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Abstract

Quantum computing has the potential to solve specific problems exponentially
faster than any classical computer. In the short term, however, quantum hard-
ware will be limited both in the number of qubits, the basic unit of quantum
information, and the length of useful computations due to the influence of
noise. In the long-term, quantum error correction promises to allow for cor-
rections to arbitrary precision over long calculations, but they require lots of
ancillary qubits. Our attention therefore turns to quantum error mitigation,
which encompasses a range of techniques that aim to reduce the impact of
noise in quantum computations.

In this thesis, we study techniques of quantum error mitigation for near-
term applications of quantum computers. We aim to assess and compare differ-
ent techniques for error mitigation, and we propose a variant of the zero-noise
extrapolation technique with a novel scheme for circuit-level noise amplifica-
tion. We applied the zero-noise extrapolation to a representative trial circuit
and achieved a relative error of 3.3% in simulations with applied noise models,
compared to 30% in the non-mitigated results, in the best case. We also found
our noise amplification scheme to outperform an existing scheme for differ-
ent noise models. However, we found the zero-noise extrapolation technique to
come with a considerable computational cost, especially for larger numbers of
noise amplified terms. For 2 and 3 terms we still a significant improvement in
the error to 14% and 8.3% respectively, yet with a required shot count within
one order of magnitude.

We further explored the potential in combining this variant of the zero-noise
extrapolation with the error detection scheme. We applied the scheme to the
variational quantum eigensolver on the H2molecule, using a noisy simulator.
The combined scheme outperformed both the extrapolation and the detection
schemes on their own. For an error rate of 0.1%, the combined scheme achieved
an error within the important benchmark of the chemical accuracy. The error
detection scheme on its own did not achieve the chemical accuracy for any cases,
however, it increased required circuit shots by less than one order of magnitude
in all cases. The scheme thus comes at a much lesser computational cost than
the zero-noise extrapolation scheme, although it requires some additional an-
cillary qubits. Combining the two techniques thus showed potential for greater
noise-mitigation whilst still remaining viable for near-term applications.
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Sammendrag

Kvantedatamaskiner har potensiale til å kunne løse spesifikke beregningsprob-
lemer eksponentielt raskere enn noen klassisk datamaskin er i stand til. I nær-
liggende fremtid er derimot kvantedatamaskiner begrensede når det kommer til
antallet tilgjengelige qubiter, og i lengden av mulige kvanteberegninger grun-
ner mye støy. På sikt vil kvantefeilkorreksjon kunne korrigere feil til vilkårlig
presisjon over lange kvanteberegninger, men de krever et stort antall ekstra
qubiter. Vi fokuserer derfor i stedet på dempe effekten av kvantefeil, så kalt
kvantefeilmitigering.

I denne oppgaven studerer vi ulike teknikker for å dempe kvantefeil i an-
vendelser av kvantedatamaskiner i nær fremtid. Målet vårt er å undersøke og
sammenligne ulike slike teknikker, og vi foreslår en variant av nullstøysekstra-
poleringsteknikken men en ny metode for støyforsterkning på kvantekrets-nivå.
Vi anvendte nullstøysekstrapoleringsteknikken på en representativ testkrets og
oppnådde en relativ feil på 3.3%, betydelig bedre enn den opprinnelige feilen
i kretsen på 30%, i det beste testede tilfellet. Vår metode gav også bedre
resultater enn en eksisterende støyforsterkningsmetode for flere ulike støymod-
eller. Vi så derimot at denne teknikken ga en betydelig økning i beregning-
skostnad, spesielt når vi inkluderer mange støyforsterkningsledd. For kun 2 og
3 ledd fant vi fortsatt en betydelig forbedring i den relative feilen, til henholds-
vis 14% og 8.3%, men i disse tilfellene økte beregningskostnaden med under
én størrelsesorden.

Videre utforsket vi potensialet i å kombinere to ulike teknikker for støy-
demping. Vi kombinerte vår variant av nullstøysekstrapoleringen men en teknikk
for støydemping ved feildeteksjon. Dette anvendte vi på en algoritme for sim-
uleringer av H2 -molekylet på en simulator med en enkel støymodell. Den kom-
binerte metoden gav bedre resultater enn både nullstøysekstrapolerings- og
feildeteksjons-teknikkene gav for seg selv. Med en feilrate på 0.1% oppnådde
den kombinerte metoden en feil under den kjemiske nøyaktigheten. Teknikken
med feildeteksjon oppnådde ikke dette for noen av de testede tilfellene, men
teknikken kom med en betydelig lavere beregningskostnad enn nullstøysekstra-
polering, men den krever noen ekstra qubiter. Å kombinere de to støymitiger-
ingsteknikkene viser dermed potensiale til å kunne oppnå en større grad av
støydemping.

v





Acknowledgements

I would like to thank my supervisor Franz G. Fuchs for much help and great
supervision throughout this year, and for giving me this opportunity. I would
also like to thank my co-supervisors, Jeroen Danon and Knut-Andreas Lie, for
great advice and thorough proof-reading.

I would like thank my mum and dad, Liv Berit Håøy and Knut Inge Rokne,
for all love and support throughout my years, as well as my family at large.
Also, a huge thank you to all my friends for making these last 5 years such a
great time.

Finally, I want to thank Plancks constant, ~, for allowing us all to exist.

vii





Contents

Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii
Sammendrag . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v
Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii
Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ix
1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
2 Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.1 Linear algebra . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.1.1 Inner Product Spaces . . . . . . . . . . . . . . . . . . . 7
2.1.2 Homomorphisms . . . . . . . . . . . . . . . . . . . . . . 8

2.2 Quantum Mechanics . . . . . . . . . . . . . . . . . . . . . . . . 9
2.2.1 The State Space . . . . . . . . . . . . . . . . . . . . . . 9
2.2.2 Time Evolution . . . . . . . . . . . . . . . . . . . . . . . 9
2.2.3 Measurements . . . . . . . . . . . . . . . . . . . . . . . . 10

2.3 Density Operators and Quantum Channels . . . . . . . . . . . . 10
2.3.1 The Density Operator . . . . . . . . . . . . . . . . . . . 10
2.3.2 Trace and Partial Trace . . . . . . . . . . . . . . . . . . 12
2.3.3 The Bloch Sphere . . . . . . . . . . . . . . . . . . . . . . 12
2.3.4 Quantum Channels . . . . . . . . . . . . . . . . . . . . . 13
2.3.5 Operator-Sum Representation . . . . . . . . . . . . . . . 14

2.4 Quantum Computation . . . . . . . . . . . . . . . . . . . . . . . 15
2.4.1 The Quantum Bit . . . . . . . . . . . . . . . . . . . . . 15
2.4.2 Multi-Qubit States . . . . . . . . . . . . . . . . . . . . . 16
2.4.3 Quantum Computations and Circuit Notation . . . . . . 17
2.4.4 Quantum Gates . . . . . . . . . . . . . . . . . . . . . . . 18
2.4.5 Controlled Gates . . . . . . . . . . . . . . . . . . . . . . 20
2.4.6 Gate Identities . . . . . . . . . . . . . . . . . . . . . . . 21
2.4.7 Basis Sets of Gates . . . . . . . . . . . . . . . . . . . . . 22
2.4.8 Qubit Connectivity and Virtual Qubits . . . . . . . . . . 23
2.4.9 Measurements of Quantum Circuits . . . . . . . . . . . . 26
2.4.10 Expectation Values . . . . . . . . . . . . . . . . . . . . . 27
2.4.11 Mean Square Error and Error Estimation . . . . . . . . 28

3 Error Models for Quantum Computation . . . . . . . . . . . . 31
3.1 Noise as Quantum Channels . . . . . . . . . . . . . . . . . . . . 31
3.2 Coherent Noise . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

ix



x A.H.Rokne: QEM for NISQ-era Quantum Computation

3.3 Incoherent Noise . . . . . . . . . . . . . . . . . . . . . . . . . . 32
3.3.1 Stochastic Pauli-Noise . . . . . . . . . . . . . . . . . . . 32
3.3.2 Depolarizing Noise . . . . . . . . . . . . . . . . . . . . . 33
3.3.3 Amplitude Damping . . . . . . . . . . . . . . . . . . . . 33
3.3.4 Phase Damping . . . . . . . . . . . . . . . . . . . . . . . 34

4 Hybrid Algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . 35
4.1 Variational Quantum Methods . . . . . . . . . . . . . . . . . . 36
4.2 Variational Quantum Eigensolver . . . . . . . . . . . . . . . . . 36

4.2.1 The Molecular Hamiltonian . . . . . . . . . . . . . . . . 37
4.2.2 Jordan–Wigner transformation . . . . . . . . . . . . . . 38
4.2.3 The UCCSD ansatz . . . . . . . . . . . . . . . . . . . . 39
4.2.4 Hardware-efficient ansatze . . . . . . . . . . . . . . . . . 40
4.2.5 Symmetry-preserving ansatze . . . . . . . . . . . . . . . 41

5 Quantum Error Mitigation . . . . . . . . . . . . . . . . . . . . . 43
5.1 Zero-Noise Extrapolation . . . . . . . . . . . . . . . . . . . . . 43

5.1.1 Richardson Extrapolation . . . . . . . . . . . . . . . . . 44
5.1.2 Noise Amplification by Random Pauli-Gate Sampling . 45
5.1.3 Noise Amplification by Repeating CNOT-Gates . . . . . 46
5.1.4 Variance Scaling . . . . . . . . . . . . . . . . . . . . . . 46

5.2 Error Detection . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
6 Experiments and Results . . . . . . . . . . . . . . . . . . . . . . 51

6.1 Zero-Noise Extrapolation for CNOT-Gates . . . . . . . . . . . . 52
6.1.1 The SWAP-test Circuit . . . . . . . . . . . . . . . . . . 52
6.1.2 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . 54

6.2 Zero-Noise Extrapolation with Error Detection . . . . . . . . . 60
6.2.1 VQE for the Hydrogen Molecule . . . . . . . . . . . . . 60
6.2.2 UCCSD Ansatz Circuit with Error Detection . . . . . . 61
6.2.3 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . 62

7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
7.1 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
7.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
A The H2 Molecule . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
B Pauli-Twirling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
C Quantum Error Correction . . . . . . . . . . . . . . . . . . . . . 81

C.1 The Classical Repetition code . . . . . . . . . . . . . . . . . . . 81
C.2 The Quantum Repetition code . . . . . . . . . . . . . . . . . . 82
C.3 Digitization of errors . . . . . . . . . . . . . . . . . . . . . . . . 84
C.4 Error Thresholds . . . . . . . . . . . . . . . . . . . . . . . . . . 84



Chapter 1

Introduction

The onset of quantum computation promises to achieve exponential speed up
for specific computational tasks when compared to known classical algorithms.
As first proposed by Richard Feynman in the context of simulating quantum
physics, exploiting the distinct physical properties of quantum mechanical sys-
tems may enable quantum computers to surpass the capabilities of classical
computers for certain applications. As recently as 2019, a research team at
Google announced that they had achieved quantum advantage, or quantum su-
premacy, on a programmable quantum computer by computing a specific task
faster than what is thought possible to accomplish on any classical supercom-
puter [1]. This represents an important milestone on the path to practically
applicable quantum computation.

The main idea in quantum computation is to encode information into qubits
that have quantum mechanical properties. In classical computation the funda-
mental unit of information is the bit, which have a value of either 0 or 1. The
analogue in quantum computation is the qubit. The qubit is physically realized
in a quantum mechanical system where the equivalents of the bit-values 0 and
1 are encoded as quantum states [2]. For example, a spin up/down particle,
where we encode 0 as spin up, and 1 as spin down. Now the qubit may be
in the state 0, in the state 1, or in any superposition of the two. Quantum
computations are most often formulated as quantum circuits. In general, we
first initialize some quantum state on a set of qubits. This quantum state is
evolved in time by applying a sequence of quantum operations, or quantum
gates, analogous to logical gates of classical logical circuits. Lastly, a set of
quantum measurements are performed on the culminating final state, result-
ing in a set of recorded measurement outcomes. As quantum measurements
are probabilistic, we usually repeat this experiment several times, before in-
terpreting the measurement outcomes by use of classical post-processing to
produce the final algorithm output. Often, this involves the estimation of one
or more expectation values of some quantum operators with respect to the
final quantum state.

1



2 A.H.Rokne: QEM for NISQ-era Quantum Computation

The advantages of quantum computation, in very oversimplified terms, can
be understood as follows; on a classical computer with n bits of memory, we
can only store and operate on a single bit-string of length n at a time. On
a quantum computer with n qubits, however, we can create superpositions of
all the 2n basis states corresponding to each of the n-bit bit-strings and do
operations on all of them at once. This is sometimes referred to as quantum
parallelism. Such a state would in general require in the order of 2n bits to
represent on a classical computer, i.e., exponentially increasing with n. The
reality is more complex of course. Yet, this offers a rough idea in layman terms
of how quantum computers offer something fundamentally distinct from the
capabilities of classical computers, with the potential to obtain exponential
speed up in certain circumstances.

A first possible application for a quantum computer are simulations of
quantum mechanical systems. Intuitively, simulating quantum physics on a
machine that possesses the same quantum mechanical properties, such as su-
perpositions and entanglement, can be done more efficiently than on a classical
computer. Efficient simulations of such systems could further a variety of fields,
such as material science, solid state physics and quantum chemistry. The most
prominent quantum algorithm for this task is the variational quantum eigen-
solver (VQE). The VQE algorithm finds ground state energies of molecules by
preparing parametrized quantum trial states, or ansatze, then minimizing the
energy of said state ansatze with respect to the variational parameters. The
minimization is done by an optimization algorithm run on a classical computer,
which makes this a hybrid quantum-classical algorithm [3–6].

Further advancements in quantum hardware are nonetheless required be-
fore quantum computers may become applicable to real-world tasks. There
are two main limitations imposed by current and near-future quantum hard-
ware. Firstly, quantum computers are afflicted by noise, as quantum systems
are notoriously difficult to keep stable and coherent for longer periods of time.
Secondly, they have limited scale by which we mean the number of available
and connected qubits. The near-term era of quantum computation has there-
fore been coined the noisy intermediate-scale quantum (NISQ) era.

For the long-term, quantum error correction by quantum error correcting
codes promises to provide means to repeatedly detect and correct arbitrary
errors throughout the run of a quantum computation [7, 8]. This can be done to
arbitrary precision, under the assumption that the error rates are below certain
code-specific thresholds and given that enough ancillary qubits are available.
This gives promise for the long-term viability of quantum computation, but
for such codes the overhead in terms of ancillary qubit requirements is large.

For the short-term, quantum error correcting codes are indeed far too de-
manding in their qubit requirements. This brings us on to the second main lim-
itation of NISQ-era devices; their limited scale. The state-of-the-art quantum
processor used to achieve quantum advantage had 53 connected qubits, and in
the near-future, in the range of hundreds to thousands of qubits is considered
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to be realistically obtainable. In contrast, consider the Shor’s factorization al-
gorithm, which efficiently factorizes integers. It is perhaps the most well-known
quantum algorithm and may have far-reaching consequences as some modern
encryption schemes relies on the assumption that integer factorization is hard.
However, as a long-depth quantum algorithm, it requires quantum error correc-
tion to obtain useful results on a noisy quantum computer. The qubit require-
ments of Shor’s algorithm have been estimated to be over 20 million qubits [9],
far beyond the capabilities of near-future quantum hardware.

Because of the restrictions posed by NISQ-era quantum hardware, the
near-term applications for quantum computers are hybrid quantum-classical al-
gorithms. Such algorithms consist of a short-depth quantum computation com-
bined with classical computation. The aforementioned VQE algorithm for mo-
lecular simulations is an example of such a hybrid algorithm. Hybrid algorithms
also include the quantum approximate optimization algorithm (QAOA), that
solves the classical optimization problem known as the max-cut problem, and
others [10–12].

To combat noise in NISQ-era quantum devices, for which quantum error
correcting codes are not viable, we turn instead to quantum error mitigation.
With quantum error mitigation we mean techniques that aim to reduce the
impact of noise. This is in contrast to quantum error correction that targets ex-
act correction for certain sets of errors. Error mitigation can often be achieved
without the large ancillary qubit requirements posed by quantum error correc-
tion and may thus be feasible for near-term quantum computers.

There are several quantum error mitigation schemes that have been pro-
posed in recent years [13–22]. One noteable technique is the zero-noise extra-
polation. The idea is to amplify the noise in our quantum circuits by a set of
different known factors, then compute the corresponding noise amplified ex-
pectation values. From this, we can then extrapolate the expectation value to
the zero-noise case. Another recently proposed technique does error mitiga-
tion based on error detection. The error detection scheme borrows ideas from
quantum error correction, but instead of identifying the exact errors that have
occurred in order to correct them, we simply attempt to detect if some error
has occurred. If so, we discard that circuit execution.

In this thesis, we will examine quantum error mitigation techniques with
applications to quantum algorithms viable on near-future quantum hardware.
We aim to explore how quantum error mitigation may combat noise in NISQ-
era quantum hardware, how it may extend the range of viability for certain
hybrid algorithms, and what are their drawbacks. In particular, we explore
the zero-noise extrapolation technique for error mitigation, and we propose a
variation of this technique with a specific noise-amplification scheme. We fur-
ther examine the error detection scheme and aim to understand the advantages
gained from combining both error mitigation schemes. We apply the aforemen-
tioned error mitigation techniques to a simple trial quantum circuit, known as
the SWAP-test circuit, as well as on the VQE algorithm.
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For the zero-noise extrapolation technique, we propose a scheme for ampli-
fying noise in the multi-qubit CNOT quantum operation. The idea is to exploit
that the CNOT-gate is its own inverse. By repeating an odd number of CNOT-
gates after one another, the action in the ideal case will be equal to a single
CNOT-gate, but on a real quantum computer the noise on each CNOT-gate
will compound. This noise amplification scheme has, to the best of our know-
ledge, not been researched previously.

This thesis is laid out in the following way; first, Chapter 2 presents the
preliminary theory and prerequisites needed to understand quantum compu-
tation, and the further concepts of hybrid quantum-classical algorithms and
quantum error mitigation that will be presented. This includes the basics of
quantum mechanics, leading up to the density operator and quantum channel
formalism for quantum mechanics that are commonly used within quantum in-
formation theory and quantum computation, as well as the basics of quantum
computation in terms of quantum circuits and quantum gates. Chapter 3 gives
a framework in which to model errors and noise in quantum computers in
terms of quantum channels operating on density operators and defines some
particular useful error models.

To understand the possible near-future applications for quantum com-
puters, Chapter 4 presents the main aspects of hybrid algorithms. The chapter
describes the general concepts of variational quantum methods. Several prom-
inent hybrid algorithms, including the aforementioned VQE and QAOA al-
gorithms, are examples of such methods. We further focus on specifically the
VQE algorithm, including three different quantum state ansatze. The unit-
ary coupled clusters single-double excitation (UCCSD) ansatz, the hardware
efficient ansatz, and a recently proposed symmetry-preserving ansatze.

Chapter 5 gives the general concept of quantum error mitigation techniques
that are hoped to be applicable to the aforementioned near-future hybrid al-
gorithms. We focus on the zero-noise extrapolation and the error detection
techniques. For the former, we present our proposed scheme for noise ampli-
fication by repeating CNOT-gates, as well as an existing noise amplification
scheme that uses sampling of random Pauli-gates [23].

Chapter 6 presents the details of the experiments that we performed on the
error mitigation techniques, and both presents and discusses the results from
said experiments. The zero-noise extrapolation technique was employed to the
SWAP-test trial circuit, in order to explore the efficiency of the technique with
our proposed noise amplification scheme, as well as to compare this scheme
with existing state-of-the-art amplification schemes. To explore the potential in
combining this technique with the error detection scheme, as well as to examine
how these error mitigation schemes might extend the range of viability for
useful near-future hybrid algorithms, we trialed these techniques on the VQE
algorithm applied to the H2molecule. The code for these experiments is made
available at https://github.com/AndersHR/qem__master_thesis. The thesis
and results are then summarized in Chapter 7.

https://github.com/AndersHR/qem__master_thesis
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Aside from the main part of the thesis, Appendix A presents some specif-
ics for the VQE algorithm on the H2molecule. This includes the specific qubit
Hamiltonian, as transformed from the fermionic Hamiltonian of H2 by use of the
Jordan–Wigner transformation, as well as the full UCCSD ansatz for this prob-
lem. Appendix B presents the concept of Pauli-twirling, a technique that trans-
forms general error channels into stochastic Pauli-noise channels. Appendix C
gives an introduction to the concepts of quantum error correction by stabilizer
codes and explains why they are useful for the long-term but perhaps not feas-
ible for the near-future. These concepts are included for the interested reader,
but are not mandatory in order to understand the main subjects of this thesis.





Chapter 2

Theory

This chapter presents and explains the preliminary theory that is needed to
understand quantum computation in general, as well as the concepts that will
be presented later. We define a few key concepts of linear algebra, which forms
the mathematical foundation of quantum mechanics, and present the basics
of quantum mechanics. We formulate quantum information theory within the
density operator and quantum channel formalism. This formalism generalizes
the concepts of quantum mechanics to open systems and probabilistic en-
sembles of states. The formalism as presented is commonly used within the
field of quantum computation, and will prove especially useful when modelling
noise in real quantum computers.

The theory presented here is well-established. The interested reader can
find the subjects explained and explored more in detail in textbooks such as
Quantum Computation and Quantum Information by Nielsen and Chuang, and
others [2, 24–26].

2.1 Linear algebra

The basis of quantum mechanics is that of linear algebra. This section presents
some concepts that will be important when defining the postulates of quantum
mechanics, and for the density operator and quantum channel formulation of
quantum mechanics. We define the inner product space, which will be crucial
for the concept of quantum-mechanical state vectors, and the homomorphism.
The latter will become important when defining the quantum density oper-
ator, and the quantum channel, which are important concepts in quantum
information theory and quantum computation.

2.1.1 Inner Product Spaces

An inner product space is a vector space V over a field F (e.g., the real numbers
R or the complex numbers C), equipped with an inner product

〈·, ·〉 : V × V → F (2.1)

7
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which is a map that for all x, y, z ∈ V and α ∈ F fulfills the following properties:

1. Linearity:

〈αx, y〉 = α〈x, y〉, (2.2)
〈x+ z, y〉 = 〈x, y〉+ 〈z, y〉. (2.3)

2. Conjugate symmetry:
〈x, y〉 = 〈y, x〉. (2.4)

3. Positive semi definite:

〈x, x〉 > 0⇔ x 6= 0. (2.5)

The inner product 〈·, ·〉 of an inner-product space V induces a norm ‖·‖; that
is, a map

‖·‖ : V → R, (2.6)

defined for all x ∈ V as
‖x‖ =

√
〈x, x〉. (2.7)

2.1.2 Homomorphisms

A homomorphism between two inner product spaces A and B is a linear map
F : A → B that preserves the inner product. By this we mean the following:
denote 〈·, ·〉A as the inner product on A, and 〈·, ·〉B as the inner product on B.
Then

〈F (x), F (y)〉B = 〈x, y〉A (2.8)

holds for all x, y ∈ A.
Denote the space of homomorphisms between inner product spaces A and

B as Hom(A,B). A homomorphism from a space V onto itself is called an
endomorphism, and the space of endomorphisms on an inner product space V
is denoted End(V ); i.e., End(V ) = Hom(V, V ).

For a homomorphism S ∈ Hom(A,B) on inner product spaces A and B
with inner products 〈·, ·〉A and 〈·, ·〉B, respectively, the adjoint or Hermitian
conjugate of S, denoted S†, is the unique operator such that

〈S(a), b〉B = 〈a, S†(b)〉A (2.9)

for all a ∈ A and b ∈ B. Note that (S†)† = S. Furthermore, S is called

• normal if SS† = S†S,
• unitary if SS† = S†S = I, where I is the identity operator,
• Hermitian if S† = S.

For S being an endomorphism on an inner product space A, S is said to be
positive if 0 ≤ 〈a, S(a)〉A for all a ∈ A.
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2.2 Quantum Mechanics

The postulates of quantum mechanics provide a mathematical framework for
quantum physics. Note that the postulates in themselves do not offer any
physics, rather a foundation in which to model quantum-mechanical systems.
There exist several, equivalent formulations of the postulates. We present here
an algebraic formulation that most straight-forwardly leads up to the dens-
ity operator formalism, which is the commonly used formalism in quantum
computation and quantum information theory [2, 25].

2.2.1 The State Space

Postulate 1. For every isolated physical system, there is associated a complex
Hilbert spaceH, known as the state space. The state of the system is completely
described by a vector |ψ〉 ∈ H, the state vector, with norm equal to 1.

The state vector is unique up to a global phase factor, |ψ〉 −→ eiα |ψ〉 for
any α ∈ R. This will become clear when we consider quantum measurements
later in Section 2.2.3. For every state vector |ψ〉, which is called a ket vector,
there exists a corresponding bra vector 〈ψ| that is a vector in its dual space.
The inner product between two state vectors |ψ〉 and |φ〉 is denoted 〈φ, ψ〉 =
〈φ| · |ψ〉 = 〈φ|ψ〉. This notation is referred to as the Bra-Ket notation.

2.2.2 Time Evolution

Postulate 2. Time evolution of a closed quantum system in state |ψ〉 ∈ H is
described by a unitary operator U : H −→ H derived from the time-dependent
Schrödinger equation

i~
d

dt
|ψ〉 = H |ψ〉 , (2.10)

where H is the Hamiltonian of the system and ~ is the Heisenberg’s reduced
constant.

The Hamiltonian is a Hermitian operator, whose eigenvalues are energies
{Ei}i with eigenvectors {|i〉}i. The eigenvectors form a complete basis for the
Hilbert space, and the state vector can thus be expressed as a linear combina-
tion |ψ〉 =

∑
i ci |i〉 for a set of complex coefficients ci.

The time evolution of a state vector |ψ〉 from time t′ to t, given a time-
independent Hamiltonian H(t) = H, is thus given as

U(t, t′) |ψ〉 = e−i~(t−t
′)H |ψ〉 =

∑
i

cie
−i~Ei(t−t′) |i〉 . (2.11)

It is common practice in literature to set ~ = 1 by rescaling the units, in order
to ease notation.
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2.2.3 Measurements

Postulate 3. For every measureable physical quantity of a system, there is
associated an Hermitian operator A with eigenvalues a and eigenvectors |a〉. A
quantum measurement will probabilistically return a measurement result equal
to one of the eigenvalues a. As A is Hermitian operator there exist a spectral
decomposition

A =
∑
a

aPa (2.12)

where Pa is the projection operator onto the eigenspace associated with the
eigenvalue a. If the system is in state |ψ〉, then the probability of a measurement
obtaining the measurement result a is

pa = 〈ψ|Pa |ψ〉 , (2.13)

and the state will afterwards be left in the post-measurement state

∣∣ψ′〉 =
UPa |ψ〉√
〈ψ|P †aPa |ψ〉

, (2.14)

where U is some possible time evolution operator. An equivalent formulation
of quantum measurements can be written in terms of the set of measurement
operators {Ma}a, where Ma = UPa.

2.3 Density Operators and Quantum Channels

Until now we have considered the description of a quantum system in terms of
a wave function |ψ〉 as a vector in a Hilbert space H. In Section 2.3.1 we intro-
duce the density operator formalism, where the quantum system is described
by a density operator ρ, that offers a more general description. This formalism
also let us describe open quantum systems, quantum subsystem, and ensembles
of state.

In Section 2.3.4, we further define quantum channels as means to de-
scribe general quantum operations on density operators. In the quantum chan-
nel formalism, we define general maps between density operators in terms of
completely-positive trace-preserving maps. The operations we are interested in
may for example be controlled operations in a quantum computer, as a part
of a quantum computation, or it may be uncontrollable noise that is present
in physical quantum devices.

2.3.1 The Density Operator

The density operator gives us a more flexible way of defining quantum states.
The concept will let us describe systems where we do not have perfect inform-
ation, for example subsystems or open systems.
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The density operator also referred to as a density matrix, is an operator
ρ ∈ End(H) for a Hilbert space H such that

ρ =
∑
k

pk |ψk〉 〈ψk| , (2.15)

where |ψk〉 ∈ H are orthogonal quantum states and the coefficients pk form a
probability distribution; i.e., pk ≥ 0 for all k and∑

k

pk = 1. (2.16)

Note that the term state is often used interchangeably for quantum states |ψ〉
and density operators ρ. Whether we mean one or the other becomes clear
from the context. A density operator is said to be pure if it can be written as

ρ = |ψ〉 〈ψ| , (2.17)

for some state vector |ψ〉. A density operator which is not pure is said to be
mixed.

A closed, isolated quantum system described by the quantum state |ψ〉 is in
the density-operator formalism described by the pure density operator |ψ〉 〈ψ|.
As an example, take the composite state |ψAB〉 ∈ HA ⊗HB given by

|ψAB〉 =
1√
2

(
|0〉A ⊗ |0〉B + |1〉A ⊗ |1〉B

)
≡ 1√

2

(
|00〉+ |11〉

)
, (2.18)

that gives the corresponding density operator as the pure density operator

ρAB = |ψAB〉 〈ψAB| =
1

2

(
|00〉 〈00|+ |00〉 〈11|+ |11〉 〈00|+ |11〉 〈11|

)
(2.19)

for |0〉 and |1〉 being two orthonormal basis states for HA and HB. Compare
this to the following example of a mixed state

ρ′ =
1

2

(
|00〉 〈00|+ |11〉 〈11|

)
. (2.20)

Density operators are particularly useful for describing ensembles of states.
As an example, assume that we start out with a quantum state |ψ〉 and an
error occurs with probability p that transforms the state into |ψ′〉 = M |ψ〉.
We do not know if an error has occurred, only the probability that it has done
so. The state afterwards can then be described by the mixed state

ρ′ = (1− p) |ψ〉 〈ψ|+ p
∣∣ψ′〉 〈ψ′∣∣ . (2.21)



12 A.H.Rokne: QEM for NISQ-era Quantum Computation

2.3.2 Trace and Partial Trace

The trace of a density operator, and later the partial trace, are concepts that
will become useful for both analysis, and for later definitions. We define the
trace of a density operator ρ ∈ End(H) as

Tr[ρ] =
∑
l

〈el| ρ |el〉 (2.22)

for {|eL〉}l being some orthonormal basis of H. The requirement given in Equa-
tion (2.16) is then equivalent to requiring

Tr[ρ] = 1. (2.23)

This becomes evident by choosing a basis such that |el〉 = |ψl〉. Furthermore,
an operator ρ is pure if and only if Tr[ρ2] = 1.

For a composite system AB and ρ ∈ End(HA⊗HB), define the partial trace
of ρ onto A as

TrB[ρ] =
∑
l

〈el| ρ |el〉 (2.24)

for {|eL〉}l being some orthonormal basis of HB. The resulting operator ρA ≡
TrB[ρ] is a density operator in End(HA).

For any density operator ρA ∈ End(HA) one can always find a density
operator ρAB ∈ End(HAB) on some larger composite system AB such that
ρAB is pure and TrB[ρAB] = ρA. ρAB is then called a purification of ρA.

As an example, let us look at the pure state ρAB = |ψAB〉 〈ψAB| as given in
Equation (2.19). Taking the partial trace of ρAB onto A we can describe the
state on

ρA = TrB[|ψAB〉 〈ψAB|] =
1

2
(|0〉 〈0|A + |1〉 〈1|A). (2.25)

The expectation value of an observable M with respect to some density oper-
ator ρ is given as

〈M〉ρ = Tr[Mρ]. (2.26)

2.3.3 The Bloch Sphere

The Bloch sphere representation provides a geometrical representation for dens-
ity operators on a certain class of quantum-mechanical systems; quantum sys-
tems of dimension equal to 2, e.g., a qubit system.

Theorem 2.1. Any density operator ρ on a quantum system of dimension 2
can be written on the form

ρ =
1

2

(
I + ~r · ~σ

)
(2.27)

for a real vector ~r = (rx, ry, rz), such that ‖r‖ ≤ 1 and ~σ = (σx, σy, σz), where
{σi}i=x,y,z are the Pauli matrices defined as

σz =

[
1 0
0 −1

]
, σy =

[
0 i
−i 0

]
, σx =

[
0 1
1 0

]
. (2.28)
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Thus the Bloch sphere representation gives a geometrical representation
for general density operators ρ on 2-dimensional quantum systems, in terms of
the vector ~r ∈ R3. The vector ~r is referred to as the Bloch vector of ρ. This
can be represented as in Figure 2.1.

Z

X

Y

r

Figure 2.1: A geometrical representation of a density operator ρ = 1
2 (I+~r ·~σ)

by its Bloch vector ~r on the Bloch sphere.

2.3.4 Quantum Channels

So far, we have introduced the density operator as a general mean to describe
states of quantum systems. We further need a formalism to describe changes
occurring to such systems, as they are evolved in time, i.e., quantum operations.
As the state of the system at all times may be described by a density operator
the minimal requirement is that the quantum operation maps density operators
to density operators. The approach of quantum channels is to recognise the
general properties of density operators and define operations as maps that
preserve these properties.

We define a quantum channel, or quantum operation, E as a trace-preserving
completely positive linear map from density operators ρ ∈ End(HA) to density
operators ρ′ ∈ End(HB),

E : End(HA)→ End(HB). (2.29)

With trace-preserving we mean that the trace of ρ is preserved under E , i.e.,

Tr[E(ρ)] = Tr[ρ]. (2.30)

A map E : End(HA) → End(HB) is said to be positive if it fulfills the
property that if ρ ∈ End(HA) is a positive operator, then E(ρ) ∈ End(HB) is
also a positive operator.
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A map E : End(HA)→ End(HB) is said to be completely positive if it fulfills
the slightly more restrictive restriction that if ρ ∈ End(HR ⊗ HA) a positive
operator, then (I⊗ E)(ρ) ∈ End(HR ⊗HB) a positive operator.

The motivation behind defining quantum channels as trace-preserving and
completely positive maps is to preserve the properties of quantum density op-
erators, which are positive operators with trace equal to one. The stricter re-
quirement of complete positivity ensures that a quantum channel acting locally
on a part of a system still preserves positivity of the total, composite state.

A special class of quantum channels are the unitary channels E(ρ) = UρU †

for U a unitary operator. The unitary evolution of a quantum state vector |ψ〉
by a unitary operator U , as described in Section 2.2.2, can be written within
the density operator formalism as the unitary quantum channel E(|ψ〉 〈ψ|) =
U |ψ〉 〈ψ|U † on the pure state |ψ〉 〈ψ|. Note that a unitary channel preserves
purity, as

ρ′ = E(|ψ〉 〈ψ|) = U |ψ〉 〈ψ|U † =
∣∣ψ′〉 〈ψ′∣∣ , (2.31)

where we have defined |ψ′〉 = U |ψ〉.

Theorem 2.2 (The Stinespring Dilation). For any quantum channel E :
End(HA)→ End(HB) there exists a unitary U ∈ Hom(End(HA),End(HB)⊗
End(HC)), and a unitary Ũ ∈ Hom(End(HA)⊗End(HC),End(HB)⊗End(HC)),
such that

E(ρ) = TrC [Ũ(ρ⊗ |e〉 〈e|C)Ũ †] = TrC [UρU †] (2.32)

for any ρ ∈ End(HA); |e〉C is a unit vector in an ancillary Hilbert space HC.

The Stinespring dilation gives the interpretation that any quantum channel
E can be seen as a unitary channel, with unitary Ũ , on a larger composite sys-
tem ρ⊗|e〉 〈e|C ∈ End(HA⊗HC). The channel acting locally on the subsystem
of interest is found by tracing out the system C.

Furthermore, we define compositions of quantum channels through the ◦
operator, defined as

Ñ (ρ) = E ◦ N (ρ) = E(N (ρ)), (2.33)

where we have defined the quantum channel Ñ = E ◦ N .

2.3.5 Operator-Sum Representation

An efficient representation of general quantum channels is the operator-sum
representation. By Equation (2.32) we can write any arbitrary quantum channel
E as

E(ρ) = TrC [UρU †] =
∑
i

〈ei|UρU † |ei〉C =
∑
i

EiρE
†
i , (2.34)

where {|ei〉C}i is some basis for the ancillary Hilbert space HC, and we have
defined the operators Ei ≡ U 〈ei|C . The operators {Ei}i are called the Kraus
operators of E .
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Note the following restriction, which must hold for any valid set of Kraus
operators describing a quantum channel,∑

i

E†iEi =
∑
i

U † |ei〉 〈ei|C U = U †(
∑
i

|ei〉 〈ei|C)U = U †IU = I. (2.35)

We have used that
∑

i |ei〉 〈ei| = I, for {|ei〉}i being a complete, orthonormal
basis, and I being the identity operator, and that U is unitary. Note that the
freedom in choosing the basis {|ei〉}i implies that the Kraus operators are not
uniquely defined.

As an example, take the error channel as described in Equation (2.21),
where the pure state |ψ〉 〈ψ| is transformed into a mixed state after an errorM
may have occurred with probability p. This case can be described as a quantum
channel by defining the Kraus operators

E0 =
√

1− p I, E1 =
√
pM. (2.36)

These completely describe the given quantum error channel E , as

E(ρ) = E0 |ψ〉 〈ψ|E†0 + E1 |ψ〉 〈ψ|E†1
= (1− p)I |ψ〉 〈ψ| I + pM |ψ〉 〈ψ|M †

= (1− p) |ψ〉 〈ψ|+ p
∣∣ψ′〉 〈ψ′∣∣ = ρ′.

(2.37)

They also fulfill the requirement given in Equation (2.35), as

E†0E0 + E†1E1 = (1− p)I + pM †M = (1− p+ p)I = I, (2.38)

where we use that M is unitary.

2.4 Quantum Computation

So far, we have presented the basics of quantum mechanics in Section 2.2,
and the density operator and quantum channel formalism in Section 2.3. This
chapter employs the aforementioned theory to build a basis in which to model
quantum computations.

2.4.1 The Quantum Bit

In classical computation the fundamental unit of information is the bit, which
has a value of either 0 or 1. Analogously, the quantum bit, or qubit, forms the
most fundamental unit of information for quantum computation. The qubit is
encoded into some quantum system, taking advantage of the distinct quantum-
mechanical properties of superposition and entanglement. An arbitrary qubit
state may be written

|ψ〉 = α |0〉+ β |1〉 , (2.39)
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for α, β ∈ C and {|0〉 , |1〉} being the computational basis, which is some or-
thonormal basis spanning the Hilbert space H ∼= C2 of the qubit system. When
measuring the state |ψ〉 in the computational basis, we get a measurement res-
ult of 0 with probability |〈0|ψ〉|2 = |α|2 and 1 with probability |〈1|ψ〉|2 = |β|2.
Normalization of the state |ψ〉 requires that |α|2 + |β|2 = 1.

Note that there is nothing inherently special about the computational basis
and other bases may be constructed. For example the {|+〉 , |−〉} basis can be
constructed as

|+〉 = 1√
2
(|0〉+ |1〉), |−〉 = 1√

2
(|0〉 − |1〉), (2.40)

which is an equivalent orthonormal, complete basis for the same Hilbert space.
Still, it is useful to define a canonical basis for which to write out qubit states.

2.4.2 Multi-Qubit States

To construct the space of multi qubit states, we take the tensor product of
single-qubit state spaces. For a 2-qubit system with qubits A and B, we take
the Hilbert space of the combined system to be

HAB = HA ⊗HB, (2.41)

on which a general state can be written as

|ψ〉 =
∑

x∈{0,1}

∑
y∈{0,1}

αxy |xy〉 . (2.42)

It is common in literature to write the tensor product of two qubit states
|x〉 ⊗ |y〉 as |xy〉. A complete, orthonormal basis for the 2-qubit space is then
{|00〉 , |01〉 , |10〉 , |11〉}.

We extend this to an arbitrary number of qubits. An n-qubit system will
be of dimension 2n, and we denote the computational basis states as |z〉, where
z ∈ {0, 1}n are the n-bit bitstrings, which can be written z = z0 z1 z2 . . . z2n−1
for zk ∈ {0, 1}. An arbitrary state |ψ〉 on an n-qubit system is thus written

|ψ〉 =
∑

z∈{0,1}n
cz |z〉 (2.43)

with coefficients cz such that
∑

z |cz|
2 = 1. A measurement in the computa-

tional basis gives outcome z with probability |cz|2.
An alternative way to represent n-qubit states is by integers i = 0, 1, . . . , 2n−

1, such that

|z〉 = |z0z1 . . . z2n−1〉 = |i〉 , i =

2n−1∑
k=0

zk · 2k, (2.44)

where z is a binary string z = z0z1 . . . z2n−1, zk ∈ {0, 1} ∀ k. This eases nota-
tion in some circumstances. We will write multi-qubit states in the bit string
representation, unless otherwise specified.
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2.4.3 Quantum Computations and Circuit Notation

A quantum computation, or quantum algorithm, consists of the preparation of
a multi-qubit initial state |ψ〉0, the evolution of this state by a sequence of
unitary operators acting on one or more of the qubits at a time, and projective
measurements of some or all of the qubits.

We will write quantum computations in terms of quantum circuits. The
notation is analogous to that of classical logical circuits. Logical circuits model
classical computation on the lowest level of abstractions, in terms of wires,
representing bits, and logical operators acting on them. Some examples of
classical logical operators are AND-gates and OR-gates.

At the leftmost end of a quantum circuit, we write the initial state of each
qubit. Each qubit is assigned a wire. We follow the evolution of a qubit state
by following its wire from left to right. Thus, the circuit

|ψ〉 (2.45)

represents a single qubit initialized in state |ψ〉.
The states are evolved by applying quantum gates, representing unitary

operators acting on one or several qubits, in sequence. These are applied in time
in order from left to right. A bare wire represents no evolution, or equivalently
an application of the identity operator I. The quantum circuit

|ψ〉 U
V

|φ〉 ,
(2.46)

is thus equivalent to acting on the state |ψ〉⊗|φ〉 with the operator V12(U1⊗I2).
Measurements are represented by a special class of gates, denoted by a

meter. Doubled wires represents classical bits. The measurement of a single
qubit is represented by the circuit

x, (2.47)

where the measurement outcome is stored in the classical bit x. All measure-
ments are performed in the computational basis {|0〉 , |1〉}, unless otherwise
specified.

As an example, combining all the aspects of quantum circuits that we have
defined, take the quantum circuit

|q0〉
U

M a

|q1〉

|q2〉 V E b.

(2.48)

This circuit is equivalent the unitary evolution of the initial state |q0q1q2〉 =
|q0〉 ⊗ |q1〉 ⊗ |q2〉, to the state |ψ〉 = U |q0q1q2〉. The operator U is written as

|ψ〉 = U |q0q1q2〉 = (M ⊗ I⊗ E)(U ⊗ I)(I⊗ I⊗ V ) |q0q1q2〉 . (2.49)
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Then followed by a measurement of qubits 0 and 2, in the computational basis
{|0〉 , |1〉}, for which the measured values, 0 or 1, are stored in the classical bits
a and b.

Note that, whereas a quantum gate normally represents a unitary operator,
sometimes it will be convenient to write general quantum channels, acting on
the qubit states, in the same quantum circuit notation, for example, in the case
of a noise-afflicted gate that is not necessarily unitary anymore. When doing
so, this will be clearly specified, and the following analysis will be done within
the density operator formalism.

When quantifying the complexity of a quantum algorithm, a common met-
ric is the circuit depth. This is defined as the longest path from initialisation
to the circuit end, moving in time along the qubit wires. Each gate execution
gives a contribution of one. This is roughly equivalent to the number of time
steps needed for the circuit execution to terminate. As an example, take the
circuit in Equation (2.48). Counting the measurement gates, this circuit has a
depth of four.

2.4.4 Quantum Gates

We will now have a closer look at quantum gates and define some useful ex-
amples of quantum gates. A quantum gate is a unitary operation, acting on one
or several qubits. We write the computational basis states of a qubit system
as vectors in C2.

|0〉 =

[
1
0

]
, |1〉 =

[
0
1

]
. (2.50)

By taking the tensor product of the single-qubit computational basis states,
the computational basis state for an n-qubit system can analogously be written
as unit vectors in C2n . As an example, take an arbitrary state |ψ〉 on a 2-qubit
system. We now write |ψ〉 as

|ψ〉 =
∑

z∈{0,1}2
cz |z〉 =

[
c00 c10 c01 c11

]T
. (2.51)

Any unitary operator on an n-qubit system will now map 2n-dimensional com-
plex vectors to 2n-dimensional complex vectors and can thus be expressed as
a 2n × 2n matrix.

An example of an often-used quantum single-qubit gate is the Hadamard
gate, defined as

H =
1√
2

[
1 1
1 −1

]
= H . (2.52)

Notably, the Hadamard acts on the single-qubit computational basis states as
H |0〉 = |+〉 and H |1〉 = |−〉. The Hadamard thus gives a basis transforma-
tion, from the computational basis {|0〉 , |1〉}, to the basis { |+〉 , |−〉} given by
|±〉 = 1√

2
(|0〉 ± |1〉).
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Furthermore, consider an n-qubit system starting out in the 0-state, i.e.,
in |00 . . . 0〉. If we apply a single Hadamard gate to each of the n-qubits, we
obtain an equal superposition of all the computational basis states, as

H⊗n |00 . . . 0〉 =
1√
2n

∑
z∈{0,1}n

|z〉 . (2.53)

Here, we have used H⊗n to denote the tensor product H ⊗ · · · ⊗H, of a total
of n Hadamard gates.

The T -gate, and its inverse, the T †-gate, are two other useful quantum
gates. These are defined as

T =

[
1 0

0 eiπ/4

]
= T , T † =

[
1 0

0 e−iπ/4

]
= T † . (2.54)

Furthermore, we define the phase gate S, and its inverse S†, as

S =

[
1 0

0 eiπ/2

]
= S , S† =

[
1 0

0 e−iπ/2

]
= S† , (2.55)

and the Pauli gates X = σx, Z = σz, and Y = σy = iXZ, which are defined
as

X =

[
0 1
1 0

]
= X , (2.56)

Z =

[
1 0
0 −1

]
= Z , (2.57)

Y =

[
0 −i
i 0

]
= Y . (2.58)

The Pauli gates further define the rotation gates, Rx(θ), Rz(θ), and Ry(θ), all
parametrized by an angle θ, as

Rx(θ) = eiθX/2 =

[
cos
(
θ
2

)
−i sin

(
θ
2

)
−i sin

(
θ
2

)
cos
(
θ
2

) ] = Rx(θ) , (2.59)

Rz(θ) = eiθZ/2 =

[
e−i

θ
2 0

0 ei
θ
2

]
= Rz(θ) , (2.60)

Ry(θ) = eiθY/2 =

[
cos
(
θ
2

)
− sin

(
θ
2

)
sin
(
θ
2

)
cos
(
θ
2

) ] = Ry(θ) . (2.61)

Representing an arbitrary single-qubit state in the Bloch sphere representation,
given in Equation (2.27), these gates have the following interpretation: The
gates Rx(θ), Rz(θ), and Ry(θ) act on ρ = 1

2(I + ~r · ~σ) by rotating the Bloch
vector by θ degrees around the x, z, or y axis, respectively.

In fact, any unitary mapping between single-qubit pure quantum states
can be decomposed into a sequence of the three rotation operators, possibly
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multiplied by a global phase factor. This follows from the rotation operators
giving three independent rotations of a three-dimensional unit vector, i.e., the
Bloch vector. Thus, any arbitrary unitary operator U can be written as

U = eiαRx(θ)Rz(φ)Ry(λ). (2.62)

An important set of single-qubit gates, sometimes referred to as the phys-
ical gates, are the U1, U2, and U3 gates. These are the physically realized
single-qubit gates in the quantum computers publicly available, at present
time, through the IBM Quantum Experience [27]. The U3(θ, φ, λ) gate, para-
meterized by the angles θ, φ, and λ, is given as

U3(θ, φ, λ) =

[
cos(θ/2) −eiλ sin(θ/2)
eiφ sin(θ/2) eiλ+iφ cos(θ/2)

]
= U3(θ, φ, λ) . (2.63)

With three independent angles, the U3 gate can generate any arbitrary rotation
of the Bloch vector, and thus any arbitrary single-qubit unitary. The U1 and
U2 gates are derived from the U3 gate, as U1(λ) = U3(0, 0, λ) and U2(φ, λ) =
U3(

π
2 , φ, λ).

2.4.5 Controlled Gates

An important class of multi-qubit gates are the controlled gates. Focusing on
the two-qubit case, a controlled gate acts on one qubit called the control, and
one qubit called the target. In general, a controlled gate may act on multiple
control and target qubits. In circuit notation, a two-qubit controlled-U gate,
denoted cU , is defined as •

U
cU = , (2.64)

for U being a unitary operator. The black dot denotes the control, and the other
qubit is the target. The action of a controlled-U gate on a state |x〉 |y〉, where
|x〉 is the control and |y〉 is the target, is written as a quantum operator as

cU = |0〉 〈0| ⊗ I + |1〉 〈1| ⊗ U. (2.65)

A controlled gate of high practical importance is the controlled-NOT gate,
or controlled-X gate, denoted CNOT or cX. The CNOT-gate is in circuit
notation denoted as •

CNOT = . (2.66)

Note the notation on the lower qubit, the target qubit. Writing out the quantum
operator, and representing the two-qubit state as a vector in C4, as given in
Equation (2.51), the CNOT-gate can be expressed as a 4× 4 matrix as

CNOT = |0〉 〈0| ⊗ I + |1〉 〈1| ⊗X =


1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

 . (2.67)
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The reason for the controlled-NOT term becomes apparent when inspect-
ing the action of the CNOT on computational basis states |x〉 , |y〉 ∈ {|0〉 , |1〉}.
We get

CNOT |x〉 |y〉 = |x〉 |y ⊕ x〉 , (2.68)

where ⊕ is addition modulo 2. For |x〉 , |y〉 computational basis states, the
CNOT acts as a logical NOT gate on y if x = 1, and as the identity gate
otherwise.

2.4.6 Gate Identities

The Pauli-gates interact with the CNOT-gates to give effective, total operators
according to

CNOT (X ⊗ I)CNOT = X ⊗X, CNOT (I⊗X)CNOT = I⊗X, (2.69)

and

CNOT (Z ⊗ I)CNOT = Z ⊗ I, CNOT (I⊗ Z)CNOT = Z ⊗ Z, (2.70)

where the operators act on 2-qubit states where the first qubit is the control,
and the second is the target. In terms of quantum circuits, the Pauli-X and Z
gates are said to be ”propagated” over a CNOT-gate, according to the following
identities

X •
=

• X

X

, (2.71)

•
=

•

X X

, (2.72)

Z •
=

• Z
, (2.73)

•
=

• Z

Z Z

. (2.74)

In the context of quantum errors, this means that a single Pauli-X error on
the control qubit will be propagated into a double Pauli-X error, one on each
qubit, by a CNOT-gates. A single Pauli-X error on the target is left alone.
And similarly, a single Pauli-Z error on the target propagates into two er-
rors, whereas a Pauli-Z error on the control stays as a single error. This has
implications for the construction of fault-tolerant quantum circuits.

The Pauli-Y gate identities can be found from the above, by using Y =
iXZ. The factor i becomes a global phase factor that can be ignored.
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A CNOT gate with opposite control and target qubits can be constructed
by applying single-qubit Hadamard gates, according to

H • H
=

H H •
. (2.75)

Furthermore, the other controlled-Pauli gates, cZ and cY , can be constructed
from the cX = CNOT gate and single-qubit gates, as

•
=

•

H H Z
, (2.76)

•
=

•

S† S Y

. (2.77)

A useful composite gate is the TOFFOLI-gate, which takes part in several
quantum algorithms. The gate acts on two control qubits and one target qubit,
and can be defined by its action on computational basis states |x〉 , |y〉 , |z〉 ∈
{|0〉 , |1〉} as

|x〉 • |x〉

|y〉 • |y〉

|z〉 |z ⊕ (x · y)〉

(2.78)

where ⊕ means additional modulo 2. The gate can be constructed from H, T
and T † single-qubit gates, and a total of 6 CNOT-gates, as

•

=

• • • T •

• • • T T †

H T † T T † T H

. (2.79)

2.4.7 Basis Sets of Gates

In practice, we will not be able to perform general unitary operations directly
on a quantum computer. Instead, a quantum computer will have a set of basic
quantum gates that are physically realized on the quantum hardware and can
thus be directly applied to qubits. These gates form the native gate set of the
quantum computer.

A gate set is said to be universal for quantum computation if any arbitrary
n-qubit unitary U can be approximated to arbitrary precision by exclusively
using the gates from said gate set.

The native gate set should, however, be chosen carefully. Of note is the
Gottesman–Knill theorem that tells us that quantum circuits built from the
gate set

{CNOT, H, S} (2.80)
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can be efficiently simulated on a classical computer [28]. In some sense we do
not capture anything super-classical, so to say, by using this gate set.

There exists alternative gate sets that are both universal and that can not
be simulated efficiently in any known way by a classical computer. One such
gate set is given by

{CNOT, H, T}. (2.81)

It is possible to implement arbitrary single-qubit gates, given by the U3 gate in
Equation (2.63), on physical quantum computers. Therefore, it is convenient
to consider the native gate set

{CNOT, U3}. (2.82)

As theH and T gates can be constructed from the U3 gate this gate set is indeed
universal. From this gate set, however, we gain the advantage that all single-
qubit gates can be directly implemented as U3-gates, instead of decomposing
them into successive H and T gates.

2.4.8 Qubit Connectivity and Virtual Qubits

A concept of practical importance for quantum computation is qubit connectiv-
ity ; the layout of qubits for which multi-qubit gates are physically realized. We
focus on the CNOT-gate. As explained in Section 2.4.7, the two-qubit CNOT-
gate together with the single-qubit U -gate form an universal set of gates for
quantum computing.

An example of a connectivity map is presented in Figure 2.2. This map
shows which physical qubits are connected by physically realized CNOT-gates.
Note that while CNOT-gates in principle are directional, a CNOT-gate may
be flipped using only single-qubit gate by Equation (2.75).

0 1 2

3

4

Figure 2.2: Connectivity map for the IBMQ Vigo quantum device. Nodes
denote physical qubits and arrows denote which qubits are connected by phys-
ically implemented CNOT-gates [27].

The specific connectivity of a quantum computer may leave certain quantum
circuits incompatible. To illustrate these implications of limited qubit con-
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nectivity, and how we may deal with them, we take an example quantum
circuit given as

q0 • • x0

q1 x1

q2 • x2

q3 x3

, (2.83)

with qubits qi, i = 1, 2, 3, 4, initialized to some initial state. The meters indicate
measurements in the computational basis, where the measurement result from
qubit qi is stored in the classical bit xi.

Assume that we want to implement the circuit given by Equation (2.83) on
a quantum computer with a connectivity map as given in Figure 2.2. Assuming
that the qubit qi as denoted in the quantum circuit diagram corresponds to
the physical qubit i as denoted in the connectivity map, this circuit seems
not to be compatible with the given quantum backend. For example, the first
CNOT-gate between qubits 0 and 2 is not possible because there is no physical
CNOT-gate realized between these two qubits.

We now want to transform this quantum circuit into an equivalent circuit
that is compatible with the specified connectivity map. First, we introduce the
concept of virtual qubits. We are only interested in the qubit states, and it
is irrelevant on which physical qubits are located on. In our quantum circuit
we have 4 virtual qubits q0, q1, q2, q3 that we need to assign, or map to the 5
physical qubits denoted by i = 0, 1, 2, 3, 4. By reassigning virtual qubits q0 and
q1 to physical qubits 1 and 0, respectively, we obtain the equivalent quantum
circuit

0 −→ q1 x1

1 −→ q0 • • x0

2 −→ q2 • x2

3 −→ q3 x3

4 −→ a0

, (2.84)

where the left-hand side denotes the assignment of physical qubits to virtual
qubits. Now, the two first CNOT-gates from Equation (2.83), between q0 and
q2, and between q0 and q3, are possible as there is qubits connectivity between
their assigned physical qubits. Note that we assign the leftover physical qubit,
qubit 4, to the virtual ancillary qubit a0. In some cases the inclusion of ancillary
qubits may become useful, yet in this example it will not.

We are not done, however, as the CNOT-gate between virtual qubits q2 and
q3 is still not possible. In fact, this may not be solved by a simple rearrangement
at circuit start because we have three virtual qubits, q0, q2 and q3, that all
require pairwise connectivity. No arrangement on the connectivity map shown
in Figure 2.2 allows this.
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To solve this problem, we introduce the SWAP-gate. The SWAP-gate on
two single-qubit state |ψ〉 and |φ〉 is defined as

SWAP |ψ〉 |φ〉 = |φ〉 |ψ〉 , (2.85)

i.e., the SWAP-gate swaps which physical qubits the two states are located on.
The SWAP-gate can be implemented by three CNOT-gates as

×
=
• •

× •
. (2.86)

In terms of virtual qubits, a SWAP-gate between two physical qubits 1 and 2,
assigned to virtual qubits q1 and q2, respectively, the gates swap the locations
of these two virtual qubits.

For our example circuit, the third CNOT-gate may now be realized by
moving one of the virtual qubits. From Equation (2.84) we observe that the
CNOT-gate between q2 and q3, located physical qubits 2 and 3, is not possible.
By relocating virtual qubit q2 to physical qubit 1 by use of a swap gate, this
is solved because there is connectivity between physical qubits 1 and 3 as seen
from Figure 2.2. This leaves us with the end circuit given by

0 −→ q1 x1

1 −→ q0 • • × • x2

2 −→ q2 × x0

3 −→ q3 x3

4 −→ q4

, (2.87)

that is now indeed fully compatible with the given qubit connectivity. Note how
the measurement into classical bit x0 is now performed on qubit 2, even though
the virtual qubit q0 was initially located on qubit 1. This is because the SWAP-
gate has relocated the quantum state associated with virtual qubit q0 from
physical qubit 1 to qubit 2, i.e., has relocated the virtual qubit q0 to qubit 2.

Another gate that is useful for overcoming connectivity incompatibilities is
the BRIDGE-gate [29]. A BRIDGE-gate allows a virtual CNOT-gate between
two virtual qubits located on non-connected physical qubits, as long as there
exists a third physical qubit connected to each one of them.

•
=

• •

• • . (2.88)

Considering the example circuit in the state as shown in Equation (2.84), a
BRIDGE-gate could have been used to implement the CNOT-gate between
virtual qubits q2 and q3. As they were situated on physical qubits 2 and 3,
qubit 1 could have been used as the intermediary qubit for the BRIDGE-gate.
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Note that the BRIDGE-gate would not interfere with the virtual qubit, q0,
situated on qubit 1, at least not in the noise-less case.

It is important to note that both SWAP-gates and BRIDGE-gates intro-
duce additional multi-qubit gates to a quantum circuit. In practice, multi-qubit
gates such as the CNOT-gate tends to be encumbered with significant noise.
Furthermore, they typically have an error rate at least one order of magnitude
larger than single-qubit gates [30]. This may impact the accuracy of our compu-
tations. The topic of noise in quantum computers is discussed in more detailed
in Chapter 3, but for now we note that to obtain the highest possible ac-
curacy we need to minimize the number of noisy gates, especially the noisier
multi-qubit gates.

2.4.9 Measurements of Quantum Circuits

In a quantum computation, we initialize some state |ψ0〉 and evolve it into an
end state |ψ〉. But we can not observe the state |ψ〉 directly. To extract any
information about |ψ〉 we have to measure it, according to the third postulate
of quantum mechanics as presented in Section 2.2.3.

A measurement in a quantum circuit is treated as a special type of gate,
as denoted in Equation (2.47). This gate without any further specifications
denote a measurement in the computational basis, i.e., the {|0〉 , |1〉} basis.
The measurement result, either 0 or 1, may then be stored in a classical bit.

For any orthonormal single-qubit basis {|ξ0〉 , |ξ1〉} we can find an unitary
basis change operator B such that

B |ξ0〉 = |0〉 , B |ξ1〉 = |1〉 , (2.89)

thus, measurements in the computational basis are sufficient for quantum com-
putation.

A common type of measurements are the Pauli measurements, i.e., meas-
urements in the eigenbases of the Pauli-operators. The eigenbasis of the Pauli-Z
operator is just the computational basis, where the eigenstate |0〉 and |1〉 have
eigenvalues +1 and −1. The basis change operator between the computational
basis and the Pauli-X and Pauli-Y operators are H and HS†, respectively.
Thus, an X-type measurement can be implemented as

H x =
X

x, (2.90)

where the meter gate without any additional specifications imply a measure-
ment in the computational basis. Similarly, a Y -type measurement can be
performed as

S† H x =
Y

x. (2.91)

Note that the bit value 0 or 1 of x here corresponds to the eigenvalues +1 or
−1, respectively.



Chapter 2: Theory 27

Non-destructive measurements of qubits can be done by use of ancillary
qubits. Take the circuit

|ψ〉 • |ψ′〉

|0〉 x.

(2.92)

For a general qubit state |ψ〉 = α |0〉+ β |1〉 on the input, the full state of the
two-qubit system after the CNOT gate will be

CNOT |ψ〉 |0〉 = CNOT (α |0〉+ β |1〉) |0〉 = α |00〉+ β |11〉 . (2.93)

A measurement of the ancillary qubit in the computational basis will thus yield
an outcome of x = 0 with probability |α|2, and x = 1 with probability |β|2.
The measurement is still projective, such that the upper qubit is left in a post-
measurement state depending on the outcome. In this case will be |ψ′〉 = |x〉,
where x ∈ {0, 1} is the bit value of the measurement outcome.

As previously discussed, quantum mechanics is probabilistic. Therefore, we
will need to repeat the experiment of state preparation proceeded by measure-
ments several times to gain sufficient information about the prepared state |ψ〉.
Each individual measurement result may be represented by a n-bit bit-string
x = x0x1 . . . xn−1, where each bit xi ∈ {0, 1} represents the measurement res-
ult on qubit i. After repeating the experiment for a given number of shots,
we can assign a count to each bit-string x, corresponding to the number of
times we recorded the measurement result x. These counts are the output of
the quantum part of quantum algorithm and are then interpreted into useful
results by use of classical post-processing.

2.4.10 Expectation Values

In a quantum computation, we are often interested in measuring the expectation
value of some operator with respect to a quantum state. In that case, the value
we are interested in computing is the value of

〈A〉|ψ〉 = 〈ψ|A |ψ〉 , (2.94)

where A is a quantum operator and |ψ〉 is a quantum state prepared by a
quantum circuit.

Assume that we want to measure the expectation value of an operator
A with respect to some state |ψ〉 = U |00 . . . 0〉. The unitary operator U is
implemented as a quantum circuit. The state |ψ〉 can be expressed as

|ψ〉 =
∑
i

ci |φi〉 (2.95)

for {φi}i a set of orthonormal eigenstates of A, such that A |φi〉 = ai |φi〉 for a
ai ∈ R.
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Measurements in other bases than the computational basis can be per-
formed if we find a basis transformation by a unitary operator V such that

V φi = |zi〉 , (2.96)

where zi are the unique bit-string representations of the integers i = 0, . . . , 2n−
1. When measuring in the computational basis, after the basis change, the
measurement outcomes will be the bit string zi with probability |ci|2.

To estimate the expectation value of A with respect to |ψ〉, as each outcome
is probabilistic, we repeat the experiment of state preparation and measure-
ment several times. Then, from the set of measurement outcomes, we compute
the average observed value.

As an example, assume we prepare the two-qubit state

|ψ〉 = a00 |0〉 ⊗ |0〉+ a01 |0〉 ⊗ |1〉+ a10 |1〉 ⊗ |0〉+ a11 |1〉 ⊗ |1〉 , (2.97)

by a quantum circuit. Say we want to measure its expectation value with
respect to the operator Z ⊗ Z. The eigenvalues and eigenstates are

Z |0〉 = +1 |0〉 , Z |1〉 = −1 |1〉 . (2.98)

We get the eigenvalue +1 for eigenstates |0〉 ⊗ |0〉 and |1〉 ⊗ |1〉, and −1 for
the eigenstates |0〉 ⊗ |1〉 and |1〉 ⊗ |0〉. The expectation value E∗ = 〈Z〉|ψ〉 of a
measurement of this operator, with respect to the state |ψ〉, is thus

E∗ = (+1)(p00 + p11) + (−1)(p01 + p10)

= (+1)(|a00|2 + |a11|2) + (−1)(|a01|2 + |a10|2).
(2.99)

Here, p00 = |a00|2 is the probability of measuring the outcome 00, and analog-
ously for the other eigenstates.

Let nz0z1 be the number of times the measurement outcome z = z0z1 ∈
{0, 1}2, corresponding to the state |z0〉 ⊗ |z1〉 for z0, z1 ∈ {0, 1}, and N =∑

z0,z1
nz0z1 be the total number of experiments. Then, nz0z1/N serves as an

estimate for pz0z1 = |az0z1 |
2. Furthermore, the expectation value E∗ is then

estimated by

E =
1

N
((n00 + n11)− (n01 + n10)). (2.100)

2.4.11 Mean Square Error and Error Estimation

As presented in Section 2.4.10, quantum computations often involve the es-
timation of an expectation value by taking an average over a large number of
circuit executions. The error in this estimation is determined by the number
of circuit executions, or number of shots, and the variance in the measurement
outcomes. Given a fixed error threshold, the variance thus determines the re-
quired number of circuit shots and thus have implications for the running time
of a quantum algorithm.
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Assume that N shots of a circuit, measuring some observable, are per-
formed, each time with a measurement outcome of µj , j = 1, . . . , N . Let E∗

be the expectation value and σ2 the variance of the measurement outcomes,
which are assumed to be independently and equally distributed. An estimator
for the expectation value is then

E =
1

N

∑
j

µj , (2.101)

and an estimator for the variance σ2 in each measurement is the mean square
error s2, given as

s2 =
1

N − 1

∑
j

(µj − E)2 =
1

N

∑
j

µ2j − (
1

N

∑
j

µj)
2. (2.102)

By the central limit theorem, an estimator for the error ε in E is

ε =
σ√
N
, (2.103)

where E is the average over N measurement outcomes, i.e., with the circuit
executed for N shots.

The variance in a quantum measurement is in general hard to know without
knowing the exact state |ψ〉 of the system at the time of measurements. There-
fore, we do not in general know how many shots is necessary to estimate E∗

to within some tolerance error εtol.
A solution to this problem is instead to sample the circuit for some initial

number of shots N , obtaining measurement outcomes µj . Then, we estimate
the variance σ2 by the mean-square error s2, as shown in Equation (2.103).
The required amount of shots N ′ to achieve an error below the threshold is
then estimated to be

N ′ =
( s

εtol

)2
. (2.104)

If N ′ > N , we repeat the experiment for an additional number N ′ − N of
shots. The average over all measurement outcomes now gives an estimator of
the expectation value, with an estimated error ε ≤ εtol.





Chapter 3

Error Models for Quantum
Computation

Near-term quantum computers are noisy. To obtain accurate and useful res-
ults from quantum computations, combating this noise is imperative, and in
order to do so we first need to model the noise present in NISQ-era quantum
devices. This chapter presents noise in quantum computers formulated in terms
of quantum channels, as detailed in Section 2.3.4. We further give a few ex-
amples of particular useful noise channels, including the depolarizing channel,
the amplitude damping channel and the phase damping channel.

3.1 Noise as Quantum Channels

An ideal quantum gate applies a unitary operator U . Real quantum gates,
however, are noisy. A noisy quantum gate may potentially no longer be unitary,
e.g., if we have some interaction between the qubits and the environment. This
is where the density operator and quantum channel formalism come in handy.
The ideal quantum gate can be described by the unitary quantum channel

E(ρ) = UρU †, (3.1)

acting on a density operator ρ. In the noisy case, we may still describe the
action of the noisy quantum gate as a quantum channel, but it might no longer
preserve purity of density operators.

Assume that we want to apply a quantum gate described by the quantum
channel E , but because of noise, the channel that is applied is instead Ñ . By
writing

Ñ = Ñ ◦ E−1 ◦ E = N ◦ E , (3.2)

where we have defined N = Ñ ◦ E−1, we can regard a faulty quantum channel
or gate as the ideal channel E followed by the effective noise channel N . The
operator-sum representation, as detailed in Section 2.3.5, now gives a compact
way to represent noise channels in terms of their Kraus operators.

31
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Similarly, we can describe a noisy initialization of qubits to the faulty initial
state ρ′0 as the ideal initialization to the ideal initial state ρ0 followed by a noise
channel such that ρ′0 = Ninit(ρ0). Noise in measurements can be described as
an ideal measurement preceded by a noise channel Nmeas..

3.2 Coherent Noise

Coherent noise is noise that can be expressed as a unitary error operator Ũ .
The quantum operation acting on density operators then becomes a unitary
operation N (ρ) = ŨρŨ †. By Equation (2.31), such noise preserves the purity
of a pure input state ρ = |ψ〉 〈ψ|.

An example is an error in a quantum single-qubit gate that causes a per-
turbation in the rotation of the Bloch sphere. Any single qubit gate can be
expressed as a rotation of the Bloch vector as in Equation (2.62). Say one
wants to perform a rotation about the z-axis by an angle φ, i.e., U = Rz(φ),
but due to an error the applied operator is instead U ′ = Rz(φ + δ) for some
small angle δ. This can be described by the ideal rotation followed by the per-
turbation Rz(δ) as U ′ = Rz(δ)Rz(φ) = Rz(δ)U . The corresponding quantum
channel becomes N (ρ) = U ′ρU ′ †, preserving purity.

3.3 Incoherent Noise

Incoherent noise is noise that does not necessarily preserve purity, for example
noise stemming from an interaction with the environment. As described by the
Stinespring dilation and Equation (2.32), a quantum operation unitary on a
larger system, for example the qubit in interaction with the environment, can
still be described locally on the qubit as a quantum channel.

3.3.1 Stochastic Pauli-Noise

A simple example of an incoherent noise channel is the stochastic Pauli chan-
nel. Consider the Pauli operators X, Z, and Y . The Pauli-X operator can be
thought of as the equivalent to a classical bit-flip error, as it ”flips” a |0〉-state
to a |1〉-state, and vice versa. Similarly, a Pauli-Z operator may be thought of
as a phase-flip error, and a Pauli-Y as a bit-flip error followed by a phase-flip.

We assume that each of the Pauli-operators are independently and probab-
ilistically applied to a single qubit with probabilities px, pz, and py. This case
is described by the Kraus operators

K0 =
√

1− px − py − pz I, K1 =
√
pxX, K2 =

√
py Y, K3 =

√
pzZ. (3.3)

Then, the condition of Equation (2.35) is fulfilled by these Kraus operators, as∑
i

K†iKi = (1− px − py − pz)I + pxXX + pyY Y + pzZZ = I, (3.4)

where we use that the Pauli gates are their own adjoints, and their own inverses.



Chapter 3: Error Models for Quantum Computation 33

3.3.2 Depolarizing Noise

A noise channel closely related to the stochastic Pauli-channel is the depolariz-
ing noise channel. The depolarizing noise channel on a d-dimensional density
operator ρ is defined as

Np∗(ρ) = (1− p′)ρ+
p′

d
I. (3.5)

This channel in d = 2 dimensions may be transformed into the equivalent noise
channel

Np(ρ) = (1− p)ρ+
p

3

3∑
i=1

σiρσi, (3.6)

where σi are the Pauli-operators and p = (1− 3p′

4 ). The probability p is said to
be the error rate of this channel. The Kraus operators can now be identified
as the set

K0 =
√

1− p I, K1 =
p√
3
X, K2 =

p√
3
Z, K3 =

p√
3
Y. (3.7)

The depolarizing noise channel is thus equivalent to the homogeneous Pauli-
noise channel, i.e., the stochastic Pauli-noise channel with px = py = pz = 1

3 .
The depolarizing noise channel on higher dimensions can be transformed

equivalently. As a model for noise on two-qubit operators, e.g., the CNOT-gate,
we get the depolarizing noise channel on d = 4 dimensions as

Np(ρ) = (1− p)ρ+
∑
i,j

p

15
O

(i)
1 O

(j)
2 ρO

(j)
2 O

(i)
1 , (3.8)

where O(i)
k is the operator O(i) acting on qubit k. The sum goes over the Pauli

operators including the identity operator, e.g., O(i) ∈ {I, X, Y, Z}. However,
the 2-qubit identity operator term O

(i)
1 O

(j)
2 = I1I2 is omitted from the sum.

3.3.3 Amplitude Damping

Let us assume that we have a qubit system in which the |0〉 state is encoded
as the ground-state of the system, and |1〉 as an excited state. A qubit in the
|1〉 state may then fall to the |0〉 state by the process of spontaneous emission,
but not the other way around.

This is described by the amplitude damping channel. Assume that the ex-
cited |1〉 state may collapse down to a |0〉 state with probability p. This case
is described by the Kraus operators

K0 =

[
1 0
0
√

1− p

]
, K1 =

[
0
√
p

0 0

]
. (3.9)
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These Kraus operators give exactly the described case, where a |0〉-state is kept
in the |0〉 state as

N (|0〉 〈0|) = K0 |0〉 〈0|K†0 +K1 |0〉 〈0|K†1 = |0〉 〈0| , (3.10)

whereas a |1〉-state is transformed to a probabilistic mixture of the state col-
lapsing into the |0〉-state with probability p, or no collapse with probability
1− p, as

N (|1〉 〈1|) = K0 |1〉 〈1|K†0 +K1 |1〉 〈1|K†1 = p |0〉 〈0|+ (1− p) |1〉 〈1| . (3.11)

The action on a general qubit state, |ψ〉 = α |0〉 + β |1〉, further follows from
linearity.

3.3.4 Phase Damping

A uniquely quantum-mechanical noise process is the process of phase damping,
describing loss of information in the partial phases of the eigenstates. Take the
case in which the qubit state on system A does not transition between states
but couples to the environment in the following way,

N (|0〉A ⊗ |0〉E) =
√

1− p |0〉A ⊗ |0〉E +
√
p |0〉A ⊗ |1〉E , (3.12)

and
N (|1〉A ⊗ |0〉E) =

√
1− p |1〉A ⊗ |0〉E +

√
p |1〉A ⊗ |2〉E , (3.13)

where {|i〉E}i form some basis for the environment. An interpretation could be
that the environment in some way would scatter off of the qubit with probab-
ility p, ending up in a state dependent on the qubit state.

By tracing out the environment, we obtain a quantum channel with Kraus
operators

K0 =

[√
1− p 0
0

√
1− p

]
, K1 =

[√
p 0

0 0

]
, K2 =

[
0 0
0
√
p

]
. (3.14)

The effect of this channel on a general density operator

ρ =

[
a b
c d

]
(3.15)

becomes

N (ρ) =

[
a (1− p)b

(1− p)c d

]
. (3.16)

Thus, for repeated applications of this channel, the off-diagonal terms b and c,
the relative phases, are suppressed.



Chapter 4

Hybrid Algorithms

This chapter presents the concept of hybrid quantum-classical algorithms,
which are hoped to be applicable on near-future quantum hardware. To un-
derstand the limitations put on near-future quantum algorithms, we have to
consider the two main limiting factors for algorithms on near-term quantum
devices. Near-term quantum computers are noisy, which limits the depth of
quantum circuits that may be executed within reasonable precision. They are
also limited in their number of available, connected qubits.

In the near-future, it is considered realistic that we may obtain from a few
hundred to thousands of qubits on quantum devices, without prohibitively large
error rates. As an example of a long-term quantum computing application, let
us take Shor’s factorization algorithm [31]. An estimate for the number of noisy
qubits needed to perform Shor’s algorithm on 2048-bit integers, which would
break modern RSA-encryption schemes, has been found to be over 20 million
qubits [9]. The Shor’s algorithm uses long-depth quantum circuits, for which
quantum error correction codes must be used to obtain reasonable results, thus
the large qubit requirements.

Our attention for possible near-future applications therefore turns to hybrid
quantum-classical algorithms, commonly referred to as hybrid algorithms. These
are algorithms that combine classical and quantum computation, where the
quantum component involves short-depth quantum circuits. The umbrella term
of hybrid algorithms includes algorithms such as the variational quantum ei-
gensolver (VQE), the quantum approximate optimization algorithm (QAOA),
the variational quantum linear solver, amongst others [3, 10, 12]. In this thesis
we will focus solely on the VQE algorithm.

Many of the hybrid algorithms that have been proposed in recent years,
such as the QAOA and the VQE, are examples of variational quantum meth-
ods. Section 4.1 explores the subject of variational quantum methods in more
general terms. The VQE algorithm is then presented in Section 4.2, including
three different parametrized state ansatze.

35
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4.1 Variational Quantum Methods

A class of useful hybrid algorithms are variational quantum methods that ap-
proximates ground states of quantum operators by use of the variational prin-
ciple. The idea is to prepare a parameterized trial state, often referred to as
an ansatz. Then we try to find the parameters for which the expectation value
of the ansatz with respect to the operator is minimal.

Assume that we have a quantum operator H with real eigenvalues {Ei}i
and eigenvectors {|ψi〉}i. Order the eigenvalues such that E0 ≤ E1 ≤ · · · ≤ En.
The ground state of H is the eigenstate |ψ0〉 corresponding to the minimal
eigenvalue E0. If H is the Hamiltonian of some physical system then we refer
to E0 as the ground state energy. If more than one eigenvalue is equal to E0,
we say that the ground state is degenerate.

We want to prepare a quantum state |ψ(~θ)〉, parametrized by a set of
variational parameters ~θ. In quantum computation we prepare this state by a
unitary operator U(~θ) implemented as a quantum circuit, s.t.

|ψ(~θ)〉 = U(~θ) |ψ0〉 , (4.1)

where |ψ0〉 is some initial state that can be easily prepared on the quantum
device. Commonly, the quantum device is reset to the 0-state at the start of a
quantum computation, i.e., |ψ0〉 = |00 . . . 0〉.

As E0 is the smallest eigenvalue, we know that it gives a lower bound on
the expectation value of the Hamiltonian H with respect to the ansatz state
|ψ(~θ)〉. Thus

E0 ≤ F (~θ) ≡ 〈ψ(~θ)|H |ψ(~θ)〉 . (4.2)

This is referred to as the variational principle. For a non-degenerate ground
state, equality holds if and only if |ψ(~θ)〉 = |ψ0〉.

The goal now is to minimize the expectation value F (~θ) with respect to
the variational parameters ~θ. Here, we use a classical optimization algorithm.
The quantum part of each step in the optimization process is the preparation
of |ψ(~θ)〉 with following measurements. From the measurement results, we es-
timate the expectation value F (~θ), and this is passed to the classical optimizer
that adjusts the variational parameters ~θ.

To utilize the variational method on a problem, quantum or classical, we
need to find a mapping of the problem to a quantum operator H such that
the solution is given by its ground state. Note that, assuming a finite, discrete
spectrum of eigenstates, one can transform this into the problem of finding the
largest eigenvalue instead by substituting H −→ −H, s.t. F (~θ) −→ −F (~θ).

4.2 Variational Quantum Eigensolver

The Variational Quantum Eigensolver (VQE) is a hybrid quantum algorithm
that finds ground state energies of physical Hamiltonians. The VQE algorithm
is based on a variational approach, as described in Section 4.1.
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The input to the algorithm is a fermionic Hamiltonian. This is mapped
onto an equivalent qubit Hamiltonian, acting on qubits, by a transformation
such as the Jordan–Wigner transformation. We prepare a parametrized ansatz
state and minimize its energy by use of a classical optimization algorithm. This
procedure is sketched in Figure 4.1.

Figure 4.1: Sketch of the procedure for the Variational Quantum Eigensolver
(VQE) algorithm.

For the transformation from fermionic to qubit operators, we focus on
the aforementioned Jordan–Wigner transformation. This is presented in Sec-
tion 4.2.2. We further consider three approaches to specific ansatz states. This
is the UCCSD ansatz, hardware-efficient ansatze, and a recent proposal for a
symmetry-preserving ansatze, which are discussed in Section 4.2.3, 4.2.4 and
4.2.5, respectively.

4.2.1 The Molecular Hamiltonian

Our starting point is the Hamiltonian of electrons in matter in the second
quantization formalism. This may be written as

H =
∑
pq

hpqa
†
paq +

∑
pqrs

hpqrsa
†
pa
†
qaras, (4.3)

where a†p and ap are respectively the creation and annihilation operators for
the orbital p. We consider a subspace of the Fock space spanned by the 2m



38 A.H.Rokne: QEM for NISQ-era Quantum Computation

basis states |f1f2 . . . fm〉, where fp is the occupation number of orbital p. As
per the Pauli exclusion principle only a single fermion may occupy any single
orbital at a time, thus fp ∈ {0, 1} ∀ p.

The coefficients hpq and hpqrs are the single and double electron overlap
integrals given by

hpq =

∫
d~r φ∗p(~r)

(
− ∇

2
i

2
−
∑
I

ZI∣∣∣~r − ~RI

∣∣∣
)
φq(~r), (4.4)

hpqrs =

∫
d~r1d~r2 φ

∗
p(~r1)φ

∗
q(~r2)

1

|~r1 − ~r2|
φr(~r1)φs(~r2), (4.5)

which can be computed classically. Here, φq(~xj) is the single-particle wave-
function of orbital q. The one-body term hpq represents the kinetic energy and
potential energy between the electrons and the nuclei, and the two-body term
hpqrs represents the Coloumb repulsion between electrons.

The geometry of the specific molecule in question enters through the nuclei
positions ~RI and charges ZI . As an example, we consider the H2molecule, a
linear molecule with two nuclei and two electrons. We have Z1 = Z2 = +1,
R1 = (0, 0, 0) and R2 = (a, 0, 0), with an interatomic distance a. Changing
the interatomtic distance a will alter the coefficients hpq, and thus by Equa-
tion (4.3) change the input Hamiltonian. If we for example are interested in the
ground state energy as a function of the interatomic distance a we would need
to run the full VQE algorithm for each one of a set of discrete distances ai.

4.2.2 Jordan–Wigner transformation

The first step in the VQE algorithm is to find a mapping from the molecular
electron Hamiltonian of Equation (4.3) onto an operator that acts on qubit
states. The Jordan–Wigner transformation gives such a transformation H −→
Hq, where the fermionic operators are mapped onto tensor products of Pauli-
operators. The qubit Hamiltonian Hq may then be expressed as

Hq =
∑
α

hαPα =
∑
α

hα

m∏
i=1

σ
βα,i
i , (4.6)

for βα,i ∈ {0, x, y, z}, and σ0 = I. The Hamiltonian terms Pα are thus the m-
qubit Pauli operators, i.e., the m-fold tensor products of the Pauli-operators
{σ0, σx, σy, σz}.

The Jordan–Wigner transformation maps the fermionic annihilation and
creation operators onto Pauli operators according to

a†p = σ−p
∏
k<p

σzk, (4.7)

ap = σ+p
∏
k<p

σzk, (4.8)
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where σ±p = σxp±iσ
y
p . The 2m electronic basis states are mapped to qubit states

as
|f1f2 . . . fm〉 −→ |q1〉 ⊗ |q2〉 ⊗ · · · ⊗ |qm〉 ≡ |q1q2 . . . qm〉 , (4.9)

for qubit states |qp〉 where qp = fp ∈ {0, 1}. Thus, each single-qubit state
|qp〉 stores the occupation number of the corresponding orbital. A |0〉-state
represents an unoccupied orbital, and a |1〉-state represents an occupied orbital.

The energy expectation value may now be written as

E0 ≤ 〈E〉ψ(~θ) = 〈ψ(~θ)|Hq |ψ(~θ)〉 =
∑
α

hα 〈ψ(~θ)|Pα |ψ(~θ)〉 =
∑
α

hα 〈Pα〉ψ(~θ) ,

(4.10)
i.e., we can compute the energy expectation value by computing the expecta-
tion values for each of the individual Pauli-terms Pα. Circuit measurement in
the eigenbasis of a m-fold Pauli operator tensor can be performed by applying
at most m single-qubit gates, one on each qubit, followed by measurements in
the computational basis. This is described in more detail in Section 2.4.9.

As an example of a transformed fermionic Hamiltonian, the Pauli-terms Pα
with corresponding coefficients hα for the H2molecule is shown in Table A.1.
Note that other transformations exist, such as the spin-parity and the Bravyi-
Kitaev transformations [32]. In this text we will focus solely on the Jordan–
Wigner transformation, as it is perhaps the simplest and most intuitive of the
commonly used mappings.

4.2.3 The UCCSD ansatz

To perform the variational procedure we need a parameterized ansatz state∣∣∣ψ(~θ)
〉

= U(~θ) |ψ0〉 , (4.11)

where U(~θ) is some parameterized unitary operator implemented by means of
a quantum circuit. An approach inspired by computational chemistry is the
Unitary Coupled Clusters (UCC) ansatz, given by

U(~θ) = eT (
~θ)−T †(~θ) (4.12)

where the operator T (~θ) is referred to as a cluster operator. It is given by

T (~θ) =
∑
i

Ti(~θ), (4.13)

T1(~θ) =
∑
i,j

θji a
†
jai, (4.14)

T2(~θ) =
∑
i,j,k,l

θklij a
†
l a
†
kajai. (4.15)
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Truncating the cluster operator at the second order, i.e., including only the
single and double excitation terms T1(~θ) and T2(~θ), gives us the Unitary
Coupled Clusters Single Double (UCCSD) ansatz.

The resulting operator

U(~θ) = e(T1(
~θ)−T †1 (~θ))+(T2(~θ)−T †2 (~θ)) (4.16)

contains exponentiated terms that do not commute with each other. We there-
fore need to apply a Suzuki–Trotter approximation in order to write U(~θ) as
a product of separate operators that we can directly implement on a quantum
computer. Note that this approximation introduces as so-called Trotterization
error [33], however, we claim it to be negligible in the specific cases that we
will be considering.

Using the Suzuki–Trotter approximation and again the Jordan–Wigner
transformation, we obtain U(~θ) as a product of single-qubit operators and ex-
ponentiated multi-qubit Pauli-operators. As an example, the operator eZ1Z2Z3Z4

is implemented by the following circuit

• •

• •

• •

Rz

.

(4.17)

In general, an exponentiated tensor product of n Pauli-operators can be im-
plemented using 2(n− 1) CNOT-gates and 1 single-qubit gate [32].

For the H2molecule the full UCCSD ansatz prepares the state∣∣ψH2
〉

= U(~θ)
∣∣ψHF〉 = α |0101〉+ β |1010〉+ γ |0110〉+ δ |1001〉 , (4.18)

where the initial state
∣∣ψHF〉 = |0101〉 is the Hartree-Fock state for H2 [15].

The circuit that implements U(~θ) in this case is shown in Equation (A.1).

4.2.4 Hardware-efficient ansatze

The UCCSD ansatz is applicable to arbitrary molecular problems, but suffers
from large circuit depths. An alternative approach is to construct an ansatz
with the specific quantum hardware in mind, a so-called hardware-efficient
ansatz [5].

The common approach is to construct hardware-efficient ansatze in layers
of single-qubit gates and so-called entanglers. The single-qubit layers consist of
parametrized rotational gates. The entanglers are constructed specific to the
hardware at hand, by a combination of multi-qubit gates that are compatible
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with the configuration of the quantum device. The d-layer

U(~θ) =
[ m∏
i=1

U sq
i (~θ)

]
Uent(~θ)

[ m∏
i=1

U sq
i (~θ)

]
Uent(~θ) . . . Uent(~θ)︸ ︷︷ ︸

Repeated d times

[ m∏
i=1

U sq
i (~θ)

]
,

(4.19)
where U sq

i (~θ) is a single-qubit operator acting on qubit i, parametrized by a
set of variational parameters, and Uent(~θ) is an entangler.

The entangler operator Uent(~θ) consists of two-qubit operators, e.g., CNOT-
operators, in a configuration that is allowed by the connectivity between qubits
on the quantum device.

An example of such a ansatz circuit

q1 : |0〉 Rz(θ1) • Rz(θ5) • Rz(θ9)

q2 : |0〉 Rz(θ2) Rz(θ6) Rz(θ10)

q3 : |0〉 Rz(θ3) • Rz(θ7) • Rz(θ11)

q4 : |0〉 Rz(θ4) • Rz(θ8) • Rz(θ12)

(4.20)

The hope is that the resulting state
∣∣∣ψ(~θ)

〉
= U(~θ) |00 . . . 0〉 will be able to

span the part of the Hilbert space in which the solution exists. This is not in
general guaranteed by this type of ad hoc state ansatze. However, results have
shown that hardware-efficient ansatze is capable of significantly outperforming
UCCSD ansatze in terms of circuit depths and CNOT counts [5].

4.2.5 Symmetry-preserving ansatze

A recent article introduced a general scheme to construct efficient ansatz cir-
cuits for molecules that conserve certain symmetries. The idea is to recognise
symmetries that valid solution states must fulfill, and then construct state an-
satze that span the appropriate symmetry subspace. This is achieved by use
of parameterized composite gates that conserve these symmetries.

The idea is to span by the appropriate symmetry subspaces by constructing
parameterized gates that conserve these symmetries.

Take the H2molecule as an example, for which we may construct basis
states ∣∣fσu,↓fσg,↓fσu,↑fσg,↑〉 , (4.21)

where σk,s are molecular orbitals with spin s, and fσk,s ∈ {0, 1} are the re-
spective occupation numbers [15]. These states span a 24 = 16 dimensional
complex vector space.
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A first symmetry that we may consider is particle number conservation,
given by

∑
i fi = n. For the H2molecule we want to place 2 electrons amongst

the 4 available orbitals. The basis states that fulfill this condition are the states

{|1100〉 , |1010〉 , |1001〉 , |0110〉 , |0101〉 , |0011〉}, (4.22)

and thus any valid solution must be a linear combination of these states.
In order to construct ansatz circuits that achieve this, we construct a com-

posite two-qubit gate that entangles two qubits while conserving the particle
number. This is achieved by the operator

A(θ, φ) =


1 0 0 0
0 cos θ eiφ sin θ 0
0 e−iφ sin θ − cos θ 0
0 0 0 1

 , (4.23)

with parameters θ and φ. We observe that this operator will mix the basis
states |01〉 and |10〉, while it leaves |00〉 and |11〉 unchanged. This operator can
be implemented on a quantum computer as

A(θ, φ)
= •

• R(θ, φ)† R(θ, φ) •

,
(4.24)

where R(θ, φ) = Rz(φ + π)Ry(θ + π/2). The rotation gates Rx and Rz are
defined in Equation (2.59).

An ansatz circuit that spans the subspace for m = 4 orbitals and n = 2
particles with minimal number of parameters is the following

|0〉
A(θ1, φ1) A(θ4, φ4)

|0〉 X
A(θ3, φ1) A(θ6, φ6)

|0〉 X
A(θ2, φ1) A(θ5, φ5)

|0〉

, (4.25)

which uses 10 parameters to span the subspace defined by the 6 basis states in
Equation (4.22). This is the minimal number of parameters for which this may
be accomplished. This can be further expanded to give a general procedure for
arbitrary m and n. Similar circuits that take into account spin symmetries can
also be constructed [6].
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Quantum Error Mitigation

As discussed so far, there are two main challenges faced by near-future NISQ-
era quantum computation; noise, and limited scaling in terms of available, con-
nected qubits. In the long term, quantum error detection promises to provide
means to continuously detect and correct errors in quantum computations
[7, 8]. Given that enough qubits are available, this can be done to arbitrary
precision. While this gives promise for the long-term viability of quantum al-
gorithms, the ancillary qubit requirements are far beyond the capabilities of
near-term quantum hardware. The basis of error correction by stabilizer codes
is described in Appendix C.

For near-term applications, such as the hybrid algorithms presented in
Chapter 4, we instead turn to quantum error mitigation. By quantum error
mitigation, we mean techniques that aim to reduce the impact of noise, i.e.,
to mitigate the effect of noise, in quantum circuits. This is in contrast to the
quantum error correction techniques, that aim to exactly identify and correct
certain errors that may occur. In practice, quantum error mitigation can often
be performed with small-to-none additional qubit requirements, thus making
them viable for near-future quantum hardware.

This chapter presents two particular, state-of-the-art quantum error mit-
igation techniques. The zero-noise extrapolation, where noise is amplified by
known amplification factors in order to extrapolate the expectation value to
the zero-noise case. As well as the error detection scheme, where we recog-
nise symmetries in the states that we want to prepare and detect errors by
measuring if these symmetries are upheld.

For the zero-noise extrapolation technique we propose a circuit level noise-
amplification scheme for noise in CNOT-gates. The scheme we propose has, to
the best of our knowledge, not been previously explored in literature.

5.1 Zero-Noise Extrapolation

The idea behind the zero-noise extrapolation scheme is to extrapolate the res-
ults of a noisy circuit to the zero-noise case by computing a set of noise-
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amplified circuits, each with the noise amplified by known factors [13, 14].
The base assumption of this method is that the expectation value E(λ)

of some circuit executed on a noisy quantum computer, that evaluates some
observable A, can be expanded as a power series as

E(λ) = E∗ +
n∑
k=1

akλ
k +O(λn+1), (5.1)

where λ � 1 is a small noise parameter and E∗ is the expectation in the
noiseless case.

Mitigating all noise on a quantum device is often infeasible. Instead, we may
turn our attention to specific components of the noise that we expect to be the
dominant contributors to errors. As an example consider a quantum device with
independent noise on CNOT-gates, on single-qubit gates and on measurements.
We isolate the CNOT-noise by now expanding the noisy expectation value as

E(λcnot) = (E∗ + δsq + δmeas) +

n∑
k=1

akλ
k
cnot +O(λn+1

cnot), (5.2)

where λcnot � 1 now parametrizes specifically the noise on CNOT-gates, and
δsq and δSPAM encapsulates the shift in the expectation value due to noise
on single-qubit gates, and state preparation and measurement (SPAM) noise,
respectively. Mitigating the CNOT-noise is sufficient if the single-qubit and
measurement noise is negligible, i.e., if δsq, δmeas � 1.

To make use of the zero-noise extrapolation we need some procedure to
compute the noise amplified expectation values Ẽ(riλ), with the noise ”amp-
lified” such that λ −→ riλ, for a set of n known noise amplification factors
{ri}ni=1. In Section 5.1.2 and 5.1.3 we introduce two separate schemes for noise
amplification. Respectively, noise amplification by sampling of random Pauli-
gates and by repeating CNOT-gates. The latter scheme has to the best of our
knowledge not been explored previously.

5.1.1 Richardson Extrapolation

Assuming that the noisy expectation value may be expressed as in Equa-
tion (5.1) and given a set of noise amplified expectation values Ẽ(riλ) for
known amplification factors {ri}ni=1, the Richardson extrapolation can be used
to obtain an extrapolation to the λ −→ 0 limit, [34]. The Richardson extrapol-
ation reads

Ẽ(n) =

n∑
i=1

γiẼ(riλ), (5.3)

where the coefficients γi are determined such as to fulfill the restrictions
n∑
i

γi = 1,

n∑
i

γir
k
i = 0, (5.4)
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for all k = 1, . . . , n. The problem of finding the coefficients γi thus reduces
to solving a set of linear equations. Now, Ẽ(n) serves as an estimator for the
noise-free expectation value E∗.

5.1.2 Noise Amplification by Random Pauli-Gate Sampling

One proposed scheme for artificially amplifying noise in multi-qubit gates is
randomly add Pauli-gates after each multi-qubit gate in order to imitate the
noise present. This method hinges on approximating the noise as a stochastic
Pauli-noise channel, and on the noise in the single-qubit Pauli-gates to be
negligible compared to the multi-qubit gate noise that we want to mitigate,
[23].

To compute the noise amplified expectation value Ẽ(riλ), we sample from a
large number of such circuits with random Pauli-gates added with a probability
chosen such as to obtain the desired amplification factor ri. We refer to this
scheme as the random Pauli-sampling scheme.

We focus on the CNOT-gate. Assume that the noise present on CNOT-
gates in some quantum device is described by the two-qubit depolarizing noise
channel with error rate p as given by Equation (3.8). To employ this scheme,
the error rate p needs to be approximated experimentally.

To obtain a circuit where the effective noise has been amplified as p −→ r p
we add two random Pauli-gates σe and σf as

• σe

σf
, (5.5)

with probability (r− 1)p. Both σe and σf are chosen randomly from the Pauli
operators {I, σx, σz, σy}. However, we omit the identity term given by σe =
σf = I, as this term would cause no noise amplification.

The Random Pauli-sampling method relies on approximating the noise
channel on CNOT gates as a stochastic Pauli-noise channel. This may not be
accurate for general quantum noise on real devices. However, we may use the
technique of Pauli-twirling to transform general incoherent noise channel into
stochastic Pauli-noise channels [35]. The concept of Pauli-twirling is explained
in Appendix B.

Applying Pauli-twirling to each CNOT-gate involves 4 additional single-
qubit gates. The full noise amplification procedure for each CNOT-gate then
becomes Pauli-twirled CNOT

σa • σc σe

σb σd σf
, (5.6)

where σe and σf are applied with a probability of r ·p, σa and σb are randomly
chosen from the Pauli-operators. The operators σc and σd are chosen such that
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(σa⊗σb)CNOT(σc⊗σd) = eiφCNOT in the noiseless case, where eiφ is a global
phase factor. For the extra Pauli-twirling step to be effective the advantages
of transforming the noise channels into stochastic Pauli-noise channels must
outweigh the added noise from the 4 added single-qubit gates. This is explored
in Figure 6.2.

5.1.3 Noise Amplification by Repeating CNOT-Gates

We proposed here a scheme for circuit-level noise amplification with minimal
assumptions about the specifics of the quantum noise. This scheme has to the
best of our knowledge not been proposed previously. The idea is to amplify
general noise in CNOT-gates by odd factors, r = 1, 3, 5, . . . , by replacing each
CNOT-gate in the original circuit by a sequence of r CNOT-gates. The idea is
to utilize that the CNOT-gate is its own inverse, i.e.,

(CNOT )2 = CNOT ◦ CNOT = I, (5.7)

where both CNOT-operators act on the same contorl and target qubits.
A sequence of an odd number of ideal CNOT-gates thus is equivalent to a

single CNOT-gate, as

[CNOT ◦ (CNOT)2n] = CNOT, (5.8)

where n is an arbitrary integer. Consider now a noise-afflicted CNOT-gate.
Assume the noise to be weak, and write the noisy CNOT-procedure as N ◦
CNOT, i.e., as an ideal CNOT-gate followed by an effective noise channel N .

Now, when replacing each CNOT-gate by a sequence of r = 2n+ 1 CNOT-
gates the noise channel N will be applied r times throughout the sequence.
Thus, the noise can be said to be amplified by a factor r. For r = 3 this
substitution becomes •

−→
• • •

. (5.9)

Repeating this procedure for n noise amplification factors ri = 1, 3, 5, . . . , 2n+1
gives an algorithm to compute n noise amplified expectation values Ẽ(riλ) from
which to compute the mitigated expectation value Ẽ(n). We will refer to this
scheme as the CNOT repetition scheme.

While the CNOT-gate is perhaps the most relevant gate for such a noise
amplification schemes with regards to modern quantum processors, this ap-
proach should work for other common gate sets. The requirement is that the
gates with significant noise are their own inverse up to a global phase factor.
This is the case for several commonly used multi-qubit gates, including the
TOFFOLI-gate, as well as the cZ and cY controlled Pauli-gates.

5.1.4 Variance Scaling

As described in Section 2.4.11, larger variance gives a larger statistical error
in the estimation of an expectation value. This must then be combated by
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increasing the number of circuit shots leading to a higher computational cost.
A drawback of the zero-noise extrapolation is indeed a scaling of the variance
dependent on the specific γi-coefficients.

For n stochastic variables Xi with variances Var[Xi] the variance of the
sum becomes

Var
[ n∑
i=1

Xi

]
=

n∑
i=1

Var[Xi] + 2
n∑
i=1

i−1∑
j=1

Cov[Xi, Xj ] (5.10)

where Cov[Xi, Xj ] is the covariance betweenXi andXj . Note that Cov[Xi, Xj ] =
0 ifXi andXj are independent variables. Furthermore, for a stochastic variable
X we have

Var[aX] = a2Var[X] (5.11)

where a is some scalar.
We can now evaluate the variance mitigated expectation value estimator.

Let Var[Ẽ(riλ)] be the variance in the expectation value estimator for the
circuit with amplification factor ri. We assume that all estimators Ẽ(riλ), i =
1, . . . , n, are pairwise independently distributed. Then, from Equation (5.3),
we get the variance in the mitigated expectation value estimator Ẽ(n) as

σ2K,mit ≡ Var[Ẽ(n)] =
n∑
i=1

γ2i Var[Ẽ(riλ)], (5.12)

where the γi-coefficients are the coefficients found by Equation (5.4).
Let σ2i be the variance associated with the measurement outcome of the

circuit with noise amplification factor ri, and Ni the number of shots used
in the estimation of the corresponding expectation value. An estimator for
the variance in Ẽ(riλ) is given by Equation (2.103). We furthermore get an
estimator for the error in the mitigated expectation value Ẽ(n) as

ε
(n)
mit =

√√√√ n∑
i=1

(γ
(n)
i )2

σ2i
Ni
, (5.13)

where γ(n)i is the i-th coefficient in the Richardson extrapolation when using the
n noise amplification factors ri = 1, 3, 5, . . . 2n−1. The specific γ(n)i -coefficients
for all cases from n = 2 to n = 10 is shown in Table 5.1.

More often than not, however, we will not be interested in computing the
error after the fact. We rather will have a specific error tolerance, εtol, in mind
and want to find the number of circuit shots needed to get the statistical error
below our tolerance. A first estimation

N =
1

ε2tol

n∑
i=1

(γ
(n)
i )2σ2i (5.14)
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Table 5.1: Values of the coefficients γ(n)i , i = 1, 2, . . . , n, for the Richardson
extrapolation with noise amplification factors ci = 2i − 1, i = 1, 2, . . . , n, for
different values of n. The coefficients in each case of n are calculated from
Equation (5.4).

n = 2 n = 3 n = 4 n = 5 n = 6 n = 7 n = 8 n = 9 n = 10

γ
(n)
1 1.50 1.88 2.19 2.46 2.71 2.93 3.14 3.11 2.97
γ
(n)
2 -0.500 -1.25 -2.19 -3.28 -4.51 -5.87 -7.33 -7.05 -6.00
γ
(n)
3 – 0.375 1.31 2.95 5.41 8.80 13.2 12.2 8.80
γ
(n)
4 – – -0.313 -1.41 -3.87 -8.38 -15.7 -13.8 -7.52
γ
(n)
5 – – – 0.273 1.50 4.89 12.2 9.78 3.07
γ
(n)
6 – – – – -0.24 -1.60 -6.00 -4.05 0.0247
γ
(n)
7 – – – – – 0.226 1.69 0.717 -0.240
γ
(n)
8 – – – – – – -0.21 0.0691 -0.274
γ
(n)
9 – – – – – – – -0.0348 0.239
γ
(n)
10 – – – – – – – – 0.0514

The total number of circuit shots executed in this case will be Ntot = n ·N .
The variance scaling introduces a few pit falls for the practical application

of the zero-noise extrapolation technique. Firstly, we see from Equation (5.13)
and Table 5.1 that the specific γ-coefficients will have considerable impact on
the statistical error.

We expect the mitigated expectation value to converge towards the ideal
value when adding more noise-amplified terms, i.e., when increasing n. How-
ever, we cannot simply add further noise-amplified results without further ado.
Due to the variance scaling we might have to increase the number of shots over
all the noise-amplified circuits to compensate for an increased statistical error.

5.2 Error Detection

Another recently proposed error mitigation scheme suitable for near-term devices
is error mitigation based on error detection [15, 16]. Quantum error detection
is described in more detail in Appendix C. The idea is to recognise symmetries
in the quantum states that we want to prepare and use ancillary qubit meas-
urements to detect when these symmetries are broken. If they are, there must
have occurred an error somewhere in the circuit. When an error is detected in
a circuit execution, we discard the corresponding measurement result.

The ideas of this error mitigation scheme are quite similar to that of
quantum error correction by stabilizer codes [7, 8]. The main difference, how-
ever, is that in quantum error correction we aim to not only detect that an
error occurred, but also to identify the specific error such that it may be cor-
rected. Error correction also aims to correct general errors, or at least large sets
of errors, while the proposed error detection scheme only targets very specific
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errors that are easily measured. Restricting ourselves to detection may still
offer improvements in terms of noise mitigation but without the large ancillary
qubit requirements of error correcting codes, and thus may be more feasible
for near-term quantum hardware.

As an example, take the following quantum state∣∣ψH2
〉

= α |0101〉+ β |1010〉+ γ |0110〉+ δ |1001〉 , (5.15)

with arbitrary complex coefficients α, β, γ, δ. This covers the exact states spanned
by the UCCSD ansatz for the H2molecule [15], as presented in Section 4.2.3.

We recognise that
∣∣ψH2

〉
is a +1 eigenstate of the ZZZZ operator. This

is an example of a symmetry of this state. A non-destructive measurement of
the state

∣∣ψH2
〉
with respect to the ZZZZ operator can be performed by the

following quantum sub-circuit

•

•

•

•

|0〉 x


∣∣ψH2

〉
,

(5.16)

where the measurement outcome is stored in the classical bit x. Because the
state

∣∣ψH2
〉
lies in the +1 eigenspace of the ZZZZ-operator, this measurement

will always return a measurement outcome of +1 in the noiseless case.
This may, however, not necessarily be the case when we introduce noise. Say

a bit-flip error occur on bit 1, e.g., a Pauli-X operator. Because this operator
anti-commutes with the ZZZZ-operator we observe that

ZZZZ(XIII
∣∣ψH2

〉
) = −XIII (ZZZZ

∣∣ψH2
〉
) = −XIII

∣∣ψH2
〉
, (5.17)

i.e., the post-error state is now a -1 eigenstate of ZZZZ. The state has been
moved out of the +1 eigenspace, so to say. Such an error is detected by the
measurement, as we now measure an outcome of -1.

If an error has occurred but the error operator commutes with the ZZZZ-
operator, we will still measure +1 and no further information is gained. Thus,
this procedure leaves us with a set of detectable and a set of undetectable errors.
These are exactly the operators that respectively commutes or anticommutes
with our error detection operator, in this case the ZZZZ-operator

This, of course, does not capture every possible quantum error operator.
But any general quantum operator O may be decomposed as O = aO+ + bO−,
for two operators O+ and O− that respectively commute and anti-commute
with our ZZZZ-operator. The interaction with the ZZZZ-operator now goes
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as follows;

ZZZZ(O
∣∣ψH2

〉
) = ZZZZ(aO+ + bO−)

∣∣ψH2
〉

= aO+(ZZZZ
∣∣ψH2

〉
)− bO−(ZZZZ

∣∣ψH2
〉
)

= aO+
∣∣ψH2

〉
− bO−

∣∣ψH2
〉
,

(5.18)

i.e., the state |ψ〉 been transformed by the error operator O into a superposi-
tion of a +1 eigenstate and a -1 eigenstate of the ZZZZ-operator. A ZZZZ-
measurement will give a measurement outcome of +1 with probability |a|2
and -1 with probability |b|2. The post-measurement state will correspondingly
either be afflicted with a detectable error, or not, with certainty up to possible
measurement errors. We say that the error has been digitized, from an ”analog”
arbitrary superposition to the ”binary” case where the state is either afflicted
by a detectable error or not.

A drawback of the error detection scheme is that the scheme adds additional
noisy multi-qubit gates. As an example, the circuit in Equation (5.16) adds 4
CNOT-gates. This is permissible if the noise added from the error detection
subcircuit is negligible compared to the noise already present. For example,
if the CNOT count contributed by the error detection sub-circuit is small
compared to the CNOT count in the original circuit.

Some computational cost is added by the error detection scheme, as we
risk discarded large portions of the executed shots. Assume that we need to
perform N shots of some circuit in order to estimate the expectation value to
within the desired error. Say that the scheme discards 50% of the shots. We
would then need to perform twice as many shots in total in order to obtain N
non-discarded shots. However, we expect the added shot count to stay within
one order of magnitude. This is supported by the findings in Section 6.2.3,
shown in Table 6.5.



Chapter 6

Experiments and Results

This chapter presents the experiments that we have performed to investigate
the viability of quantum error mitigation on near-future applicable quantum
computations. We further present and discuss the results from said experi-
ments.

We have done experiments with the zero-noise extrapolation technique on
a trial circuit, the so-called SWAP-test circuit, which are presented in Sec-
tion 6.1. This was done with our proposed noise amplification scheme by
CNOT-repetition, as described in Section 5.1.3, to test its viability and ef-
ficiency in mitigating quantum noise. We also performed experiments with the
noise amplification scheme by random-Pauli sampling, in order to compare
the results from our scheme with a state-of-the-art noise amplification scheme.
This was done for several different noise models.

We further explored the potential in combining the zero-noise extrapolation
technique with the error detection scheme, as described in Section 5.2. Again,
we used our proposed noise amplification scheme. In order to trial these error
mitigation techniques on a near-future applicable quantum algorithm, we chose
the VQE algorithm. As discussed in Section 4.2, this is a quantum-classical
hybrid algorithm for molecular simulations, and is a candidate for one of the
first applicable algorithm to real-world problems.

We have used the qiskit library for Python in order to construct our
quantum computations [36, 37], and the OpenFermion library to perform the
molecular integrals needed for the VQE algorithm [38].

In qiskit, to perform a quantum computation, the quantum circuits are
executed on a backend for a specified number of shots. The backend may be a
simulator, that classically simulate a quantum computer, or one of the IBMQ
publicly available quantum computers [27]. We then interpret the measurement
results by classical post-processing, for example in order to compute an energy
expectation value. We have used simulator backends in all our experiments,
with various different noise models that models the noise present in current
quantum hardware.

51
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6.1 Zero-Noise Extrapolation for CNOT-Gates

There are several aspects of the zero-noise extrapolation with the CNOT-
repetition scheme for noise amplification that we want to examine and discuss.
We want to inspect its effectiveness in mitigating errors, on different models for
quantum noise and on real quantum processors, and its potential drawbacks
in doing so. We further want to compare the results from our amplification
scheme with other state-of-the-art schemes, such as the random Pauli-sampling
scheme. To do this, we will employ the scheme to a trial quantum circuit.

In all cases, we use the noise amplification schemes to exclusively amplify
noise on CNOT-gates, that is the multi-qubit gate native to all current IBMQ
devices. Accordingly, this is the noise that is mitigated by the zero-noise ex-
trapolation scheme. For the CNOT-repetition scheme we will use amplification
factors r = 1, 3, 5, . . . , 2n − 1. For the random-Pauli scheme we will use amp-
lification factors r = 1, 2, 4, . . . , 2n−1, as this has seemed to yield best results.

6.1.1 The SWAP-test Circuit

We chose the SWAP-test circuit on 3 qubits as a trial circuit. The SWAP-test
circuit has a CNOT count of 18 and a depth of 36 when assuming full qubit
connectivity. The SWAP-test circuit was chosen because of this intermediate
scale. On modern quantum hardware a CNOT count in the order of 101 is in
the range where information is not completely lost to decoherence. Yet, some
sort of noise reduction may be required to obtain useful results. This will be
seen from the experiment results in Section 6.1.2, in particular in Figure 6.1.

The SWAP-test circuit measures the overlap between two quantum states.
The circuit on two single-qubit states |ψ〉 and |φ〉 is expressed in terms of
Toffoli gates as

|0〉 H • • • H x

|ψ〉 • •

|φ〉 •

, (6.1)

where the upper qubit, initialized to the |0〉-state, is referred to as the probe
qubit. The IBMQ devices are all based on gate sets consisting of the CNOT-
gate and single-qubit gates. Thus, we need to decompose each Toffoli-gate into
such gates if we want to make the circuit compatible with these devices. Such
a decomposition is given by Equation (2.79). The resulting quantum circuit
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then becomes

|0〉 H • • • T •

|ψ〉 • • T T †

|φ〉 H T † T T † T H

• • • T •

H T † T T † T H

• • T T †

• • • T • H x

• • T T †

H T † T T † T H

, (6.2)

where each line contains one Toffoli-gate decomposed into CNOT-gates and
single-qubit H, T and T †-gates.

An advantage of the SWAP-test circuit is the ease of analysis in the meas-
urement results. A Z-type measurement on the probe qubit yields an expect-
ation value of

〈Z〉probe = |〈ψ|φ〉|2, (6.3)

where the states |ψ〉 and |φ〉 are the two states initialized on the second and
third qubits. Thus, the SWAP-test experiment, of repeated runs of the SWAP-
test circuit with subsequent measurements, will estimate the overlap between
the input states |ψ〉 and |φ〉.

For example, we may choose |ψ〉 = |0〉 and |φ〉 = |+〉 = 1√
2
(|0〉+ |1〉). The

|0〉-state is initialized by default and the |+〉 state requires a single additional
Hadamard-gate to prepare. The expectation value then becomes

〈Z〉probe = |〈0|+〉|2 = 0.5. (6.4)

The CNOT-complexity and circuit depth of the noise amplified circuits will
scale with the amplification factor r. If the bare circuit, i.e., the circuit with
amplification factor r = 1, has a CNOT-count of k, then the amplified circuit
with amplification factor r will have a CNOT count of r · k. The CNOT count
and circuit depths for the SWAP-test circuit after optimization by the qiskit
transpiler, and with noise amplification by the CNOT repetition scheme, is
shown in Table 6.1. For real devices the CNOT count will be impacted by
limited qubit connectivity, as SWAP-gates might need to be inserted to com-
pensate for non-connected qubits. We ran the circuit with qiskit transpiler
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Noise amplification factor, r CNOT count Depth
1 18 36
3 54 72
5 90 108
7 126 144
9 162 180
11 198 216
13 234 252

Table 6.1: CNOT counts and circuit depths for the SWAP-test circuit when
noise amplified with the CNOT repetition scheme. The circuit has been op-
timized assuming full qubit connectivity.

for the specifications of the IBMQ Belem device. This outputted a circuit with
a CNOT count of 30, compared to the CNOT-count of 18 if we assume total
connectivity, and a depth of 46. When applying the CNOT repetition scheme
the CNOT count still scales from the bare circuit in exactly the same way,
proportional to the noise amplification factor r.

6.1.2 Experiments

Approximate noise models emulating the noise in specific IBMQ devices can be
retrieved by qiskit. In order to examine the effect of noise on different gates
and measurements, with realistic error rates, we retrieved such a noise model
for the IBMQ Vigo device. We decomposed the noise model into the specific
CNOT-gates, single-qubit gate and measurement components. The SWAP-test
experiment was then run for four different noise models based on these com-
ponents; with only the CNOT-gate noise, with CNOT-gate and single-qubit
gate noise, with CNOT-gate and measurement noise, and the full combined
noise model.

This experiment was run with the CNOT-repetition scheme for different
numbers of noise amplification factors. The mitigated expectation values for
each noise model is shown in Figure 6.1. The mitigated expectation values
are plotted as a function of the number of noise amplification factors used, as
this gives an indication of the computational cost. For n noise amplification
factors, we would need to construct n noise-amplified circuits, and estimate
the n corresponding expectation values. We executed all circuits for a total of
128 · 8192 = 1048576 in order to estimate their expectation value.

The input states were chosen such that |〈ψ|φ〉|2 = π
4 . This was chosen,

somewhat arbitrarily, to avoid any possible unforeseen symmetry effects. One
example of such a symmetry effect would be the case where |〈ψ|φ〉|2 = 0. We
would expect heavier noise amplification to move the end state closer to full
decoherence, i.e., a fully mixed density state. Such a state would itself have an
expectation value of 〈Z〉 = 0, thus it would be impossible to gain information
about the general effectiveness of the zero-noise extrapolation scheme.
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Figure 6.1: Mitigated expectation values for the SWAP-test circuit as a
function of the number of amplification factors. Run on a simulator with
noise models taken from the IBMQ Vigo device, restructured into separate
models with the CNOT noise only, CNOT and measurement noise, CNOT
and single-qubit gate noise, and the full IBMQ Vigo noise model.

From Figure 6.1 we observe that the zero-noise extrapolation converges
towards the ideal expectation value when only CNOT-noise is present, as we
would expect. The bare circuit expectation value has a relative deviation of
30% from the ideal expectation value in all 4 cases. At n = 7 the mitigated
expectation value has converged to within a relative deviation of 3.3%, when
considering only CNOT-noise. This suggests that the CNOT-repetition scheme
is effective in amplifying the noise by the desired amplification factors.

When introducing single-qubit noise and measurement noise the mitigated
expectation values instead converges to a point that is slightly shifted from
the noise-free expectation value E∗, as described by Equation (5.2). As we
only mitigate the CNOT-noise, this noise manifests itself as a shift δ in the
expectation value. As expected, we may then at best hope that the mitigated
expectation value converges towards

E∗eff = E∗ + δ (6.5)

where E∗ is the ideal expectation value and δ is the shift due to single-qubit
noise, as well as state-preparation and measurement (SPAM) noise. We observe
that this shift is small compared to the error cause by the CNOT-noise that
we do successfully mitigate. At n = 7 the relative deviation is 4.8% when
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considering the full noise model.
We further want to examine the efficiency of the CNOT-repetition scheme

compared to the alternative random-Pauli sampling scheme, as described in
Section 5.1.2.

We ran the SWAP-test experiment with states on a simulator with sev-
eral different noise models. We set the states as |ψ〉 = |0〉 and |φ〉 = |+〉,
such that |〈ψ|φ〉|2 = 0.5. A noise model emulating the noise in the IBMQ
Athens quantum processor was retrieved from qiskit. Depolarizing, amplitude
damping and phase damping noise models was constructed with noise both on
CNOT-gates and on single-qubit gates. In all cases, the error rate was chosen
a factor of 10 larger on CNOT-gate noise than on single-qubit gate noise.

The mitigated expectation values for these experiments as a function of
the number of amplification factors is shown in Figure 6.2. Although the two
schemes use different sets of noise amplification factors, the main factor for
computational complexity is the number of noise amplification factors used.
The relative errors ∆K = |EK−E∗|

E∗ in all cases, for n = 7 noise amplification
factors, are shown in Table 6.2.

As seen from Figure 6.2 the random-Pauli scheme mitigates depolarizing
noise well but fails to compete with the repeating CNOTs scheme for other
noise models. This is as expected, as the random-Pauli scheme relies on the
noise model to be approximated as a stochastic Pauli noise channel. As seen
from Equation (3.8) the depolarizing noise channel is just a homogeneous
stochastic Pauli noise channel.

The repeating CNOT-scheme relies on no such assumption about the spe-
cific characteristics of the noise channels on CNOT-gates. From Table 6.2 we
observe that the mitigated expectation values converge to relative errors within
1% for the depolarizing, amplitude damping and phase damping noise models,
and within 2% for the IBMQ Athens noise model. This is for n = 7 amplifica-
tion terms.

For the amplitude and phase damping noise models, the random-Pauli
scheme converges to a value with a relative error that is one order of magnitude
larger than that of the CNOT-repetition scheme. The CNOT-repetition scheme
also gives an improvement by a at least a factor of two for the IBMQ Athens
and depolarizing noise models. We assess that the CNOT-repetition scheme
gives a more accurate amplification of the noise given by these noise models.
The improvements are especially significant for noise models that differ from
the stochastic Pauli-noise models.

Interestingly, the process of Pauli-twirling the CNOT-gates does not sig-
nificantly improve the error mitigation in any of the experiments. For both
the IBMQ Athens noise model and the amplitude damping noise model the
Pauli-twirling yields a relative error that is larger by about a factor of 2.

We do suspect that the random-Pauli scheme should be more efficient on
noise described as stochastic Pauli-noise models. The above results from the
depolarizing noise model supports this claim. However, the results after adding
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Figure 6.2: Mitigated expectation values for the zero-noise extrapolation
with noise amplification by CNOT repetition, and by random Pauli-gate
sampling with and without Pauli-twirling. This was run on a simulator with
different noise models and with different numbers of amplification factors.

Noise model ∆CNOT-rep
K ∆random-Pauli

K ∆random-Pauli, twirled
K

IBMQ Athens 1.8% 4.0% 9.6%
Depolarizing 0.62% 1.3% 1.6%

Amplitude damping 0.60% 6.2% 13%
Phase damping 0.14% 6.8% 6.5%

Table 6.2: Relative errors ∆K in the mitigated expectation values EK(δ)
when employing the zero-noise extrapolation scheme with n = 7 noise ampli-
fication factors to the SWAP-test circuit. The noise amplification was done by
three different schemes; the CNOT-repetition scheme, and the random-Pauli
scheme without and with Pauli-twirling.
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Pauli-twirling suggests that any possible improvements gained by transforming
the noise models into stochastic Pauli-noise models is lost by the additional
noise due to the added noisy single-qubit gates. As seen from Equation 5.6
the process of Pauli-twirling adds 4 additional single-qubit gates per CNOT-
gate. Even though the noise on single-qubit gates is an order of one magnitude
lower than the noise on CNOT-gates in all the simulated cases, this seems to
compound to a non-negligible noise influence.

Finally, we want to examine the drawbacks of this error mitigation scheme,
which first and foremost is the computational cost. As described in Section 5.1.4,
when increasing the number of noise amplified terms n, we might need to in-
crease the number of circuit shots over all the noise amplified circuits in order
to compensate for an increased statistical error in the mitigated expectation
value.

Assume for the sake of simplicity that we execute each amplified circuit for
the same number of shots, i.e., Ni = N∀i = 1, 2, . . . , n. Note that this may not
be optimal, but it serves to illustrate the general point of the computational
scaling. We can then from Equation 5.14 estimate the number of shots per
circuit needed to obtain a statistical error below a fixed error threshold εtol as

N (n)
s =

∑n
i=1(γ

(n)
i )2σ2i
ε2s

, (6.6)

where σ2i is the variance in circuit i, which is noise amplified by a factor ri =

2i − 1, and the γ(n)i -coefficients are the coefficients found from Equation 5.4.
These coefficients, for the cases from n = 2 to n = 10, is presented in Table 5.1.

To investigate whether the variance scaling behaves as expected, we repeat
the error mitigation procedure for 1000 times with n = 8, each time with
N = 8192 shots per circuit. For each separate run, the mitigated expectation
value was computed using the Richardson extrapolation. This was done on
a mocked simulator backend that emulates the IBMQ Vigo device [36]. The
variance in the mitigated estimator Ẽ(n)

N=8192 was estimated by the mean square
error, over the 1000 repeats, as σ2mit = 0.284. The variance in each of the
noise amplified expectation value estimators Ẽ(riλ)N=8192 was then estimated
by the mean square error over the 1000 repeats. The estimated variances for
ri = 2i − 1, i = 1, 2 . . . , 10, is shown in Table 6.3. From Equation 5.12, the
expected variance for the mitigated expectation value estimator Ẽ(n)

N=8192 was
then estimated as σ̃2mit = 0.285. The expected variance calculated from the
per-circuit variances is thus in close agreement with the measured variance in
the mitigated expectation value estimator.

To understand the impact of the variance scaling, we estimated the vari-
ance in each noise amplified circuit for amplification factors ri = 2i − 1, i =
1, 2, . . . , 10, for the SWAP-test circuit on a backend with noise from the IBMQ
Vigo device. We executed each circuit for 8192 shots and estimated the variance
by the mean square error. We then used Equation 6.6 to estimate the number
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Table 6.3: Estimated variances σ2
i for the SWAP-test circuit when noise

amplified by factors ri = 2i − 1. The variances were estimated by the mean
square error over 8192 circuit shots.

i = 1 i = 2 i = 3 i = 4 i = 5

σ2i 0.850 0.942 0.977 0.991 0.997

i = 6 i = 7 i = 8 i = 9 i = 10

σ2i 0.999 0.999 0.998 1.00 1.00

Table 6.4: Estimated number of per-circuit shots N (n)
s , and total number

of shots N (n) = n · N (n)
s , required to achieve an error in the estimator Ẽ(n)

N

below the threshold of εtol = 0.01. The noise amplification factors in all cases
are {1, 3, 5, . . . , 2n− 1}.

n = 1 n = 2 n = 3 n = 4 n = 5

N
(n)
s 8.5 · 103 2.15 · 104 4.60 · 104 1.04 · 105 2.58 · 105

N
(n)
tot 8.5 · 103 4.30 · 104 1.38 · 105 4.14 · 105 1.29 · 106

n = 6 n = 7 n = 8 n = 9 n = 10

N
(n)
s 7.11 · 105 2.11 · 106 6.61 · 106 5.01 · 106 1.83 · 106

N
(n)
tot 4.27 · 106 1.48 · 107 5.29 · 107 4.51 · 107 1.83 · 107

of shots per circuit that is needed to achieve an error below a threshold of
εtol = 0.01. The estimated require number of per-circuit shots N (n)

s , and the
corresponding total required number of shots N (n) = n · N (n)

s , is showed in
Table 6.4 for different cases of n from 1 to 10.

From Table 6.4 it becomes clear that the zero-noise extrapolation comes
with a significant increase in computational cost. From Table 6.3 we observe
that the variance is not significantly altered between the various noise amplified
circuits. Instead, we observe that the specific γ(n)i -coefficients have a consider-
able impact on the error scaling, and thus on the required number of circuit
shots. For n = 5 and above, the required number of shots have increased by
more than 2 orders of magnitude.

From Figure 6.1, however, we observe that including more and more noise
amplification terms gives diminishing returns. Significant improvements have
already been achieved for n = 2 and n = 3, for which the shot requirements
are within or approximately at one order of magnitude larger than that of
the bare-circuit case. When considering the full noise model, the relative error
in the mitigated expectation value is at 14% for n = 2 and 8.3% for n = 3,
compared to 30% for the bare-circuit. For practical applications, including just
a few noise amplified terms is the most realistic option.
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6.2 Zero-Noise Extrapolation with Error Detection

The results so far from the zero-noise extrapolation promising. Further im-
provements may, however, be gained by combining the zero-noise extrapola-
tion with other error mitigation techniques. One error mitigation scheme that
may be straight-forwardly combined with the zero-noise extrapolation is the
error detection scheme. This method is detailed in Section 5.2. This scheme
was proposed in an article by McArdle, Yuan and Benjamin [15].

In the article, McArdle, Yuan and Benjamin explored the use of such a
stabilizer-like error detection scheme combined with a zero-noise extrapolation
scheme. They trialed this on the VQE algorithm for the H2molecule using an
UCCSD ansatz. The VQE algorithm is described in Section 4.2. We will later
in this chapter recreate the experiments performed by McArdle, Yuan and
Benjamin, but using our proposed CNOT-repetition scheme for noise ampli-
fication. We will use this experiment as a vessel to explore the efficiency of the
error detection and the zero-noise extrapolation techniques on a near-future
applicable quantum algorithm. We will further explore the potential of com-
bining the error detection and zero-noise extrapolation techniques, using the
CNOT-repetition scheme.

6.2.1 VQE for the Hydrogen Molecule

In the Jordan-Wigner transformation each qubit stores the occupation number
of a corresponding orbital. In this problem, we want to arrange n = 2 elec-
trons in m = 4 orbitals in such a manner that the energy is minimized. The
Hamiltonian in this transformation may be written as a linear combination of
m-qubit Pauli-operator terms as

H =
∑
i

αihi, (6.7)

where the αi are real coefficients and hi are 4-qubit tensor products of the Pauli-
operators {I, X, Y, Z}. The Pauli-operator terms with corresponding coeffi-
cients for the H2molecule, with n = 2 electrons and m = 4 orbitals, are given
in Table A.1.

In the VQE procedure we prepare a parameterized ansatz state
∣∣∣ψ(~θ)

〉
then

measure the energy given by

E(~θ) =
〈
ψ(~θ)

∣∣∣H ∣∣∣ψ(~θ)
〉

=
∑
i

αi

〈
ψ(~θ)

∣∣∣hi ∣∣∣ψ(~θ)
〉
. (6.8)

As the Hamiltonian terms hi are tensor products of Pauli-operators, its contri-
bution

〈
ψ(~θ)

∣∣∣hi ∣∣∣ψ(~θ)
〉
can be estimated by applying single-qubit gates to the

end state
∣∣∣ψ(~θ)

〉
, then performing measurements in the computational basis.
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We thus prepare one circuit for each Hamiltonian term hi, estimate the corres-
ponding expectation value

〈
ψ(~θ)

∣∣∣hi ∣∣∣ψ(~θ)
〉
, then compute the resulting energy

expectation value from Equation (6.8).
An advantage of trialing these methods on the problem of molecular simu-

lations is that it gives an obvious milestone to aim for; the chemical accuracy.
The chemical accuracy of 1.6 · 10−3 Hartree is the accuracy needed in energy
computations in order to predict reaction rates at room temperature to within
an order of magnitude [15].

6.2.2 UCCSD Ansatz Circuit with Error Detection

The UCCSD ansatz for the H2molecule, as discussed in Section 4.2.3, prepares
the parameterized state∣∣∣ψH2(~θ)

〉
= U(~θ) |0000〉 = α |0101〉+ β |1010〉+ γ |0110〉+ δ |1001〉 , (6.9)

where α, β, γ, δ are complex coefficients dependent on the variational para-
meters ~θ, and the unitary U(~θ) is applied by use of a quantum circuit. The
quantum circuit for the UCCSD ansatz is shown in Equation (A.1).

From Equation (6.9) we observe that the state
∣∣∣ψH2(~θ)

〉
is a simultaneous

eigenstate of the operators Z1Z2 and Z3Z4 with eigenvalue −1. Here, Zi is
the Z-operator acting on qubit qi. This suggests the following error detection
scheme; by use of ancillary qubit measurements, measure the operators Z1Z2

and Z3Z4. Store the measurement output in the bits x1 ∈ {−1,+1} and x2 ∈
{−1,+1}. We complete the circuit with measurements on the state

∣∣∣ψH2(~θ)
〉
.

Afterwards, we inspect the ancillary measurements. If (x1, x2) = (−1,−1) then
we have detected no error and we keep the measurement results. Otherwise,
we have detected at least one error and we discard the measurements.

The full circuit that implements the UCCSD ansatz with error detection is
given as

a1 : |0〉 x1

q1 : |0〉

U(~θ)

• V1

q2 : |0〉 • • V2

q3 : |0〉 • • V3

q4 : |0〉 • V4

a2 : |0〉 x2

(6.10)

where the subcircuit implementing the parametrized unitary U(~θ) is given by
Equation (A.1). For a quantum processor with linear qubit connectivity this
circuit is compatible as is, requiring no additional SWAP-gates. The Vi-gates
implement the single-qubit gates that required to measure the corresponding
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Hamiltonian Pauli-operator hi. The procedure for measuring arbitrary Pauli-
operators is described in Section 2.4.9.

The ansatz subcircuit that implements U(~θ) has a CNOT complexity of
52 after optimization by the qiskit transpiler with the heaviest optimization
preset and assuming linear qubit connectivity. The error detection sub-circuit
contributes 6 additional noisy CNOT-gates. This is comparably small to the
CNOT-contribution of the ansatz circuit.

More efficient ansatze that have achieved more accurate results do exist for
the H2molecule [5, 6]. This is made possible by taking advantage of particular
symmetries and simplifications possible for the H2molecule, but this is not
generally applicable to larger molecules. The UCCSD ansatz was therefore
used by McArdle et. al. to ensure general applicability to quantum chemistry.

6.2.3 Experiments

The VQE procedure was first run using a noiseless simulator in order to obtain
a set of optimized variational parameters ~θopt. This was done as we are not
looking at the effects of noise on the optimization procedure. We then used the
UCCSD ansatz circuit with optimized parameters to compute the energy on a
simulator with a noise model. A 2-qubit depolarizing noise channel with error
rate p, as shown in Equation (3.8), was applied to all CNOT-gates. In these
experiments no single-qubit or measurement noise was added.

Each experiment was repeated with four different combinations of error
mitigation techniques; no error mitigation, error detection, zero-noise extra-
polation and zero-noise extrapolation combined with error detection.

This experiment was run for the H2molecule for interatomic distances a,
ranging from a = 0.3 Å to a = 2.5 Å. A 2-qubit depolarizing noise channel
with error rate p = 0.1% was applied to CNOT-gates. The results are shown
in Figure 6.3.

As seen from Figure 6.3 the error detection scheme gives improvements
over the bare noisy results. The zero-noise extrapolation technique, however,
give far better results.

The absolute errors from the above experiment is shown in Figure 6.4
compared to the chemical accuracy of 1.6 ·10−3 Hartree. From this, we observe
that for an error rate of p = 0.1% the zero-noise extrapolation does obtain an
error below the chemical accuracy. The variance, however, makes it unclear in
this experiment if the error detection scheme may give any improvements when
combined with the zero-noise extrapolation, as it was approximately equal to
the chemical accuracy for both of these schemes.

We repeated the experiment with H2 at a fixed distance of a = 0.74 Å.
Now, we applied a similar 2-qubit depolarizing noise channel on CNOT gates,
but with different error rates ranging from p = 0.1% to p = 2%. The error
in the energy as compared to the exact ground state energy of E = −1.137
Hartree is shown in Figure 6.5.
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Figure 6.3: Ground state energies from VQE simulations on H2 when apply-
ing different methods of error mitigation, with the H2 molecule at different
interatomic distances. The UCCSD ansatz was used for the VQE procedure.

From Figure 6.5 we again observe that we get improvements over the bare
noisy results when employing the error detection technique. Even further im-
provements are obtained by the zero-noise extrapolation. Now, however, we
observe that combining the two techniques yields even further improvements.

For p = 0.1%, the error in both extrapolation results are within the chem-
ical accuracy of the ideal result. A CNOT-error rate in this order may be
feasible for near-future quantum computers [39, 40]. On the IBMQ devices
that we have previously considered, the CNOT error rate is however stated to
be approximately p = 1% on average [27]. This applies to the IBMQ Athens
and IBMQ Belem devices.

As discussed in Section 5.2 a drawback of the error detection technique
is that we may potentially end up discarding a large portions of circuit shots
that we perform. In that case we would need to perform additional shots of
the quantum circuit in order to obtain an estimated expectation value that
is still converged to within a reasonable error. To examine this, the rate of
total measurement experiments that was discarded when employing the error
detection scheme to the noise amplified UCCSD circuit is shown in Table 6.5.
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Figure 6.4: Error in the ground state energy for H2 as computed by the VQE,
when applying different methods of error mitigation. The H2 molecule was set
to different interatomic distances. The UCCSD ansatz was used, and a 2-
qubit depolarizing noise channel was applied to CNOT-gates in the quantum
computation. The simulations were stopped at a variance approximately equal
to the chemical accuracy.

Table 6.5: Rate of discarded measurements for the error detection scheme on
the UCCSD ansatz circuit for H2 . The discarded rates are shown for different
CNOT-noise error rates p, and for different noise amplification factors r when
amplifying the noise with the CNOT-repetition scheme.

p = 0.1% p = 0.5% p = 1% p = 1.5% p = 2%

r = 1 5.9% 25% 36% 52% 54%
r = 3 16% 47% 62% 72% 72%
r = 5 25% 59% 70% 73% 74%

This is shown for the different error rates from p = 0.1% to p = 2%, and for
noise amplification factors r = 1, r = 3 and r = 5.

We observe from Table 6.5 that the scheme discards only a small percent-
age of the total circuit shots for the lower error rates. At p = 2% we discard
54% of shots, which would require us to perform less than 3 times the original
shot count to obtain the same error in the expectation value estimation. These
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Figure 6.5: Deviation from the exact energy for noisy VQE simulations of
H2 at different error rates and with different error mitigation schemes. The
interatomic distance is a = 0.74Å and the UCCSD ansatz have been used.

results suggest that while the error detection technique give limited error mit-
igation, failing to achieve the chemical accuracy at p = 0.1%, the technique
comes at a significantly lesser computational cost than the zero-noise extra-
polation technique. The trade-off is that this scheme requires some additional
ancillary qubits for the symmetry measurements.

For the noise amplified circuits, as expected, the rate of discarded meas-
urements increased as the effective error rates on CNOTs is increased. On the
circuit with a noise amplification factor of r = 5, with p = 0.1%, we observe
that 25% of the shots are discarded. This circuit should have an effective error
rate of p̃ = 5 · 0.1% = 0.5%, and indeed, we find the bare circuit run with
an error rate of 0.5% to also discard exactly 25% of the circuit shots. For the
circuit with r = 5, run with an error rate of p = 2%, we observe that 74%
of the measurements are discarded. To compensate for this, we would need to
perform 4 times the original shot count, still below one order of magnitude.
This suggests that the lesser cost of the error detection scheme also holds for
higher effective error rates, and thus still holds when combining the scheme
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with the zero-noise extrapolation.



Chapter 7

Conclusion

In this thesis, we have studied some techniques relevant for near-future quantum
computation. In particular, we have examined techniques of quantum error
mitigation, and their applications to NISQ-era viable hybrid quantum-classical
algorithms. We studied the zero-noise extrapolation technique and proposed
a variant with a novel noise amplification scheme, as well as the error de-
tection scheme. These techniques were applied to a trial quantum circuit in
the SWAP-test circuit, and to the VQE algorithm for molecular simulations,
in order to explore how error mitigation may improve results in near-future
quantum algorithms.

7.1 Conclusions

In order to test its efficiency, the zero-noise extrapolation technique with our
proposed noise amplification scheme by CNOT-repetition was tested on the
SWAP-test circuit. A noise model emulating noise in the IBMQ Vigo quantum
device was applied. The error mitigated expectation value, in the best case,
obtained a mitigated expectation value within a relative error of 3.3% of the
ideal-case expectation value when considering only noise on CNOT-gates, and
4.8% when considering noise also on single-qubit gates and measurements.
When compared to the bare-circuit error of 30%, this constitutes an improve-
ment of one order of magnitude.

We further compared the zero-noise extrapolation when using our proposed
CNOT-repetition scheme for noise amplification, with the alternative scheme
that uses random Pauli-gate sampling. This was done for several different noise
models. As expected, the two schemes gave comparable results for the depolar-
izing noise channel, as the random-Pauli sampling scheme relies on approxim-
ating the noise as stochastic Pauli-noise. The CNOT-repetition scheme relies
on no such assumptions, and as expected, produced better results for the other
noise models. The CNOT-repetition scheme gave an improvement in the rel-
ative error by one order of magnitude for the amplitude damping and phase
damping schemes, and by more than a factor of 2 for the IBMQ Athens noise

67
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model. For the random Pauli-sampling scheme, the process of Pauli-twirling did
not significantly improve results for any of the noise models, suggesting that
the noise from single-qubit gates was more significant than the advantages
gained from the transformation of the noise models into stochastic Pauli-noise
channels.

The zero-noise extrapolation technique, however, was found to come with
a significant computational cost that is highly dependent on the specific γ(n)i -
coefficients. The mitigated expectation value estimator is afflicted by a large
variance, dependent on the specific γ(n)i -coefficients and the per-circuit vari-
ances, causing an increased statistical error that must be compensated by
increasing the number of per-circuit shots. While the mitigated expectation
value was found to converge towards a lower error when increases the number
of noise amplified terms n, the required total number of shots increased by sev-
eral orders of magnitude for larger n. The most realistic use cases are the cases
of n = 2 and n = 3, where the shot requirements increased by approximately
one order of magnitude, while still gaining significant improvements in terms
of noise mitigation. The relative errors found for the SWAP-test circuit with
n = 2 and n = 3, respectively, was 14% and 8.3%, respectively, compared to
30% for the bare-circuit case.

We further tested the error detection scheme combined with the zero-noise
extrapolation, with our proposed noise amplification scheme, on the VQE al-
gorithm for the H2molecule. This was done with several goals in mind; to
explore the error detection technique, to examine the potential in combining
both these error mitigation techniques, and to test state-of-the-art error mit-
igation schemes on an algorithm that may soon be applicable to real-world
problems. We run these experiments on a simulator with a depolarizing noise
model, with several different error rates, and tested both the error detection
and zero-noise extrapolation techniques by themselves, as well as a combined
error mitigation scheme involving both techniques.

We ran the VQE experiment on the H2molecule with several different in-
teratomic distances, with an error rate on CNOT-gates of p = 0.1%. While the
error detection scheme gave a significant improvement over the bare-circuit
results, it failed to achieve errors within the chemical accuracy of 1.6 · 10−3

Hartree by itself. Both the zero-noise extrapolation and the combined scheme,
however, achieved errors around the benchmark of the chemical accuracy.

The experiment was repeated at a fixed interatomic distance for error rates
ranging from p = 0.1% to p = 2%. For all error rates, both error mitigation
schemes gave significant improvements over the bare-circuit expectation value.
For all cases, the zero-noise extrapolation outperformed the error detection
scheme, and the combined zero-noise extrapolation with error detection out-
performed both. Errors in the range of the chemical accuracy, however, were
only achieved in the case of p = 0.1%.

The error detection scheme on its own fails to achieve errors below the
chemical accuracy, even for p = 0.1%. However, it was found to come at a
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considerable lesser computational cost than the zero-noise extrapolation. At
p = 0.1%, only 5.9% of the circuit shots were discarded.

The noise amplification procedure inherently increases the error rates and
therefore the amount of discarded measurements also increased. For the noise
amplified circuit with amplification factor r = 5, at p = 2%, 74% of the circuit
shots, which require 4 times the original shot count. This is still below one
order of magnitude and suggests that it is still computationally cheap to run
the error detection scheme even when combined with noise amplification. The
trade-off is the additional required ancillary qubits, needed for the symmetry
measurements, which in this case is 2 additional qubits.

7.2 Future Work

We have tested two different quantum error mitigation techniques with prom-
ising results. Future work on this topic includes verifying these results on real
quantum hardware. The noise models provided by qiskit that aims to emulate
the noise in specific quantum devices are quite simple and might not necessar-
ily be realistically recreating complicated noise present on physical quantum
hardware. This remains to be tested.

Furthermore, work on the zero-noise extrapolation algorithm includes a
scheme for per-circuit adjustments of the circuit shots, taking the specific γi-
coefficient and variance for each circuit into account. We looked at the case
where each circuit was executed for the same number of shots, but this might
not be optimal, as the γi-coefficients vary by several orders of magnitude for
different amplification factors. Improvements in this aspect might mitigate
some of the computational cost brought by the zero-noise extrapolation.
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Appendix A

The H2 Molecule

This chapter presents some specifics for the H2molecule relevant for the VQE
algorithm, which is detailed in Section 4.2. The Pauli-terms Pα and coefficients
hα, as given by Equation (4.6), for the qubit Hamiltonian of the H2 -molecule
is presented in TableA.1. Here, the Jordan-Wigner transformation was used to
transform the fermionic Hamiltonian into a qubit Hamiltonian.

Table A.1: Pauli-operator terms Pα and corresponding coefficients hα for a
qubit-Hamiltonian for the H2 molecule at an interatomic distance of a = 0.74
Å. The Jordan-Wigner transformation was used, and m = 4 electron orbitals
was included.

hi αi
IIIZ 0.1714
IIZI -0.2234
IZII 0.1714
ZIII -0.2234
IIZZ 0.1206
IZIZ 0.1687
ZIIZ 0.1659
IZZI 0.1659
ZIZI 0.1744
ZZII 0.1206
XXY Y 0.04530
Y Y XX 0.04530
Y Y Y Y 0.04530
XXXX 0.04530

The following circuit gives the UCCSD ansatz, as described in Section 4.2.3,
for the H2molecule when including m = 4 orbitals.
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|0〉 H • • H H • • H

|1〉 Rx(π2 ) • • Rx(−π
2 ) H • • H

|0〉 H • • H H • • H

|1〉 H Rz(−θ1) H Rx(π2 ) Rz(−θ2) Rx(−π
2 )

H • • H Rx(π2 ) • • Rx(−π
2 )

Rx(π2 ) • • Rx(−π
2 ) Rx(π2 ) • • Rx(−π

2 )

Rx(π2 ) • • Rx(−π
2 ) H • • H

Rx(π2 ) Rz(−θ3) Rx(−π
2 ) Rx(π2 ) Rz(−θ4) Rx(−π

2 )

Rx(π2 ) • • Rx(−π
2 ) Rx(π2 ) • • Rx(−π

2 )

Rx(π2 ) • • Rx(−π
2 ) H • • H

Rx(π2 ) • • Rx(−π
2 ) Rx(π2 ) • • Rx(−π

2 )

H Rz(−θ5) H Rx(π2 ) Rz(−θ6) Rx(−π
2 )

H • • H Rx(π2 ) • • Rx(−π
2 )

H • • H H • • H

Rx(π2 ) • • Rx(−π
2 ) H • • H

H Rz(−θ7) H H Rz(−θ8) H

Rx(π2 ) • • Rx(−π
2 ) H • • H

H Rz(−θ9) H Rx(π2 ) Rz(θ10) Rx(−π
2 )

Rx(π2 ) • • Rx(−π
2 ) H • • H

H Rz(−θ9 H Rx(π2 ) Rz(θ10) Rx(−π
2 )

(A.1)
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The two states initialized in the |1〉 state may be prepared by initialization in
the |0〉 state followed by a single Pauli-X gate.





Appendix B

Pauli-Twirling

The process of Pauli-twirling transforms general error channels into stochastic
Pauli-type error channels, which in certain scenarios may easier to handle, by
use of redundant Pauli gates.

By Equation (3.2), we can write the action of a faulty gate as the quantum
channel

Ñ = N ◦ E . (B.1)

Here, E is the quantum channel of the ideal, noiseless gate and N is an effective
noise channel. By Equation (2.34) we can write the quantum channel N in
terms of its Kraus operators {Kl}l, such that N (ρ) =

∑
lKlρK

†
l .

We focus now on 2-qubit gates, e.g., the CNOT-gate. Assume that we
perform a faulty 2-qubit gate with quantum channel Ũ . From Equation (3.2)
we may write Ũ = N ◦ U , where U is the noiseless unitary gate U(ρ) = UρU †

and N (ρ) =
∑

lKlρK
†
l is the noise operation.

The Kraus operators for a quantum channel on a 2-level system can be
expnaded in terms of the Pauli operators as

Ek =

3∑
i,j=0

αk;i,jσ
i ⊗ σj (B.2)

where σ0 = I, the identity, and σi for i = 1, 2, 3 are the Pauli matrices such
that σ1 = σx, σ2 = σz and σ3 = σy, and αk;i,j ∈ C are complex coefficients [20].

To Pauli-twirl the faulty gate we choose two random Pauli-operators a, b ∈
{I, X, Z, Y }. From a and b we determine Pauli operators c and d such that

(a⊗ b)U(c⊗ d) = eiαU, (B.3)

for the noiseless unitary gate U , where eiα is some global phase that may be
ignored. The operators c and d can be determined as

c⊗ d = U †(a⊗ b)U. (B.4)
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The Pauli-twirled noisy gate can now be written as

a
Ũ

c
=

a
U N

c
= U

c
N

c

b d b d d d

(B.5)

Note that the gate N here represents the noise operation N (ρ) =
∑

lKlρK
†
l ,

ρ being the density operator of the ingoing multi-qubit state, which is possibly
not unitary.

The Pauli-twirled error channel is now described by the Kraus operators

K̃l = (a⊗ b)
( 3∑
i,j=0

αl;i,j σ
i ⊗ σj

)
(a⊗ b) =

3∑
i,j=0

αl;i,j aσ
ia⊗ bσjb. (B.6)

The effective Pauli-twirled error channel can then be written as a stochastic
Pauli-error channel

Ñ (ρ) =
∑
l

K̃lρK̃
†
l = Fρ+

3∑
i,j=0

(i,j) 6=(0,0)

εi,jσ
iσjρ σjσi, (B.7)

where F =
∑

k |αk;0,0|
2 is the fidelity of the Pauli-twirled error channel and the

εi,j =
∑

k |αk;i,j |
2, for (i, j) 6= (0, 0), are the error probabilities corresponding

to the error operator σiσj [20].
The process of Pauli-twirling requires applications of ideal single-qubit op-

erators. Therefore, this technique is limited to cases where the noise in the
single-qubit gates are negligible compared to the noise in the Pauli-twirled
gate. In modern quantum hardware this is often the case for multi-qubit gates,
such as the CNOT-gate, that typically have error rates an order of magnitude
larger than that of single-qubit gates [30].



Appendix C

Quantum Error Correction

Quantum error correction using quantum error-correcting codes provides means
to detect and exactly correct errors during a quantum computation by making
use of redundancy. By encoding virtual, or logical, qubits into states on multiple
physical qubits, errors that move the states out of the assigned code subspace
can be detected by doing measurements. Based on the measurement outcomes,
recovery operations are then done to recover the original logical qubit state.

C.1 The Classical Repetition code

To illustrate the concept, first consider the classical 3-bit repetition code with
syndrome decoding. In this code, a bit x ∈ {0, 1} is encoded into an encoded
logical bit according to

0 −→ 000, 1 −→ 111. (C.1)

Say now that a bit flip error occurs with probability p, flipping a 0 into a 1 or
vice versa. The encoded bit x̃ ∈ {000, 111} can be recovered and decoded even
if a single bit-flip error has happened on any of the three bits.

This can be done as follows. For an encoded bit x̃ = x0x1x2, assign the two
syndromes s0 and s1 as

s0 = x0 ⊕ x1, s1 = x1 ⊕ x2, (C.2)

where ⊕ means addition modulo 2. The decoding process proceeds as follows;
check the two syndromes s0 and s1. Assume that at most a single bit-flip error
has occurred. If s0 = 1, then x0 6= x1 and a bit-flip error has occurred on either
x0 or x1. If s1 = 1, then x1 6= x2 and a bit-flip error has occurred on either x1
or x2.

If s0 = 1 and s1 = 0, flip x0. If s0 = 1 and s1 = 1, flip x1. If s0 = 0 and
s1 = 1, flip x2. The encoded bit is now either a string of three zeros or three
ones, coinciding with either the encoded 0-bit, or the encoded 1-bit.

This procedure ensures that a single bit-flip error on one of the physical
bits does not result in an error in the logical bit. If bit-flip errors may occur
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independently with probability p on any bit, the 3-bit repetition code lowers
the probability of a logical error to O(p2), as two or more bit-flip errors must
happen for the logical bit to retain an error.

C.2 The Quantum Repetition code

Now, we want to construct an analogous error-correction code for use on
quantum bits. A first, naive idea would be to simply repeat the qubit state
in question, |ψ〉 three times, giving

|ψ〉 −→ |ψ〉 |ψ〉 |ψ〉 . (C.3)

This is, however, not allowed by the no-cloning theorem. The no-cloning the-
orem states that no quantum operator C, such that

C(|ψ〉 |φ〉) = |ψ〉 |φ〉 , (C.4)

can exist. The theorem can be derived from the unitary nature of quantum
operators, or as a consequence of no-signalling, which states that information
cannot be transferred faster than the speed of light.

Thus, we need a different scheme. We first consider the analogue to a clas-
sical bit-flip error, which is a Pauli-X error. Consider the noise channel E on
a single qubit, defined by Kraus operators

E0 =
√

1− p I, E1 =
√
pX. (C.5)

Extend the noise model to several qubits as E3 = E ⊗ E ⊗ E .
A better proposal for a quantum repetition code is the following; encode

the computational basis states {|0〉 , |1〉} as

|0〉 −→ |000〉 , |1〉 −→ |111〉 . (C.6)

The states |0̄〉 ≡ |000〉 and |1̄〉 ≡ |111〉 are the code words of this code. In
the same way that {|0〉 , |1〉} form a basis for the state space of a single qubit,
{|000〉 , |111〉} form a basis of the state space of the encoded logical qubit.
This space is called the code space. The encoding of a general qubit state then
becomes

|ψ〉 = α |0〉+ β |1〉 −→
∣∣ψ̄〉 = α |0̄〉+ β |1̄〉 = α |000〉+ β |111〉 . (C.7)

This encoding of a general qubit state |ψ〉 can be performed by the quantum
circuit sub-procedure

|ψ〉 • •
|0〉
|0〉

. (C.8)
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Analogous to the syndromes s0 and s1 of the classical repetition code, the
syndrome operators, or stabiliser operators, of the quantum repetition code are
defined as

Z0Z1, Z1Z2, (C.9)

where Zi is the Pauli-Z operator acting on qubit i, for i = 0, 1, 2. The eigen-
values of these operators are ±1. Notice how the general encoded state

∣∣ψ̄〉 is
a +1 eigenstate of both stabiliser operators. This is by design.

The syndromes s0 and s1 are obtained by measuring the stabiliser operators
Z0Z1 and Z2Z3, respectively. If an X-error have occurred, on say qubit 1, the
error-afflicted encoded state becomes a -1 eigenstate of the Z1 operator, as

Z0Z1X1

∣∣ψ̄〉 = −X1Z0Z1

∣∣ψ̄〉 = −X1

∣∣ψ̄〉 . (C.10)

The faulty state X1

∣∣ψ̄〉 is thus a -1 eigenstate of both stabiliser operators.
Here, we use that Xi anticommutes with Zi, i.e., XiZi = −ZiXi. Xi, however,
commutes with any Zj for i 6= j.

After obtaining the measurement outcomes, stored in s0 and s1, the recov-
ery proceeds in the same way as for the classical repetition code. Now, s0 = −1
indicates an X error on physical qubit 0 or 1, s1 = −1 indicates an X error on
physical qubit 1 or 2, and so on. From this example, the measurements return
-1 for both syndromes, indicating an X error on qubit 1

The recovery operationR(s0, s1) is done by applying anX-gate to the phys-
ical qubit on which the error has been detected. The non-destructive measure-
ments of the stabilizers, followed by recovery operation, is done by the circuit
sub-procedure as follows

•
R(s0, s1)• •

•
|0〉

s0

|0〉
s1

(C.11)

The single-qubit X-errors, {Xi}i=1,2,3, is the set of correctable errors for
the 3-qubit quantum repetition code. These are the errors this code can exactly
detect and correct.

In general, a stabilizer code is a quantum error-correcting code where the
logical qubit states are encoded in the simultaneous +1 eigenstate of some set
of stabilizer operators. Errors are detected by doing measurements of the sta-
bilizer operators. In general, the set of correctable errors are the error operators
which anticommutes with one or more of the stabilizer operators.



84 A.H.Rokne: QEM for NISQ-era Quantum Computation

C.3 Digitization of errors

Consider an error-channel Kraus operator

E = αI + βX + γZ + δXZ, (C.12)

where α, β, γ, δ are complex coefficients.
Assume that we have a quantum error-correcting code in which Z is a

stabilizer operator, and with an encoded state |ψ̄〉. Then, Z |ψ̄〉 = |ψ̄〉. By
using the anticommutation relation ZX = −XZ, we get

ZE
∣∣ψ̄〉 = −1

(
βX + δXZ

) ∣∣ψ̄〉+ (+1)
(
αI + γZ

) ∣∣ψ̄〉 . (C.13)

A measurement outcome of +1 thus leaves the logical qubit in the post-
measurement state

(
αI + γZ

)
|ψ̄〉, which is a +1 eigenstate of Z, where no

X error have occurred. An outcome of -1 leaves the post-measurement state
(βX + δXZ)

∣∣ψ̄〉, where an X error definitely has occurred.
In this way, the measurement of the stabiliser operator has collapsed the

state, from some arbitrary superposition of error-free and error-afflicted states,
into a state that can be said to definitely be either error-free or error-afflicted.
This is with respect to the errors that are correctable by the given stabiliser.
We say that the error has been digitized.

By concatenating the 3-qubit repetition code with the 3-qubit phase code,
with stabilizers X0X1 and X1X2, and code words

∣∣0̃〉 ≡ |+ + +〉 and
∣∣1̃〉 ≡

|− −−〉, we get the 9-qubit Shor code. The correctable errors for the Shor code
are thus any X, Z, and joint XZ errors occurring on only a single qubit at a
time. As all single-qubit Kraus operators can be written in the form of Equa-
tion (C.12), the Shor code can correct any arbitrary single one-qubit error [7].

C.4 Error Thresholds

Consider the quantum repetition code and an error model with Pauli-X error
operators occurring on the qubits independently, on each with a probability
p. The quantum repetition code allows any case in which at most one X-
error occurs to be corrected. However, two or more X-errors happening at the
same time will result in an error on the logical qubit, i.e., a logical error. The
probability of a logical error plogical, given a physical error probability p on the
physical qubits, thus becomes

plogical = 3p2(1− p) + p3 = 3p2 +O(p3). (C.14)

Assume the physical error rate p is such that p = p∗ for some p∗ fulfilling

plogical = p∗ ⇒ 3(p∗)2 +O((p∗)3) = p∗ ⇒ p∗ =
1

3
. (C.15)
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Thus p∗ = 1
3 is the error threshold for the 3-qubit quantum repetition code, up

to order O(p3). If p ≤ p∗, the encoding leaves the logical qubit with a logical
error rate that is improved compared to the physical error rate.

If the physical error rate is below the threshold value, the logical error rate
can be lowered to arbitrary precision by concatenation. One concatenation of
the 3-qubit repetition code gives the 9-qubit code

|ψ̃〉 = α |0̄0̄0̄〉+ β |1̄1̄1̄〉 = α |000000000〉+ β |111111111〉 , (C.16)

with logical error rate pl=2 = (pl=1)
2 = 9p4 + O(p5), where pl is the logical

error rate of a level l concatenated code. This can be repeated.
Note that the number of physical qubits needed grows as 3l, i.e., exponen-

tially. The saving grace is that the logical error rate pl = (pl−1)
2 = p2

l drops
super-exponentially with l. The total qubit requirement can thus be shown to
increase polylogarithmically as a function of the inverse, target precision ε−1,
i.e., as polylog(ε−1).
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