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Myocardial Function Imaging in
Echocardiography Using Deep Learning
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Harald Brunvand, Kristina Haugaa, Thor Edvardsen , Bjørnar Grenne ,

and Lasse Lovstakken , Member, IEEE

Abstract— Deformation imaging in echocardiography
has been shown to have better diagnostic and prognos-
tic value than conventional anatomical measures such
as ejection fraction. However, despite clinical availability
and demonstrated efficacy, everyday clinical use remains
limited at many hospitals. The reasons are complex, but
practical robustness has been questioned, and a large
inter-vendor variability has been demonstrated. In this work,
we propose a novel deep learning based framework for
motion estimation in echocardiography,and use this to fully
automate myocardial function imaging. A motion estimator
was developed based on a PWC-Net architecture, which
achieved an average end point error of (0.06± 0.04) mm per
frame using simulated data from an open access database,
on par or better compared to previously reported state
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of the art. We further demonstrate unique adaptability to
image artifacts such as signal dropouts, made possible
using trained models that incorporate relevant image aug-
mentations. Further, a fully automatic pipeline consisting
of cardiac view classification, event detection, myocardial
segmentation and motion estimation was developed and
used to estimate left ventricular longitudinal strain in vivo.
The method showed promise by achieving a mean deviation
of (−0.7 ± 1.6)% compared to a semi-automatic commercial
solution for N = 30 patients with relevant disease, within
the expected limits of agreement. We thus believe that
learning-based motion estimation can facilitate extended
use of strain imaging in clinical practice.

Index Terms— Deep learning, echocardiography, motion
estimation, deformation, strain.

I. INTRODUCTION

MOTION estimation is an essential part of ultrasound
imaging, especially in echocardiography, where it is

used to assess cardiac function. Currently speckle track-
ing echocardiography (STE) is widely deployed, with many
methodological variants such as variational optical flow (OF)
and block-matching methods [1]. In research, conventional
STE methods have been outperformed by phase sensitivity and
elastic registration methods [2]–[4]. Despite being considered
the standard, these methods have several unsolved challenges
due to fundamental limitations of ultrasound (US) acquisitions.
This includes dropouts, shadows, out-of-plane motion, drift
sensitivity, foreshortening and more [5]. Several of these
artifacts leads to a decorrelation of the US speckle pattern
from frame to frame, thus complicating the tracking task.

Deformation imaging, such as measurement of myocardial
strain, has shown great potential [6]–[8], and is claimed
to have better diagnostic and prognostic value compared
to conventional anatomical measurements such as ejection
fraction (EF). Motion estimation (ME) is usually an essential
part of these methods, and the measurements are dependent
on its performance. Clinical use of deformation imaging is
still limited, partly due to time constraints in the clinic,
but also a lack of consensus about robustness and repro-
ducibility. We also hypothesize that the retrospective nature
of the analysis reduces its use, and believe that having the
possibility to quality assure acquisitions while scanning would
facilitate clinical implementation. Major efforts have been
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put into standardization of strain estimation techniques [8],
[9]. Part of this involves developing common evaluation plat-
forms and data, in which Alessandrini et al. [10] proposed
a realistic in silico database of US sequences based on
simulations with biomechanical models for comparison of STE
algorithms.

Recently, motion estimation using convolutional neural net-
works (CNN) have shown promising results for general optical
flow (OF) problems. Dosovitskiy et al. [11] demonstrated this,
by learning to estimate motion patterns directly from images
using U-Net based architectures called FlowNet. Several fla-
vors of the topology exists, such as FlowNetS, FlowNetC
and FlowNet-SD, with decisive modifications, for instance to
resolve issues with noisy artifacts and small displacements.
By stacking several of these networks in a cascade and using
complex training schedules, as in FlowNet 2.0, performance
was on par or better than state of the art methods for tradi-
tional OF estimation. These methods introduced a shift in OF
research, and in few years the work on the topic has increased
dramatically, where the benchmarks have been dominated by
deep learning (DL) based methods. One of the limitations of
FlowNet 2.0 is the network complexity and inference speed.
In PWC-Net, the developers succeeded in both increasing the
accuracy and reducing the size of the CNN model by lever-
aging conventional OF components [12]. The PWC-Net and
FlowNet architectures are currently the most common starting
point for research on DL based OF estimation. The main
difference between them is that FlowNet is encoder-decoder
based, while PWC-Net use a spatial pyramid.

Using these type of network designs directly for ME in US
imaging raises some concerns. Firstly, their design and training
regime facilitate correlation between global image features,
and an optimization for rigid motion patterns. This is not fully
compatible with deformation imaging, where local coherent
speckle is used to track local tissue motion and inherent
non-rigid deformation patterns. Structures in US images do not
have clear borders and traditionally STE has relied on tracking
the local speckle pattern, rather than global texture features.
On the other hand, speckle decorrelation occurs throughout the
cardiac cycle, and this is a fundamental limit of static tracking
kernels. Current CNN methods for ME use block matching
between features of consecutive frames, but not between lower
levels of the architecture [12], [13]. This does not distinguish
noise and speckle locally, and the cost volume will thus make
limited use of coherent speckle between consecutive frames.
We thus hypothesize that learning-based ME extended with
knowledge from STE methods could improve robustness, and
therefore be beneficial.

The use of deep learning based ME in US, and especially
in echocardiography, is limited [14]. Earlier, we demonstrated
the use of FlowNet 2.0 out-of-the-box for estimating global
longitudinal strain (GLS) in a pipeline with view classifica-
tion, segmentation of the myocardium and state-estimation
techniques [15]. The results were promising, but both the
training data and methods had several limitations, especially
for regional motion patterns. In elastography, several stud-
ies have been conducted with use of FlowNet 2.0 to esti-
mate the displacements [16]. In a recent pilot study, efforts

were also made into benchmarking different networks com-
ponents of FlowNet 2.0, with fine-tuning on simulated US
data. The results were on par with current state of the art
for flow estimation [17]. In sum, these studies indicate a
potential and adaptability for CNN based ME in US image
analysis.

Utilizing DL models in a cascade for fully automating clin-
ical measurements have also become a popular research topic,
for instance for measurements such as EF and strain [18].
We recently demonstrated an accuracy within interobserver
variability on calculations of EF, with possibility for real-time
analysis and quality assurance on-site [19]. In this study we
aim to extend our work by incorporating ME in an automatic
pipeline, in order to do fully automatic deformation mea-
surements. Our goal is to develop DL based methods which
may facilitate the implementation of functional imaging in the
clinic by removing several steps of manual post-processing
and enable real-time use. This could make the measurements
more robust and less time consuming.

A. Main Contributions

We propose a novel framework for motion estimation in
echocardiography, and use this, together with other relevant
components, to fully automate the estimation of longitudinal
strain. The contributions of this paper are

• A motion estimator for echocardiography inspired by
PWC-Net that incorporates domain knowledge from US,
and constraints from relevant morphophysiology.

• A training setup with pretraining on synthetic data, and
finetuning on more realistic US simulations with relevant
augmentation routines.

• Analysis of deep learning based motion estimation with
comparison on simulated and in-vivo data.

• A fully automated pipeline for longitudinal strain mea-
surements using cardiac view classification, event detec-
tion, segmentation and motion estimation by DL.

• Comparison between the automated pipeline and a com-
mercial available system for GLS measurements.

II. METHODS

A. Motion Estimation With Deep Learning

Currently, PWC-Net is the most popular architecture for
deep learning based optical flow estimation, and several vari-
ations exist [12], [20], [21]. It is inspired by conventional
OF, including components such as pyramidal coarse-to-fine
estimators, warping and cost volume in the design pattern.
Still, it utilizes the strengths of CNNs by incorporating feature
learning in several stages.

A simplified illustration of the network architecture can be
seen in the left part of Fig. 1. The core method involves taking
two consecutive images as input, and these are fed separately
into a learnable CNN based feature extractor pyramid of L
levels with shared weights. At each level l, the feature maps
from the previous level is downsampled to half its size using
strided convolutions. The features of level l of the second
image is warped towards the first image using the upsampled
flow from the consecutive level. A cost volume is estimated
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Fig. 1. Sketch of a traditional PWC-Net architecture with three pyramid levels (left). Two consecutive images are fed into a pyramidal feature
extractor. The cost volume is estimated between feature maps of the first image and the backward warped second image features (no warping at
bottom). A CNN named Flow estimator, is used to estimated the flow at every level. At the top level a context network is used to refine the flow.
The right part of the figure illustrates the modifications done for the EchoPWC-Net. Firstly, feature maps closer to the input is propagated through
the cost volume and flow estimation routines (a). Warping of the features of the second image is removed and exchanged with a direct correlation
between features (b) and flow at the two highest levels is also included in the loss (c).

using correlation between the first image and warped features
of the second image. For each layer, the cost volume, features
from the first image and upsampled optical flow are input
into a CNN which outputs a dense displacement map for the
current pyramid level. The estimation is repeated upwards in
size until the desired level. The output is then forwarded into
a context network with dilated convolutions, which refines the
flow, taking the estimated flow and features of the second last
layer from the OF estimator as input. The final output is a
dense displacement map resized to the same spatial size as
the input images.

The original PWC-Net implementation has seven feature
pyramid extractor levels including the inputs. The output level
is one-quarter of the inputs spatial size, and the flow is
upsampled by bilinear interpolation after the context network.
The basis of our implementation also has seven pyramid levels,
but as opposed to the original implementation which produces
flow estimation up to the second highest level, we extend
our network to produce flow estimation up to the first level.
This is further fed into a context network before the final
upsampling as indicated in the right side of Fig. 1. Also,
we include the final output in the loss function. This is to
retain some of the useful speckle patterns lost when resampling
from a low resolution level, and optimize for local variations
and small displacements. We also hypothesise that the ambi-
guity caused by occlusions and out-of-plane motion during
warping makes the original implementation problematic for

echocardiography. One of the main motivations of using warp-
ing is to handle large motions and allow for smaller networks,
but for echocardiography the typical motion between frames
is small. We therefore remove the warping procedure, and
instead estimate the cost volume directly between feature maps
at every level. This is illustrated in Fig. 1(b). We argue that
this integrates some of the benefits of block matching between
frames at every level of the pyramid, and thus have more
resemblance to traditional STE. However, instead of locating
the minima of the cost volume as you would with STE, the
full correlation map is passed to the flow estimator. We refer to
our customized network as EchoPWC-Net. Additional imple-
mentation details are given in Section III-C.

B. Pipeline for Automated Functional Imaging

The proposed pipeline for myocardial function imaging is
summarized in Fig. 2. Together with the discussed motion
estimation, it consists of several in-house DL based meth-
ods, including cardiac view classification, event detection
and myocardial segmentation. In addition, we initialize the
tracking by extracting the mid ventricular centerline of the
myocardium. We summarize the steps in the following, and
the reader is referred to published work for more details about
the DL networks [22]–[24].

1) View Classification: To ensure valid acoustic windows,
we employ an in-house cardiac view classification (CVC)
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Fig. 2. The measurement pipeline. Valid US images are forwarded through a segmentation network, and the resulting masks are used to extract the
centerline and relevant parts of the image. The US data is further processed through the motion estimation network yielding a map of velocity vectors.
The centerline is used to seed points which are used for tracking the myocard. The velocities of the myocard are optionally used either directly to
propagate the centerline points, or as a measurement update step of a Kalman filter. The results are used as a basis for strain measurements.

network [22]. The method recognizes up to eight different
cardiac views, including the apical four-chamber (4CH), apical
two-chamber (2CH), apical long-axis (APLAX), which are
relevant for this study. The network topology is composed of
seven block levels of convolution filters, batch normalization,
PReLU activation and max pooling. Inception modules and
a dense connectivity pattern are employed in the last five
blocks. A global average pooling layer was used before
the final softmax activation. It was trained on a dataset of
approximately 250 patients, and tested on a similarly sized
independent dataset. The network input is standard scan con-
verted B-mode images of size (128×128), and the output is a
softmax activation yielding a confidence score for each class.
This network has shown an accuracy of 98% and inference
time of approximately 4 ms per frame.

2) Event Detection: The cardiac phases are identified using a
sequence-to-sequence CNN that can classify diastole and sys-
tole directly from B-mode images [23]. The network consists
of five stacked levels of 3D convolutions, batch normalization,
ReLU activation and max pooling. All convolution kernels
have a temporal size of three, while the spatial kernel size is
(7×7) for the first layer and (3×3) for the rest. The output of
this stage is then propagated into two layers of long short-term
memory (LSTM) modules with 32 units each. It was trained
and validated on the CAMUS dataset of 500 patients [25]. The
network handles variable number of frames with size (128 ×
80) as input, and outputs a sequence of scalars in the interval
zero to one. Zero indicates that the image is from the systolic
phase, while one is the diastolic phase. End-diastolic (ED)
and end-systolic (ES) frames were identified as the temporal
points where the phase changes, i.e. cross-over from zero to
one and vice versa. The method has shown an accuracy of
(−5.5±28.2) ms and (−0.6±31.8) ms on ED and ES frames
respectively, and mean absolute error of 1.53 and 1.55 frames
from reference. For batch processing, a runtime of 16 ms per
frame was measured.

3) Myocard Segmentation: We utilize a segmentation net-
work proven to work well in several studies. This is a slight
modification of the U-Net architecture [26], with six levels
in the encoder and decoder part. Each level is composed of
(3×3) convolution filters and ReLU activation. Max pooling is

performed in the encoder part, while upsampling with nearest
neighbor interpolation is performed in the decoder part. Skip
connections are used between the levels at each stage. The
network was first described by Smistad et al. [27] and later
used in the CAMUS study of Leclerc et al. [25]. Recently,
it has been used with success in an automatic measurement
pipeline for ejection fraction and foreshortening detection [19].
In this study, we use the segmentation of the myocardium �m.
Initially, the network was trained for 4CH and 2CH views, but
it was later extended to include the APLAX view [24]. It was
designed for real-time performance, with 2 million parameters.
Network input is an US image of size (256 × 256) together
with a binary value indicating if it is an APLAX view or
not. The output is a map of same size of the input image,
where each pixel is classified as either LV lumen, myocard,
left atrium or background. Data from the CAMUS dataset
of 500 patients together with parts of an internal study were
used for training. The network achieved a test dice score of
0.79 on the myocardium. A runtime of about 10 ms on a GPU
was achieved.

4) Centerline Extraction: The centerline C of the
myocardium is defined by extracting the contour of the
myocardial segmentation �m and defining the endo- and
epicardial borders. Further the base and apex points are
defined as the points furthest away from the LV lumen
centroid, in left bottom, right bottom and top direction
respectively. The centerline is defined as the mid-point
between two nearest endo- and epicardial points on the line
perpendicular to the longitudinal. A total of k equidistant
points pk = 〈x, y〉 along the longitudinal direction is then
sampled, i.e. C = {p1, p2, . . . , pk}.

5) Motion Estimation: The pipeline allows using differ-
ent motion estimation methods. In this study, we employ
four different variants, a traditional Farnebäck optical flow
method [28], the FlowNet 2.0, the original PWC-Net and
a modified PWCNet which we named EchoPWC-Net. With
Farnebäck we use a grid based optimization minimizing
average end point error (EPE) on simulated data to find the
parameters for window size, pyramid levels, pyramid scale,
iterations at pyramid scale, size of the kernel for polynomial
expansion and smoothing factor for the derivative of the
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polynomial. All the methods produce a dense displacement
map of velocity components v(x, y) = 〈

vx , vy
〉

between two
images I (t) and I (t + 1).

6) Tracking Update: The centerline points pk can either be
updated by propagating the points with the displacement field,
i.e. pk(t + 1) = pk(t) + vk(t). Alternatively, it can be
extracted from the segmentation directly without using the
motion estimation method at all.

This step could also involve state estimation techniques such
as the Kalman filter [29] or similar, but this was not pursued
further in this study.

7) Clinical Measurements: The centerline C ⊆ � is used
to calculate the longitudinal ventricular length ι, i.e. the arc
length, for each timestep t . Further, this is used to estimate
the Lagrangian strain

ε(t) = (ι(t) − ι0)/ι0, (1)

along the center of the myocard. The reference length ι0
is measured at the ED frame. The peak-systolic strain was
used for both GLS and regional longitudinal strain (RLS)
estimation, where the peak was defined as the minima between
ED and ES strain values. For RLS, we divide the ED centerline
at the apex and estimate three equally sized arcs on both sides
and compute their strain individually [9].

III. EXPERIMENTS

A. Datasets

Several datasets were used developing the methods, and
in the following we will briefly describe the datasets used
for modeling the motion estimation network, and testing the
measurement pipeline. For information about data used to
train other models, such as segmentation, view classification
and event detection, the reader is referred to publications on
the specific networks [22]–[24].

1) Synthetic Data: We used three publicly available datasets
commonly used for training and benchmarking of optical
flow methods. All the datasets consists of image pairs and
a corresponding dense displacement map.

• FlyingChairs2D [11]: Contains images of rendered 3D
chair models moving in front of random backgrounds
scraped from the photo management and sharing site
Flickr. A total of 22872 images.

• FlyingThings3D [30]: Contains approxi-
mately 25000 stereo images sampled from a 3D
scene of everyday objects flying along randomized
trajectories on a textured background.

• MPI SINTEL [31]: Contains images from an open source
animated short film. A total of 1628 frames from 35 dif-
ferent animation scenes.

Example image pairs from the datasets with corresponding
flow can be seen in the upper part of Fig. 3.

2) Simulated Ultrasound Data: An open database of
simulated echocardiography images created for quality
assurance of speckle tracking algorithms [10] were employed.
The data is created with a complex simulation pipeline,
where a 3D dataset of simulated US volumes of the heart

Fig. 3. Examples from the datasets. Synthetic data from Fly-
ingChairs2D [11], FlyingThings3D [30] and MPI SINTEL [31] and sim-
ulated ultrasound [10]. For each example, from left to right, we have two
consecutive frames followed by the flow field from the first to the second
frame.

and corresponding myocardial mesh is spatio-temporally
aligned with a 2D template of real US data. Further,
a synthetic motion field from a biomechanical model was
used to propagate the mesh and aligned data. A scatter map
was generated from the composition, and used to generate
simulated US. In total, the data is composed of templates
from seven different vendors and five motion patterns from
the biomechanical model, including one healthy and four
pathologies. Each with the three apical views, 4CH, 2CH and
APLAX, resulting in a total of 105 sequences or 6165 frames.
For each timestep, a set of 180 points divided among five
longitudinal lines and six segments is provided by the authors.
These points correspond to the underlying motion field of the
biomechanical model aligned with the US data. An example
of image pairs of 4CH and 2CH views from the dataset with
corresponding flow can be seen in the lower part of Fig. 3.
They also provide the view and the cardiac event timing for
each sequence.

3) Clinical Data: A dataset was collected from a clinical
database of patients diagnosed with acute myocardial infarc-
tion (MI) or de-novo heart failure (HF) at a Norwegian hospi-
tal. The study was approved by the regional ethics committee
(ref. 2013/573) and written consent was given by all patients.
The images were acquired using GE Vingmed (Vivid 7, E9 or
E95) scanners. Patients were included consecutively regardless
of image quality. All exams were performed in clinically
stable patients with sinus rhythm. Images were analyzed by
a single clinician using clinical best practice as defined in [7]
with the 2D strain (2DS) application in the clinical software
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EchoPAC release 202 (GE Vingmed AS, Horten, Norway.).
This ensures that the proposed automated method is compared
to actual clinical practice measurements techniques. To ensure
a representative range of LV pathologies, a total of 30 patients
from five different cohorts were randomly selected, resulting
in six patients from each group. The groups were defined by
a diagnosis of ST elevation MI (STEMI), non-ST elevation
MI (NSTEMI), ischemic heart failure (HF), non-ischemic
HF and no significant disease. The tracked mid ventricular
points and corresponding strain values were exported from the
software.

B. Data Augmentation

Due to the unrealistic nature of simulated ultrasound and
limited access to relevant (in vivo) data with a ground truth,
we rely on several US-specific augmentation routines. Here we
try to induce realistic artifacts common in echocardiography
that usually hampers the success of speckle tracking, and
describe a selection in the following.

1) Gaussian Shadowing: Acoustic shadows often occur in
US imaging due to structures that strongly reflect or absorb
the US waves. This is often identified as a dark region
behind the structure. We mimic this effect by placing random
regions of intensity reductions in the image. Similar methods
have been shown to have an effect on generalization for US
segmentation tasks [32].

2) Haze Artifact Application: One artifact that is prevalent
for some patient is acoustic haze. This can be identified
as a semi-static noise band in the upper parts of the
image. We randomly apply static high intensity artifacts
with a Gaussian profile along the radial direction in polar
coordinates.

3) Depth Attenuation: The US wave looses energy as
it travels through the body, and this can be identified as
a gradual drop in intensity with distance from the probe.
Similarly like the haze artifact application, we apply a varying
degree of intensity attenuation along the radial direction. The
attenuation does not consider depth independent noise, and is
thus a simplification of the physical artifact.

4) Speckle Reduction: The speckle pattern in images from
different vendors often differ due to image enhancement and
various filtering methods. To reproduce this effect, we smooth
the images randomly using a bilateral filter, effectively
reducing the speckle.

In addition to these US specific augmentations, we apply
basic augmentations such as horizontal and vertical flipping,
temporal reversing, frame skipping, rotation, random noise,
scaling, image resampling artifacts, JPEG compression and
gamma intensity transformations. Except for the flipping,
reversing, scaling, skipping and rotation, the displacement map
was not modified for any of the augmentation routines. All
augmentations are applied in random combinations and on-line
while training. Examples from some of the individual augmen-
tations are given in the supplementary material. In addition,
the effect on maximum flow distribution after five epochs with
augmentation is visualized.

C. Implementation Details

We implemented the machine learning environment using
Tensorflow [33] version 2. The modeling and experiments
were conducted on a workstation with an Ubuntu 16.04
operating system. The hardware consisted of an Intel Xeon
CPU E5-2637 v2 with a clock speed of 3.50 GHz, 112 GB
RAM and a NVIDIA Titan V GPU with 12 GB of memory.

1) Architecture Parameters: For the feature extractor in
EchoPWC-Net, we use one convolution layer in addition to
the strided convolution, with equal amount of filters at each
level. The amount of filters used was 16, 32, 64, 96, 128
and 192, from top to bottom level respectively. For the cost
volume we use a search range of 4 for every level, and for
the context network we use the architecture proposed in the
original implementation [34]. This corresponds to a receptive
field of 67 × 67 in the last layer.

2) Data Preprocessing: To reduce the feature space and
adapt for US, we converted all input data to grayscale,
including the synthetic RGB data. The input was set to a
fixed size of (448 × 576). As mentioned, the simulated US
data is provided together with a set of 180 spatial points
inside the myocardium for every timestep. We use these
to generate a sparse displacement field, and we use cubic
interpolation to convert to a dense displacement map with
velocities v(x, y) = 〈

vx , vy
〉

inside the myocardium �m.
To avoid boundary effects, we extrapolate the epicardial
points radially by 5% of the radial diameter, followed by
masking by the concave hull enclosing the original points.
The dense displacement map is used as the ground truth flow,
and the units were set to pixel per frame.

3) Training Procedures: Several training dataset schedules
were investigated, resulting in four different setups:

• Synthetic RGB: Sequential training from scratch with
FlyingChairs2D and FlyingThings3D RGB data.

• Synthetic gray: Sequential training from scratch with
grayscale FlyingChairs2D and FlyingThings3D.

• Synthetic gray → Simulated US: Initialized with
weights from synthetic gray followed by fine-tuning on
simulated US.

• Simulated US: Trained from scratch on simulated US.

When training with synthetic data, we employ the basic aug-
mentations mentioned in Section III-B. In addition, we employ
the US specific augmentation when training on simulated US.

Our models are trained with the Adam optimizer and a
batch size of 4 for all experiments. The initial learning rate
was set to 10−4, with a halving schedule for each 100k and
20k iterations for synthetic and simulated US respectively.
For fine-tuning, the initial learning rate was set to 10−5.
Training time from scratch was approximately three-four days
for synthetic data with the fine-tuning schedule running over
five days, and two days for simulated US. Early stopping
with a patience of 30 epochs were used for all models.

4) Loss: We use a multi-scale loss function with end-point
error. Since the labeled motion is sparse, we only optimize
regionally where the input lies within the predefined seg-
mented region �m. We let wl denote the dense flow field at
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TABLE I
OVERVIEW OF DIFFERENT MOTION ESTIMATION MODELS

the lth pyramid level. The loss is defined as

L(�) =
L∑

l=l0

βl

∑

x

|w̃l
�(x) − wl

GT | + γ |�| ∀ w ∈ �m,

where � is the parameters and x is the inputs. The term βl

is set manually and used to weight the loss contribution from
each layer. The second term regularizes the parameters, where
γ is the regularization factor. This is similar to the loss used in
FlowNet and PWC-Net, but restricted to regional optimization.
In our implementation, we set the weights to β0 = 0.015,
β1 = 0.03, β2 = 0.06, β3 = 0.12, β4 = 0.25, β5 = 0.50
and β6 = 1.0. Based on the input size, this correspond to
equally weighting each layers contribution to the loss. The
regularization factor γ was set to 10−4.

D. Evaluation

1) Metrics: We evaluate our methods using the end point
error (EPE), which is a common metric for benchmarking
optical flow performance. It is defined as the Euclidean
distance between the ground truth velocity and the predictions,
i.e. EPE = ||vGT − vpred||. We also compute the strain
values, as defined in (1). Regional strain is computed for each
segment for each view, while global strain is computed for
each view, and averaged over all views. In addition, we report
correlation metrics, such as regression slope α and correlation
coefficient ρ, as well as bias μ and 95 percentile limits of
agreement (LOA).

2) Comparison I: Motion Estimation: Nine different motion
estimation methods are evaluated. The original PWC-Net,
as well as different flavours of the EchoPWC-Net. For
reference, the Farnebäck and FlowNet 2.0 methods are also
included. The various methods are summarized in Table I.

3) Comparison II: Automatic Pipeline: For functional mea-
surements on in vivo data, we also test two variants of the
presented pipeline:

• Segmentation only: Recalculation of the centerline for
every time point, and not using motion estimation. This
refers to skipping part 5) of the measurement pipeline.

• Tracking: Initialization of centerline by segmentation,
and propagation of points using the best performing
motion estimation model. This refers to the full pipeline
described earlier.

4) Comparison III: Model Adaption: As mentioned, one of the
limitations of traditional speckle tracking is the adaptability
to various noise prevalent in US. To study the investigated

Fig. 4. Correlation plot between the ground truth regional strain
estimation and the DL method on simulated data from one selected
vendor. Green dots represent healthy myocardial segments, while the
red sick segments. In the top left corner, the slope α of the regression
line, correlation coefficient ρ, bias μ and limits of agreement (LOA) is
given. The corresponding reference values from Alessandrini et al. [10]
are given in the bottom right corner.

methods ability to regularize, we design an evaluation strategy
based on three of our US relevant augmentation routines,
namely Gaussian shadow, haze artifact application and depth
attenuation. More specifically, for Gaussian shadowing we
apply a shadow region at the center of the mid septal segment
of test data samples, and measure the change in relative
EPE as a function of shadow amplitude, i.e. the relative
degree of intensity signal. The size of the region was set
to 20% of the image size in both directions, tuned to cover
the whole segment for higher shadow amplitudes. For haze,
we apply a localized band of haze mimicking noise in the
upper half of the sector with an increasing intensity value.
Finally, for depth attenuation we attenuate the intensity values
gradually, with a fixed saturation area at the base level of the
myocardium.

IV. RESULTS

A. Simulated Ultrasound

The PWC-Net model trained on grayscale FlyingChairs and
FlyingThings3D achieved an average EPE of 4.80 and 6.41
on MPI Sintel Clean and Final respectively. Cross-validation
was performed on the simulated US data by dividing into
folds by vendor. This resulted in seven training sessions for
each DL method. For the Farnebäck method, the grid based
optimization yielded best EPE for 3 pyramid levels, with a
scale of 0.5 and a window size of 69. A total of 5 iterations
for each scale, a size of 5 pixels of the kernel for polynomial
expansion and a smoothing factor of 1.1. The average EPE
with corresponding standard deviation can be seen in Table IIa.
On the respective test data, the results for segments and views
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TABLE II
RESULTS ON SIMULATED ULTRASOUND DATA. AVERAGE END POINT ERROR (EPE) FOR (A) EVERY VENDOR, (B) AVERAGE

OVER SEGMENTS AND (C) APICAL VIEWS. UNITS GIVEN IN MM PER TIMESTEP/FRAMEΔT−1

Fig. 5. Example of predicted flow patterns for the different methods within the myocardium. The upper part is color coded with hue values, color
and saturation indicates direction and magnitude respectively. The average EPE is given in the upper right corner of the image of each case. The
bottom part of the image shows the velocity vector comparison between ground truth and the different methods inside the base septum segment as
indicated by the blue bounding box in the US image. Light blue arrows are ground truth, while orange arrows are predictions.

are reported in Table IIb and IIc respectively. A correlation plot
of the regional strain estimation for one of the vendors can be
seen in Fig. 4, while the plots for all vendors can be found in
the supplementary material. An example of qualitative results
for the different methods are shown in Fig. 5.

For reference, the correlation metrics of our implemented
methods, compared to the work by Alessandrini et al.,
is shown in Table III, and also indicated in the correlation
plots. The average over all vendors is used for the different
metrics.
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Fig. 6. Testing of model adaptation abilities by measuring relative average end point error (EPE) as a function of fractional increase in augmentation
effect. The Farnebäck method and EchoPWC-Net-us is plotted as red and blue lines respectively. (a) The shadow is applied in a specific region of the
US image, as indicated by the red bounding box, and the EPE is calculated both regionally inside this box (dashed) and for the entire myocardium
defined by the segmentation (solid). (b) Depth attenuation is applied with a fixed saturation area close to the base of the myocardium in radial
coordinates. (c) Haze is applied to a fixed area in the upper half of the myocardium.

TABLE III
COMPARISON OF THE CONSIDERED METHODS AVERAGED OVER THE

DIFFERENT VENDORS IN THE SIMULATED US DATA. METRICS INCLUDE

SLOPE OF THE REGRESSION LINE α, CORRELATION COEFFICIENT ρ,
BIAS μ AND 95% LIMITS OF AGREEMENT (LOA)

Results from our model adaption study is given in Fig. 6.
Here, the EchoPWC-Net-us models adaptability is measured
with respect to increasing application of different augmenta-
tion effects. The relative error of average EPE as a function
of specified effect is given. It is worth noting that the baseline
of the two models are different, i.e. the Farnebäck method has
on average a higher average EPE than EchoPWC-Net-us with
no shadows. The absolute deterioration is therefore higher for
Farnebäck in all cases.

B. Clinical Data

The ME methods were used on clinical in-vivo data, and
compared to a commercial system by estimating the average
EPE. In Table IV the results are shown for three cardiac
views, and the corresponding average. We also tested the best
performing model from the simulation study on this data using
our pipeline for automated functional imaging. The pipeline
were tested with two different flavours as specified earlier,
and a summary is given in Table V. For the tracking method,
a correlation plot of the GLS for each individual view is given
in Fig. 7, while the average over all views is given in Fig. 8.
For additional detail, Bland-Altman plots of the test data are
also presented in the supplementary material.

TABLE IV
AVERAGE END POINT ERROR AND STANDARD

DEVIATION (PARENTHESIS) FOR EVERY VIEW

ON CLINICAL DATA COMPARED TO A

COMMERCIAL METHOD

TABLE V
AVERAGE DIFFERENCE AND STANDARD DEVIATION (PARENTHESIS)

FOR GLOBAL LONGITUDINAL STRAIN ON CLINICAL DATA

COMPARING TO A COMMERCIAL METHOD

C. Runtime Performance

The EchoPWC-Net achieves a runtime of (18.9 ± 0.7)
frames per second (FPS), while the Farnebåck method can
process at (8.8 ± 0.1) FPS. The frame rates of the different
pipelines for estimating global longitudinal strain was (30.8±
0.9) FPS and (15.6 ± 0.3) FPS for segmentation and tracking
respectively.

V. DISCUSSION

We have presented a method for motion estimation using DL
and integrated this successfully in a pipeline for longitudinal
strain measurements. The ME method is inspired by PWC-Net
and relevant training strategies, but with modifications to make
it more compliant for myocardial tracking. Our choices have
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Fig. 7. Correlation plot of global longitudinal strain (GLS) estimates between commercial system and deep learning based method for specific
views. Each dot represents one subject. In the bottom right corner, the slope α of the regression line, bias μ with limits of agreement (LOA) of 1.96σ
in parenthesis, and correlation coefficient ρ is given.

Fig. 8. Correlation plot of global longitudinal strain (GLS) estimates
between commercial system and deep learning based method averaged
over the three apical views. Each dot represents one subject. In the
bottom right corner, the slope α of the regression line, bias μ with limits
of agreement (LOA) of 1.96σ in parenthesis, and correlation coefficient
ρ is given.

an intuitive motivation, firstly to increase the resemblance to
echocardiography for the training data by using simulated US
and relevant augmentations. Secondly, to improve the track-
ing task by incorporating a more direct correlation between
features and loss optimization for low level feature learning,
including the cost volumes at every pyramid level.

The motion magnitude of common datasets used in OF
research, such as FlyingChairs2D and FlyingThings3D, is on
average much higher than the displacement between frames
in typical echocardiography data. This is illustrated in the
supplementary material. We thus question the validity of these
datasets for pretraining. As shown in Table II, training on sim-
ulated US data alone gives significantly better results. Using
pretraining datasets with lower average flow could improve the
results of fine tuning, but was not pursued here. We further
observed a mismatch between the simulated US data and
the clinical in vivo data, where the average maximum flow

distribution for the latter was about twice as high. We used
data augmentations to tackle this problem, but expect that an
improvement of the training data quality and size will further
improve the models in later iterations.

One motivation for using warping in CNNs is to mit-
igate the need of a large search range in the cost vol-
ume estimation. Due to the lower flow magnitudes between
frames in echocardiography compared to general OF problems,
incorporating the direct cost volume between features was
feasible. In addition to increasing the general performance
of the network for deformation imaging, the modifications
introduced in EchoPWC-Net may also cause less ambiguity for
occluded areas resulting from warping [35]. We believe further
optimizations can be made, for instance an adaptive search
range when calculating the cost volume would potentially
reduce the runtime. Also the size of the pyramid can probably
be reduced.

Table II suggest that the ME method producing best results
is the EchoPWC-Net-us, which is trained from scratch with
simulated data and several US-specific augmentation routines.
Results were consistent across vendors and views. For seg-
ments, the absolute error is decreasing towards the apex, which
is expected. The distribution of velocity vectors is limited for
the dataset which may influence the trained models ability to
generalize. Compared to the FlyingChairs dataset, the typical
maximum velocity magnitude of the simulated US data is more
than ten times lower. This partially explains the mismatch
between the fine-tuned model and the model trained from
scratch, as the latter will be biased to a lower velocity field.
The qualitative results in Fig 5 further suggest the mismatch,
where FlowNet 2.0 and PWC-Net yield similar results, but
relatively far from the ground truth. The Farnebäck method,
as well as the models trained on US data, yields good results
across the entire myocardium. Noticeably, the prior has a more
noisy pattern compared to the DL methods.

For strain values, the tendency of EchoPWC-Net-us is a
slight underestimation for healthy segments, and a slight over-
estimation for sick segments. This is evident from Fig. 4, and
also from the correlation plots in the supplementary material.
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Noticeably, the majority of peak strain values are below 10%,
and is generally low compared to clinical data. Again this
indicate some limitations in the training data. A comparison
to the average strain values reported by Alessandrini et al. [10]
for the same data is given in Table III. The EchoPWC-Net-us
method performs slightly better on average across vendors,
especially considering the variance. Although there is potential
for further improvement, these findings suggest that learning
based methods can perform on par or better compared to state
of the art on simulated data.

One of the major motivations of investigating the use
of DL based methods, is their ability to adapt to the data
representation used while training. The use of augmentation
routines mimicking typical image artifacts in this scenario is
therefore very appealing, as it could also address some of the
big challenges with traditional methods. The result presented
in Fig. 6 shows a significant improvement over a traditional OF
method. For Gaussian shadowing the relative regional error is
increased by less than 10% for EchoPWC-Net-us, while over
40% for the Farnebäck method. Similar effects can be seen
for depth attenuation and haze application. This suggest that
the ME model actively uses features from lower levels of the
pyramid, and potentially the context network, in order to get
the necessary global context for filling in parts of missing
data. A qualitative comparison of the methods can also be
found in the supplementary material. Here, the predicted flow
is visualized with and without artifact for both methods. The
results from the model adaption study show that the benefits
of augmentation routines are twofold; in addition to increasing
the effective size of the dataset, the models become more
robust to image artifacts. Further studies must be conducted to
evaluate the effect in vivo, but we emphasize the advantages
of incorporating relevant augmentations in the training stage.

The average EPE on clinical data is significantly higher than
for simulated data. We also notice that the relative improve-
ment by training on simulated data is less effective in vivo.
This may be due to the limited range of displacements present
for the training data. Further, as the underlying biomechanical
motion model is equal across vendors, we also suspect a
slight overfit to the motion model. As can be observed in
Table IV, performance improves as more distinctly relevant
data is included, and the lack of relevant training data is thus
believed to be a limitation which needs to be addressed.

For calculation of GLS using the pipeline we see from
Table V that the measurement variance improves significantly
using tracking instead of segmentation alone. The segmenta-
tion model is trained on ED and ES frames, thus calculating
end-systolic strain instead of peak strain is expected to yield
more similar results. We also note that the results from the
APLAX view is worse than for A4C and A2C for both
approaches. As the motion estimation is rather consistent
across views, the myocard segmentation and the centerline
extraction is the main source of this discrepancy. As shown in
previous work, the segmentation performs worse on the ALAX
view [24]. Also, the asymmetry of the view can complicate
the centerline extraction. Better overall results can therefore be
achieved by improving these components. As seen in Fig. 7
and Fig. 8 it is a significant correlation between the methods.

However, we also notice a similar tendency as for simulated
data, with an underestimation of larger strain values, and
an overestimation of lower. The range of strain values for
the DL method is therefore slightly smaller compared to the
commercial method. The most probable reason for this is again
the training data, where low strain values are highly over-
represented [10].

In the vendor comparison study [8], the commercial system
used for our in vivo data overestimates strain values by an
average of 1.6% compared to the mean of all vendors. Also,
software only methods from Epsilon and TomTec achieve a
mean difference for GLS of (2.50 ± 1.94)% and (−0.70 ±
1.68)% respectively when comparing to GE. This suggests that
our average difference of (0.71 ± 1.63)% is within limits of
agreement of what can be expected from different commercial
systems when evaluated on the same data.

The average runtime of the networks and pipelines are
reasonable compared to previously reported findings [12], [19].
The CNN is fast compared to the Farnebäck implementation
used, but more work must be conducted to achieve real-time
performance in echocardiography. As mentioned, we believe
the network can be pruned substantially, for instance by
making the search range in the cost volume adaptive for the
different pyramid levels.

Although the results are encouraging, we believe there are
several points that can be highlighted as a recommendation
for further work in addition to what is already mentioned.
Post-processing and regularization are a common part of the
general workflow of strain computation [4]. This includes drift
compensation, temporal and spatial smoothing, as well as state
estimation or recurrent methods. In this work this was not
extensively investigated, but we believe it could enhance the
results if important factors are considered. Post-processing can
reduce the noise, but it can also limit the range of strain
values and thus reduce the ability to detect local abnormalities.
Further, an investigation of regional motion patterns and strain
in vivo is hard to validate, but still a direction that should be
pursued to establish robust methods that allows for extended
clinical use of these sensitive measurements. Representative
data is the key, and continued efforts should be made to
establish a larger database for training and validating motion
estimation methods in echocardiography.

VI. CONCLUSION

In this paper we present a novel pipeline for myocardial
function imaging in echocardiography using deep learning.
We demonstrate that a modified PWCNet motion estimation
network named EchoPWC-Net can perform on par or better
compared to other known methods when training on simulated
ultrasound data. Results are within limits of agreements of
relevant work and commercial systems, both on in-silico and
in-vivo data. We argue that the main limitations stems from
limited training data, and that the results can be further
improved by increased data volume, and resemblance to clin-
ical echocardiography. Our pipeline is able to estimate longi-
tudinal strain automatically in a prospective nature. By being
simple and robust, we believe these methods can facilitate the
use of deformation imaging in the clinic.
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