
N
TN

U
N

or
w

eg
ia

n
U

ni
ve

rs
ity

 o
f S

ci
en

ce
 a

nd
 T

ec
hn

ol
og

y
Fa

cu
lty

 o
f I

nf
or

m
at

io
n

Te
ch

no
lo

gy
 a

nd
 E

le
ct

ric
al

 E
ng

in
ee

rin
g

D
ep

ar
tm

en
t o

f C
om

pu
te

r S
ci

en
ce

Martin Nordby Johansen, Theodor Astrup Wiik

Lamarckian Evolution of
Compositional Pattern Producing
Networks For Image Super
Resolution

Master’s thesis in Computer Science
Supervisor: Pauline Catriona Haddow

June 2021

M
as

te
r’s

 th
es

is

Martin Nordby Johansen, Theodor Astrup Wiik

Lamarckian Evolution of
Compositional Pattern Producing
Networks For Image Super Resolution

Master’s thesis in Computer Science
Supervisor: Pauline Catriona Haddow
June 2021

Norwegian University of Science and Technology
Faculty of Information Technology and Electrical Engineering
Department of Computer Science

Abstract

The field of single image super resolution has been a subject of research
for many years. Interpolation has long been the industry standard. This
method is flexible in terms of image input and output size. In the last
decade, deep learning has gained popularity within image super resolution
and has even outperformed interpolation. Such methods are often static
in terms of their output size and thus have a limit to how large images
they can input and output. This thesis explores the abilities of Composi-
tional Pattern Producing Networks (CPPN) as a flexible method for sin-
gle image super resolution similar to interpolation. As images come with
varying characteristics and complexity, it is hard to design and optimize
networks capable of producing detailed image recreations. The Lamar-
ckian Evolution of Compositional Pattern Producing Networks algorithm
(LE-CPPN), a combination of neural architecture search and backprop-
agation for CPPN optimization, was developed and tested. Experiments
showed that the Lamarckian inheritance of weights significantly improves
network performance compared to pure backpropagation training. CPPNs
evolved by LE-CPPN, successfully produced detailed image recreations,
and were further used to upsample images. The resulting upscaled im-
ages displayed interesting qualities, and the visual quality was satisfying.
Regarding mathematical image similarity scores, the method scored lower
than image interpolation.

ii

Sammendrag

Feltet som innebærer å f̊a høyere oppløsning p̊a bilder har vært et emne
for forskning i mange år. Matematisk interpolasjon har lenge vært en
standard i industrien. Disse typer metoder er fleksible med tanke p̊a
bilders input- og outputstørrelse. Det siste ti̊aret har dyp læring f̊att
større popularitet innenfor feltet, og har ogs̊a oppn̊add bedre resultater
enn interpoleringsmetoder. Slike metoder er dog statiske med tanke p̊a
outputstørrelse og har derfor en grense for hvor store bilder de kan ta som
input og output. Denne oppgaven utforsker muligheten til å bruke Compo-
sitional Pattern Producing Networks(CPPN) som en fleksibel metode for
å f̊a høyere oppløsning p̊a enkeltbilder lignende interpolering. Siden bilder
kommer med varierende karakteristikk og kompleksitet, ble det utviklet
en metode for å optimalisere CPPN-er til hvert enkelt bilde. Lamarck-
ian evolution of Compositional Pattern Producing Networks(LE-CPPN),
en kombinasjon av nevralarkitektursøk og backpropagation ble utviklet
og testet. Gridsøk og tilfeldig søk ble testet mot LE-CPPN, men klarte
ikke å f̊a like gode resultater. CPPN-er som utviklet seg med LE-CPPN
klarte å produsere detaljerte gjenskapninger, og ble videre brukt for å f̊a
høyoppløselige bilder. Oppskaleringen av bilder med CPPN-er resulterte
i bilder som fikk lavere matematisk score enn bilder som ble upsamplet
med matematisk interpolasjon. Allikevel ble de visuelle egenskapene til
bildene som ble produsert av CPPN tilfredsstillende.

iii

Preface

The following master’s thesis was conducted during the period of January
18th 2021 to June 2021. Parts of chapter 2 were based on work written
for a pre-masters project in the fall of 2020. The work was supervised by
Pauline Catriona Haddow, whom we wish to thank for introducing us to
the world of Bio-Inspired Artificial Intelligence and providing invaluable
feedback throughout the research process.

Theodor Astrup Wiik, Martin Nordby Johansen
Trondheim, June 9, 2021

Contents

1 Introduction 1
1.1 Goals and Research Questions 2
1.2 Structured Literature Review Protocol 3

2 Background Theory 4
2.1 Image Similarity Measures 4

2.1.1 Structural Similarity Index 4
2.1.2 Peak Signal to Noise Ratio 7

2.2 Artificial Neural Networks 7
2.2.1 MLP . 7

2.3 Compositional Pattern Producing Networks 9
2.4 Evolutionary Algorithms . 10

2.4.1 Evolutionary Schemes 10
2.4.2 Genetic Algorithms 12
2.4.3 Direct and Indirect Encoding 14
2.4.4 Genetic Algorithms with Lamarckian and Baldwinian

Evolution . 14

3 State of the art 16
3.1 Interpolation . 16
3.2 Neural Network Based methods 16
3.3 CPPN . 18
3.4 Hyperparameter Optimization and Neural Architecture Search 20

4 Method 22
4.1 Compositional Pattern Producing Network Architecture . . 22

iv

CONTENTS v

4.1.1 Activation functions 24
4.1.2 Pre- and post-processing data 24
4.1.3 Super resolution . 25

4.2 Evolutionary Algorithm . 26
4.2.1 Genome Encoding 26
4.2.2 Initial population . 27
4.2.3 Evaluation . 28
4.2.4 Selection . 28
4.2.5 Crossover . 28
4.2.6 Mutation . 29

4.3 Hyperparameters . 31

5 Experiments and Results 33
5.1 Preliminary Testing . 33

5.1.1 Dismissing Baldwinian Evolution 35
5.2 Experimental Plan . 37
5.3 Experimental Setup . 39

5.3.1 Hyperparameters . 39
5.3.2 Phase 1 Setup . 39
5.3.3 Phase 2 Setup . 40
5.3.4 Phase 3 Setup . 41

5.4 Phase 1: Feasibility Results 41
5.4.1 Convergence . 45
5.4.2 Conclusion . 46

5.5 Phase 2: Optimization Results 46
5.5.1 Adaptability . 47
5.5.2 The Lamarckian effect 48
5.5.3 Architecture comparisons 49
5.5.4 Conclusion . 51

5.6 Phase 3: Super resolution Results 52
5.6.1 Deep Learning State of the Art comparison 53
5.6.2 Visual Comparison to Interpolation 55
5.6.3 Conclusion . 57

5.7 Additional Experiments . 61

CONTENTS vi

6 Conclusion 62
6.1 Future work . 64
6.2 Contributions . 65

Bibliography 66

List of Figures

2.1 PSNR and SSIM of modified images to the original. The
center image is the original plus random noise in the range
of -0.2 to 0.2, and the image to the right is the original plus
a constant of 0.2. 6

2.2 A three-dimensional input linear threshold unit 8
2.3 A multi layer perceptron . 8
2.4 Pixel at coordinate x = 8, y = 4. 9
2.5 The steps of the Genetic Algorithm 12

3.1 Fox evolved by CPPN [Secretan et al.] 19

4.1 General overview of the hybrid evolution of CPPNs 23
4.2 Image array . 25
4.3 Scaling images by scaling step size 25
4.4 Genome encodings and corresponding CPPNs in LE-CPPN 27
4.5 Baldwinian Crossover . 29
4.6 Lamarckian crossover. Stippled lines indicate initialization

of new weights. 30

5.1 Target MNIST image. 35
5.2 Best CPPN recreation from first to last generation on MNIST(left

to right). 35
5.3 Fitness improvement over generations for each image. . . . 35
5.4 The validation loss over time of the best individual’s CPPN

of each generation from one run. 35
5.5 Average of best fitness per generation for all 10 images.

Lamarckian and Baldwinian evolution. 36

vii

LIST OF FIGURES viii

5.6 Comparison of MNIST(left), Lamarckian recreation(middle)
and the Baldwinian recreation(right). 37

5.7 CPPN recreation of Set5 images. Originals followed by
recreated . 43

5.8 Textural difference, Original (left), Recreated (right) 44
5.9 Mnist images to the left and its recreated counterpart to

the right. 44
5.10 Fitness improvement over generations 45
5.11 Average number of hidden layers per generation. 45
5.12 Method comparison: Images upscaled by a factor of 4 by

their respective CPPNs. 47
5.13 Fitness evaluation over time for each NAS method (trained

on CPU Intel i7) . 47
5.14 Baboon recreated with LE-CPPN and the same architec-

ture, but only using backpropagation for training. 49
5.15 Image recreation SSIM by architectures found by LE-CPPN,

but only trained on each individual image from Set14. . . . 50
5.16 Scatter plot showing relation between image recreation SSIM

and super resolution SSIM 53
5.17 State of The Art image comparison 54
5.18 Super resolution example: Pepper 55
5.19 Super resolution example: Lenna 56
5.20 Artefacts found in LE-CPPN SR images 57
5.21 Image 1 to 5 of Set14 . 58
5.22 Image 6 to 10 of Set14 . 59
5.23 Image 11 to 14 of Set14 . 60
5.24 Outside the target frame . 61

List of Tables

4.1 Activation functions implemented for the CPPN. 24
4.2 hyperparameters for LE-CPPN as well as each individual

CPPN . 32

5.1 Hyperparameters used for preliminary testing. 34
5.2 hyperparameters used for preliminary testing. 40
5.3 Experiment Phase 1 hyperparameters 40
5.4 Phase 2: Grid search parameters 41
5.5 Phase 2: Random search parameters 41
5.6 Phase 2: Lamarckian evolution parameters 41
5.7 Phase 3: Super resolution experiments 42
5.8 Phase 3: Super resolution batch sizes 42
5.9 Phase 1: Image similarity scores 43
5.10 Phase 2: Results . 46
5.11 Comparison of SSIM fitness on the evolved CPPN network

architecture against the same architecture trained for 1000
epochs. 49

5.12 Cofficient of determination between CPPN attributes and
average SSIM across all Set14 images 51

5.13 Phase 3 results: Similarity between upscaled images and
originals . 52

5.14 State of the Art comparison (SSIM/PSNR) 54

ix

Acronyms

ANN Artificial Neural Network. 7

CNN Convolutional Neural Network. 16

CPPN Compositional Pattern Producing Network. 9

GA Genetic Algorithm. 10

GAN Generative Adverserial Network. 17

HPO Hyperparameter Optimization. 20

LE-CPPN The Lamarckian Evolution of Compositional Pattern Pro-
ducing Networks Algorithm. 22

LTU Linear Threshold Unit. 7

MLP Multi Layered Perceptron. 7

NAS Neural Architecture Search. 20

PSNR Peak Signal to Noise Ratio. 7

SSIM Structural Similarity Index Measure. 4

x

Chapter 1

Introduction

Ever since the digitalization of images, there’s been a strong need for dig-
ital tools to rework and edit images. After 2012 the use of artificial neural
networks enjoyed a surge in popularity after Krizhevsky et al. [17] utilized
convolutional neural networks to successfully state-of-the-art performance
on labeling images in the ImageNET contest. Since then there has been
proposed a wide variety of AI models and architectures within the re-
search field of image processing. Today, there are generative adversarial
networks that can create seemingly realistic images of faces [21] from noise
and variational autoencoders that efficiently encode and compress images.

Image super resolution is the concept of taking a low resolution image
and increase the number of pixels to improve image quality and increase its
dimensions. Classical mathematical approaches such as interpolation have
for a long time dominated this domain. However, with the Revolution of
AI in image processing neural networks have set new benchmarks in this
domain, outperforming mathematical interpolation.

In 2009, Stanley et al. [35] introduced Compositional Pattern Produc-
ing Networks (CPPN). These are regular feedforward neural networks that
map spatial coordinates to target values. Originally these were evolved
and used to encode the weights of the neural networks, but the concept
could also be utilized for creating images [33]. CPPNs have since then
been used to create abstract art and even recreate small images from the
MNIST dataset [9].

This thesis proposes a new method of utilizing CPPNs as a method

1

CHAPTER 1. INTRODUCTION 2

of achieving super resolution on images. A neuroevolutionary algorithm
combining evolution and network training is proposed as a method of
optimizing the performance and design of the CPPNs. The proposed
model is tested and compared to mathematical interpolation and state-of-
the-art AI achievements on standardized benchmarks.

The thesis is divided into chapters and will contain the following
themes. The rest of chapter 1 will present the research goals and questions
and the motivation behind them. Chapter 2 will introduce the background
theory of the thesis. The basic concepts of Neural Networks, CPPNs, Ge-
netic Algorithms, and image similarity measures will be presented. Chap-
ter 3 will discuss state of the art within image super resolution, including
models such as GANs, Autoencoders and CPPNs. Chapter 3 will also
discuss relevant work within the field of neuroevolution and architectural
search. Chapter 4 will present the proposed method in detail and explain
the design choices that have been made. Chapter 5 presents the experi-
mental plan, setup and results. Finally, Chapter 6 will discuss the findings
of the experiments.

1.1 Goals and Research Questions

Research Goal Explore the possibilities of using CPPNs for image super
resolution.

Research question 1 How well will CPPN image recreation scale with
increasing image complexity and size?

Images come in varying complexities. Some can have many different
colors and objects within the same frame, and some can be covered
in a single color and pattern. When images become more complex
they will also be harder to recreate as the CPPN needs to be more
sensitive to small input changes. Image resolution can also impact
the task of learning an image. With increasing image size, the image
contains more information making the CPPN’s task of learning the
image increasingly hard. For a CPPN to upscale an image, the
CPPN first needs to successfully recreate the original low resolution
image.

CHAPTER 1. INTRODUCTION 3

Research question 2 How can CPPNs best be designed and optimized
for image recreation?

Different images have different features and properties. One may
be a portrait of a person, while another can be a landscape image.
These differences may require CPPNs to have different network sizes,
architectures and activation functions. Finding such hyperparame-
ters to fit an image can be both a difficult and time consuming task.
A genetic algorithm can automate this search through the hyper-
parameter space and converge on a hyperparameter configuration
suitable for a given image.

Research Question 3 What different qualities will CPPN super resolu-
tion display compared with those of traditional mathematical super
resolution approaches?

The most common way of resizing images is through pixel interpola-
tion. These methods work very well but often come with unwanted
effects. For example, keeping the square pixel pattern of low resolu-
tion images, or blurring details. CPPNs might display other, more
or less desirable, qualities when used for super resolution.

1.2 Structured Literature Review Protocol

The literature review phase was initially guided by an interest in the field
of neuroevolution. Learning about methods such as NEAT, HyperNEAT,
and its extensions, sparked the interest in CPPNs and their abilities to cre-
ate patterns across spatial dimensions. This paved the way for settling on
a research topic and a thesis goal. Naturally, the following steps included
researching the usage of CPPNs, image super resolution, and neural ar-
chitecture search. Databases such as IEEE Xplore, Google Scholar, and
Research gate were extensively searched for finding the papers relevant to
the aforementioned fields. Papers With Code1 provides a comprehensive
and structured ranking of papers and their results. This list was thor-
oughly reviewed in finding state of the art techniques and performance
within image super resolution and neural architecture search.

1paperswithcode.com; a website highlighting trending Machine Learning research
and the code to implement it.

https://paperswithcode.com

Chapter 2

Background Theory

2.1 Image Similarity Measures

It is easy for humans to compare two images and determine whether or not
they are similar. However, this is a hard task for computers. In measuring
the performance of a super resolution method having rigorous methods for
measuring similarity is necessary. These measures are especially important
when determining the degree to which a recreated image is adequately
similar to the original image. This section will present two different image
similarity measures; structural similarity index and peak signal to noise
ratio.

2.1.1 Structural Similarity Index

Structural Similarity Index Measure (SSIM) was introduced in 2004 by
Wang et al. [43]. The method offered an alternative of calculating image
similarity based on the degradation of structural information, rather than
pixel-wise errors. The motivation behind this method was to create a sim-
ilarity measure that more closely resembles the way humans judge image
similarity. SSIM uses three known properties of the human visual system:
Luminance, Contrast and Structure. The similarity score is calculated as
a combination of these three feature components and produces a value
between -1 and 1. If two images have an SSIM of 1 they are completely
identical, while -1 means they are very dissimilar.

4

CHAPTER 2. BACKGROUND THEORY 5

Luminance of an image, denoted as µx is the mean value of its pixels
and is calculated as shown in 2.1 where i represents the value of pixel i.

µx =
1

N

N∑
i=1

xi (2.1)

The Contrast of an image, denoted as σx is the standard deviation of
its pixels and is calculated as shown in 2.2 where xi represents the value
of pixel i.

σx =

(
1

N − 1

N∑
i=1

(xi − µx)2

) 1
2

(2.2)

The Structure of two images, denoted as σxy is the covariance of their
corresponding pixels and is calculated as shown in 2.3.

σxy =
1

N − 1

N∑
i=1

(xi − µx)(yi − µy) (2.3)

The Luminance, contrast and structure are then used to create a com-
parison of each feature between two images x and y. The Luminance
Comparison component between images x and y is then calculated as in
2.4,

l(x, y) =
2µxµy + C1

µ2x + µ2y + C1
(2.4)

where c1 is a constant included to maintain stability if the denominator
equals 0. It is calculated from 2.5, where L denotes the dynamic range of
pixels, typically 255 for standard images, and ki is a constant.

Ci = (KiL)2 (2.5)

The Contrast Comparison component between images x and y is then
calculated as in 2.6.

c(x, y) =
2σxσy + C2

σ2x + σ2y + C2
(2.6)

CHAPTER 2. BACKGROUND THEORY 6

The Structure Comparison component between images x and y is then
calculated as in 2.7.

s(x, y) =
σxy + C3

σxσy + C3
(2.7)

Finally, the three components are multiplied together as in 2.8 to give
the structural similarity index value. α > 0, β > 0 and γ > 0 and denote
the relative importance of each component.

SSIM(x, y) = [l(x, y)]α · [c(x, y)]β · [s(x, y)]γ (2.8)

Even though SSIM has been widely used as a similarity measure for
images, it is highly sensitive to image noise. This is seen in figure 2.1. The
two images to the right are very similar to the original, and have the same
PSNR score. However, due to the increased variance, the middle image
scores worse in terms of SSIM.

Figure 2.1: PSNR and SSIM of modified images to the original. The
center image is the original plus random noise in the range of -0.2 to 0.2,
and the image to the right is the original plus a constant of 0.2.

CHAPTER 2. BACKGROUND THEORY 7

2.1.2 Peak Signal to Noise Ratio

Peak Signal to Noise Ratio (PSNRPSNR) is a measure of the ratio between
the maximum strength of the original signal to the noise in the comparison
image. The PSNR of two identical images would be∞ as there is no noise
present in the comparison image.

The equation for PSNR can be seen in equation 2.9

PSNR = 20 · log10(MAXI)− 10 · log10(MSE) (2.9)

where MAXI is the maximum pixel value of the image, i.e 255 for an
8 bit pixel encoding, and

MSE =
1

mn

n∑
i=1

m∑
j=1

(I(j, k)−K(j, k))2 (2.10)

is the pixel wise mean squared error between the two images.
Figure 2.1 captures one of PSNRs weaknesses. The image to the right

has lost less structural information than the one in the middle, yet the
PSNR is the same in both images. This is because the PSNR only con-
siders the MSE of each image, which in this case is the same.

2.2 Artificial Neural Networks

The first step towards artificial neural networks (ANN) came with the
introduction of the perceptron [30]. A perceptron consists of a single linear
threshold unit (LTU) that sums input values and applies the step function
to output 1 if the sum is above a certain threshold and 0 otherwise. This
architecture is illustrated in figure 2.2 which shows a perceptron with a
3-dimensional input layer, followed by a single LTU which sums its inputs
and applies the step function to produce an output.

2.2.1 MLP

The Multi-Layer Perceptron (MLP) [8] is an ANN consisting of sequential
layers of neurons where each layer is connected to the previous and the
next. In such a network all layers between the input and output layer
are called hidden layers. This architecture is displayed in figure 2.3. Each

CHAPTER 2. BACKGROUND THEORY 8

Figure 2.2: A three-dimensional input linear threshold unit

neuron in the hidden layers can be viewed as a single perceptron where the
inputs are the outputs of the previous layers and its output is forwarded
to each neuron in the next layer. However, whereas the perceptron simply
uses a binary step function to decide its outputs, the neurons in an MLP
can use a wide array of different functions. Usually referred to as activation
functions, these functions output a real numbered value which is passed on
to the next layer in the network. The purpose of the activation functions is
to be able to capture nonlinear dependencies. With only linear activation
functions an ANN would simply be multiple linear regression.

Figure 2.3: A multi layer perceptron

Optimization

The goal of the MLP is to approximate some function y = f*(x) by
learning the weight parameters θ, that best fit the mapping y = f(x; θ).

CHAPTER 2. BACKGROUND THEORY 9

Traditionally, finding the optimal set of weights to approximate is done
by the backpropagation algorithm [44]. Backpropagation requires a dif-
ferentiable activation function as part of the algorithm is computing the
gradients of each weight through the network. Weights can also be opti-
mized through evolutionary algorithms by adjusting the weights through
mutation and crossover enabling non-differentiable activation functions.

2.3 Compositional Pattern Producing Networks

Compositional Pattern Producing Networks (CPPN) is an umbrella term
for feedforward ANNs that take spatial coordinates as input and produce
a value for this specific point. The term was coined by Stanley et al. [35]
for the Hyper-NEAT algorithm where such networks were evolved using
the NEAT algorithm. These networks are often characterized by having
many different activation functions across the network. When evolving
CPPNs using the NEAT algorithm one can use any activation function
since the weights are not optimized through backpropagation training but
evolution.

Figure 2.4: Pixel at coordinate x = 8, y = 4.

CPPNs can be used to create images by training the CPPN to approx-
imate a mathematical function encoding of the image, pixel at location
(x, y) = f(x, y). The input layer of the CPPNs must be fed with coordi-
nates representing the distance from the origin along the X and Y-axis.
For an image of size N × M, each pair of coordinates from (0, 0) to (N, M)
is propagated through the network and its output is mapped out on the

CHAPTER 2. BACKGROUND THEORY 10

X- and Y-plane according to its corresponding coordinates. In figure 4.2
the black pixel is located in the 8th cell along the x-axis and the 4th cell
along the y-axis. Thus, to get the value of that pixel from a CPPN one
would feed the network with the coordinates (8, 4) and place the output
in the corresponding cell.

2.4 Evolutionary Algorithms

Evolutionary algorithms draw inspiration from natural biology to obtain
intelligent behavior. The main idea is to use natural selection and genetic
variations to find the most optimized solutions to a given problem. Evolu-
tionary algorithms use these ideas to simulate an environment with a natu-
ral selection pressure. Better solutions to a problem arise over generations
of selection and changes to genetic material. This section will introduce
three different evolutionary schemes that can be used when implementing
evolutionary algorithms, before explaining the Genetic Algorithm(GA).

2.4.1 Evolutionary Schemes

Evolutionary schemes aim to set the rules and premise for how evolution
will happen in an evolutionary algorithm. Darwinian evolution is the
most commonly used, but it has been shown that the other schemes have
worked better than Darwinian for specific problems [7]. For this reason,
it is important to be aware of some different schemes that have been
presented and know where they differ and where they are similar.

Darwinian Evolution

The most famous evolutionary scheme was presented by Charles Darwin
in his 1859 book Origin of Species[5]. Darwin’s theory of evolution by
natural selection introduced a theory of how a population of individuals
evolves. When a given population of an organism in an isolated area repro-
duces more than what their environment can support, only the individuals
with the most favorable characteristics will survive and reproduce. This
will turn into an internal tournament of survival of the fittest in which the
fittest individuals survive. When only the fittest individuals in the pop-
ulation survive in the environment, the population will over time become

CHAPTER 2. BACKGROUND THEORY 11

better adapted to their environment. For every new generation, there
is a possibility of genetic mutation in parents’ offspring. Changes in ge-
netic material may cause the individual to form new characteristics that
may better suit the environment, meaning that they are more likely to
reproduce. When these changes occur over many generations, the newer
populations will have developed characteristics that are significantly dif-
ferent from their predecessors and may have formed new species.

An important characteristic of Darwinian Evolution is that the indi-
viduals in a population are not actively trying to changes their charac-
teristics, as their main goal is to reproduce. The changes in their genetic
material only happen when new generations are formed, independently of
the challenges their parents have faced. This means that the most im-
portant factor of evolution is selection, not the goal of developing new
characteristics and abilities.

Lamarckian Evolution

Lamarck presented his evolutionary theory in 1809 [11], some decades
before Darwin. He believed that the most important factor for evolution
was the inheritance of obtained abilities and the struggle of an individual’s
predecessors. This means that the genetic material of an individual will
change over its lifetime of learning and is passed on to its children. A
common way to describe this concept is a Giraffe: a Giraffe will try to
reach a tree’s highest leaves, and over time it will stretch its neck. The
giraffe’s children will also have a stretched neck and may stretch it even
more during its lifetime.

Baldwin Effect

The Baldwin Effect falls in between Darwinian and Lamarckian Evolu-
tion and was introduced by James Mark Baldwin in 1896[45]. The Bald-
win effect describes, similarly to Lamarckian Evolution, that individuals
are allowed to learn and change during their lifetime. However, where
Lamarck allowed the genetic structure to change over the course of a life-
time, the Baldwin effect did not. The Baldwin effect relies on natural
selection when reproducing. Moreover, the fitness of an individual is cal-
culated with the learned behavior that is formed over its lifetime. The

CHAPTER 2. BACKGROUND THEORY 12

difference from Lamarckian evolution is that the changed genetic material
is not passed on to the offspring but rather the initial genetic material.

2.4.2 Genetic Algorithms

The genetic algorithm aims to simulate the evolutionary processes in a
problem-specific space in which the goal is to find an optimal solution.
These problems often have exponentially many solutions, making brute
force search unrealistic. The selection pressure ensures that the genetic
algorithm traverses the search space in the direction of better solutions.
Thus the GA can find good solutions faster than a brute force method.
The algorithm can be seen in figure 2.5.

Figure 2.5: The steps of the Genetic Algorithm

The population in a GA consists of individual solutions to a problem.
Each individual is represented by a set of variables called chromosomes,

CHAPTER 2. BACKGROUND THEORY 13

and each variable is called a gene. When initializing the population, one
usually assigns these variables randomly. Heuristic initialization may also
be used, though such methods often take more time. Whenever a new
population is created or initialized, each individual needs to be evaluated
in accordance with a fitness function. The individuals with the highest
fitness score are the ones with the best ability to solve the problem.

After this, the next step of the algorithm is the selection phase. This
phase selects which individuals will become parents for the next genera-
tion. The selection method varies, but the general goal is to favour the
individuals with the highest fitness.

When selecting individuals for reproduction, the main goal is to gen-
erate new combinations of genetic materials that have not been seen in
previous generations. It is also important to choose different individuals,
to keep the population diverse. Diversity in the population means that
the population’s individuals are genetically different. Population diversity
is important in order to explore bigger areas of the problem space and pre-
vents the algorithm from getting stuck in a local minimum or maximum.
The selection algorithms used often vary, but tournament selection is a
common approach. In tournament selection, a subset of the population
is selected, and the individual with the highest fitness is selected with a
probability p. If the best individual is not selected, the second-best indi-
vidual is chosen with some other probability p until a candidate is chosen.
The reason for having a stochastic selection method is to keep exploring
the search space. If there is no exploration in the algorithm it can exploit
a local minimum or maximum too quickly, and get stuck.

The individuals selected from the selection phase are then used to pro-
duce offspring, meaning that two individuals will combine their genetic
material and form children. If two individuals, for example [1, 1, 1, 1] and
[0, 0, 0, 0] are selected, offspring [1, 1, 0, 0] may be formed. This type of
crossover is called single point crossover. There are many different meth-
ods for crossover, but the overall goal is that the offspring produce solu-
tions that still have all the necessary genes required for the problem, and
that no problem constraints are violated.

After a new individual is produced through crossover, mutation might
occur. This happens with a certain probability p, in which one or more
genes’ values change. With the example above, the third gene may mutate,

CHAPTER 2. BACKGROUND THEORY 14

resulting in the offspring [1, 1, 1, 0].
When the new offspring is created, the next step is to build the new

population using the new individuals. Some methods use elitism, in which
the best individuals of the previous generation are still preserved in the
next generation. This is to preserve the best problem solutions across
generations.

The process happening above is repeated during the evolutionary phase
until some sort of condition is met. This can either be that a fitness
threshold is reached, or if the implementer has put some sort of runtime
limit to the algorithm.

When developing a genetic algorithm, it is important to try different
parameters during experimentation. These include selection criterion and
mutation rate, among others. It is important because they dictate the
degree to which the system explores and exploits possible solutions. For
example, when using a low degree of mutation, the algorithm will not
explore many new solutions because there is little genetic change. This
may cause the algorithm to get stuck in local minima.

2.4.3 Direct and Indirect Encoding

When using a genetic algorithm to evolve problem solutions, there are
different ways of representing the problem. When the individual’s chro-
mosomes represent a direct solution to a problem, it is called a direct
encoding. The genetic material of an individual is a direct mapping be-
tween the genotype and the phenotype. This is, however, not the only
way to encode a solution. Sometimes the chromosomes are the ingredi-
ents needed to generate the solutions. This is called an indirect encoding.
Indirect encodings allow the solutions to be bigger and more complex as
it’s only the genotype that is altered during mutation and crossover.

2.4.4 Genetic Algorithms with Lamarckian and Baldwinian
Evolution

Lamarckian and Baldwinian evolution allow training during an individ-
ual’s lifetime. During this training, either the phenotypic or the genotypic
material can be altered. Whether or not these alterations are passed
down to the offspring is what differentiates Baldwinian and Lamarckian

CHAPTER 2. BACKGROUND THEORY 15

evolution. Baldwianian offspring will inherit the original unaltered genetic
material from its parents, where Lamarckian inherits the altered material.
In terms of evolving neural networks, one representation could be that
the weights of the network constitute the phenotype and the architectural
parameters of the genotype. The weights can be altered through back-
propagation, and then either be passed down to the next generation or
not.

Chapter 3

State of the art

3.1 Interpolation

The industry standard for image resizing is interpolation [24]. Interpola-
tion calculates the value of a new pixel is a combination of its neighboring
pixels. This method is considered extremely versatile since it can down-
scale and or upscale any image to any resolution. The problem, however, is
that using interpolation for super resolution often retains artifacts of the
low-resolution image such as checkerboard patterns and loss of smooth
edges. These artifacts combat the entire point of super resolution as any
human can easily see that the reproduced image resembles a low-resolution
image.

3.2 Neural Network Based methods

After the success of Krizhevsky et al. [17], Convolutional Neural Networks
(CNN) dominate the benchmarks of state of the art image processing prob-
lems. CNN’s use of convolutional filters makes them especially good at
feature extraction and representation. These abilities are what make them
so effective for image processing. Chao et al. [3] introduced the first super
resolution method using CNNs. The work introduced a deep CNN model
which is trained to learn a mapping between low-resolution (LR) images
and high resolution (HR) images. The model takes as input an LR image
and outputs an HR image and its goal is to minimize the mean squared

16

CHAPTER 3. STATE OF THE ART 17

error between the output and the original HR image. This approach needs
high quantities of training images. To learn the mapping the model was
trained on almost 400 000 pairs of LR and corresponding HR images.
This method achieved a new state of the art for AI-based super resolution
methods. Further work and improvements on such CNN-based mapping
method mostly consist of designing better and deeper architectures to im-
prove performance [6; 13; 14; 10; 51]. Lim et al. [22] achieved a significant
performance gain with a proposed extra wide and deep architecture, show-
ing that network architecture can significantly affect performance super
resolution.

One drawback of this method is that the networks are prone to bias
in their training data [40]. The Network can then learn mappings that do
not generalize well across different images. The model can then produce
unrealistic or unwanted details that are present in the training data but
do not belong in the target image [4]. Also, CNN-based mapping networks
have static input and output dimensions. This means that the model can
only take input images of a given resolution and can only produce output
images of a given resolution. Therefore one would need one separate model
for scaling 100x100 images to 400x400 resolution, and another one for
100x100 to 600x600. This problem makes this model unsuited for day-to-
day image scaling where flexibility of output size is needed.

Generative adversarial networks (GAN) [42] have gained interest in the
past couple of years. GANs consist of two neural networks, one generative
and one discriminative. This method trains the generative network to pro-
duce outputs that are then classified as right or wrong by a discriminator
network. In terms of image super resolution, the generative network takes
an LR image as input and produces an HR image. The discriminative net-
work will then take this HR image as input and classify it as either a real
HR image or a network generated HR image. Ledig et al. [19] first pro-
posed using GANs for super resolution. What makes this method achieve
superior results compared to the more basic CNN LR to HR mapping is
that the generative network not only learns to minimize content loss i.e.
pixel-wise mean squared error. Since the discriminative network learns to
distinguish real HR images from reproduced/fake HR images the loss from
the discriminative network represents features that typically distinguish
real and fake HR images. This loss can be backpropagated all the way

CHAPTER 3. STATE OF THE ART 18

to the generative network, providing a measure of perceptual loss to the
generative model. The measure of perceptual loss makes the model able
to generate details onto its HR output that otherwise are not present in
the LR image. For example, a low resolution image has lost the detailed
texture of grass, leaving only the color. A GAN can generate a grass-like
texture, although not the same as in the original. This helps in making
the HR images visually pleasing, which explains why this method has the
highest Mean Opinion Score (visual quality evaluated by humans through
surveys). Although the results can be visually pleasing, this often pro-
duces unwanted or unrealistic artifacts not actually present in the target
image.

The introduction of attention mechanisms in deep learning introduced
by Vaswani et al. [41] in 2017 created a new wave of novelty and innova-
tions within the field of deep learning. Following this success, Zhang et al.
[50] first introduced attention mechanisms to CNNs for super resolution
achieving state of the art performance. The outputs of convolutional units
in CNNs represent local feature activations and are unable to exploit spa-
tial information outside of its local region [50]. Attention mechanisms, on
the other hand, enables networks to learn the correlation between spa-
tially independent features. By adding attention to a neural network it
can more easily exploit interdependencies between features and learn what
parts of an image are especially relevant.

One problem with these neural network-based super resolution meth-
ods is there no single model solves the case of general super resolution. As
the resolution of the output image is dependent on the architecture of the
model it can’t be queried for an arbitrary resolution. It may be assumed
that this is why interpolation methods are still the go-to for most photo
editing software.

3.3 CPPN

Compositional Pattern Producing Networks were introduced as part of the
HyperNEAT algorithm Stanley et al. [35]. In this algorithm, CPPNs are
evolved to output a weight between two nodes in a target ANN. Effectively
the CPPN encodes all connection weights in the target ANN and can be
queried to reconstruct the weights by simply feeding the coordinates of the

CHAPTER 3. STATE OF THE ART 19

Figure 3.1: Fox evolved by CPPN [Secretan et al.]

connection. The power of this encoding scheme was demonstrated when
Fernando et al. [7] were able to reduce the number of parameters of a
variational autoencoder network from 157684 to roughly 200 parameters.

Due to CPPN’s ability to map spatial coordinates to values, they have
gained popularity in creating images and abstract art [33] (see Figure
3.1). But, this ability is not restricted to abstract patterns. CPPNs can
also be used for creating specific patterns or images. Fernando et al. [7]
showed that CPPNs can successfully recreate small images of 28x28 pixels
from the MNIST dataset. Their experiments showed a drastic increase
in performance when using a combination of evolution and backpropa-
gation training 2.4.1, compared to the simple NEAT algorithm. Further
work on CPPN image recreation includes the Fourier-CPPNs introduced
by Tesfaldet et al. [38]. Their work extended Mordvintsev et al. [25]’s
implementation of trainable CPPNs and combined them with Fourier im-
age analysis to successfully recreate missing textures within images. Both
of these implementations used a predefined CPPN architecture instead of
evolving one.

David Ha [9] used a CPPN as the generative network in a GAN model
to create high resolution versions of small 28x28 images. His implementa-
tion included a noise-vector in addition to x and y coordinates in its inputs.
The purpose of the noise vector is to work as a seed for the CPPN so that
the network will produce a different image given the same coordinates but
a different noise vector. A single CPPN was then able to recreate different
images from different noise vectors. The ability of a single CPPN to create
different images is a great advantage compared to CPPNs specialized at
recreating a single image.

CHAPTER 3. STATE OF THE ART 20

3.4 Hyperparameter Optimization and Neural Ar-
chitecture Search

Hyperparameter optimization (HPO) is the task of choosing the correct
hyperparameters for a neural network that is best suited for its specific
task. This is a hard problem to solve as the number of network con-
figurations grows exponentially when adding more configurations to the
network. It is even harder to optimize when combined with neural archi-
tecture search (NAS), the problem of deciding the best possible architec-
ture for a neural network.

NAS and HPO are problems that have been researched since the 1990s.
Klein and Hutter [16] tried to create benchmarks and configurations that
make it easier to evaluate different methods and compare them. Their
research used four different regression datasets that are easily comparable.
By testing 8 different HPO methods, they were able to show how the
benchmarks could be used for future work when comparing methods. The
tests showed that Bayesian optimization [12; 1; 34] methods perform well
relatively quickly but do not obtain as high a performance as regularized
evolution [28].

Wistuba et al. [47] state that it is not easy to choose a NAS for a
given problem. They attribute this to the lack of baselines and bench-
mark datasets, which has made the comparison of different methods hard.
Because different methods and research differ too much in terms of ar-
chitectural search space, runtime, and data pre-processing, it is difficult
to design a fair and standardized test. This is also reflected in Klein and
Hutter [16] where the different methods only use the same amount of neu-
ral network layers. This makes the search space smaller and may be a
disadvantage for methods that allow a larger search space. Wistuba et al.
[47] do mention random search being a good baseline. In both Li and
Talwalkar [20] and Sciuto et al. [31], random search performs at least as
well as other established NAS methods, such as DART, ENAS, BayesNAS
and NAO.

Real et al. [29] were one of the early successful attempts [47] at using
a genetic algorithm to find CNN architectures for image classification.
Their approach is very similar to the simple genetic algorithm with only a
few modifications. Instead of performing crossover, individuals are simply

CHAPTER 3. STATE OF THE ART 21

copied, mutated then trained between each generation. This algorithm
allows the offspring to preserve its parents’ weights, making it a variation
of Lamarckian evolution. Real et al. [28] (2019) improved on this method
and was able to find architectures that set new state of the art performance
for image classification on the CIFAR-10 and ImageNet datasets.

Similar approaches of using evolutionary algorithms for NAS have been
developed in other works [48; 23; 39]. These often generally follow the main
steps of the genetic algorithm but vary in terms of choice of search space,
mutation operators and selection functions.

Chapter 4

Method

The proposed CPPN optimization algorithm is a neuroevolution algorithm
that evolves and trains CPPNs. This algorithm will henceforth be refer-
enced as LE-CPPN (The Lamarckian Evolution of Compositional Pattern
Producing Networks Algorithm). It was inspired by the success of Bald-
winian and Lamarckian evolutionary versions of the NEAT algorithm [7],
but modified to enable evolution of fully connected deep architectures.
The goal of LE-CPPN is to evolve architectures and activation function
configurations of the CPPNs. Each generation of CPPNs is trained to
recreate a specific target image. In the end, the CPPN that received the
best fitness when recreating the target image can then be used to recreate
the image at an arbitrary resolution, by scaling the step length between
inputs as described in 4.1.3.

This general overview of LE-CPPN is illustrated in Figure 4.1. The
cycle repeats for a given number of generations after which the fittest
individual is chosen as the final CPPN used for super resolution. The rest
of this chapter is dedicated to explaining the components that make up
the algorithm.

4.1 Compositional Pattern Producing Network
Architecture

The compositional pattern producing networks evolved by LE-CPPN con-
sists of an input layer of two nodes and an output layer of one or three

22

CHAPTER 4. METHOD 23

Figure 4.1: General overview of the hybrid evolution of CPPNs

nodes depending on whether the image is grayscale or RGB format. Each
hidden layer, its activation function, and its size is chosen through evolu-
tion and trained by the evolutionary algorithm implemented for our model.
Choosing to evolve the networks allows for an automatic search for activa-
tion functions and architectures best suited for each specific image. Since
activation functions display different properties, some create repetition,
some symmetry, and some negative values, different images can benefit
from different activation functions [33].

In the CPPNs all nodes in a layer share the same activation function.
This differs from the CPPNs traditionally evolved by the NEAT algorithm
where each node in the network can have an arbitrary activation function
independent from all other nodes. NEAT can evolve node-specific acti-
vation functions due to its direct encoding of nodes and connections [35].
On the other hand, sharing activation functions across all nodes in a layer
allows for a more compact genome encoding and the algorithm to evolve
larger networks.

The implication of this is that LE-CPPN can not optimize the activa-
tion functions at a node level to best fit an image, but only in a layer-wise
fashion. Due to the complex nature of the problem at hand and the find-
ings of Fernando et al. [7] discussed in 3.3 it was deemed essential to evolve
deep and trainable networks. Thus this was a necessary trade-off.

CHAPTER 4. METHOD 24

Linear x
Sigmoid 1

1+e−x

ReLU

{
x, if x > 0

0, otherwise

Tanh tanhx
Sin sinx

Gaussian e−x
2

Table 4.1: Activation functions implemented for the CPPN.

4.1.1 Activation functions

The activation functions that were used for the CPPN are listed in table
4.1. Most are common neural network activation functions. However, both
the sine function and the gaussian are not widely used in deep learning.
These are included in the CPPNs as they have desirable features for image
processing, where repetition and symmetry are common occurrences. The
Gaussian function has been shown to capture symmetric features of a
problem in a way others do not. Likewise, the sine function can capture
repetition well[36].

4.1.2 Pre- and post-processing data

Before training, the pixel values of an image are normalized between 0 and
1. Also, the coordinates are normalized so that no pair is outside of the
range (0,0) to (1,1). This means that for a 25x50 pixel image, pixels at
coordinate (25, 50) and (15, 30) would be normalized to (1, 1) and (0.6,
0.6) respectively.

The input layer of the CPPNs is fed with coordinates representing
the distance from the origin along the X and Y-axis. For each pair of
coordinates from (0, 0) to (1, 1) given a step size N, the output of the net-
work is mapped out on the X and Y plane according to its corresponding
coordinates to create an image.

In figure 4.2 the black pixel is located in the 8th cell in the X Direction
sell along the x-axis and the 4th cell along the y-axis. Thus, to get the
value of that pixel from the CPPN one would feed the network with the

CHAPTER 4. METHOD 25

Figure 4.2: Image array

coordinates (8, 4) and place the output in the corresponding cell.

4.1.3 Super resolution

Figure 4.3: Scaling images by scaling step size

To achieve a higher resolution version of the image the CPPN has
learned to recreate, one can simply decrease the step size between each
pair of input coordinates. Say, in figure 4.3, a CPPN has learned to create
pixel values for the coordinates of the original 2x2 image. Its original
inputs would then be [(1, 1), (1, 2), (2, 1), (2, 2)] and the outputs
would create a 2x2 image. Then by feeding the network twice as many
coordinates along both the x and y axis the inputs of the network would

CHAPTER 4. METHOD 26

now be [(0.5, 0.5), (0.5, 1), (0.5, 1.5), (0.5, 2), (1, 0.5), (1, 1), (1, 1.5),
(1. 2), (1.5, 0.5), (1.5, 1), (1.5, 1.5), (1.5, 2),(2, 0.5), (2, 1), (2, 1.5), (2, 2)
]. The outputs from this increased input sampling would compose a 4x4
version of the original 2x2 image thus quadrupling the number of pixels.
The step size between the pixel coordinate pairs can be arbitrarily small
or large, thus the CPPN can produce any resolution.

4.2 Evolutionary Algorithm

The evolutionary algorithm that was used is a Lamarckian Genetic Algo-
rithm, as explained in section 2.4.2, although two of the previously dis-
cussed evolutionary schemes, Baldwinian and Lamarckian evolution, are
tested and compared to each other. The evolutionary process draws from
Real et al. [29] discussed in 3.4 and Fernando et al. [7], but features some
modifications.

The following subsections will present the evolutionary schemes’ dif-
ferent genetic encoding, as well as the differences in their implementation.
The genetic algorithm initialization, selection, crossover and mutation em-
ployed will be presented in the subsequent subsections.

4.2.1 Genome Encoding

As described in section 2.4.1, in Baldwinian and Lamarckian evolution all
individuals have a lifetime of learning before being selected for reproduc-
tion. In the context of this research, this means their CPPN will be trained
and evaluated before selection, differing from Darwinian evolution where
there is no training of weights, only mutation. However, they are different
when it comes to their offspring. In the Baldwinian model, the offspring
will simply share the genetic material of their parents, the architecture
and activation functions, but not their knowledge(network weights). In
the Lamarckian model, the learned weights of the network are also passed
down to the next generation instead of being randomly initialized.

LE-CPPN uses an indirect encoding that maps from an individual
genome into its corresponding CPPN that will try to recreate the target
image. The base genome, that is used by both the Baldwinian and the
Lamarckian versions is comprised of two chromosomes: c1 (layer sizes),

CHAPTER 4. METHOD 27

Figure 4.4: Genome encodings and corresponding CPPNs in LE-CPPN

and c2 (activation functions). Chromosome c1 is an array of positive in-
tegers that define the number of nodes in a specific hidden layer in the
CPPN. The number of nodes allowed in a layer is defined by the hyperpa-
rameters n min, n max, both of which are positive integers. Chromosome
c2 contains an array of the activation functions that are used in the corre-
sponding CPPN. Both c1 and c2 are of the same length, but they operate
independently of one another, and one can mutate without the other doing
so. In figure 4.4 a mapping from a genotype to its corresponding pheno-
type of two individuals is visualized. Each column in the table for the
chromosomes represents a hidden layer in the corresponding CPPN.

4.2.2 Initial population

Each network in the genesis population is initialized with a simple ar-
chitecture. The networks start with a single hidden layer with one of
the defined activation functions selected randomly. Starting with 0 layers
would result in a completely homogeneous genesis population. The num-
ber of nodes in the initial hidden layer is a randomly generated number,
n ∈ [n min, n max]. The reason for having simple network architectures
in the initial population is to allow network complexity to naturally emerge
over generations of crossover and evolution. It is also important to avoid
bias for certain parts of the search space. Having more complex initial
networks may create a search bias for nonoptimal networks.

CHAPTER 4. METHOD 28

4.2.3 Evaluation

Before selection, the entire population is evaluated using the specified
image similarity measure. Each individual draws an image with the same
resolution as the target image and the similarity of the two are then used
as the individual’s fitness.

The individuals are evaluated after a fixed predefined number of CPPN
training epochs. The fitness functions used for evaluation are Mean squared
error and SSIM. The number of training epochs is a set parameter that
holds for all individuals throughout the generations. Generally, more
epochs will result in a better approximation of the CPPN’s global maxi-
mum, but at the cost of computation and training time.

An important distinction to make is that the validation loss achieved
during training is not used as a fitness measure and therefore disregarded
in the selection process. As the validation loss is calculated from only
a validation sample of size k of the training data, it is more accurate to
evaluate on the entire image for the purpose of image recreation.

4.2.4 Selection

The genetic algorithm uses binary tournament selection. This method
chooses two random candidates from the population. The individual with
the best fitness of the two is selected for mating with a given probability
p, or else the lesser fit individual is selected.

This method is run twice to select two parents who will then form
offspring for the next population. The binary tournament selection scheme
does not exert a very high selection pressure as an individual is as likely
as any other to be chosen as a candidate. Only after the selection of
the two candidates, the fitter individual has a higher probability of being
chosen. To balance out the high rate of exploration, the algorithm can be
configured to employ elitism by letting the N-best individuals survive from
one generation to the next. These individuals’ networks will not be trained
further during their lifespan as this would give an unfair advantage.

4.2.5 Crossover

Contrary to the genetic algorithms for NAS discussed in ??, LE-CPPN,
performs crossover. After selection, single point crossover is performed on

CHAPTER 4. METHOD 29

two selected individuals. For the Baldwinian model, showcased in figure
4.5, two integers n1, n2 ∈ [1, size(functions) - 1] are randomly generated
for single point crossover. n1 is the point at which the function layers will
be combined, and n2 is the point where the layer sizes will be combined.
Which individual that comprises the first part of the offspring, is chosen
randomly. If one individual has more hidden layers than the other, the
remaining layers will be appended to the end of the resulting genome if and
only if the longest individual has higher fitness. This is to favor smaller
networks as long as they perform as well or better. Larger networks require
more computation and take longer to train.

Figure 4.5: Baldwinian Crossover

The Lamarckian version performs crossover differently to the Bald-
winian version, as shown in figure 4.6. A randomly generated number, n1
is used to decide the crossover point. This is to preserve as many network
weights as possible for the offspring to inherit. Only at the crossover point,
the weights can not be preserved as the network structure is changed, and
may no longer be compatible. The new weights created for this layer, are
randomly initialized.

4.2.6 Mutation

The mutations that can occur are the same in both Baldwinian and
Lamarckian evolution. Mutations will alter the genome with a probability
p ∈ [0, 1] such that new networks are generated for the new individuals.
Although the changes to the genomes are similar, the resulting networks

CHAPTER 4. METHOD 30

Figure 4.6: Lamarckian crossover. Stippled lines indicate initialization of
new weights.

for Lamarckian and Baldwinian evolution will not be the same. The re-
sulting CPPNs that emerge in Lamarckian evolution inherit the network
weights of their parents, but when mutations occur, old weights can be-
come incompatible with the new architecture. Similar to crossover, the
layer at which a change happens, the layer’s weights may need to be reset.

LE-CPPN uses the following mutation methods:

• Add layer: When adding a new layer, its size and activation func-
tion are selected randomly from the specified configurations seen in
table 5.2. The layer index at which the new layer will lie is also
chosen randomly. This mutation is important in order to explore
deeper networks. More complex problems usually require deeper
architectures.

• Remove layer: When removing a layer, a random layer in the
genome is chosen and deleted. This is important in order to avoid
too deep networks.

• Mutate size: When mutating the size, a random layer in the
genome is chosen, and the number of nodes is changed to a randomly

CHAPTER 4. METHOD 31

assigned number. This is done in order to allow change in network
structure without altering its activation functions. A genome may
have the correct activation function, but the amount of nodes in the
layer might not be optimal.

• Mutate activation: When mutating activation, a random layer
in the genome is chosen, and its corresponding activation function
will change to a different function within the specified set. When
mutating activation function, the Lamarckian model will not change
any network weights, as all layers are still compatible.

All the different mutations are allowed to happen when a new indi-
vidual is created. Each mutation operator has the same probability of
happening. This allows the CPPNs to change as much as possible and
explore the search space. In addition, it is impartial to one mutation hap-
pening over another. This is especially important with regard to network
size. If there is a different probability of adding a layer than removing one,
the network will become increasingly more complex rather than converging
towards an optimal size.

4.3 Hyperparameters

The hyperparameters that need to be defined for the model are divided
into two categories, the LE-CPPN parameters and CPPN parameters,
and can be seen in table 5.2. The CPPN epochs and batch sizes are not
evolved and are the same for each individual. If these parameters were
part of the genome, and subject to evolution, the competition would be
unfair. Networks with higher epochs would be favored as they are allowed
more training time. Another reason for not moving the hyperparameters
to the genome level is to reduce the problem space. By adding more
chromosomes, the problem’s complexity increases as well, making the task
more time-consuming.

CHAPTER 4. METHOD 32

LE-CPPN Values

mutation rate p1 ∈ [0, 1],
population size i ∈ N

generations g ∈ N
elitism number n ∈ N

parent selection probability p2 ∈ [0, 1]
evolution scheme Lamarckian, Baldwinian
fitness function MSE, SSIM

CPPN

epochs e ∈ N
batch size b ∈ N

min layer size nmin < max layer size, nmin ∈ N
max layer size min layer size < nmax, nmax ∈ N

Table 4.2: hyperparameters for LE-CPPN as well as each individual CPPN

Chapter 5

Experiments and Results

This chapter presents the experiments aimed to answer the questions posed
in Section 1.1. Three experimental phases were conducted to answer the
three research questions. The first section of this chapter will explain the
preliminary testing executed during the implementation of the system,
and how this guided choices for the final experiments. Further, the ex-
perimental plan and experimental setup will be presented, and finally the
results.

5.1 Preliminary Testing

To evaluate the feasibility and scope to which the model was capable
of recreating images, preliminary tests were conducted on a small set of
images from the MNIST[18] dataset. MNIST is a collection of images of
hand-drawn numbers, with a size of 28x28 pixels. The reason MNIST was
used, was because the small size of the images would allow the model to
finish relatively quickly. The hypothesis was that the CPPN would be
able to recreate the images to a relatively high degree, acting as a green
light for further research on more complex images.

The preliminary tests also helped gain insight into the model’s hyper-
parameters, especially LE-CPPN’s hyperparameters such as mutation rate
and population size. It showed necessary to use a relatively high mutation
rate to explore the problem space to a higher degree, while elitism would
ensure not losing the best individuals.

33

CHAPTER 5. EXPERIMENTS AND RESULTS 34

One of the target images used for the preliminary tests can be seen
in figure 5.1. The hyperparameters used are listed in table 5.1. The con-
figuration was run on 10 images. Figure 5.2 shows the recreation of the
best-performing individual from the first to the last generation. Here, one
can see the emerging accuracy of the evolved CPPNs over each generation.
The results showed that it takes LE-CPPN relatively few generations be-
fore a similar image is recreated, making 25 generations excessive. This
can also be seen in figure 5.3 and 5.4.

mutation rate 0.3

population size 15

generations 25

elitism number 1

parent selection probability 0.7

evolution scheme Baldwinian

fitness function MSE

epochs 50

batch size 5

min layer size 4

max layer size 100

Table 5.1: Hyperparameters used for preliminary testing.

Figure 5.3 shows that little improvements were made after 10 to 15
generations. This is also reflected in the validation loss in Figure 5.4
where the training loss from generations 10, 15 20 and 25 follows the same
trajectory and ends up with a similar validation loss. However, since the
MNIST-images are so small, it was deemed necessary to keep the higher
number of generations for more complex images.

The preliminary tests showed promise in recreating simple images and
enforced the belief in successfully using CPPNs for more complex images.
The hyperparameter tuning allowed us to find suitable parameters for
the algorithm and almost all the parameters were reused for the final
experiments. The CPPN parameters such as batch size and the number
of training epochs were changed for later experiments as these significantly
affect computation time with increasing image size.

CHAPTER 5. EXPERIMENTS AND RESULTS 35

Figure 5.1: Target MNIST im-
age.

Figure 5.2: Best CPPN recre-
ation from first to last generation
on MNIST(left to right).

Figure 5.3: Fitness improvement
over generations for each image.

Figure 5.4: The validation loss
over time of the best individual’s
CPPN of each generation from
one run.

5.1.1 Dismissing Baldwinian Evolution

Both Baldwinian and Lamarckian evolution were used during the prelim-
inary testing. It was initially meant to compare both the evolutionary
methods during the ensuing experiments. However, after the preliminary
tests, it was decided to only continue with Lamarckian evolution. In figure
5.5, a fitness comparison of Lamarckian and Baldwinian evolution run on

CHAPTER 5. EXPERIMENTS AND RESULTS 36

10 different MNIST images is visualized. This experiment was run with
200 epochs. The line is the average best fitness for all 10 images per gen-
eration, and the shaded area is the extreme values. Lamarckian improves
much quicker than Baldwinian, and the spread between the worst and
best individuals is generally smaller. Even though Baldwinian performs
well, it is not able to obtain the same fitness as Lamarckian on a single
image. The Lamarckian models also improve faster and have a smaller
spread in the end results than what the Baldwinian model had. This is
also reflected in the performance metrics, where Lamarckian had an aver-
age SSIM and PSNR of 0.9991 and 44.3057dB, and Baldwinian had 0.9707
and 28.2936dB. With a p-value of less than 0.05 for both metrics, it is also
statistically significant that the Lamarckian model performs better than
the Baldwinian model. The relatively high difference in PSNR compared
to SSIM is due to the logarithmic nature of PSNR, making it sensitive
to changes when MSE is close to zero. Two identical images will have a
PSNR of infinity.

Figure 5.5: Average of best fitness per generation for all 10 images. Lamar-
ckian and Baldwinian evolution.

These results are also seen in the models’ resulting images. Both mod-
els recreate the MNIST images well, although Lamarckian is almost iden-
tical, capturing nearly all the details. This is most easily visualized in

CHAPTER 5. EXPERIMENTS AND RESULTS 37

Figure 5.6: Comparison of MNIST(left), Lamarckian recreation(middle)
and the Baldwinian recreation(right).

MNIST’s 10th image, shown in figure 5.6, where the small line inside the
9’s ring is not seen in the Baldwinian recreation but is easily seen in the
Lamarckian.

5.2 Experimental Plan

The experiments conducted for this thesis aim to answer the different re-
search questions posed in section 1.1. They are split into three phases, fo-
cusing on their respective question. The MNIST- Set5- and Set14-datasets
[18; 2; 49] will be used for the different experiments. The MNIST dataset
contains images of 28x28 resolution images, which is very low compared to
standard images. These will serve as a benchmark for comparing CPPN
recreation of larger images. Set14 Set5 contains images within a nor-
mal resolution range, with images from 100 to 768 pixels wide. All three
datasets are used as standardized benchmarks for several computer vision
tasks. Set14 and Set5 were chosen because they are the state of the art
standard and super resolution results are easily accessible.

Phase 1: Feasibility

Phase 1 is linked to RQ1 and the feasibility of the proposed method. The
method should be able to recreate images of any size in order to later
produce upsampled versions. Larger images contain more information
and should thus be harder for a network to learn. To gauge the feasibility
of using CPPNs for super resolution, LE-CPPN needed to be tested on

CHAPTER 5. EXPERIMENTS AND RESULTS 38

images of varying complexity. Comparing the image similarity metrics
from runs on both small and large images should provide insight into how
size affects the recreational abilities of LE-CPPN.

RQ1 How well will CPPN image recreation scale with increasing image
complexity and size?

Experiment goal: Test LE-CPPN on the MNIST- and the Set5-dataset.
Analyze the ability to recreate images by comparing the SSIM and
PSNR of the recreated images of each dataset.

Hypothesis: It is expected that the CPPN recreations will be able to
recreate the general structure of the images, such as face outlines.
However, it is expected that the CPPNs will not be able to capture
the more complex details that make up higher resolution images.

Phase 2: Optimization

The structure and complexity are unique for all images. This can make
it hard to create a general CPPN architecture that is suitable for every
image. An essential step in the super resolution process is finding an opti-
mal architecture for each image through NAS. The evolutionary approach
proposed in this thesis (LE-CPPN) is tested against the standard baseline,
random search, as well as grid search of predefined architectures.

RQ2 How can CPPNs best be designed and optimized for image recre-
ation?

Experiment Goal: A grid search and random architecture search algo-
rithm will be used to find optimal models for Set14. The results will
then be compared to the results obtained by LE-CPPN.

Hypothesis: As LE-CPPN is a guided search, it is expected that it will
find better architectures than grid and random search. It is also
expected that even though CPPN architecture performs well on one
image, the same architecture will not necessarily perform well on
others.

CHAPTER 5. EXPERIMENTS AND RESULTS 39

Phase 3: Super Resolution and benchmark testing

In order to objectively evaluate the CPPN super resolution method, LE-
CPPN will be tested against standard approaches and state of the art
benchmarks.

RQ3 What different qualities will CPPN super resolution display com-
pared with those of traditional mathematical super resolution ap-
proaches?

Experiment Goal: The models obtained by running LE-CPPN on Set14
and Set5 images scaled down by a factor of 2, 4 and 8 will be used
to recreate the images at their original resolution. These results will
be compared to bicubic interpolation and benchmarks from state of
the art super resolution methods.

Hypothesis: If the image recreation abilities of the CPPN is adequate,
it is expected that the CPPN upscaled images will be comparable
to those upscaled by interpolation. Additionally, it is expected that
the images upscaled by CPPN will have smoother looks and less
pixelated patterns than those of images recreated by interpolation.

5.3 Experimental Setup

5.3.1 Hyperparameters

Some hyperparameters were shared for all the experiments across all three
phases and can be seen in table 5.2. The distinctive hyperparameters of
each phase will be listed in their respective sections. These hyperparame-
ters are a result of the preliminary testing, in which different configurations
were tested, but found not to perform better than those listed.

5.3.2 Phase 1 Setup

LE-CPPN is tested on a subset of 10 small-sized images from MNIST and
normally sized images from Set5. The chosen images from MNIST are the
first 10 images from the test set. For the Set5 experiment, the number of
epochs was increased from 50 to 200. This was to give LE-CPPN a fair

CHAPTER 5. EXPERIMENTS AND RESULTS 40

mutation rate 0.3

elitism number 1

parent selection probability 0.7

evolution scheme Lamarckian

fitness function MSE

min layer size 4

max layer size 250

loss function Binary Cross Entropy

optimizer ADAM [15]

Table 5.2: hyperparameters used for preliminary testing.

amount of time to learn to recreate such large images, where the amount
of data points is increased by a factor of about 153.

dataset generations population size epochs batch size

MNIST 15 15 200 5

Set5 15 15 200 100

Table 5.3: Experiment Phase 1 hyperparameters

5.3.3 Phase 2 Setup

In the phase 2 experiments, the grid and random search algorithm, as well
as LE-CPPN, were run on all images from the Set14 dataset. Each image
was scaled down by a factor of 4 to reduce the run time of all algorithms.
All methods used 200 epochs and a batch size of 50. The grid search
algorithm was configured to try all combinations in the cartesian product
of the parameters listed in table 5.4. Random search was configured to
try out 375 different network architectures so that the numbers matched
the number of individuals evolved by LE-CPPN given the set number of
generations and population size. The ranges from which the random search
could choose depths, individual layer sizes, and activation functions are
listed in table 5.5. Lastly, LE-CPPN was run with the parameters listed
in table 5.6. The evolved CPPN architectures will be further analyzed to
gain knowledge of the generality of image recreation.

CHAPTER 5. EXPERIMENTS AND RESULTS 41

Activation functions Tanh Linear Sigmoid Sine Gaussian ReLu

Layer Sizes 25 50 75 100 150 200 250

Network Depths 1 2 3 4 5 6 7

Table 5.4: Phase 2: Grid search parameters

Activation functions Tanh, Linear, Sigmoid, Sine, Gaussian, ReLu

Network depth 0 < d ≤ 10

Layer Sizes 4 ≤ s ≤ 250

Table 5.5: Phase 2: Random search parameters

generations population size epochs batch size

25 15 200 50

Table 5.6: Phase 2: Lamarckian evolution parameters

5.3.4 Phase 3 Setup

Super resolution experiments were conducted on images from different
datasets and with different scaling factors. The images are first scaled
down from the original sizes using the standard bilinear interpolation. In
order to compare results with other state of the art methods, the standard
downscaling factors of 2, 4, and 8 are used. From these downsampled
images LE-CPPN is used to evolve CPPNs. These CPPNs are then used
for upscaling the images to their original resolution. The upscaled images
are compared to the original images and those upsampled by interpolation,
to evaluate the accuracy of the super resolution methods. The experiment
configurations are documented in tables 5.7 and 5.8. Due to the difference
in image size resulting from varying scaling factors, different batch sizes
were used for each scaling factor.

5.4 Phase 1: Feasibility Results

LE-CPPN was run 10 times on different images from MNIST and once
for each of the 5 images of Set5. The best CPPN from each run was
used to recreate the target image. The averages of the achieved structural

CHAPTER 5. EXPERIMENTS AND RESULTS 42

Dataset Method Scaling factor

Set5 Bicubic Interpolation 2

Set5 LE-CPPN 2

Set14 Bicubic Interpolation 4

Set14 LE-CPPN 4

Set5 Bicubic Interpolation 4

Set5 LE-CPPN 4

Set14 Bicubic Interpolation 8

Set14 LE-CPPN 8

Set5 Bicubic Interpolation 8

Set5 LE-CPPN 8

Table 5.7: Phase 3: Super resolution experiments

Scaling factor Generations Population size Epochs Batch size

2x 25 15 200 100

4x 25 15 200 50

8x 25 15 200 15

Table 5.8: Phase 3: Super resolution batch sizes

similarity index measure and peak signal to noise ratio from Phase 1 ex-
periments can be seen in table 5.9. The LE-CPPN was able to achieve a
slightly higher structural similarity index of 0.967 and 0.953 on the MNIST
and Set5 images respectively. However, with a p-value of 0.2841, this re-
sult can not be considered statistically significant. This surprisingly small
difference contradicts the hypothesis of the experiment. It seems that the
extra training time LE-CPPN was given on Set5 was enough to make up
for the increase in image size. Further, the achieved PSNR was higher
for the Set5 images which means the mean error between the recreated
and original images is lower for the Set5 images. Interestingly to note, is
that the similarity measures SSIM and PSNR disagree on which dataset
LE-CPPN performed the best on. This difference can be attributed to
the varying image size. If the variance of the noise in the two recreated
datasets is the same, an increase in pixels will affect the ratio and result
in a higher PSNR. Thus it makes sense that the PSNR would be higher

CHAPTER 5. EXPERIMENTS AND RESULTS 43

for Set5 given similar noise variance.

Dataset Mean SSIM Mean PSNR σ SSIM σ PSNR

MNIST 0.967 27.654 0.0188 3.92
Set5 0.953 32.279 0.0301 2.196

Table 5.9: Phase 1: Image similarity scores

Figure 5.7: CPPN recreation of Set5 images. Originals followed by recre-
ated

The SSIM on the MNIST dataset was better than for Set5, however
by a smaller margin than expected. It seems that the increased number
of training epochs was sufficient to enable the algorithm to create CPPNs
capable of recreating detailed and complex patterns and colors.

In figure 5.7 the original images are shown with their recreated partners

CHAPTER 5. EXPERIMENTS AND RESULTS 44

Figure 5.8: Textural difference, Original (left), Recreated (right)

Figure 5.9: Mnist images to the left and its recreated counterpart to the
right.

to the right. It is clear that the model has successfully recreated visually
similar images. Only when looking at zoomed-in parts of the images,
differences become apparent. In Figure 5.8 one can see the inaccuracies of
the CPPNs recreation. The woven pattern of the child’s hat is somewhat
blurred compared to the original.

Figure 5.9 Shows the recreated MNIST images side by side with the
originals. Despite achieving a higher SSIM on the MNIST recreations than
the Set5 recreations, the differences are more apparent in MNIST. With
fewer pixels per image, it is easier to see where the image pairs are visually
different. With only 28x28 pixels, each pixel will have more effect on the

CHAPTER 5. EXPERIMENTS AND RESULTS 45

outcome of the image. This is apparent in the 5 and 9 images, where the
resulting recreations have structural differences that are more noticeable
than the Set5 recreations.

5.4.1 Convergence

Figure 5.10 shows the mean squared error for the best individual per
generation for both MNIST and Set5. It is interesting that despite the
difference in image size and complexity in the two datasets, LE-CPPN
converges almost simultaneously.

Figure 5.11 displays the average network depth per generation. This
plot shows how the best network architecture for the MNIST images sta-
bilized around 3 hidden layers. For Set5 on the other hand, when given
time to train for 200 epochs, the algorithm continued to evolve deeper
networks, reaching an average depth of 5 by the end of the 15th genera-
tion. This demonstrates the evolutionary algorithm’s ability to adapt the
CPPN architectures to fit the complexity of an image.

Figure 5.10: Fitness improve-
ment over generations

Figure 5.11: Average number of
hidden layers per generation.

If one disregards the depth of the CPPNs, the run time of the LE-
CPPN algorithm is linear with the number of pixels. This means that
going from a 28x28 image to a 280x280 would increase the run time by
a factor of 100. Consequently, the algorithm needed a lot more time to
recreate Set5 than MNIST.

CHAPTER 5. EXPERIMENTS AND RESULTS 46

5.4.2 Conclusion

The findings of the phase 1 experiments contradict the hypothesis pre-
sented in the experiment plan (5.2). Given enough training, LE-CPPN
successfully recreated complex and large images with results compara-
ble to and even surpassing those achieved on small images. This shows
that CPPNs have much potential for more complex tasks than MNIST.
LE-CPPN also successfully adapted the size of the CPPNs to match the
complexity of the given images, indicating that the method possibly can
recreate even larger and more complex images with sufficient training,
population size and the number of generations. The universal function
approximation theorem [27] guarantees the approximation ability of neu-
ral networks for any function. Theoretically, a CPPN should then be able
to recreate any image, regardless of size. These experiments have not
found a limit to what images CPPNs can recreate, but have shown that
sizes up to 800 pixels wide are certainly within the limit.

5.5 Phase 2: Optimization Results

The achieved structural similarity index measure and peak signal to noise
ratio from Phase 2 experiments can be seen in table 5.10. From the table
one can see that LE-CPPN scored considerably better than both grid and
random search, and with a p-value less than 0.0001 can this finding can
be considered statistically significant. This difference in performance is
visible in the example in 5.12. LE-CPPN has learned more of the nuances
and details of the original image, while the best CPPNs from random
search and grid search are more blurred and less detailed. As suspected the
task of learning a detailed image is so complex that pure backpropagation
with random architectures can struggle to find a global optimum. This
result was in line with the hypothesis of the experiment.

Dataset Method Mean SSIM σ Mean PSNR σ

Set14 Grid Search 0.7607 0.0915 21.927 2.9097
Set14 Random Search 0.7737 0.0863 22.0625 2.9179
Set14 LE-CPPN 0.9297 0.0524 29.5334 4.5210

Table 5.10: Phase 2: Results

CHAPTER 5. EXPERIMENTS AND RESULTS 47

Original Random Search Grid Search LE-CPPN

Figure 5.12: Method comparison: Images upscaled by a factor of 4 by
their respective CPPNs.

5.5.1 Adaptability

Figure 5.13: Fitness evaluation over time for each NAS method (trained
on CPU Intel i7)

The major difference in performance can be credited to many factors.
In total each algorithm tests around 400 network configurations. However,
predefined architectures of the grid search and the randomness in random
search make them unable to adapt their search to each image. LE-CPPN
on the other hand will explore as many architectures, but adjust what kind
of architectures to try out according to what architectures perform well.
This is a great advantage when specializing an architecture for a specific
image. This can be seen in Figure 5.13, where random and grid search
find better solutions faster than LE-CPPN, but is outperformed relatively
quickly. The slower start of LE-CPPN can be attributed to the simplicity

CHAPTER 5. EXPERIMENTS AND RESULTS 48

of its initial generations, which start with only one hidden layer. These
simple networks will not be capable of capturing the images’ structural
complexity. Random search will have a random network depth no matter
how far into the search it is, and can therefore find a deeper architecture
relatively early, whereas LE-CPPN is dependent on mutation before that
is possible.

5.5.2 The Lamarckian effect

It can be theorized that the crossover and mutation is a good method to
explore new areas of the weight parameters’ gradient landscape and thus
avoid local minima that pure backpropagation training is unable to escape.
When adding a layer to a network during mutation, the rest of the weights
in the network remain the same, and the network is still close to the local
minimum found during training. However, the addition of a new layer
can alter the gradient landscape, and offer a new starting point for further
training which leads to different minima. This is shown in table 5.11 where
the SSIM score on image recreation for two identical CPPN architectures
is shown. On the left column, the image recreation score for the CPPN
evolved with Lamarckian evolution is shown, and an identical architecture
with its weights randomly initialized and trained for 1000 epochs is shown
in the left column. Interestingly, the evolved CPPNs perform significantly
better than the ones without, even though every individual from evolution
only trained for 200 epochs. This may indicate that the non evolved
CPPNs get stuck in a local minima relatively early. It is known that a
better weight configuration for the architecture exists, but they are not
able to get there by using backpropagation only. These results also show
how hard it is to improve when the gradients do not allow it. Both the
baboon and bridge images have big differences in their performance, from
0.9276 to 0.5517 and 0.9703 to 0.5097 respectively. Baboon can be seen in
figure 5.14, and while the LE-CPPN model bears a strong resemblance to
its target image, the CPPN trained with only backpropagation only has
some of the colors and general image structure correct. This shows the
importance of network weights and how network optimization affects the
result.

CHAPTER 5. EXPERIMENTS AND RESULTS 49

Image Lamarckian evolved Only backpropagation

monarch 0.9601 0.8852
flowers 0.9790 0.8338
bridge 0.9703 0.5097
ppt3 0.9571 0.7697
zebra 0.8794 0.6972
lenna 0.9571 0.8010

barbara 0.8875 0.8567
face 0.9752 0.8973

comic 0.9545 0.8153
pepper 0.9612 0.9127

man 0.9083 0.6343
coastguard 0.8488 0.6900

foreman 0.9960 0.9698
baboon 0.9276 0.5517

Table 5.11: Comparison of SSIM fitness on the evolved CPPN network
architecture against the same architecture trained for 1000 epochs.

Downsampled Lamarckian evolved Only backpropagation

Figure 5.14: Baboon recreated with LE-CPPN and the same architecture,
but only using backpropagation for training.

5.5.3 Architecture comparisons

To investigate if the architectures found by LE-CPPN would generalize to
other images, for each architecture, 13 clones (182 in total) with randomly
initialized weights were each trained on the other images in the set. The
new networks were only trained with backpropagation and did not go

CHAPTER 5. EXPERIMENTS AND RESULTS 50

through the entire process of evolution. Each new network was trained
on a single image for 500 epochs rather than 200. This was to make up
for the head start CPPNs get from the Lamarckian weight inheritance in
LE-CPPN.

Figure 5.15: Image recreation SSIM by architectures found by LE-CPPN,
but only trained on each individual image from Set14.

In figure 5.15, the architecture found by LE-CPPN for a specific target
image is named along the y-axis. Along the x-axis is what image the
architectural clone was trained on, and the heatmap shows the achieved
SSIM for that image (lighter color indicates higher SSIM). In addition,
the architectures’ average across all the different images is shown in the
last column, and the average score on the specific images is shown in the
last row. Along the diagonal is the SSIM achieved by the original network
evolved by LE-CPPN. Not surprisingly, from looking at this diagonal one
can clearly see that the highest score obtained on each image, was with
the model specifically evolved for that image.

Some images are easier to recreate than others. The lighter columns
such as foreman or face achieved significantly better averages than the
darker columns of zebra or baboon. However, the evolved scores of zebra

CHAPTER 5. EXPERIMENTS AND RESULTS 51

and baboon are not as low. This shows that it is possible to achieve a
high score on difficult images. But defining a general CPPN architecture
that works well for all images is difficult.

CPPN attributes: no. of Pearson correlation coefficient

Trainable weights 0.3705
Hidden layers -0.0110
Tanh layers -0.1286
ReLU layers 0.0019

Sigmoid layers -0.0439
Sine layers -0.3886

Gaussian layers 0.4547
Linear layers 0.2032

Table 5.12: Cofficient of determination between CPPN attributes and
average SSIM across all Set14 images

This becomes more apparent when comparing architectures, by ob-
serving whether some perform better than others based on their depth,
amount of parameters and activation functions. In table 5.12, the corre-
lation coefficient between average SSIM and different network parameters
are shown. It seems that the number of trainable weights is more im-
portant than network depth, and that gaussian is a preferred activation
function. Although there is found some correlation, the relationships be-
tween the variables and the SSIM are only weak, and it is difficult to
conclude anything. This further shows the difficulty of using intuition and
prior knowledge in designing CPPNs. It also highlights the practicality of
having automated neural architecture search and optimization.

5.5.4 Conclusion

The findings of the phase 2 experiments enforce the hypothesis presented
in the experiment plan (5.2). LE-CPPN successfully outperformed the
grid search and random search algorithms with the given search parame-
ters. Images are complex and of such a varying nature that an informed
search such as the genetic algorithm is necessary for optimizing CPPN ar-
chitectures for individual images. The Lamarckian inheritance of weights

CHAPTER 5. EXPERIMENTS AND RESULTS 52

seems to improve CPPN performance greatly compared to pure training.
Also, the heatmap in figure 5.15 showed how the evolutionary process
aids the CPPNs in performing well for their specific image, and how these
architectures do not necessarily generalize across images. These findings
indicate the necessity of specialized CPPNs.

5.6 Phase 3: Super resolution Results

Dataset/Scaling factor Method Mean SSIM Mean PSNR σ SSIM/PSNR

Set5 2x LE-CPPN 0.9105 27.7551 0.0297/2.7643
Set5 2x Bicubic 0.9554 32.2755 0.0283/3.4079

Set14 4x LE-CPPN 0.6931 20.8578 0.1189/2.6195
Set14 4x Bicubic 0.7882 23.7101 0.1/2.8846

Set5 4x LE-CPPN 0.6332 18.6935 0.0878/3.0747
Set5 4x Bicubic 0.87 26.54 0.047/3.399

Set14 8x LE-CPPN 0.5713 17.711 0.1293/2.2803
Set14 8x Bicubic 0.659 20.2709 0.1247/2.7231

Set5 8x LE-CPPN 0.6211 18.5542 0.1105/3.215
Set5 8x Bicubic 0.72 021.816 0.0841/3.6162

Table 5.13: Phase 3 results: Similarity between upscaled images and orig-
inals

The image similarity scores for each combination of dataset and scaling
factor are presented in table 5.13. LE-CPPN consistently scores lower than
Bicubic Interpolation on both SSIM and PSNR. For all pairings, the results
can be considered statistically significant except for Set14 8x, where the
p-value was 0.0792 (> 0.05)and thus not statistically significant. As the
scaling factor decrease the achieved SSIM and PSNR improve significantly.
This is largely because the amount of information lost in an image scaled
down by a factor of 2 is a quarter of the information lost in one scaled
down by a factor of 4. Thus there is much less new information that needs
to be inferred by the super resolution step.

CHAPTER 5. EXPERIMENTS AND RESULTS 53

Figure 5.16: Scatter plot showing relation between image recreation SSIM
and super resolution SSIM

The scatter plot in figure 5.16, shows the relation between the recre-
ated image SSIM and the upscaled image SSIM. Surprisingly, it is hard
to see a clear pattern showing that high SSIM on the recreation of the
training image leads to high SSIM on the upsampled image. The Pearson
correlation coefficient between recreation SSIM and upsampled SSIM is
0.5831, which is only considered to be a moderate positive correlation.
Since all image recreation scores are fairly high (> 0.85, see Figure 5.11),
it might be that the low resolution target image itself is the problem. In
the downsampling process, too much information was lost to regain the
same image through CPPN upsampling.

5.6.1 Deep Learning State of the Art comparison

Tab 5.14 compares results from other state of the art deep learning meth-
ods. SRResNet [19], CAR [37] and SRGAN [19] each achieved the best
ranked results in terms of SSIM, PSNR and mean opinion score (MOS,
obtained through a human survey of visual quality) respectively. Of these
methods only SRResNet can beat the performance of bicubic interpolation
in terms of SSIM, however, they all achieve a higher PSNR. As discussed
in 3.2 these methods are trained to create a mapping from low resolution

CHAPTER 5. EXPERIMENTS AND RESULTS 54

to high resolution images. As a result, these networks can create new in-
formation where textures were lost in downsampling. This is exemplified
in Figure 5.17 where the super resolution GAN by Ledig et al. [19] has
inferred patterns onto the girl’s scarf without them being present in the
original. LE-CPPN and Bicubic interpolation on the other hand are not
trained in any way on high resolution images, making them unable to infer
such textures. For LE-CPPN to successfully recreate textures they must
be present in the low resolution image. This disability seems to be a major
drawback of CPPNs and Interpolation. Still, a drawback with the GAN
and the other methods presented is that the models are limited in the
range of their input and output sizes. The models produced by LE-CPPN
could if needed produce any resolution. This is a great advantage when
it comes to practical use because the combinations of upsampling needed
and original image size can be infinitely many. Additionally, GANs and
CNN mapping approaches need large amounts of training data with a var-
ied collection of images. On the contrary, LE-CPPN only needs the low
resolution target image to train and perform the upsampling.

Dataset LE-CPPN SRResNet [19] CAR [37] SRGAN [19]

Set14 4x 0.6931/20.8578 0.8184/28.49 0.7326/26.39 0.7397/26.02
Set5 2x 0.9105/27.7551 n/a 0.9658/38.94 n/a

Table 5.14: State of the Art comparison (SSIM/PSNR)

Original Bicubic 4x LE-CPPN 4x SRGAN 4x [19]

Figure 5.17: State of The Art image comparison

CHAPTER 5. EXPERIMENTS AND RESULTS 55

5.6.2 Visual Comparison to Interpolation

Figures 5.21, 5.22 and 5.23 (found on pages 58-60) compares the recre-
ations of the set14 images at a scaling factor of 4. By inspecting the
images side-by-side, it is more difficult to pinpoint a superior method.
SSIM and PSNR are only the mathematical approaches to calculate im-
age similarity and are, in the end, less important than human perception.
Figure 5.18 is an example of where LE-CPPN has produced an arguably
more pleasing upsampled image than interpolation. The LE-CPPN image
has stronger colors, clearer edges and is arguably visually more similar
to the original, despite the SSIM and PSNR being lower. There are also
some images where LE-CPPN has not created a very good approximation,
such as the baboon image and zebra. It is hard to know exactly why the
CPPNs struggle to upsample these images, but the common properties of
those images are that they contain fine textures, such as the baboon’s fur
and the grass in the zebra image. These properties seem to be hard to
capture.

SSIM: n/a

Downsampled

SSIM: 0.88

Bicubic 4x

SSIM 0.83

LE-CPPN 4x

Figure 5.18: Super resolution example: Pepper

Edges/Curves

As expected LE-CPPN recreated images do not contain the same pixelated
patterns often found in interpolated images. This is especially apparent
when looking at edges in the upsampled images. Images upsampled with

CHAPTER 5. EXPERIMENTS AND RESULTS 56

Original HR Bicubic 4x LE-CPPN 4x

Figure 5.19: Super resolution example: Lenna

LE-CPPN contain smoother and more distinct lines than the interpolated
counterparts. This is exemplified in figure 5.19. The shoulder of the
woman in the rightmost image is free of any stair-like distortions. A
theory of why, is that CPPNs can easily converge to represent linear and
polynomial functions, and so can easily approximate the mathematical
function of edges and curved lines.

Artifacts

Common artifacts of bicubic interpolation include stair-like patterns, blur-
ring, and loss of detailed texture. Such artifacts are generally not wanted,
and getting rid of these is important to gain a realistically looking up-
sampled image. LE-CPPN does not produce similar artifacts but clearly
shows distinctive trademarks in certain photos. In the upsampled images
one can see repeating patterns and effects created by the CPPN. The im-
ages often contain wave-like distortions and overly smooth edges. These
effects combined tend to make the images appear painted and unrealistic.
These artifacts can be seen in the left image of figure 5.20. The model
has struggled to recreate the grass texture from the original image, and a
wave-like distortion is prevalent in the image. Another form of the artifact
that is apparent in some of the LE-CPPN images is noise. In figure 5.20
this noise resembles the noise that can occur when taking pictures with
a high ISO setting [Nikon]. Since SSIM is particularly sensitive to noise,
this probably attributes to giving very similar LE-CPPN images a lower

CHAPTER 5. EXPERIMENTS AND RESULTS 57

SSIM (as explained in section 2.8).

Figure 5.20: Artefacts found in LE-CPPN SR images

5.6.3 Conclusion

The experiments conducted in phase 3 showed that CPPNs have the po-
tential for super resolution. Although LE-CPPN scored lower than in-
terpolation on the image similarity metrics, the visual results show that
the method is able to produce pleasing images, some even more so than
their interpolated counterparts. The strong suit of CPPN super resolution
seems to be curves and straight lines, as these tend to come out less pix-
elated. However, the method brings its own disadvantages. The training
of CPPNs is a lot more time-consuming than interpolating images. In
addition, the artifacts of this method can be more pronounced than those
found in interpolation, especially in images where the textural details have
been lost in the downsampling. An important advantage of using a CPPN
for super resolution is the flexibility to which one wants to upsample an
image. Once a model for a specific image is found, one can generate a new
image of arbitrary resolution.

CHAPTER 5. EXPERIMENTS AND RESULTS 58

Original HR Downsampled 4x Bicubic 4x LE-CPPN 4x

Figure 5.21: Image 1 to 5 of Set14

CHAPTER 5. EXPERIMENTS AND RESULTS 59

Original HR Downsampled 4x Bicubic 4x LE-CPPN 4x

Figure 5.22: Image 6 to 10 of Set14

CHAPTER 5. EXPERIMENTS AND RESULTS 60

Original HR Downsampled 4x Bicubic 4x LE-CPPN 4x

Figure 5.23: Image 11 to 14 of Set14

CHAPTER 5. EXPERIMENTS AND RESULTS 61

5.7 Additional Experiments

An interesting result of exploring the CPPNs abilities came from feeding
them coordinates outside of the intervals they were trained on. This gives
an indication of what the CPPN would generalize to the outside of the
training space. Each CPPN was fed with coordinates from the interval
[-2, 3] but they had only been trained on the interval [0, 1]. Examples
of the resulting images can be seen in figure 5.24. It seems the CPPNs
have correctly generalized the colors of each target image to the rest of the
coordinate space. The patterns on the other hand, bear little resemblance
to the original images. Regardless, the patterns in each separate image are
still very dissimilar to each other. The straight lines of the flower image
contrast the blurry elliptic spots around the baboon. One might theorize
that they are somewhat derived from the training set or that they are
produced by the combinations of activation functions. For example, the
CPPN of the baboon image contains only trigonometric and hyperbolic
activation functions (Sine and Tanh). This could be the cause of the
elliptical patterns. The CPPN of the flowers contains one layer of the
ReLU activation (which is a piecewise linear function), followed by four
layers of Gaussian functions. This architecture could be the cause of the
straight lines found around the flowers. The black-box nature of ANNs
makes it difficult to conclude. Further, these properties of extending the
inputs to the network beyond what the CPPN is trained on can be used
to create interesting artificial artwork, which has garnered a lot of interest
in recent years.

Figure 5.24: Outside the target frame

Chapter 6

Conclusion

The goal of this thesis was to explore the potential of using CPPNs for
image super resolution. In order to reach the goal, three research questions
were posed which in turn led to three experimental phases. The results
from each phase influenced the direction of the project and led to an
interesting insight into the potential, optimization and super resolution
abilities of CPPNs. The resulting answers from the project are summed
up below.

Research question 1 How well will CPPN image recreation scale with
increasing image complexity and size?

Research question 2 How can CPPNs best be designed and optimized
for image recreation?

Early testing showed that a simple trial and error for architecture and hy-
perparameter optimization achieved poor results and so the optimization
of CPPNs seemed to be a challenging part. To successfully recreate larger
images, the CPPNs had to achieve high recreational SSIM and PSNR
scores. To improve on trial and error and random search a Lamarckian
evolutionary algorithm (LE-CPPN) was developed. This method success-
fully outperformed other architectural search methods and showed promise
in being an efficient CPPN optimization method in general. The Lamarck-
ian evolutionary scheme proved to be important. When using the evolved
architectures, they performed worse with only backpropagation than when

62

CHAPTER 6. CONCLUSION 63

evolved by LE-CPPN. The CPPNs evolved from LE-CPPN were able to
recreate standard sized images to the extent that they were practically
indistinguishable from the originals. This showed that with good opti-
mization techniques CPPNs can recreate images of large sizes. It was also
showed that it is difficult to find a general model that can recreate every
image. Henceforth, using a search method seems necessary to produce
CPPNs capable of recreating unique images.

Research question 3 What different qualities will CPPN super resolu-
tion display compared with those of traditional mathematical super
resolution approaches?

The results were varying and consistently obtained lower image simi-
larity scores than interpolation. The method also scored lower than state
of the art deep learning methods. The resulting images from LE-CPPN
displayed desirable qualities such as clearly defined curves and edges. Vi-
sually speaking the images were pleasing even compared to interpolation.
An important advantage of using a CPPN for super resolution is its flexi-
bility to create any image resolution from a single model, something other
deep learning methods can not.

Goal: Explore the possibilities of using CPPNs for image super
resolution.

From answering the research questions came insight into the CPPN
super resolution abilities. It proved to be a possible method of upsampling
images, but the SSIM and PSNR scores were lower than other state of the
art methods. When compared to bicubic interpolation, its super resolution
ability was varied but comparable. It was interesting to see that CPPNs,
with the right optimization technique, could recreate large images almost
as accurately as small ones. Also, experiments showed that CPPN super
resolution succeeds in preserving curves and edges during upsampling,
something which is often lost in interpolation. Altogether, CPPN image
super resolution proved to yield viable results when upsampling images.
The method is flexible but difficult to optimize and needs further study
to gauge its full potential.

CHAPTER 6. CONCLUSION 64

6.1 Future work

During the project there surfaced several questions that could be potential
routes to take for further exploration of the methods presented in this
thesis.

• Ha [9] incorporated a random noise vector as input to the network
functioning as a seed for enabling a single CPPN to create different
images. A similar technique could be incorporated in the super
resolution method so that one would not need a single CPPN for each
image, but rather have a one-to-many relationship. The challenging
part of this method would probably be that it can potentially be
detrimental to the overall image recreational accuracy of the CPPN.

• In this research, all the networks that were generated through LE-
CPPN were simple feedforward networks. However, there are many
types of networks that have performed better than feedforward net-
works for different tasks. Convolutional Neural Networks(CNNs)
are proven to perform well on image recognition tasks, and Long
Short Term Memory(LSTM) networks have obtained good results
for temporal data[46]. An interesting task would be to extend the
Lamarckian Evolutionary scheme for neural architecture search on
more sophisticated networks.

• Another way to improve upon LE-CPPN could be to change the
chromosome variations for the genetic algorithm. For example, adding
a chromosome for batch size could be beneficial because choosing the
correct batch size is not always intuitive. It could also be possible
to add more constraints with regard to search space.

• LE-CPPN has been successful in learning to recreate images with
high accuracy. It would be interesting to evaluate how LE-CPPN
works on problems that need to find a target function that general-
izes well outside of its training data.

• Downsampling of images is another common image processing task.
In scaling down images avoiding aliasing and information loss can
be challenging. Using CPPNs for downscaling of images rather than
super resolution could perhaps be an alternative to interpolation.

CHAPTER 6. CONCLUSION 65

6.2 Contributions

This thesis has presented a Lamarckian evolution algorithm (LE-CPPN)
for optimizing CPPNs to recreate images and showed that it successfully
outperforms the random search baseline as well as a standard grid search
method. It was shown that this algorithm was able to produce CPPNs
capable of learning and upsampling detailed images of varying sizes and
complexities, though not to a higher degree than other state of the art
methods. The super resolution abilities of CPPNs were explored and it was
shown that visually pleasing images can be obtained through this method.
In addition, Lamarckian evolution proved to be very useful when opti-
mizing CPPNs. A CPPN architecture that was evolved using LE-CPPN
performed significantly better than an identical architecture only trained
with backpropagation. Using the Lamarckian inheritance of weights can
therefore potentially be useful on problems different from image recreation
and super resolution.

Bibliography

[1] Bergstra, J., Bardenet, R., Bengio, Y., and Kégl, B. (2011). Algo-
rithms for hyper-parameter optimization. In 25th annual conference on
neural information processing systems (NIPS 2011), volume 24. Neural
Information Processing Systems Foundation.

[2] Bevilacqua, M., Roumy, A., Guillemot, C., and line Alberi Morel, M.
(2012). Low-complexity single-image super-resolution based on nonneg-
ative neighbor embedding. In Proceedings of the British Machine Vision
Conference, pages 135.1–135.10. BMVA Press.

[3] Chao, D., Chen, C. L., Kaiming, H., and Xiaoou, T. (2015). Image
super-resolution using deep convolutional networks.

[4] Dai, T., Cai, J., Zhang, Y., Xia, S.-T., and Zhang, L. (2019). Second-
order attention network for single image super-resolution. pages 11057–
11066.

[5] Darwin, C. (1936). The origin of species. Everyman’s library. Dent.

[6] Dong, C., Loy, C. C., He, K., and Tang, X. (2014). Learning a deep
convolutional network for image super-resolution. pages 184–199.

[7] Fernando, C., Banarse, D., Reynolds, M., Besse, F., Pfau, D., Jader-
berg, M., Lanctot, M., and Wierstra, D. (2016). Convolution by evolu-
tion: Differentiable pattern producing networks.

[8] Fukushima, K. (2007). Neocognitron. Scholarpedia, 2:1717.

[9] Ha, D. (2016). Generating large images from latent vectors.
blog.otoro.net.

66

BIBLIOGRAPHY 67

[10] Haris, M., Shakhnarovich, G., and Ukita, N. (2018). Deep back-
projection networks for super-resolution.

[11] Holzinger, K., Palade, V., Rabadan, R., and Holzinger, A. (2014).
Darwin or Lamarck? Future Challenges in Evolutionary Algorithms for
Knowledge Discoveryand Data Mining, pages 35–56.

[12] Hutter, F., Hoos, H. H., and Leyton-Brown, K. (2011). Sequential
model-based optimization for general algorithm configuration. In In-
ternational conference on learning and intelligent optimization, pages
507–523. Springer.

[13] Kim, J., Lee, J. K., and Lee, K. M. (2016a). Accurate image super-
resolution using very deep convolutional networks.

[14] Kim, J., Lee, J. K., and Lee, K. M. (2016b). Deeply-recursive convo-
lutional network for image super-resolution.

[15] Kingma, D. P. and Ba, J. (2014). Adam: A method for stochastic
optimization. arXiv preprint arXiv:1412.6980.

[16] Klein, A. and Hutter, F. (2019). Tabular benchmarks for joint archi-
tecture and hyperparameter optimization.

[17] Krizhevsky, A., Sutskever, I., and Hinton, G. E. (2012). Imagenet
classification with deep convolutional neural networks. pages 1097–1105.

[18] LeCun, Y. and Cortes, C. (2010). MNIST handwritten digit database.

[19] Ledig, C., Theis, L., Huszar, F., Caballero, J., Cunningham, A.,
Acosta, A., Aitken, A., Tejani, A., Totz, J., Wang, Z., and Shi, W.
(2017). Photo-realistic single image super-resolution using a generative
adversarial network.

[20] Li, L. and Talwalkar, A. (2019). Random search and reproducibility
for neural architecture search. CoRR, abs/1902.07638.

[21] li, Z. and Luo, Y. (2017). Generate identity-preserving faces by gen-
erative adversarial networks.

BIBLIOGRAPHY 68

[22] Lim, B., Son, S., Kim, H., Nah, S., and Lee, K. M. (2017). Enhanced
deep residual networks for single image super-resolution.

[23] Liu, H., Simonyan, K., Vinyals, O., Fernando, C., and Kavukcuoglu,
K. (2018). Hierarchical representations for efficient architecture search.

[24] Liu, J., Gan, Z., and Zhu, X. (2013). Directional bicubic interpolation.

[25] Mordvintsev, A., Pezzotti, N., Schubert, L., and Olah, C. (2018).

[Nikon] Nikon, U.

[27] Nishijima, T. (2021). Universal approximation theorem for neural
networks.

[28] Real, E., Aggarwal, A., Huang, Y., and Le, Q. V. (2019). Regularized
evolution for image classifier architecture search.

[29] Real, E., Moore, S., Selle, A., Saxena, S., Suematsu, Y. L., Tan,
J., Le, Q. V., and Kurakin, A. (2017). Large-scale evolution of image
classifiers. 70:2902–2911.

[30] Rosenblatt, F. (1958). The perceptron: A probabilistic model for
information storage and organization in the brain. Psychological Review,
65(6):386–408.

[31] Sciuto, C., Yu, K., Jaggi, M., Musat, C., and Salzmann, M. (2019).
Evaluating the search phase of neural architecture search. CoRR,
abs/1902.08142.

[Secretan et al.] Secretan, J., Beato, N., D’Ambrosio, D., Rodriguez, A.,
Campbell, A., and Stanley, K. Picbreeder.

[33] Secretan, J., Beato, N., D’Ambrosio, D., Rodriguez, A., Campbell,
A., and Stanley, K. (2008). Picbreeder: Evolving pictures collabora-
tively online. Proceedings of Computer Human Interaction Conference,
pages 1759–1768.

[34] Springenberg, J. T., Klein, A., Falkner, S., and Hutter, F. (2016).
Bayesian optimization with robust bayesian neural networks. Advances
in neural information processing systems, 29:4134–4142.

BIBLIOGRAPHY 69

[35] Stanley, K., D’Ambrosio, D., and Gauci, J. (2009). A hypercube-
based encoding for evolving large-scale neural networks. Artificial life,
15:185–212.

[36] Stanley, K. O. (2007). Compositional pattern producing networks: A
novel abstraction of development. Genetic programming and evolvable
machines, 8(2):131–162.

[37] Sun, W. and Chen, Z. (2020). Learned image downscaling for up-
scaling using content adaptive resampler. IEEE Transactions on Image
Processing, 29:4027–4040.

[38] Tesfaldet, M., Snelgrove, X., and Vázquez, D. (2019). Fourier-cppns
for image synthesis.

[39] Thomas Elsken, Jan Hendrik Metzen, F. H. (2018). Simple and effi-
cient architecture search for convolutional neural networks.

[40] Tommasi, T., Patricia, N., Caputo, B., and Tuytelaars, T. (2015). A
deeper look at dataset bias.

[41] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L.,
Gomez, A. N., Kaiser, L., and Polosukhin, I. (2017). Attention is all
you need. CoRR, abs/1706.03762.

[42] Wang, S. (2017). Generative adversarial networks (gan): A gentle
introduction [updated].

[43] Wang, Z., Bovik, A., Sheikh, H., and Simoncelli, E. (2004). Image
quality assessment: from error visibility to structural similarity. IEEE
Transactions on Image Processing, 13(4):600–612.

[44] Werbos, P. J. (1990). Backpropagation through time: what it does
and how to do it. Proceedings of the IEEE, 78(10):1550–1560.

[45] Whitley, D., Gordon, V., and Mathias, K. (1998). Lamarckian evo-
lution, the baldwin effect and function optimization.

[46] Wiik, T., Johansen, H. D., Pettersen, S.-A., Baptista, I., Kupka,
T., Johansen, D., Riegler, M., and Halvorsen, P. (2019). Predicting

BIBLIOGRAPHY 70

peek readiness-to-train of soccer players using long short-term mem-
ory recurrent neural networks. In 2019 International Conference on
Content-Based Multimedia Indexing (CBMI), pages 1–6. IEEE.

[47] Wistuba, M., Rawat, A., and Pedapati, T. (2019). A survey on neural
architecture search. CoRR, abs/1905.01392.

[48] Xie, L. and Yuille, A. (2017). Genetic cnn. pages 1388–1397.

[49] Zeyde, R., Elad, M., and Protter, M. (2012). On single image scale-up
using sparse-representations. In Boissonnat, J.-D., Chenin, P., Cohen,
A., Gout, C., Lyche, T., Mazure, M.-L., and Schumaker, L., editors,
Curves and Surfaces, pages 711–730, Berlin, Heidelberg. Springer Berlin
Heidelberg.

[50] Zhang, Y., Li, K., Li, K., Wang, L., Zhong, B., and Fu, Y. (2018a).
Image super-resolution using very deep residual channel attention net-
works. CoRR, abs/1807.02758.

[51] Zhang, Y., Tian, Y., Kong, Y., Zhong, B., and Fu, Y. (2018b). Resid-
ual dense network for image super-resolution.

N
TN

U
N

or
w

eg
ia

n
U

ni
ve

rs
ity

 o
f S

ci
en

ce
 a

nd
 T

ec
hn

ol
og

y
Fa

cu
lty

 o
f I

nf
or

m
at

io
n

Te
ch

no
lo

gy
 a

nd
 E

le
ct

ric
al

 E
ng

in
ee

rin
g

D
ep

ar
tm

en
t o

f C
om

pu
te

r S
ci

en
ce

Martin Nordby Johansen, Theodor Astrup Wiik

Lamarckian Evolution of
Compositional Pattern Producing
Networks For Image Super
Resolution

Master’s thesis in Computer Science
Supervisor: Pauline Catriona Haddow

June 2021

M
as

te
r’s

 th
es

is

	Introduction
	Goals and Research Questions
	Structured Literature Review Protocol

	Background Theory
	Image Similarity Measures
	Structural Similarity Index
	Peak Signal to Noise Ratio

	Artificial Neural Networks
	MLP

	Compositional Pattern Producing Networks
	Evolutionary Algorithms
	Evolutionary Schemes
	Genetic Algorithms
	Direct and Indirect Encoding
	Genetic Algorithms with Lamarckian and Baldwinian Evolution

	State of the art
	Interpolation
	Neural Network Based methods
	CPPN
	Hyperparameter Optimization and Neural Architecture Search

	Method
	Compositional Pattern Producing Network Architecture
	Activation functions
	Pre- and post-processing data
	Super resolution

	Evolutionary Algorithm
	Genome Encoding
	Initial population
	Evaluation
	Selection
	Crossover
	Mutation

	Hyperparameters

	Experiments and Results
	Preliminary Testing
	Dismissing Baldwinian Evolution

	Experimental Plan
	Experimental Setup
	Hyperparameters
	Phase 1 Setup
	Phase 2 Setup
	Phase 3 Setup

	Phase 1: Feasibility Results
	Convergence
	Conclusion

	Phase 2: Optimization Results
	Adaptability
	The Lamarckian effect
	Architecture comparisons
	Conclusion

	Phase 3: Super resolution Results
	Deep Learning State of the Art comparison
	Visual Comparison to Interpolation
	Conclusion

	Additional Experiments

	Conclusion
	Future work
	Contributions

	Bibliography

