well to the seismic [i.e., well tie-in]. And if it is a bad calibration, if 

things do not match, then the logs are poorly collected.” Poor quality can be tied to a variety of reasons, e.g., 

“things that happened on the rig that are not documented well enough, that give a sloppy [well] log.” 

In a similar vein, another explorationist recounted how he had grappled with deeply inconsistent data on a field. 

The seismic data indicated that there should be sand throughout the field, but the well data told a different story: 

“I have a well here [pointing to her screen] that hits sand, and I have a well here [pointing] that does not hit sand. 

And then I have a seismic processing [pointing to another location on the screen] that shows me it should be 

sand all over. Then I need to decide: No, that [pointing] is not sand; this [pointing] is sand.”          

 To account for different probabilities, data sometimes need to be extrapolated from geographic areas that are 

less known, into geographic areas that are more well-known geologically. For example, because they have 

drilled more there, or shot more seismic surveys.  Data then is extrapolated, as one explorationist explains, 

talking about a well: “Ok that one, it can be very far off, ok, the data of the well is put in here.  If I were right 

and we are at the same time and in the same kind of rock etc. I take this well and I put it here and say, I use this 

porosity, I use this permeability. As an analog”.  

In the world of explorationists, data are king. You can make the most elaborate models, but, if they do not hold 

up against the data, they never make it into everyday work practices. One explorationist warns: “I do not fall in 

love with my models, I mean, they are wrong by definition. Some people get really personal, and if new data 

goes against it, they try to go all around to try to avoid the data. If the data go in an opposite direction of your 

concept, it is better to just kill it.” Explorationists have an unquenched thirst for new data. Well data, with its 

fine-grained measurements, are particularly appreciated. With seismic data coarse-grained, well data are the 

closest that explorationists come to “hard” evidence. Given the considerable financial costs of drilling new wells, 

OilComp invests in the drilling of a few dozen in a typical year in the area reported on in our case study. The 

explorationists’ thirst for new well data makes them cut corners in formal procedures. Rather than use the 

formal, time-consuming process of quality-control data from an ongoing well-drilling operation lasting a month 

or two, they import the data directly from the drilling database. Two purposes motivate explorationists’ keen 
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interest in new well data. First, they provide immediate validation: Was there an oil discovery as they had 

predicted? However, new data also provide a much-appreciated occasion on which to consider unproven plays 

and alternative geological scenarios: “When we have a new well, it is not like we do not care anymore [whether 

there was oil or not],” one explorationist told us. “We use it for future exploration … I care about the data. Data 

from the well is key.” 

The operational reality of operating within a highly competitive business environment is internalized among the 

explorationists. Working with prospects is always resource-bounded; thus, they are neither exhaustive nor 

perfect. Searching for new opportunities in the form of unproven plays is no exception. The resource-demanding 

nature of assessing the credibility of new concepts (unproven plays) forces settling for good enough, rather than 

elaborate, assessments: “We often do not have time to work out all [the concepts]; it takes too much time. We 

very often have limited time to drive concepts forward. It can be a matter of a few months. During that time, a 

lot of data must be pieced together, [and] a model needs to be built and to run basin simulations. In sum, it is a 

bit hard”. 

4.3 Prospecting: Cultivating Alternatives  

The essentially abductive processes described above depict the practical constraints on resources (economy) that 

regulate and format explorationists’ work, underscoring that prospects are satisficing, i.e., good enough to 

comply with the institutionalized decision-making process. The explorationists comply to produce the required 

input. Explorationists estimate the amounts of oil that a well might produce. In one case, volume was estimated 

from variables such as rock porosity (estimated with well logs and/or core samples), oil saturation in the rock 

(estimated using electrical resistivity well logs), and the recovery factor (estimated from reservoir permeability 

and oil viscosity). As a means of bracketing uncertainty, the team performed Monte Carlo simulations (i.e., a 

statistical approach to risk analysis in which numbers are selected from likely ranges of input data and through 

iterative calculations to determine a range of probable outcomes) using risk-assessment software. However, the 

version fed to management as part of the formal decision gates radically under-communicates the prevalence of 

multiple, competing possibilities known to the explorationists. For purposes of arriving at a managerial decision, 

the extent and role of multiple, divergent predictions are bracketed. However, among the explorationists there is 

a healthy robustness for entertaining multiple possibilities at the same time.  

Earlier, we emphasized how highly explorationists regard well data, the closest they have to “hard” data. This 

should not be misconstrued as suggesting that explorationists trust well data at face value, as they regularly 
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provide deeply ambiguous results that feed divergent possibilities, neither of which can be put to rest by the data 

themselves. Despite the presence of “big” data, the explorationists’ prospects (predictions) are under-determined 

by the data. One explorationist illustrates the dilemma. One aspect or type of well data is the analysis of 

hydrocarbons’ chemical compositions. Hydrocarbons from different oil reservoirs have varying compositions. 

Each has a unique chemical profile that allows you to discern hydrocarbons from two different oil reservoirs. 

Normally, you would assume that two wells in close proximity to each other would draw from the same oil 

reserve. The explorationist is puzzled: “In one of the fields in our area, each well is different when it comes to 

the [origins of the] hydrocarbons. They have different chemical compositions, which is really strange. They are 

so close by, you would think they are all the same, but they are not. [The geology] is very complex in some 

areas”. What he refers to with ‘complex’ geology, is that there are multiple irreconcilable – given available data 

– interpretations depending on what assumptions about the geological history (erosion, faults). This ambiguity or 

multiplicity is not so much resolved as relegated to a nagging uncertainty that, in later situations, may turn into a 

salient, rather than a latent, possibility.  

Digital tools for managing and interpreting well logs, processing and interpreting seismic data, doing seismic 

well tie-ins, plus basin modelling and simulation are crucial to explorationists’ ability to juggle multiple 

possibilities. Increased computing capacity and new digital seismic processing and interpretation tools make the 

creation of 3D seismic cubes (3D seismic data sets made from other multiple seismic data), previously 

prohibitively time-consuming, more practical. One explorationist told us over lunch how he was working in a 

field with 200 variants of the same 3D seismic cube. From the outside, there was no way of knowing the purpose 

of all 200 variants. The one officially quality-controlled variant shed little light on the other 200. As he was 

interested in a particular subsurface level in the project, he looked into it. Perhaps there was an underlying 

implicitly assumed idea that he had missed, as he asked himself: “What was this idea? Why? It is not apparent in 

that ‘pick’ ´ [their term, implying interpretation of a subsurface of the seismic level in light of subsurfaces picked 

from well data]. You have some new data that do not fit. How is it connected?”  

Coping with multiple possibilities is fundamentally collective. In formal, but more often and importantly, 

informal, peer-based discussions, explorationists collectively deliberate multiple possibilities: “When you talk to 

experts and advisors, they stress the nuances, and the details in it, and not at least the dimensions in it.” Peer-

based discussions are vital to avoid tunnel vision that working strenuously with a prospect easily might create. 

As one explorationist confessed, after a while, “you begin to think [your work] is great, [so] we have to drill it.” 
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The prevalence of multiple, as well as radically different, interpretations is internalized by explorationists as part 

of their professional identity. However, institutional constraints make it organizationally and politically 

necessary at times to bracket this inherent multiplicity. Multiplicity is not resolved or eliminated as much as put 

temporarily on hold for purposes of passing one of OilComp’s decision gates. The task of “risking” (their term) a 

prospect is illustrative. Risking is the quantification of qualitatively manipulating the prospect. One 

explorationist comments: “Concerning that part that is named risking, we put a probability that you have a trap, 

that it is sealed that you have a reservoir, that you have migration.” Crucially, you assign quantified measures for 

variables such as rock porosity and permeability, oil saturation, viscosity, and volumes with your prospect. 

Despite estimates, risking contains “a lot of speculation and (subjective) opinions,” but still necessarily 

legitimizes OilComp’s gated decision processes. The problems with quantifying the probabilities of an oil 

discovery for different prospects under consideration are particularly pronounced for those with medium-range 

probabilities, i.e., 10-25%: “Here we are struggling. They diverge in all directions.” 

5 Discussion 

Actualizing data’s representational capacity into everyday work processes mired in data uncertainty and 

ambiguity tests “the limits of meaning” (Weick, 1985, p. 64). Sensor-based IoT data, thoroughly manipulated 

algorithmically, do not “faithfully” mirror the physical conditions of the geology, i.e., data might easily become 

mere signs or symbols with little or no relevance to explorationists’ work practices. So, how do data acquire 

meaning in the sense of being woven into work practices (i.e., by being actualized)?  We discuss the three 

patterns constituting data-centric knowing relative to existing literature.  We emphasize social and material 

conditions of data-centric knowing. In addition, we recognize the broader institutional fabric in OilComp 

embedding the three patterns of practices of data-centric knowing.   

The data that inform explorationists’ work practices is what Knorr Cetina (1999) identifies as signs and Bailey et 

al. (2012) as symbols. This makes the problem of “referential attribution” immediate (Kallinikos, 1999). Data 

are “ ‘footprints’ of [physical] events, rather than ... the events themselves” (Knorr Cetina 1999, p. 41). They are, 

in our case, “footprints” of physical geology that are mediated (hence distorted) by sensors and algorithmically 

manipulated to make their correspondence with the originating geology anything but “faithful” (cf. Monteiro & 

Parmiggiani, 2019). Consider the two types of sensor-based IoT data that are by far the most important to 

explorationists’ work practices: seismic and well-log data. From a campaign of seismic shooting, less than 1% of 

the data is kept. The remainder is removed through a variety of non-linear mathematical filtering techniques. The 

seismic data actually used in explorationists’ work practices are accordingly a fraction of available data, and 
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mathematically filtered (i.e., algorithmically manipulated). Similarly, well-log data are generated from sensors 

that capture radioactive radiation, electromagnetic conductivity and electrical resistivity by lowering measuring 

equipment down into the drilled well. Particular patterns of values in the sensor-based IoT readings are 

“footprints” of geophysical properties as, for instance, gamma radiation is higher in shale than in sandstone, and 

electrical resistivity is higher in oil than in water (cf. Bowker, 1994).  

With data never being stable – they are transient, dynamic, contingent, and subject to aggregation, slicing, and 

other manipulation (Kallinikos et al., 2013) – there is, by implication, an “inherent epistemic uncertainty” 

(Alaimo et al., 2020) that makes the question of how the weaving of data into work practices unfolds crucial. The 

chronic dilemma that explorationists grapple with is how do the data become more than mere symbols, and how 

are data drawn into consequential action and decision making? Our three patterns of work practices – 

accumulating, reframing, and prospecting – as demonstrated in the previous section, are key.  We discuss how 

our three patterns resonate with existing literature.  

Our accumulating pattern captures the constant hum of mundane work that goes into making the data amendable 

and accessible as data. Scholars have pointed out what Edwards (2011) calls “data friction,” which includes 

washing, calibrating, and slicing up data (cf. Leonelli, 2014). There is ample evidence of data friction also in our 

case (e.g., the efforts involved in “well tie-ins” or quality-assuring data). However, due to the particular 

epistemic uncertainty of data, there is a considerable amount of work involved in supporting and triangulating 

one kind of data by connecting and, hence, grounding it relative to other supporting data. In isolation, data 

literally are a symbol. As Morgan (2010, p. 4) points out that “[W]e depend upon systems, conventions, 

authorities and all sorts of good companions to get [data] to travel well.” By supporting and confirming them, 

data are grounded in additional data similar to the way triangulation works (cf. Weick (1985) underscoring the 

importance of triangulation in all human sense-making). How, then, does this form of accumulating confirming 

otherwise fragile data work? A principal manner is that data are assigned different levels of epistemic 

uncertainty. All data suffer from epistemic uncertainty, but some do more acutely than others (cf. Chang 2004; 

Østerlie & Monteiro 2020). In our case, well-log data are viewed as more reliable than seismic data because of 

better resolution. An important way to back up otherwise inconsistent (thereby potentially dismissed) data is by 

connecting them to other types of data as pointed out by Kallinikos (1999). In our case, this is illustrated when 

each of the relevant seismic sections are carefully connected to neighboring wells’ fine-granular well-log data, a 

manual process known as well tie-in (see details in the previous Findings section).  
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The accumulating pattern’s modus operandi is that of confirmation, i.e., the conditions and processes for 

supporting data that otherwise risk being mere symbols. The efforts that go into supporting and triangulating 

data are investments that risk creating path dependencies. Our second pattern, reframing, addresses the 

purposeful contesting of accumulated (i.e., supported and triangulated) data. The pattern of reframing 

accordingly addresses situations at the boundaries of the accumulating work pattern’s reach. Efforts covered by 

the accumulating pattern to iron out wrinkles, inconsistencies, and outliers in the data are attainable only to a 

certain level. It is contested by the arrival of a new type or new data set triggering and abductively searching for 

new ways to make sense of all the data, new and old. In our case, this amounts to coming up with a new 

geological narrative in the form of a sequential process of shifting tectonic plates, up- and down-lifting, erosion 

and faults that make conditions for hydrocarbons plausible (cf. Wylie (2002), arguing for the importance of a 

narrative understanding in archaeology). The drilling of a new exploration well – with new, highly appreciated 

well data – as illustrated in the previous section (“[a]ny new well can change the basin evolution”), provides a 

possibility to challenge the entrenched, path-dependent understanding that results from the accumulating work 

pattern. 

 Challenging abductively the accumulating pattern’s everyday hum, the search for new interpretations and 

geological models is, as already emphasized by Peirce (1931, p. 5.600), regulated and bounded. The work 

pattern is not an open-ended search, but rather is bounded by time and resource constraints aimed at a plausible, 

imperfect solution, as pointed out by Lyytinen and Grover (2017). In our case, new data come with a hefty price 

tag. Well data from drilling in particular, but also new seismic surveys, represent significant economic 

investments. The abductive nature of the work pattern of reframing is, accordingly, directional and goal-seeking. 

An example is provided by Dunne and Dougherty (2016, p. 132), who demonstrate how scientists in the 

biopharmaceutical industry apply abductive reasoning as a “deliberate and methodological” social process to 

“navigate in the labyrinth” of drug innovation. Adding to such studies that point out how clues enable 

practitioners working abductively to “conceive of a whole design almost at once” (ibid., p. 151), we find 

explorationists challenge clues by rubbing them up against historical data. Leads or clues, in the commercial 

environment of OilComp’s explorationists, come with economic returns and risk, because, as one regional 

explorationist noted “we are in competition with thousands of others, and there are many other very skilled 

geologists and geophysicists around who have seen and are aware of all the well-known stuff”. Reframing is thus 

generative in the sense that it involves being able to justify the unknown – potentially with bigger economic 

returns – and simultaneously limited by requiring necessary backing in historical data, i.e., the more well-known. 
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As a direct consequence of their disconnect with their originating, physical referents (Alaimo et al., 2020; 

Borgmann, 1999; Kallinikos, 1999; Kallinikos et al., 2013; Knorr Cetina 1999), data as signs or symbols come 

with inherent epistemic uncertainties. Both of the preceding patterns of work practices were aimed at eliminating 

or regulating this uncertainty: The accumulating pattern covers practices of conservatively supporting and 

triangulating otherwise vulnerable interpretations of data, while the reframing pattern covers the abductive 

refactoring of an earlier interpretation triggered by the arrival of new data that are incompatible with the old. 

However, our third pattern of work practices is different. It addresses how explorationists, rather than trying to 

eliminate epistemic uncertainty, cultivate and encourage a multiplicity of interpretations of data, thereby 

embracing rather than resolving epistemological uncertainty while simultaneously avoiding halting operational 

decisions. In contrast to both of the preceding patterns of work practicing, prospecting has not been addressed in 

the context of data and datafication. 

To develop the prospecting work pattern, it is helpful to compare it to the notion of search (Stark, 2009). 

Explorationists search for something not yet recognized as a category. In our case, the well-defined search for 

proven plays (i.e., geological configurations demonstratively yielding hydrocarbons in the areas under scrutiny) 

could, and regularly does, spill over into the ill-defined search for unproven plays (i.e., potential, but not yet 

demonstrated, geological configurations for yielding hydrocarbons). The data radically under-determine this 

search (cf. (Loch et al., 2011). The efforts covered by the former two patterns of work practices bracket the 

uncertainty, but it may resurface.  

Second, the prospecting work pattern fills productive, organizational roles, as it is “through divergent or 

misaligned understandings that problematic situations can give way to positive reconstructions” (Stark, 2009, p. 

192). Keeping an eye open for new, unproven plays is crucial for OilComp. Ambiguity exists over whether the 

data at hand support proven plays or might, in fact, indicate something radically different. The multiplicity of 

interpretations is regulated in what fundamentally is a collective: They are played out, deliberated, and regulated 

in collective arenas that result in partial agreements (cf. Oborn et al., 2011). In our case, the formal and informal 

peer-based feedback sessions exercise this collective, in ways similar to how medical physicians are trained to 

always be open to secondary, alternative diagnosis in their treatment of patients (Timmermans & Berg, 2000). 

Third, the prospecting pattern underscores how consensus is never arrived at, but rather is worked around in 

temporal and local arrangements. Resonating with Mol’s (2002) study of how medical specializations such as 

surgery and pathology – despite radical differences in routines, theories, vocabulary and instruments – forge 

temporary agreements about how to treat atherosclerosis in patients. Underscoring, as we have done, the 
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productive role of the prospecting pattern begs the question of how the practical problem par excellence, i.e., 

what to do next, is decided. As Kellogg et al. (2006, p. 38) point out: “Instead of (…) shared meanings and 

common knowledge, organizational actors juxtapose their diverse efforts into a provisional and emerging collage 

of loosely coupled contributions.” In short, the pattern of prospecting does not undercut decision-making and 

action-taking; but temporal, partial arrangements, not full-fledged consensus, is required.  

The three patterns discussed above that go into data-centric knowing flesh out the work practices of 

explorationists. As scholars have pointed out (Kallinikos, 2004), practice-oriented perspectives risk becoming 

near-sighted in the sense of downplaying broader historic and institutional context that go beyond the “here and 

now” (cf. also Monteiro et al. (2014)). We thus discuss tenets of the institutional fabric that underwrite data-

centric knowing. This is in line with Porter (1995, p. 44; cf. also Poovey (1998)) who argues that meshing data 

with institutional routines is central to their actualization: “Given the ways that [data] measures can be 

undermined … we may doubt that they correspond to anything in the world. But a plausible measure backed by 

sufficient institutional support can nevertheless become real.”  

A key element of the institutional fabric embedding of data-centric knowing in OilComp is the compliance with 

a formally defined, sequential process known as a “funnel” (see Figure 2). The increased level of formal 

requirements for data as decisions move through OilComp’s decision gates come with markedly ritual 

connotations. As one explorationist laughingly put it, “all our models are wrong,” an insight that explorationists 

often believe has been lost on “the guys upstairs [management].” In the funnel, when zooming in on candidates 

for commercially viable oil reservoirs (“prospects”), a need exists to manage the portfolio of prospects. There are 

typically tens, if not hundreds, of prospects, so the operational concern at this decision gate is how to prioritize 

efforts when pursuing prospects. Briefly, prioritization relies heavily on quantification of prospects’ estimated 

risks, costs, and revenues. However, as Porter (1995) convincingly documents, trust in numbers comes at your 

own peril as numbers hide as much as they reveal. Nevertheless, the conflation of rich geological interpretations 

with quantified estimates feeds business operational needs for making decisions (Scott, 1998), as illustrated by 

the use of Monte Carlo simulations and so-called “risking” (see preceding Findings section). 

To summarize, the crafting of institutional facts at OilComp is not a steady march from uncertain, error-prone 

data to solid facts. What we see is a formalized and sequential process in which, for operational needs to move 

forward, the epistemological uncertainty of data is provisionally bracketed to reach a decision. However, 

uncertainty is never eliminated. Away from the formal decision gates at the managerial level, the professional 
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deliberations persist and thrive among explorationists. Data engage, as it were, in two different language games: 

the explorationist community vs. the managerially governed decision gates (Mol, 2002; Oborn et al., 2011). 

6 Conclusion  

A program launched decades ago (Knorr Cetina, 1999; Zuboff, 1988), the problem of “referential attribution” 

(Kallinikos, 1999) - how data that lack any immediate correspondence or similarity with physical objects, 

processes or qualities acquire meaning by being woven into everyday work practices – is gaining empirical 

relevance and significance with ongoing datafication of our lifeworld. Key to this project is empirical grounding 

(Günther et al., 2017; Lyytinen & Grover, 2017). Clearly, our articulation of the three patterns of interleaved 

work practices constituting data-centric knowing emerges from a particular case study. What, then, is the 

relevance of our analysis to other empirical domains?  As Kallinikos (1999, p. 289) points out, “[t]he project [...] 

needs, therefore, to pass through both the investigation of other empirical contexts and even involve the more 

successful integration of the relevant available literature”. 

In translating the analysis underpinning data-centric knowing to other domains, the concept will inevitably be 

appropriated hence modified. Theoretical concepts travel via, not despite of, appropriation (Walsham, 1995). 

Our case is characterized by three salient aspects which significantly shaped our analysis: inherently uncertain 

data and interpretations, quasi-scientific approaches and a corporate, operational logic. We expect generalization 

qua translation to other domains with similar characteristics. Inherent uncertainty: other domains too evolve 

around uncertain data as e.g., security analysts tasked with predicting the value of stocks to investors grapple 

with inherent uncertain data-driven interpretation (Beunza & Garud, 2007) or Gartner group’s industry analysts 

(Pollock & Williams 2016). Quasi-scientific communities: the search for and openness towards the unknown, 

captured in our prospecting pattern, is likely to be found in communities with strong scientific identities such as 

medicine (Timmermans & Berg, 2010), biology (Leonelli, 2014) or high-energy physics (Knorr Cetina, 1999) as 

scientific models regularly will be under-determined by data. Corporate logic: the time- and resource-bounded 

nature of satisficing search, key to our reframing pattern, is likely to show up across a variety of corporate 

settings (see e.g., Passi and Jackson’s (2018) study of data analytics at a telecom vendor). In addition, the cross-

pressure surrounding operational decision-making stemming from competing agendas of professional norms, 

formal rules and operational demands has been identified in safety-critical, operational settings (Perin 2006; cf. 

also Fine, 2009). 
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In closing, our intention is that the analysis articulated in the three patterns of work practices may provide a 

fertile and generative breeding ground for pursing a research program for “getting under the hood” of data 

science in IS through practice-oriented studies. 
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Figure 1. Typical visual representations of the three principal types of data: seismic data 
(left); well logs (middle); and production data (right).  

 

 

                

Figure 1. Typical visual representations of the 3 principal types of data: seismic data (left), well 
logs (middle) and production data (right)  
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Figure 2: An overview of the funnel model for the life-cycle of prospects with underpinning 

data. 
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Figure 3. Example of a wellbore log and final well report from NPD FactPages.  
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Participant observation: 25 full days, 60 machine-written pages of field notes 

Everyday work practices of 

explorationists and data managers 

25 full days of observations and informal 

conversations with explorationists and data 

managers in their offices, around coffee tables, and 

during their lunch breaks 

Participation in workshops, 

meetings, and seminars 

Six one-day events with 19 participants altogether 

(explorationists, data managers, process owners, and 

IT management) 

Semi-structured interviews: 27 interviews, 45-90 minutes each, transcribed 

15 explorationists Geologists, geochemists, and geophysicists  

12 data managers in exploration Project and central data managers  

Documents: electronic and paper-based 

Internal Documents Descriptions of routines and work practices, manuals 

for tools, example prospects, internal reports and 

memos, meeting minutes, overviews of challenges 

with querying databases, and presented results   

MS SharePoint team 

sites 

Project reports, discussions, and slide presentations 

Public OilComp information Drilling operations, tests and results, reclassified 

interpretations, and reports on discoveries and 

recoverable volumes 
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Norwegian Petroleum 

Directorate FactPages 

NPD FactPages7 contain information regarding  

petroleum activities on the Norwegian continental 

shelf (see example in Figure 3). The information is 

synchronized with the NPD’s databases on a daily 

basis. 

Diskos Database The Diskos National Data Repository (NDR) is 

Norway’s national data repository for petroleum 

data. Its index is open to the public and contains, in 

principle, all geo-data (seismic, well, and 

production). Figure 1 provides examples. 

Table 1. Summary of data collection 

 

 

 

 

 

 

 

 

 

 

 
7 It is publicly available at http://factpages.npd.no/factpages/ 
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”We see it in that the definitions of
anticlines, faults and irregularities do not 
match what you see on the seismic, it 
does not match. ” 

Connecting the old with 
the new
• ironing out 

inconsistencies
• crafting consistencies

Deliberating
• adding nuances
• identifying 

assumptions

Accumulating

Forging consistency

Gap filling

Open coding (in bold) Selective codes Practice

Accommodating the data 
generation experience
• actualizing data
• mobilizing additional 

data

“You need to feel confidence in the data 
you work with. Or else they are but lines 
on a sheet. And then you will in turn 
start to feel insecurity when you drive a 
concept forward ”

“you have seen a lot of data from 
before. You know when things are
connected. You have actually worked
with [creating] logs, you see how things
connect ”

” The understanding of producing fields
is always important for us in developing
a new concept […] and they were
interested in exploring the possibilities of
extracting oil from there, because you
have a lot of in place oil.

“ We look at all the data we have and 
see if it can support the concept ”

”...you interpret old maps with what you
can see with new seismic...” 

“All the gaps in between is what we do. 
We do often not have data in these small 
areas, we have to go look fairly hard to 
see what we can piece together”

“how far East can these hydrocarbons 
migrate?”

 

Extrapolating data
• Using analogues 
• looking for similar but not 

same geology

Grappling with ill-formed data
• Grapple with inconsistent data
• Reconsider basin model  

Reframing

”Any new well can change the basin evolution, 
any new well can change our predictions ”

“We have prospects in licenses where
OilCompany is not a partner, and when we see
that the competitors drill, then we try to pay
attention to how it goes. If they have found
something interesting, if there is a discovery, or 
not, then we try to trade this well ”

Practice

Reinterpreting

Generating new  possibilities in data
• Generate alternative geological 

scenarios
• Resource-bounded search for 

alternatives  

Open coding (in bold) Selective codes

"these things can give us great opportunities…”

Finding Play 
opener

”The problem is when you do not have data. 
Direct data. You are having a map or a concept
that makes sense and the closest well is 50 km, 
then you try to extrapolate this info. Then is 
when you need to use geology, we did maps etc. 
Ok, this is in a similar geological position so it 
may be the same. And then you use analogs. 
Ok, I´m here, which well is in closest geological
time and area. Ok that one, it can be very far 
off, ok, the data of the well is put in here.  If I 
were right and we are at the same time and in 
the same kind of rock etc. I take this well and I 
put it here and say; I use this porosity, I use this
permeability. As an analog.”

“Interpretations become dated. The limitation 
period for an interpretation is 5-10 years… and 
you must redo it.”

”You always have probabilities. That is why 
when you talk to the guys from field 
development, they never like what we do.”
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Figure 4: A summary of our interpretative template with three patterns of work practices 

(main constructs) supplemented with underlying codes and empirical excerpts.  

 

  

 
” From that we calculate a range with
montecarlo simulations for volume. But then it 
is the next thing, which is to set a probability of
different things, and there it is a lot of
speculation and meaning, but usually it is 
realistic, and we can see that over time”

Enumerating probabilities
• risking 
• satisficing models

Estimating economic factors:
• irreconcilable differences 
• deciding risk profile 

Continuously comparing and 
contrasting
• juggling multiple 

possibilities
• peer assisting

Prospecting” some prospects can potentially have big
volumes, but the chances of that being right are
1%, while other prospects have very small
volumes and the chances are very high, so when
we run those ones it is also depending on where
they are. It is like, this is very small but it is likely
and close to infrastructure, so that is our winner
”

“ We look at the geological and the geophysical. 
What were our assessments before we drilled
compared to what we discover. A before and 
after comparison”

Open coding (in bold) Selective codes Practice

Quantifying uncertainty

Searching for 
unknown unknowns

“…you get many ideas when you are looking at 
the seismic. 100 ideas, perhaps 200. Of those, we 
concretize approximately 100 to something that 
is a precursor to a prospect, something we call a 
lead”

“…we want that data as well, and then we re-
evaluate our prospects due to this data, and re-
risk them or downgrade them or upgrade
them” 

“Concerning that part that is named risking, we 
put a probability that you have a trap, that it is 
sealed that you have a reservoir, that you have 
migration.”

“When you talk to experts and advisors, they 
focus on nuances and details and its 
dimensions.”
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