
N
TN

U
N

or
w

eg
ia

n
U

ni
ve

rs
ity

 o
f S

ci
en

ce
 a

nd
 T

ec
hn

ol
og

y
Fa

cu
lty

 o
f I

nf
or

m
at

io
n

Te
ch

no
lo

gy
 a

nd
 E

le
ct

ric
al

 E
ng

in
ee

rin
g

D
ep

ar
tm

en
t o

f C
om

pu
te

r S
ci

en
ce

Alexander Michael Staff

An Empirical Study on Cross-data
Transference of Adversarial Attacks
on Object Detectors

Master’s thesis in Computer Science
Supervisor: Jingyue Li
Co-supervisor: Elizabeth Traiger

June 2021

M
as

te
r’s

 th
es

is

Alexander Michael Staff

An Empirical Study on Cross-data
Transference of Adversarial Attacks on
Object Detectors

Master’s thesis in Computer Science
Supervisor: Jingyue Li
Co-supervisor: Elizabeth Traiger
June 2021

Norwegian University of Science and Technology
Faculty of Information Technology and Electrical Engineering
Department of Computer Science

Abstract

Object detectors are increasingly deployed in safety-critical scenarios, including
autonomous vehicles. Recent studies have found that neural networks are fun-
damentally weak to adversarial attacks. Adversarial attacks on object detectors
involve adding a carefully chosen perturbation to the input, which causes the
object detector to make mistakes. To make sure these safety-critical systems are
trustworthy, the risks of adversarial attacks must be known.

This thesis investigates adversarial attacks where the attacker does not have
access to the target detector or its training set. Devising an attack in this scenario
requires the attacker training their own model on data which resembles the target
detector’s training set as much as possible. Using their own model as a surrogate,
lets the attacker generate adversarial attacks without accessing the target detector.
Experiments with this type of attack will establish whether one can effectively
attack the private model using public data.

To attack Darknet models with the Targeted Objectness Gradient (TOG) family
of attacks, the attack framework developed by Chow et al. [1] was modified. The
modifications made the framework output adversarial samples, Darknet models
could make predictions on.

Though initial transference between the attacking and target model is low,
increasing epsilon from 8 to 24 under the L∞ distance metric strengthens trans-
ference, and reduces the target detector mean Average Precission (mAP) by about
half. Transference is also studied when the datasets for the attacking and the target
model intersect. Attack performance is found to be proportional with the intersec-
tion. With the stronger transference afforded by intersecting datasets, epsilon can
be dropped to 16 and retain the attack performance.

iii

Sammendrag

Objektdetektorer blir stadig mer brukt i sikkerhetskritiske scenarier, inkludert autonome
kjøretøy. Nyere studier har funnet at nevrale nettverk har en grunnleggende svakhet
for fiendtlig støy . Å angripe objektdetektorer med fiendtlig støy, innebærer å legge
til nøye valgt støy i inputen, som får objektdetektoren til å gjøre feil. For å sikre at
disse sikkerhetskritiske systemene er pålitelige, må risikoen for slike angrep være
kjent.

Denne avhandlingen undersøker fiendtlig støy angrep der angriperen ikke har
tilgang til objektdetektoren under angrep, eller dens treningssett. Å utarbeide et
angrep i dette scenariet krever at angriperen trener sin egen modell på data som
ligner målet sitt treningssett, så mye som mulig. Ved å bruke sin egen modell som
surrogat, kan angriperen generere fiendtlig støy uten direkte tilgang til målet.
Eksperimenter med denne typen angrep vil avgjøre om man effektivt kan angripe
den private modellen ved hjelp av offentlige data.

For å angripe Darknet modeller med Targeted Objectness Gradient (TOG) fam-
ilien av angrep, ble rammeverket utviklet av Chow et al. [1]modifisert. Modifikas-
jonene gjorde at rammeverket generert bilder med fiendtlig støy som Darknet -
modellene kunne gjøre deteksjoner på.

Angrepsytelsen på fiendtlig støy overført mellom angreps- og målmodellen,
er lav til å begynne med. Derimot, hvis en øker epsilon fra 8 til 24 under L∞
avstandsmetrikken, styrker overføringen og reduserer måldetektoren sin mAP til
omtrent halvparten. Overføring studeres også når datasettene for den angripende
modellen og målmodellen har overlapp. Angrepsytelse er funnet å være propor-
sjonal med størrelse på overlappen. Med sterkere overføring grunnet overlapp i
datasettene, kan epsilon settes ned til 16 og beholde angrepsytelsen.

v

Preface

This thesis concludes the author’s master’s degree form the Department of Com-
puter Science at the Norwegian University of Science and Technology (NTNU). I
would like to thank my supervisors, Associate professor Jingyue Li of the Depart-
ment of Computer Science, and Elizabeth Traiger, Senior Researcher at DNV. Their
guidance, support, and valuable feedback improved the thesis immeasurably.

From DNV I’d also like to thank Jon Arne Glomsrud, and Kristian Bertheussen
Karolius for their questions, comments, and suggestions which helped shape the
direction of the research.

Finally, I would like to thank my friends and family for their support through-
out my studies. Producing this thesis without your support would not have been
possible, especially during lockdown. A special thanks to my brother, Robin, without
whom I would not have studied computer science.

Trondheim, 25 June 2021
Alexander Michael Staff

vii

Contents

Abstract . iii
Sammendrag . v
Preface . vii
Contents . ix
Figures . xiii
Tables . xv
Code Listings . xvii
Acronyms . xix
Glossary . xxi
1 Introduction . 1
2 Background . 3

2.1 Convolutional Neural Networks . 3
2.2 Object Detectors . 3

2.2.1 Backbone Network . 4
2.2.2 Non-max Suppression . 5
2.2.3 Anchor Boxes . 6

2.3 YOLOv3 . 6
2.4 Adversarial Examples . 7

2.4.1 Fast Gradient Sign Method . 8
2.4.2 Generalisation of Adversarial Examples 8
2.4.3 Beyond FGSM . 9
2.4.4 TOG . 11
2.4.5 Transfer Attacks . 12

2.5 Performance Metrics . 12
3 Related Work . 15

3.1 Towards Adversarially Robust Object Detection 15
3.2 Contextual Adversarial Attacks For Object Detection 15
3.3 Relevance Attack on Detectors . 15
3.4 Cross-task Universal Perturbation . 16
3.5 Multiple Object Tracking Attack . 16
3.6 Attacks Analysis . 16

3.6.1 More details on TOG Attacks 23
4 Method . 25

4.1 Motivation . 25

ix

x A. M. Staff: Cross-data Transference of Adversarial Attacks

4.2 Research Questions . 26
4.3 Research Methodology . 26

4.3.1 Research Strategy . 26
4.3.2 Data Analysis . 26
4.3.3 Research Paradigm . 27

5 Implementation . 29
5.1 Attack Scenario . 29
5.2 RQ1 . 29

5.2.1 Object Detection . 29
5.2.2 Generating Adversarial Samples 30
5.2.3 Measuring Performance . 33
5.2.4 Data Sources . 33
5.2.5 Preparing Datasets to Train the Target Model 35
5.2.6 Preparing Datasets to Train the Attackers Model 38
5.2.7 Training Configuration for the Target Model 39
5.2.8 Training Configuration for the Attackers Model 40

5.3 RQ2 . 40
5.4 Hardware . 41

5.4.1 Local . 41
5.4.2 Colaboratory . 41
5.4.3 NTNU IDUN Computing Cluster 42

6 Results . 43
6.1 RQ1: Is It Possible To Generate Adversarial Samples With One Model

and Attack a Model Trained on Different Data? 43
6.1.1 Dataset Composition . 43
6.1.2 Attack Performance . 46
6.1.3 Attack Performance Compared to Epsilon 47

6.2 RQ2: How Will Datasets Sharing Images Affect the Transference of
the Attack? . 52
6.2.1 Dataset Intersection . 52
6.2.2 Attack Performance by Intersecting Models 52
6.2.3 Different Source and Target Resolution 54
6.2.4 Transfer Attack Performance Compared to Epsilon 55

7 Discussion . 57
7.1 RQ1 . 57

7.1.1 Comparison to Related Work 57
7.1.2 Implications to Academia . 58
7.1.3 Implications to Industry . 58

7.2 RQ2 . 58
7.2.1 Comparison to Related Work 58
7.2.2 Implications to Academia . 58
7.2.3 Implications to Industry . 59

7.3 Threats to Validity . 59
8 Conclusion . 61

Contents xi

8.1 Future Work . 61
Bibliography . 63

Figures

2.1 SSD vs. YOLO . 4
2.2 SSD feature map . 5
2.3 Non-max suppression . 5
2.4 Darknet-53 . 7
2.5 YOLO performance . 8
2.6 Adversarial example . 9
2.7 Argument to softmax as epsilon varies 10
2.8 precision and recall . 13

5.1 Sample images from the dataset shared from Grini [43] 34
5.2 Sample images from the dataset shared from DNV 34
5.3 Sample images from Singapore Maritime Dataset (SMD) 35
5.4 Sample images from COCO . 35
5.5 The interface for LabelImg [45] . 36
5.6 Comparison between training M1 at 416x416 (top) and 832x832

(bottom) . 40

6.1 output from the YOLO mAP measurement tool 46
6.2 mAP vs epsilon, M2 . 48
6.3 mAP vs epsilon, M4 . 48
6.4 The clean samples . 49
6.5 The adversarial samples, epsilon=8 . 49
6.6 The adversarial samples, epsilon=20 50
6.7 The adversarial samples, epsilon=32 50
6.8 Distortion comparison of epsilon=8 and epsilon=32 51
6.9 The correlation between dataset intersection and attack performance 54
6.10 mAP vs epsilon, M5 . 56

xiii

Tables

3.1 Results from a literature review looking for an appropriate attack
to study transference. 23

6.1 Data sources with their description . 44
6.2 Assembled datasets with their composition 45
6.3 Performance of models on clean samples 46
6.4 Performance on adversarial samples generated by M2 47
6.5 Performance on adversarial samples generated by M4 47
6.6 The intersection between the various datasets 52
6.7 Performance on adversarial samples generated by M1 53
6.8 Performance on adversarial samples generated by M3 53
6.9 Performance on adversarial samples generated by M5 53
6.10 Performance on adversarial samples generated by M6 53
6.11 Performance on adversarial samples generated by M5 at 416x416 . 55
6.12 Relative loss for attacks with matched and unmatched resolutions . 55

xv

Code Listings

5.1 The script to crop black bars from an image. source: https://
codereview.stackexchange.com/a/132934 32

5.2 The resizing code added to Targeted Objectness Gradient (TOG) . . 32
5.3 Code extract that converts multi-class xml to single-class yolo 37
5.4 The conversion step called in 5.3 . 38
5.5 The conversion step called in 5.3 . 38
5.6 The code that finds the dataset intersection. 40

xvii

https://codereview.stackexchange.com/a/132934
https://codereview.stackexchange.com/a/132934

Acronyms

CNN Convolutional Neural Network. 3, 9

COCO Common Objects in Context. 29

Faster R-CNN Faster Regions with CNN Features. 17, 18, 21, 22, 24, 31, 33, 61

IOU Intersection Over Mean. 6, 26, 27, 33

mAP mean Average Precission. iii, v, 14, 24, 26, 27, 32, 33, 35, 36, 38, 39, 41–43,
45–47, 52, 54, 55, 57–59, 61

NMS Non Maximum Suppression. 5

RPN Region Proposal Network. 17, 21, 23, 31

SMD Singapore Maritime Dataset. xiii, 34, 35, 38, 39, 44, 45

SSD Single Shot MultiBox Detector. 4–6, 21, 24, 33, 61

TOG Targeted Objectness Gradient. iii, v, xvii, 11, 23, 31–33, 43, 46, 57–59, 61,
62

XML Extensible Markup Language. 37, 38

YOLO You Only Look Once. 4, 15–17, 19, 21, 22, 24, 26, 29–32, 35–39, 43, 46,
47, 57, 61

xix

Glossary

black-box A context where the attacker does not have access to the internal state
of the target. See detailed explanation at [2.4.5]. 1, 2, 20, 24–27, 33, 34,
43, 54, 57

COCO A large dataset compiled for object detection training and benchmarking.
xiii, 15, 16, 26, 27, 30, 33, 35, 37, 39, 44, 45

Convolutional Neural Network A type of deep neural network which is well
suited to analysing images. 3

CUDA The API developed to execute GPU accelerated tasks on Nvidia graphics
cards. 30, 41

Darknet The neural network framework YOLO was initially developed in. iii, v,
2, 26, 30–33, 36–39, 41, 44, 46, 47, 49, 52, 57–59, 61, 62

DNV A leading certification body. Researchers from DNV co-supervised this thesis.
xiii, 30, 34, 35, 44

Keras A python interface for TensorFlow. 31

TensorFLow An open-source platform for machine-learning. 30–32, 46, 47, 49,
52, 57, 59, 62

YOLOv3 The second revision of a popular real-time object detector. 6

xxi

Chapter 1

Introduction

Object detection and classification have seen a rapid improvement since the Im-
ageNet competition in 2012. At this competition, deep convolutional networks al-
most halved the the error rates of the best competing approaches [2]. Such a great
improvement, caused a paradigm shift in computer vision which led to powerful
object detection models. Now object detection has been deployed in many dif-
ferent contexts, including safety-critical areas like autonomous vehicles. Unfor-
tunately, as the rapid development continued, it was discovered that neural net-
works could be caused to miss-predict by generating imperceptible non-random
perturbations and adding these to the input. These inputs, first described by Szegedy
et al. [3]were called adversarial samples. It turned out that all neural networks are
fundamentally susceptible to making critical errors if exposed to these adversarial
samples. Attempting to make the networks more robust to these perturbations is
an ongoing area of study [4]. Furthermore, it turned out that adversarial samples
generated to attack a particular model were even effective on models with differ-
ent architectures [5][1].

In this thesis it is not the cross-architecture transferability which is being stud-
ied, but rather the transferability between two models trained on different data-
sets. If an attacker decides to attack a commercially deployed autonomous vehicle,
it is unlikely the attacker would have detailed information about the detector, or
the training set used to train the object detector. However, if an attacker is able to
inject data into the training dataset of the target detector, they could train a sur-
rogate model on a dataset with a significant intersection with the target detector,
and then generate perturbated images from those models for injections attacks.
This thesis will establish whether one can effectively attack a model trained on
private data, using only public data. Furthermore, we investigate whether data-
sets sharing images, affect the transference of the attacks. In this scenario, the
attacker uses a surrogate model to generate an adversarial sample, then injects
the sample directly to the target model to fool it.

To investigate whether it is possible to transfer attacks across models trained
on different data, models are trained to detect the same semantic class, namely,
boat, with various datasets. In addition to testing black-box attacks, the effect on

1

2 A. M. Staff: Cross-data Transference of Adversarial Attacks

attack performance when the surrogate and target models are trained on datasets
with intersections is investigated. To test this, some models are trained on datasets
that share images with each other, while other models are trained on datasets that
are entirely disjoint. The adversarial samples are generated using a source model
trained to detect ships on one dataset, then the target model, trained to detect
ships on a separate dataset, attempts to make predictions on the sample. Compar-
ing the attack performance when the target detector is used directly to generate
adversarial samples, with the attack performance when a surrogate model is used
to generate the samples, demonstrates the risk of transfer attacks.

Through our investigation of black-box cross-data transfer attacks, this thesis
contributes: performance results on black-box transfer attacks, as well as modifica-
tions to the Targeted Objectness Gradient attacks, which enable attacking Darknet
models.

Through our investigation of the effect of dataset intersection on the transfer
attacks, this thesis contributes: results pertaining to adversarial attacks on models
with dataset intersections compared to models without, and several high perform-
ance single-class object detection models. This is useful to those who are deploying
real-time object detectors, as they need to be aware of the risks involved.

The results of this thesis show how exposed a model is to a black-box transfer
attack, as well as how the risk changes based on the intersection between the
surrogate, and the target model. Perturbations generated with an epsilon of 8,
under the distance metric L∞ show poor transference between the models, the
risk of such a black-box attack is quite low. However, an epsilon in the 20-30
range, results in better transference, and more effective attacks. Models trained
on intersecting datasets show transference which is proportional with the size of
the intersection. Performing a cross-resolution attack revealed that an attacker
who does not know the resolution of the victim detector should choose a lower
resolution like 416x416 to raise the probability of the attack being upsampled
rather than downsampled.

The thesis begins with relevant theoretical concepts in chapter 2 and related
work is presented in chapter 3. Research methodology is presented in chapter 4
and implementation is detailed in chapter 5. The results to the research questions
are presented in chapter 6. Decisions made, as well as weaknesses, are discussed in
chapter 7. Finally, chapter 8 concludes the thesis, and presents ideas for followup
research.

Chapter 2

Background

2.1 Convolutional Neural Networks

Convolutional Neural Networks, sometimes refereed to as ConvNets, in this thesis
CNNs, are the deep learning network architecture of choice for analysing images.
CNNs underpin the the object detector discussed in this thesis, as well as most
modern object detectors and classifiers.

Convolutional Neural Network (CNN) are well suited to any task involving
images, and have been applied to classification, segmentation, and object detec-
tion. CNNs gained prominence after an impressive result in the ImageNet 2012
competition. The success in the competition made CNNs with ReLU activation
functions and dropout layers standard for computer vision tasks. Though these
large models would once be slow to train and make predictions with, advances in
GPUs and parallelization of algorithms have led to reasonable training time, and
real-time predictions [2].

Convolutional Neural Networks exploit the nature of images to produce fea-
ture maps that are refined to predictions [6].

2.2 Object Detectors

Object detection is a computer vision task which takes an image as input and gives
bounding boxes with class labels as output. The following section is adapted
from my specialisation project [7].

Object detectors are closely related to classifiers, with early object detectors
simply being classifiers applied to an image multiple times using a sliding win-
dow at different scales. Another strategy is to rely on two separate neural net-
works. One network is tasked with feature execration which locates objects. The
other network classifies the located objects. These object detectors have high pre-
cision, but are generally not fast enough for real-time tasks. To make real-time
predictions, one-stage object detectors were developed. One-stage detectors pre-
dict bounding boxes and object classes at the same time. Two real-time object

3

4 A. M. Staff: Cross-data Transference of Adversarial Attacks

detectors: Single Shot MultiBox Detector (SSD) [8], and You Only Look Once
(YOLO) [9] share several strategies. At a fundamental level they are both feed-
forward convolutional networks. The convolutional nature of the network allows
multiple objects to be detected in parallel.

Figure 2.1: Comparison between the initial YOLO and SSD architectures1

2.2.1 Backbone Network

Both YOLO and SSD rely on a backbone network as part of their architecture. A
backbone network is a convolutional network pre-trained as a classifier, which is
used to find possible objects in the image. After the backbone architecture has
been trained, the last few layers are removed. This makes the network output low
resolution representations of the input image. These images, called feature maps,
describe the characteristics of the input image. The low resolution of the feature
maps can be viewed as a grid with activations where objects are present, if there
are several objects in the image there should be multiple activations in the grid.
See 2.2.

To make predictions having an indication that an object might be present is not
sufficient. Object detectors need to figure out the probability a grid cell contains
an object pob j , they need to figure out which class the object belongs too, and
they need to predict the bounding box coordinates (x, y, h ,w). This amounts to
each bounding box requiring five output channels in addition to object class. Each
output channels is associated with a convolutional filter. To deal with multiple
objects in a grid cell, each grid cell is able predict multiple bounding boxes.

SSD does not predict pob j and instead seeks to directly predict whether a class

1Single Shot MultiBox Detector: https://arxiv.org/abs/1512.02325

https://arxiv.org/abs/1512.02325

Chapter 2: Background 5

is present in a bounding box. To recognise when there are no objects present SSD
uses a "background" class.

Figure 2.2: The SSD feature map and default boxes2

2.2.2 Non-max Suppression

Filtering predictions on pob j lets the network discard low confidence predictions,
but the network might produce several high confidence predictions for the same
object. A technique called Non Maximum Suppression (NMS) is used to deal with
this. NMS discards redundant predictions by selecting the highest confidence pre-
diction for each class, then discarding any prediction of the same class which
overlaps the high confidence prediction beyond a threshold.

Figure 2.3: A demonstration of a non-max suppression algorithm3

2Single Shot MultiBox Detector: https://arxiv.org/abs/1512.02325
3An overview of object detection: one-stage methods: jeremyjordan.me

https://arxiv.org/abs/1512.02325
https://www.jeremyjordan.me/object-detection-one-stage/

6 A. M. Staff: Cross-data Transference of Adversarial Attacks

2.2.3 Anchor Boxes

At first YOLO would directly predict the four coordinates of the bounding boxes
[10]. Other object detectors e.g: Faster R-CNN and SSD used hand picked priors,
also called anchor boxes. This technique predicts an offset from the established
boxes. Introducing anchor boxes simplifies the task the object detector needs to
accomplish. By simplifying the problem, the network is faster and easier to train.
SSD uses a set of default boxes and aspect ratios. YOLO however uses k-means
clustering on the bounding boxes of the training set to discover the best anchor
boxes. Since using Euclidean distance would cause larger boxes to generate more
error, YOLO uses a custom distance metric. d(box , cent roid) refers to the differ-
ence between the centroid (found by k-mean clustering), and the bounding box.

d(box , cent roid) = 1− IOU(box , cent roid)

Intersection Over Mean (IOU) also called Jaccard index is a measure of how
similar two sets are, and is defined as:

J(A, B) = |A∩B|
|A∪B|

2.3 YOLOv3

YOLOv3 is a one-stage object detector built to run on the Darknet framework.
Darknet is written in c and CUDA (NVIDIA’s parallel computing API) which allows
fast execution and GPU acceleration. Due to YOLO’s impressive performance it has
been implemented in several neural network frameworks. Among them: OpenCV,
TensorFlow, and PyTorch. YOLOv3 uses the Darknet-53 backbone network, see:
figure 2.4.

The YOLO algorithm received two iterative updates from its creators. Where
YOLO predicted bounding boxes directly using fully connected layers, YOLO9000
added anchor boxes and predicted an offset from these instead. YOLOv3 brought
two central improvements. The backbone network was improved and outputs at
multiple scales was added [9].

A challenge to accurate object detection is detecting objects at different scales
in the image. If too small an area is considered large objects wont be detected, but
if only large areas are considered, recall of small objects drops significantly. SSD
solves this by outputting predictions intermittently as the network downsamples
the feature map. See 2.1. YOLO uses a technique called a feature pyramid. After
the first prediction at the smallest scale, the feature map is upsampled and con-
catenated with a feature map from earlier in the network. Then this process is
repeated for the final scale. This allows the larger scale predictions to benefit from
fine grained information discovered in the earlier feature maps. This significantly
improves performance on small or distant objects. However the output from the

Chapter 2: Background 7

Figure 2.4: Darknet-53 is the backbone network of YOLOv34

smallest scale is less robust and therefore easier to fool with adversarial examples.
This is discussed by Zhao et al. [11]

2.4 Adversarial Examples

Adversarial examples, as defined by Szegedy et al. [3] are test images that have an
imperceptible non-random perturbation applied to them. This perturbation causes
the network to arbitrarily change its classification. The perturbation is generated
by optimising the input to maximise the prediction error. The most surprising
discovery was that these adversarial examples will often cause misclassifications
on networks trained on different examples or have different architectures [3].
Maximising prediction error is not the only way to find adversarial examples. In
fact, different adversarial attacks often develop their own loss function to find
adversarial examples. For object detectors the loss function might include shifting
bounding boxes or suppressing detections altogether.

Goodfellow et al. [12] argues that linearity is the reason these models are
vulnerable to adversarial examples. Due to design effort to make networks operate
linearly for as much time as possible, they are vulnerable to these attacks. This
linearity is an intentional optimisation to make the model faster and easier to
train. It grants stability to the model that lets it converge faster. But to be robust

4Redmon and Farhadi [9]

8 A. M. Staff: Cross-data Transference of Adversarial Attacks

Figure 2.5: YOLO mean average precision and inference time compared to other
object detectors5

against these attacks it needs non linear effects.

2.4.1 Fast Gradient Sign Method

Applying this linear view of the vulnerability led to the development of new ways
of generating adversarial examples. The fast gradient sign method (FGSM) allows
adversarial examples to be generated quickly. Fast enough that adversarial train-
ing (augmenting the training set with adversarial examples) becomes practical.
See a visual representation here: figure 2.6. Let η be the adversarial perturba-
tion with θ being the parameters of model, x is the input and y the targets of
x . With J(θ , x , y) representing the cost used in training, equation 2.4.1 gives an
adversarial perturbation constrained on ε.

η= εsi gn(∇x J(θ , x , y))

Using FGSM Goodfellow et al. [12] were able to cause an error rate of 99.9%
on a shallow softmax classifier with ε = .25. Softmax is defined here: equation
2.4.3. The fact that simple and cheap algorithms have such a strong effect is fur-
ther evidence of the linearity interpretation of adversarial examples.

2.4.2 Generalisation of Adversarial Examples

The reason adversarial examples generated for one model often causes a different
model to misclassify is also explored [12]. The effects that needed explaining
were:

5Redmon and Farhadi [9]

Chapter 2: Background 9

Figure 2.6: This figure demonstrates how an FGSM attack operates.6

• Models trained on disjoint training sets were vulnerable to the same ad-
versarial examples [12].

• Models with different architectures were vulnerable to the same adversarial
examples [12].

• Multiple classifiers would assigning the same class to adversarial examples
[12].

To the linear view, adversarial examples occur in broad subspaces. Finding
them only requires η having a positive dot product with the gradient of the cost
function. This property is visualised in figure 2.7. Due to this, adversarial examples
are abundant and different classifiers have a high probability of misclassifying the
same adversarial example.

Goodfellow et al. [12] further argues that, with different classifiers assigning
the same, wrong, class to adversarial examples, there is an indication that Convo-
lutional Neural Network (CNN) classification models resemble a linear classifier
trained on the same set. This is a consequence of the way they are trained. If one
were to train a linear reference classifier on a different subset of the training data,
it would learn similar weights. This gives classifiers the ability to generalise, but
also makes them predict the same label for the adversarial examples.

2.4.3 Beyond FGSM

As the field responded to Goodfellow et al. [12], new attacks and defenses were
developed. The DeepFool [14] attack was developed as an efficient way to bench-
mark model robustness. It also outperformed contemporary attacks in that it fooled
networks with a smaller perturbation. Papernot et al. [15] developed defensive
distillation to make networks more adversarially robust. They saw a great im-
provement in resisting adversarial examples, but it didn’t take long before attacks
were developed to defeat defensive distillation. Carlini and Wagner [4] developed
new strong attacks that were able to fool models that had been defensively dis-

6Goodfellow et al. [12]

10 A. M. Staff: Cross-data Transference of Adversarial Attacks

Figure 2.7: This plot demonstrates that a sufficiently large ε generates an ad-
versarial example, given one moves in the correct direction. In the plot on the
left we see the arguments to the softmax layer of a classifier naively trained on
MNIST [13]. The correct classification is four, which only occurs on a thin mani-
fold. The rest of the space is adversarial examples and rubbish class examples (an
input a human would say does not belong to any class). The figure indicates that
the arguments are piecewise linear with ε. On the right we see the input to the
model.7

tilled. This demonstrated that fully securing neural networks from adversarial ex-
amples would be hard.

Defensive distillation works by splitting the training into two steps with two
identical networks. When training the first network the softmax function is mod-
ified to include a constant T, called a temperature constant.

Standard softmax function:

softmax(x)i =
ex i

Σ je
x j

Modified with temperature constant:

softmax(x , T)i =
ex i/T

Σ je
x j/T

Once the network is trained, it is used to generate soft training labels. In this
case, that means that instead of the labels being the groundtruth, they are instead
the output vector. The vector gives the predicted probability of each class. Then
the distilled model is trained on the soft labels. This will train the second network
to make predictions like the first. The point of this is to prevent the network from
overfitting to the training data. One of the theories put forth by Szegedy et al.
[3] was that adversarial examples exist because the model overfit to the training
data and has therefore developed blind spots. This is not the explanation favoured

7Goodfellow et al. [12]

Chapter 2: Background 11

by Goodfellow et al. [12]. When Carlini and Wagner [4] developed attacks that
could defeat defensive distillation, they suggest this is additional evidence for the
linearity view of adversarial attacks.

To compare different adversarial example generation methods, an important
attribute is how large the perturbation needs to be to fool the model. Distance
metrics are used to define how large a perturbation is.

• L0 measures the number of points that are changed between x and x ′. For
an image, this means how many pixels have been altered.

• L2 is the Euclidean distance between x and x ′. Small changes to many pixels
will keep L2 small.

• L∞ measures the maximum change to any point. This is the distance met-
ric used by Goodfellow et al. [12] in FGSM. When configuring an FGSM at-
tacker one selects an ε which represents the largest change allowed. Which
gives: ||x − x

′
||∞ = max(|x1 − x

′

1|, ..., |xn − x
′

n|)

To develop an algorithm that constructs adversarial examples Carlini and Wag-
ner [4] first defined the problem as:

minimise D(x , x +δ)

such that C(x +δ) = t

x +δ ∈ [0, 1]n

x is fixed. So, to minimise D(x , x+δ), one must find a δ. D is distance metric,
either L0, L2, or L∞. Because C(x + δ) = t is highly non-linear, the problem is
reformulated to allow for the use of existing optimisation algorithms. Then the
best algorithm is determined empirically.

2.4.4 TOG

The Targeted Objectness Gradient (TOG) attacks, developed by Chow et al. [1],
are a class of adversarial attacks developed specifically to target object detectors.
The attacks use an iterative gradient method to force mistakes in object detectors.
With detection expressed as O∗(x) and attack loss as L∗, TOG can be expressed
as :

x
′

t+1 =
∏

x ,ε

[x
′

t −αTOGΓ (∇x ′t
L∗(x

′

t ,O
∗(x);θ))] (2.1)

x
′

t is the adversarial sample at the t-th iteration, Γ is the sign function, and
αTOG is the attack learning rate. Further details can be found in their paper [1].
Using this TOG can find adversarial perturbations targeting different functions of
object detectors. The Untargeted attack is successful when it causes the detector

12 A. M. Staff: Cross-data Transference of Adversarial Attacks

to misdetect. Whether it fails to detect an object, misclassifies an object, or fab-
ricates an object. The Object-vanishing attack seeks to suppress detections, and is
successful when the detector finds no objects in the sample. The Object-fabrication
makes the detector hallucinate multiple objects, making the prediction useless. Fi-
nally there is the Targeted object-mislabeling attack. This attack causes the detector
to mislabel detected objects with the chosen target class, while maintaining the
correct bounding boxes [1][16]. The targeted object-mislabeling attack is less rel-
evant to this thesis, as most of the models being studied are single class models.

2.4.5 Transfer Attacks

Transfer attacks are adversarial attacks with different source and target models.
Different models, in this context, have different model architectures or different
training sets. Even generating the adversarial sample at a different resolution than
the detection operates at can be seen as a transfer attack. Transfer attacks rely on
the fact that even though two models have been trained on different datasets, if
they are able to detect the same objects it can be assumed that the two models
share commonalities. These can be exploited through adversarial attacks when
the attacker lacks access to the target model. Normally, to generate adversarial
examples one needs to be able to give the model input and read the output. If one
lacks access to the model however, one technique is to train a stand-in model (the
source model) to make similar predictions to the target model. Then adversarial
samples generated using the source model will also have an effect on the target
model [17][1].

2.5 Performance Metrics

There are several ways to measure the performance of a neural network. To de-
scribe the accuracy of a predictive model there are some basic metrics: recall,
precision, and F1 score.

Symbol Explanation
t p True positive
f p False positive
tn True negative
t p True negative
t pr Recall
ppv Precision
Rn Recall at nth threshold
Pn Precision at nth threshold
AP Average precision

MAP Mean average precision
Q Number of queries

Chapter 2: Background 13

Figure 2.8: An illustration of precision and recall8

Precision= t p
tp+ f p

Recal l = t p
tp+ f n

F1 = 2 ∗ ppv∗t pr
ppv+t pr =

2t p
2t p+ f p+ f n

These metrics are useful to understand the performance, but to get a better
view, one can plot a precision-recall curve. This plot shows the tradeoff between
precision and recall at different confidence thresholds. Calculating the area under
the precision-recall curve gives average precision.

AP =
∑

n(Rn − Rn−1)pn

Since average precision is generated for each query one can take the mean to
get a single number that represents the models performance on the whole dataset.

8Precision and recall: https://en.wikipedia.org/wiki/Precision_and_recall

https://en.wikipedia.org/wiki/Precision_and_recall

14 A. M. Staff: Cross-data Transference of Adversarial Attacks

MAP =
∑Q

q=1 AP(q)
Q

One of the reasons mAP became an important metric for object detection is
that object detection challenges like PASCAL VOC [18] and COCO [19] rank object
detectors by mAP. This makes it easy for researchers to compare their models with
the state of the art if they know the mAP it achieves.

Chapter 3

Related Work

3.1 Towards Adversarially Robust Object Detection

Zhang and Wang [20] present a multi-task learning perspective for adversarial
training. They use several experiments to establish benchmarks for different ar-
chitectures and task losses. Key findings are:

• Classification and localisation task domains are largely distinct with some
overlapping.

• The gradients of the two tasks are not fully aligned, which means there is
possible conflict between the gradients.

• Comparing models with different task domains, the model with the domain
which is the union of the classification and localisation domain showed the
best overall performance.

• These results were verified on several different architectures and backbones.

3.2 Contextual Adversarial Attacks For Object Detection

Bounding boxes that include background information are a specific target of this
attack. The contextual adversarial perturbation [21] attack is a fully white-box
attack which uses backpropagation to maximise classification loss, regression loss
and a novel context loss. As detecting ships in the ocean relies on a lot of con-
textual information, the sea in the background, this attack would be particularly
effective against an autonomous maritime vessel.

3.3 Relevance Attack on Detectors

Chen et al. [22] develop a highly transferable attack together with a dataset of
adversarial samples based an COCO. These adversarial samples are generated
to be transferable which makes them suitable to benchmark model robustness.
The developed attack, called Relevance Attack on Detectors, is tested on cross-
architecture transferability by using a You Only Look Once (YOLO) model as a

15

16 A. M. Staff: Cross-data Transference of Adversarial Attacks

surrogate model to attack other object detectors. However, these models are all
trained on the COCO dataset. In this thesis the goal is to study transferability
between models trained on different datasets. When studying cross-dataset trans-
ferability, the attacker can not train their surrogate detector on the same dataset
as the target detector.

3.4 Cross-task Universal Perturbation

Zhang et al. [5] develop an attack that generates universal perturbations which
transfers across task, model, and dataset. The perturbations are generated using
U-Net [23] and ResNet [24], and are tested several models, including YOLO, to
show transferability. The goal of this attack is to create image independent per-
turbations, that allow for rapidly producing a large adversarial set. In the case that
there is a size mismatch between the perturbation and the target image, Zhang
et al. [5] present two methods to correct the size discrepancy. One method is to
simply resize the perturbation to fit, while the other method overlays multiple
perturbations then clips the perturbation to fit the target image.

3.5 Multiple Object Tracking Attack

Jia et al. [25] argue that the Multi Object Tracking (MOT) system often reading the
output of an object detector in an autonomous vehicle reduces the effectiveness
of standard object detection adversarial attacks. Motivated by this finding they
develop a novel attack that defeats MOT by hijacking it. They are able to shift
tracked objects into the path of an autonomous vehicle with nearly 100% success
rate by changing only 3 frames.

The goal of the attack is to suppress the initial detection of an object while
fabricating a detection of the same object shifted to one side. This causes the
object tracker to apply a false velocity to the object which can move an obstacle
in to or out of the path of an autonomous vehicle.

The attack is more effective if the difference between the predicted velocity of
the target and the induced velocity from the attack is great. The attack generates
an adversarial patch and applies this to the target. The location of the patch is
important to how the attack functions. In future work, Jia et al. [25] speculate
that the adversarial patches could be printed and used in a physical attack, but
this was not tested.

3.6 Attacks Analysis

This section investigates various adversarial attacks. There are several attributes
which a relevant attack should posses. The attack should target object detect-
ors, though it is feasible to modify a classifier attack to attack an object detector,

Chapter 3: Related Work 17

these attacks are never as effective as attacks designed to attack object detect-
ors [20]. As our goal is to measure attack transference, the attack should apply
an adversarial perturbation to the entire image. Adversarial patches, and other
localised attacks, are often designed to be deployed physically, which would be
a confounding factor for this thesis. Furthermore, the attack must not target the
Region Proposal Network (RPN) that some detector use [26]. Since YOLO is a
regression based detector and does not make use of an Region Proposal Network
(RPN), these attacks will not be particularly effective. Finally, attacks that tar-
get real-time object detectors or object detectors deployed in autonomous vehicle
directly, are particularly relevant. Any attack that possesses all or most, of these
attributes will likely have a YOLO implementation, which makes setting up an
attack pipeline much simpler.

In table 3.1 we listed adversarial attacks on object detectors, and detailed their
suitability in regards to studying transference attacks on YOLO.

Attack Real-time Regression-
based

Autonomous
Vehicles

Summary

Pick-Object-Attack: The
Pick-Object-Attack [27]
constrains the perturbation
to the targeted objects
bounding boxes. The goal
is to generate smaller
perturbations, while
maintaining attack
effectiveness. Nezami et al.
[27] argue the smaller
perturbations are harder to
detect by downstream
systems. E.g. image
captioning.

3 7 7

The
Pick-Object-Attack is
designed to attack
Faster Regions with
CNN Features
(Faster R-CNN)
trained on the
Visual Genome
dataset. Though
Faster R-CNN
models can have
real-time
performance, this
attack is not
targeting
autonomous
vehicles.
Additionally, fooling
a downstream
image captioning
system is not
relevant to this
thesis.

18 A. M. Staff: Cross-data Transference of Adversarial Attacks

Contextual Camouflage
Attack: The Contextual
Camouflage Attack seeks to
fool object detectors by
applying camouflage
patterns to vehicle. The
patterns are applied to a
vehicle in a simulated
photo realistic
environment, and if the
attack is successful, the
object detector fails to
detect the other vehicles in
the scene.

3 3 3

The attack checks a
lot of boxes, but is
ultimately not
relevant to this
thesis. The attack
applies camouflage
designs to vehicles
in a simulate photo
realistic
environment. This
would add a lot of
variables if one
were to gather data
model transference.

Contextual Adversarial
Attacks For Object
Detection: Zhang et al.
[21] develop a novel attack
called Contextual
Adversarial Perturbation
(CAP). This attack targets
the context of an object to
degrade recall. The attack
is designed for
proposal-based detectors
e.g. Faster R-CNN [26]

3 7 7

Relevant to this
thesis in so far as
our object detector
needs to rely on
contextual
information for
detections of distant
watercraft.
However, the attack
does not target
regression based
detectors, Making it
unsuitable to this
thesis.

Membership inference
attack: Park and Kang [28]
Develop a membership
inference attack targeting
object detectors. They train
an attack model that can
predict whether an image
is part of the training data

3 3 7

Although, inferring
which images are in
the training set
could be relevant to
training a surrogate
model on a dataset
with a large
intersection with
the target model
dataset, this attack
can not be used to
study attack
transference.

Chapter 3: Related Work 19

Sparse Adversarial
Attack: Bao [29] Develop
the Sparse Adversarial
Attack which targets object
detectors with adversarial
patches. The attack is an
evasion attack, which
means it seeks to prevent
the object detector from
detecting anything. The
attack is constrained by the
l0 distance metric, so it
attempts to alter as few
pixels as possible (less than
2% of the image), hence its
sparse nature. They define
separate loss functions for
different models due to
different models treating
the background differently.

3 3 7

As it is a patch
attack, it adds extra
variable to the
analysis of the
attack. Additionally,
as it has different
loss functions for
different models,
the results would be
less generalizable.

Adversarial Attack
against Multiple Object
Tracking: Jia et al. [25]
Develop an attack which is
designed to defeat multi
object tracking
downstream from an
object detector. They find
that adversarial attacks
targeting object detection
need a success rate of at
least 98% to break the
visual perception pipeline.

3 3 3

Though the attack is
tested on YOLO, its
real target is a
downstream
multiple object
tracker. This makes
it unsuitable for this
thesis.

20 A. M. Staff: Cross-data Transference of Adversarial Attacks

Cross-task Universal
Perturbation: Zhang et al.
[5] develop a black-box
universal perturbation
attack against object
detectors. The
perturbations are trained
for each class and
superimposed on each
other to cause a classifier
to misclassify all classes.

3 3 3

Though, this attack
is designed to have
a high transference,
Zhang et al. [5]
operate with a
different definition
of black-box to this
thesis. When
generating
adversarial samples
they allow arbitrary
input and reading
the output in the
black-box setting. In
this thesis
adversarial samples
must be generated
with no access to
the model, in the
black-box setting.

Discrete Cosine Transfer
Attack: Kuang et al. [30]
develop a boundary attack
based on Discrete Cosine
Transfer. It is a black-box
attack that targets object
detectors, specifically
YOLOv3 and AWS
Rekognition. The attack
works on individual
semantic objects rather
than the whole image.

3 3 7

Like the Cross-task
Universal
perturbation attack,
this attack relies on
arbitrary input and
reading the output
of the model under
attack. Furthermore,
it is designed
explicitly to cause
the model to
misclassify. It does
not attempt to alter
bounding boxes.
Most of the model
used by this thesis
are single class
models, making this
attack ineffective.

Chapter 3: Related Work 21

Category-wise Attack:
Liao et al. [31] develop an
attack that targets object
detectors that don’t rely on
anchor boxes e.g.
DenseBox, CornerNet and
CenterNet. This is in
contrast to YOLO, Single
Shot MultiBox Detector
(SSD) and Faster R-CNN
which all use anchor boxes
to localise and predict
objects.

7 3 7

Attack targets
anchor-free models,
as YOLO uses
anchors, this attack
is unsuitable.

Physical Adversarial
Patch for Object
Detection: Lee and Kolter
[32] develop an adversarial
patch targeting object
detectors. The patch does
not need to overlap with
objects to suppress their
detection. This results in
prediction where the patch
is the only object detected

3 3 7

As a patch attack
designed for
physical
deployment, it is
unsuitable for this
thesis.

Projected Gradient
Descent on Object
Detectors: Wang et al.
[33] applies Projected
gradient decent [34] to
Region Proposal Network
based object detectors e.g.
Faster R-CNN [26]. Since
the adversarial examples
are generated on the total
loss of Faster R-CNN, the
detector will both
misclassify as well as
mis-localise.

3 7 7

As the attack is
targeting RPN based
object detector, it is
unsuitable to this
thesis.

22 A. M. Staff: Cross-data Transference of Adversarial Attacks

Adversarial Patch for
Object Suppression:
Wang et al. [35] develop
an adversarial patch attack
that suppresses detection
when it overlaps an object.
They show that the patch
can successfully attack
real-time object detectors
through a physical patch.

3 3 7

As it is a physical
patch attack it is
unsuitable for this
thesis.

Half-Neighbor Masked
Projected Gradient
Descent: Zhang et al. [36]
develop a white-box,
PGD-based, attack against
object detectors. Tested on
YOLO and Faster R-CNN it
finds a mask that lets it
apply the adversarial
perturbation to the pixels
that matter most to the
final detection. The attack
is constrained by the l0
distance metric, which
results in an adversarial
patch covering key areas of
the image.

3 3 7

The attack alters
few pixels by
localizing the
perturbation on the
key areas of the
image. Otherwise, a
potentially suitable
attack.

Chapter 3: Related Work 23

Targeted Objectness
Gradient Attacks: Chow et
al. [1] develop a
framework to attack and
benchmark object detectors
as well as a novel family of
attacks. They use an
iterative gradient approach
to find the adversarial
perturbation. The attacks
work in different modes:
untargeted, object
vanishing, object
fabrication, and targeted
object-mislabeling.

3 3 7

With public code
and several object
detector specific
attacks
implemented, this
attack is suitable.
The attack applies
perturbations to the
entire image using
the L∞ distance
metric. Additionally,
Chow et al. [1] test
the attack in
cross-resolution and
cross-model
scenarios, which
gives easy
comparison points
for further
transference attacks.

Lane-Keeping Assistance
System Attack (LKAS):
Sato et al. [37] develop a
"dirty road" patch to attack
LKAS.

7 7 3

The attack targets a
lane-keeping
assistance system,
not an object
detector.

Table 3.1: Results from a literature review looking for an appropriate attack to
study transference.

3.6.1 More details on TOG Attacks

The TOG [1] attacks allow for a number of different attacks. There is an un-
targeted attack whose success metric is any detection that is not correct. There
is an object vanishing attacks which suppresses an object from being detected.
The object fabrication attack adds false objects to the prediction. Targeted object-
mislabeling causes the detector to predict the class of the attackers choice but
keeps the bounding boxes.

The principal advantages of the Targeted Objectness Gradient (TOG), are a
suite of different attacks all developed for object detectors. TOG attacks also work
on both one-shot, regression-based detectors, as well as two staged, Region Pro-
posal Network (RPN)-based ones. This makes the attacks potentially very rep-
resentative. The attacks take inspiration from the universal perturbations which

24 A. M. Staff: Cross-data Transference of Adversarial Attacks

have been applied to classifiers in the past [38]. This technique is similar to what
Zhang et al. [5] did to make their attack more transferable. Chow et al. [1] explore
black-box attacks through attack transferability. They look at cross-model trans-
ferability as well as cross-resolution transferability. Testing at different resolutions
is done due to YOLO and Faster R-CNN allowing variable input resolutions. The
test uncovers whether the adversarial example is robust enough to function after
being resized and interpolated. They found the transferred attack was signific-
antly weaker, but still reduced the mAP of the model by about half. Using SSD300
[8] as the source model and targeting YOLOv3, they reduced mAP from 83.43 to
56.87.

Chapter 4

Method

This chapter presents the research motivation, design and implementation.

4.1 Motivation

As classification, segmentation, and object detection has become increasingly ad-
vanced, they have seen deployment in safety critical contexts. Classification, and
segmentation are deployed as part of a diagnosis tools. Object detectors are de-
ployed as part of the vision system of autonomous vehicles. As reliance on these
systems increases, it becomes important to determine the attack surface of the
neural network.

When Szegedy et al. [3] discovered that neural networks have fundamental
weaknesses, interest in adversarial attacks on classifiers grew rapidly. Attempts to
make neural networks more robust to these attacks were found to be computa-
tionally expensive, and insufficient to protect against modern attacks [4]. Though
attacks targeting classifiers can be modified to work on object detectors, as they
essentially attack the classification portion of the detector, but they are not an
ideal way to attack object detectors. Object detectors are different to classifiers
in that, they are multi-task learners performing a more complex task than classi-
fiers. Recently attacks have been developed that target object detectors directly,
and therefore attack them much more successfully [1][39][17].

Chow et al. [1] and Wei et al. [17] investigate cross-architecture attacks, where
the source and target architectures are different. The attack scenario this thesis
explores however, is a black-box attack, where the attacker is not able to use the
same dataset as the victim. This is a significant gap, as it is unlikely an attacker
would have access to the dataset used to train a commercial autonomous vehicle.
My study aims to find the level of exposure one can expect if an attacker tries to
attack a model they have no direct access to, and do not have know important
model details.

25

26 A. M. Staff: Cross-data Transference of Adversarial Attacks

4.2 Research Questions

• RQ1. Is it possible to transfer black-box attacks across models, in particular,
models trained on different data?

• RQ2. If the answer to RQ1 is yes, will datasets sharing images affect the
transference of the attack?

4.3 Research Methodology

This section will explain how answers to the research questions were sought, how
data was gathered and analysed, as well as describing the research paradigm of
the thesis.

4.3.1 Research Strategy

To answer RQ1, a set of high performance object detection models are required.
These are trained using YOLO - Darknet as this implementation produces real-
time object detectors with leading performance [40]. One model is trained purely
on private data to enable black-box attacks. Other models are trained on various
custom datasets based on publicly available data. Then the performance of ad-
versarial attacks using these models is measured in mAP. Adversarial samples are
generated with different combinations of source and target models. The measured
performance of these attacks will establish whether one can effectively attack the
private model using public data.

To answer RQ2, the performance metrics of attacks between models with in-
tersecting datasets, are compared to the metrics of models with disjoint datasets.
In particular, we investigate whether there is a correlation between the relative
size of the dataset intersection, and the performance of the transfer attack.

4.3.2 Data Analysis

We analyse data mainly through performance metrics from the object detection
models. The primary performance metric of this thesis, mAP, is widely used due
to it allowing researchers to express model quality with a single value. This al-
lows the field to easily compare: architectures, datasets, as well as any techniques
used to improve model performance. Adoption of mAP was spurred by Pascal VOC
using it to rank object detectors. Following Pascal VOC, COCO also uses mAP as
the official performance metric, though in COCO’s case the metric is tweaked to
reward precisely placed bounding boxes more than mAP at .5 Intersection Over
Mean (IOU) does. In the context of object detection challenges like Pascal VOC
and COCO, the challenge includes a benchmark dataset as mAP is highly depend-
ent on the dataset. Unfortunately, the models produced for this thesis can not be
benchmarked in that way as they are single class and two class detectors, not
general object detectors.

Chapter 4: Method 27

In this thesis mAP is mostly used for internal comparisons. The performance
on clean samples is compared to the performance on adversarial samples. Through
internal comparisons, the effectiveness of the attacks can be established.

As performance is highly dependant on the dataset, each model produces mul-
tiple mAP scores. In addition to performance on clean samples, mAP is calculated
for adversarial sets. Here, performance is dependent on both the initial clean
sample performance, as well as the source model of the adversarial samples.

RQ1 is based on adversarial sample performance of the models compared to
the clean sample performance. The primary case is the performance of the private
model on samples generated by the models trained on the Singapore Maritime
Dataset [41], and the COCO [19] dataset. RQ1 relies on quantitative analysis of
model performance. First, models are trained, and their performance on clean
samples is established. At this step, the goal is to train a model on publicly avail-
able data with similar performance to the model trained on private data. Once the
performance of the models has been established on a common benchmark dataset,
we generate adversarial sets using all the models and the same benchmark data-
set. The benchmark dataset will be composed of private data as this data is closest
to the intended domain of the private model. Measuring the performance of the
models on the adversarial sets, will make it possible to compare performance on
clean samples, to white-box attacks, and black-box attacks. Attack performance
is inferred from the drop in mAP, between clean, and adversarial sets. The per-
formance of transfer attacks, is inferred from the difference in mAP drop between
white-box and black-box attacks.

RQ2 is based on attack performance between the various public models. As
these models are trained on various compositions of public datasets, comparisons
can be drawn between the intersection of the datasets and the performance of
the adversarial samples. The intersection between the datasets is measured as
the number of images which exist in both datasets, divided by the size of the
dataset. This is similar to Intersection Over Mean (IOU), but importantly, IOU is a
symmetric measure, i.e. IOU(A, B) = IOU(B, A), while the measure we use reflects
the difference between attacking a model trained on a subset of the model’s own
training set, and attacking a model trained on a superset of the model’s training
set.

4.3.3 Research Paradigm

The goal of this thesis is to uncover features of object detectors, while meeting
quality criteria of objectivity, reliability, internal validity, and external validity. A
fundamental assumption of this thesis is that comparing the performance of object
detectors on clean and adversarial samples gives insight to the inner workings of
the neural network. Additionally it is assumed that, these insights are based on
objective observations, which can be repeated by third parties. The thesis does not
explore social processes or seek to understand the social context of these systems.
Instead quantitative data analysis is conducted. Therefor, this thesis is a positivist

28 A. M. Staff: Cross-data Transference of Adversarial Attacks

endeavor.

Chapter 5

Implementation

This chapter details how experiments were implemented. Including, the training
of models, measuring performance, generating adversarial samples, and attack
the models.

5.1 Attack Scenario

The attack scenario considered in this thesis, is modeled to establish a worst-case
scenario for an autonomous ferry under attack, where the attacker does not have
access to the target model, or key information about the model. The attacker is
able to apply adversarial noise directly to the input, but is not able to generate ad-
versarial samples using the target model. The attacker uses the same architecture
as the target model. This effectively establishes a worst-case scenario as no cross-
model attack could be stronger than the attack with the same source and target
architecture. Additionally, there are not many different real-time object detection
architectures suitable for autonomous vehicles. YOLO is the best performing ar-
chitecture on the Common Objects in Context (COCO) dataset, which makes it
reasonable for an attacker to guess that a YOLO model might be used.

A common way to train a model to act as a surrogate for a transfer attack,
is to train the model on the labels output from the target model instead of on
the groundtruth. Though, this produces a surrogate model that has similar per-
formance to the target model, this technique did not fit the attack strategy. If an
attacker was able to read the model output form arbitrary inputs they could simply
train the attack to target the model directly.

5.2 RQ1

5.2.1 Object Detection

To answer RQ1, an object detector needed to be selected. The object detector
would serve as the target model, as well as the surrogate model. Using the same

29

30 A. M. Staff: Cross-data Transference of Adversarial Attacks

architecture for the attacker and the target would isolate cross-dataset perform-
ance, and give a worst-case scenario. The primary reason for choosing the YOLO
detector came from DNV. DNV’s Revolt project, which this thesis is produced in as-
sociation with, is investigating the challenges of developing an autonomous ferry.
As part of this work, a sensor fusion suite was produced which includes a YOLO
model [42]. Beyond this, YOLO is interesting because it is the highest performing
real-time object detector on the COCO dataset [40]. YOLO’s high performance
at real-time speeds, together with implementations in several different neural
network frameworks, makes it well suited to research on object detectors, and
autonomous vehicles.

However, the primary implementation of YOLO is YOLO - Darknet which is
written in c and CUDA. This makes it harder to do research with, as Darknet does
not have the community support large neural network frameworks like Tensor-
FLow and PyTorch have. Therefore, a large portion of research on YOLO is done
on implementations in other frameworks, making models trained on Darknet
harder to use in experiments. This issue was solved by converting the Darknet
trained weights to weights a TensorFLow implementation could use. However,
the Darknet and TensorFLow models do not make identical predictions, which
causes the adversarial sample produced with the TensorFLow model to be less ef-
fective on the Darknet model. The effectiveness of an adversarial sample is heavily
dependant on how a model makes predictions. Therefore, this impacts the attack
performance. Though this effect is only seen in some circumstances, and changes
based on the source and target model.

Another problem which came from using two different YOLO implementa-
tions, was that YOLO operates with a fixed internal resolution, and the two YOLO
implementations dealt with this in different ways. The Darknet implantation res-
ized the image to match the internal resolution before making predictions. The
TensorFLow implementation, however used letterboxing which preserves the as-
pect ratio, before scaling the image. Images that were letterboxed and scaled were
not suitable inputs to the Darknet model. The model was unable to make predic-
tions on these images altogether. To solve this issue, the TensorFLow implement-
ation needed to be changed to resizing the images in the same way the Darknet
model does.

5.2.2 Generating Adversarial Samples

Several attributes were considered when looking for an attack to generate ad-
versarial examples. The attack should be:

• Designed to target object detectors.
• Able to target single stage, regression based detectors like YOLO.
• Have a public implementation that enabled experimentation.
• Produce adversarial samples by adding adversarial noise to the entire image.

Although research into adversarial examples has been enthusiastic since Szegedy
et al. [3], a large portion of the research has been focused on classifiers. Attacks

Chapter 5: Implementation 31

designed for classifiers can be applied to object detectors. In fact, early on in this
project, an implementation of the Carlini and Wagner [4] attack was modified
to attack YOLO. The problem is that object detector solve a more complex prob-
lem than classifiers, which means an attack designed for classifiers can not be
optimal [1]. Furthermore, Faster RCNN is a popular object detector in research,
but Faster R-CNN is commonly implemented as two networks, a region proposal
network and Faster R-CNN as a detector network. Attacks targeting Faster R-CNN
often target the RPN, which makes them unsuitable to attack YOLO which is a
single network, single stage detector. The final attack type not under consider-
ation are various techniques that produce adversarial patches. Patches are very
relevant to autonomous vehicles, as an attacker could place patches in the envir-
onment to fool any detector that observed it. This scenario was not considered as
the practicality of conducting rigorous experiments on patches placed in a marine
environment seemed low. Furthermore, such experiments would be rather pre-
mature, as a suitable baseline performance for adversarial samples directly fed to
the model did not exist.

These considerations led to the Targeted Objectness Gradient (TOG) [1] family
of attacks. TOG was developed specifically to attack object detectors. Additionally,
Chow et al. [1] attacked YOLO with it, even attacking YOLO with cross-model
attacks. Since TOG is implemented in TensorFLow the darknet models needed to
be converted. To ensure compatibility, the same TensorFLow implementation of
YOLO was used to convert the models, as is used internally by TOG.

The TOG attacks are implemented in Keras/TensorFLow 1.X which means sev-
eral steps are required before models trained using Darknet can be used. Darknet
saves weights in a .weights file. This file is interpreted using a separate configur-
ation file. TensorFLow saves weights in the .h5 format which also contains con-
figuration information. To use Darknet models with TensorFLow, they need to be
converted, Fortunately public repositories have code available to convert models
from .weights to .h5. The conversion software was found at keras-yolov3. As this
is a popular implementation of YOLO in TensorFLow, it is also used by TOG to
interface with the model under attack.

However, the TensorFLow implementation of YOLO deals with the fixed in-
ternal resolution by resizing and letterboxing the image to preserve the aspect
ratio. This is different to the Darknet implementation which resizes the input
image without preserving the aspect ratio. Since the TensorFLow implementa-
tion squashes the input image down to 416x416 and adds black bars to preserve
the aspect ratio, the result was TOG outputting small letterboxed images, which
the YOLO models had trouble making detections on. To output images the tar-
get model would be able to make predictions on, the internal resolution of the
source model was increased to 1920x1920. 1920 being the horizontal resolution
of the images in the validation set. Since the images were no longer shrunk, a
simple script could crop away the letterbox, and leave the sample with the same
resolution as it had initially. Since the adversarial perturbation was applied to the
entire sample, including the letterbox, the cropping script had to use a tolerance

https://github.com/qqwweee/keras-yolo3

32 A. M. Staff: Cross-data Transference of Adversarial Attacks

to locate the edge of the actual sample and crop away the rest. The code is shown
in listing 5.1

Code listing 5.1: The script to crop black bars from an image. source: https:
//codereview.stackexchange.com/a/132934
def crop_image_only_outside(img, tol=80):

img is 2D or 3D image data
tol is tolerance
mask = img > tol
if img.ndim == 3:

mask = mask.all(2)
m, n = mask.shape
mask0, mask1 = mask.any(0), mask.any(1)
col_start, col_end = mask0.argmax(), n - mask0[::-1].argmax()
row_start, row_end = mask1.argmax(), m - mask1[::-1].argmax()
return img[row_start:row_end, col_start:col_end]

Unfortunately, it turned out that generating the adversarial sample with a sur-
rogate model using a much higher resolution, then cropping the letterbox, left
the adversarial sample ineffective. When the Darknet model made detections on
the adversarial samples, they achieved the same performance they did on clean
samples. Once this was discovered it became clear that this method would not
work. To figure out how to solve this issue the code for YOLO - Darknet and
TensorFLow was examined. It turned out that the reason the TensorFLow imple-
mentation used letterboxing, was because this used to be the default behavior of
the Darknet implementation as well. Though it would be possible to return the
Darknet implementation to the older technique, this would require that all the
model were re-trained. To avoid re-training all the models, TOG was updated to
add resizing functionality similar to Darknet. The Pillow library was already in
use to process images, making the resizing code simple to add once it was clear
that this was the best solution. The resizing code is shown in listing 5.2

Code listing 5.2: The resizing code added to TOG

from PIL import Image
import numpy as np

def image_resize(image, size=(832, 832)):
new_image = image.resize((size), Image.BICUBIC)
new_image = np.asarray(new_image)[np.newaxis, :, :, :] / 255.0

return new_image

Once it was clear that adversarial samples could be generated with TOG and it
would have an effect on the performance of the Darknet model, scripts were writ-
ten to automate the process of generating adversarial sets. When generating ad-
versarial samples, all models are used to generate an adversarial set. Once all the
adversarial sets are produced, every model is benchmarked on each adversarial
set. This produces a mAP value for each pair of models.

Cross-model attacks are not the focus of this thesis. However, there is an ele-
ment of this to the results. This is due to the TOG attack not being able to directly

https://codereview.stackexchange.com/a/132934
https://codereview.stackexchange.com/a/132934

Chapter 5: Implementation 33

attack a Darknet model. Though this brings attack performance below optimal,
it would require significant development effort to enable TOG to attack Darknet
models directly. It is unlikely an attacker would invest this effort when they do not
know for sure that they are attacking a Darknet model. Keep in mind that TOG
can directly attack SSD and Faster R-CNN, making it a good choice to attack the
major real-time object detectors.

5.2.3 Measuring Performance

To answer RQ1, data analysis was largely carried out by entering the output from
the Darknet mAP tool into a spreadsheet and using that to group and visualise
the data. The spreadsheet was used to compare model performance, calculate
correlations, and make graphs.

The primary way model performance was measured, was through the testing
tools implemented in Darknet. These tools calculate mAP using the validation set
for the model. The validation set in Darknet is defined in a configuration file and
so it is trivial to test a model on a different validation set. This enables the use of
the primary benchmark set.

While the primary challenge metric COCO uses is mAP averaged across 10
intersection over union steps, this thesis reports results using a single IOU stage,
IoU = .50. The 10 IOU steps COCO uses reward object detectors that are able to
place very precise bounding boxes. This is a less interesting metric for real-time
object detectors that need to make compromises for added speed. Furthermore,
the smallest IOU steps demand performance beyond human which is less relevant
to autonomous vehicles [9].

5.2.4 Data Sources

In order to answer RQ1, i.e. to investigate adversarial robustness, one must first
have access to multiple representative object detectors. This section describes the
process of configuring and training models which could be a component of a
sensor fusion for autonomous ships.

Multiple datasets were compiled over the course of the research. The central
goal was to obtain a dataset that would train a representative object detector for
autonomous ships. Additionally, another dataset was needed to train the surrogate
model which would enable black-box attacks. To demonstrate black-box attacks
and answer RQ1, the two datasets should be disjoint, no images appearing in both
datasets. Furthermore performance between the models should be as similar as
possible. This is due to the assumption that this would demonstrate the attack
transferability.

Weights trained as part of a previous thesis [43]were made available, together
with the dataset used to train them. After calculating the mean Average Precission
(mAP) of the model, it became clear that the weights didn’t have the desired
performance profile. The decision was made to train a new model. First the dataset
was re-annotated to ensure consistent annotations. This dataset consisted of over

34 A. M. Staff: Cross-data Transference of Adversarial Attacks

600 images taken in maritime environments. Primarily, The Trondheim fjord and
Høvik which is on the Oslo fjord. The images are of different resolutions and of
boats and ships of different sizes and at different distances. Most of the images are
taken from the shore overlooking the Oslo fjord. The crafts passing by are largely
small pleasure craft, and kayaks. They appear at medium to long distance, which
means they are often quite small in the image. However, they are visible due to the
contrast with the water around them. Figure 5.1 shows a sample of the images.

Figure 5.1: Sample images from the dataset shared from Grini [43]

DNV, who made co-supervisors available for this thesis, also shared dataset
they had produced which could be used to train maritime object detection. It con-
sists of around 4700 frames captured from the "Hurtigruten minute by minute" TV
show. The rights to these images were licensed from NRK, and then all the images
were annotated. The various watercraft Hurtigruten encounters, were placed in
30 categories. All the images were taken from the bow of the ship. These images all
have the same resolution, being sampled from the camera overlooking the ships
bow. They feature a wide variety of small to medium sized craft. Most of these
pleasure craft sailing ahead of the ferry. There are images in different lighting
conditions, and some taken during inclement weather. Figure 5.2 shows a sample
of the images. Like the images from Grini [43], most craft will have water as the
background.

Figure 5.2: Sample images from the dataset shared from DNV

To properly simulate a black-box attack it was necessary to train a model for
the adversary. This model, called the source model acts as a surrogate to the target
model. To avoid giving the adversary an advantage, this model would be trained
on a dataset disjoint to the target model. Therefore, models were also trained
on publicly available datasets. One of the public sources used was the Singapore
Maritime Dataset [44]. The Singapore Maritime Dataset (SMD) is quite differ-
ent to the data shared from Grini [43]. It consists of several videos taken in the
Singapore harbour. Some videos are captured on board, some are from the shore.

Chapter 5: Implementation 35

For training only the visible light images were used, though there are also Near-
infrared images in the dataset. This dataset is not as varied as the data from DNV
as the videos are much shorter than the TV show. There is not much variety in the
dataset either, mostly large freight ships. Though, there are also some tugboats,
pleasure craft and kayaks. Figure 5.3 shows a sample of the images. The water
craft are broken down into 7 different classes.

Figure 5.3: Sample images from SMD

The third data source used is the COCO dataset. This dataset is a large dataset
used to benchmark and rank object detectors. There are annual challenges with
different goals, including image segmentation and keypoints (poses). The dataset
consists of over 200000 labeled images divided into 80 categories. As the name
implies, a focus for this dataset is presenting the objects in context. For the images
in the boat class this results in more watercraft on the beach or docked in the
harbour, than is found in the other datasets. Figure 5.4 shows a sample of the
images. The resolution of the images is not uniform, and the images are extremely
varied in lighting composition, and environment. These attributes makes it much
harder for an object detector to achieve a high mAP on COCO.

Figure 5.4: Sample images from COCO

5.2.5 Preparing Datasets to Train the Target Model

To train YOLO models on these data sources generally required some setup. YOLO
needs images to be divided into two folders, one for training, and one for valid-

36 A. M. Staff: Cross-data Transference of Adversarial Attacks

ation. Annotations of the correct format must be in the same folder with each
annotation file sharing the name of the corresponding image, but with a .txt ex-
tension. Aside from the Grini [43] data, which was re-annotated as part of the
research, each data source needed to have it’s annotation format converted to the
Darknet format.

The first data which was prepared for training was the Grini [43] data. In addi-
tion to the dataset weights trained on that data was shared, though these weights
ended up not being used. After calculating the mean Average Precission (mAP) of
the model it became clear that the weights didn’t have the desired performance
profile. The decision was made to train a new model. First the dataset was re-
annotated to ensure consistent annotations. To annotate the images the program
LabelImg [45] was used. LabelImg allows the user to define semantic classes and
draw bounding boxes around these classes in images. Additionally, LabelImg sup-
ports YOLO annotations as well as Pascal VOC and Create ML. See an image of
the interface in figure 5.5.

Figure 5.5: The interface for LabelImg [45]

Once the Grini data was annotated the goal became to try to augment the data
as approximately 600 images is not enough for a high performance object detector.
Since Grini [43] found the best performing model was trained on two categories:
buildings, and boats, the decision was made to keep these two categories for the
first model. As the Hurtigruten dataset consisted of about 4700 images it would
be impractical to try to annotate these images, but buildings were not labeled in
the Hurtigruten dataset. To solve this, images from the Hurtigruten dataset would
be culled before it was merged with the Grini dataset. First, all watercraft classes
were merged to a single boat class. Then, all the images with prominent buildings
were removed. The final merged dataset included over 3800 images which were
split 70/30 into training and validation datasets. 70/30 is the recommended spilt

Chapter 5: Implementation 37

for training YOLO models on Darknet and was used for all the models. The res-
ulting dataset is quite representative of recreational boating in Norwegian fjords,
but lacks the large ships one might find in busy ports. The validation portion of
this dataset is used as the primary performance benchmark for this thesis.

Due to not being happy with the performance of the first model, another data-
set was compiled from the Hurtigruten dataset. It used all the images from the
Hurtigruten dataset, after some duplicates and other bad data was removed. Once
more all watercraft classes were merged to a single boat class. This was done for
three reasons. The first is that, to make comparisons between models easier, they
should be as similar as possible beyond training on different data. The second is
that COCO uses a single boat class, and incorporating this data in a model was
one of the goals. The third reason is that it was assumed that the model would
achieve higher performance if did not need to separate different watercraft from
each other, only identify and locate them. The hurtigruten dataset was annotated
using Extensible Markup Language (XML) which needed to be converted to YOLO
annotations before the dataset could be used. The code used to convert annota-
tions is shown in listing 5.3 and listing 5.4. Finally, since the images were split
up by episode, recall that this dataset is based on videos from a TV show, a script
was written to collect all the images with their corresponding annotation file, and
copy them to train and validation directories with a 70/30 split. Once this was all
done, the dataset consisted of about 4700 images.

Code listing 5.3: Code extract that converts multi-class xml to single-class yolo

def convert_annotation(dir_path, output_path, annotation_path):
basename = os.path.basename(annotation_path)
basename_no_ext = os.path.splitext(basename)[0]

in_file = open(annotation_path)
out_file = open(output_path + basename_no_ext + ’.txt’, ’w’)
tree = ET.parse(in_file)
root = tree.getroot()
size = root.find(’size’)
w = int(size.find(’width’).text)
h = int(size.find(’height’).text)

Modified to assign every bbox to class 0 which is ’boat’

for obj in root.iter(’object’):
difficult = obj.find(’difficult’).text
im_cls = obj.find(’name’).text
if im_cls not in classes:

print(’skipped:␣’, im_cls)
continue

cls_id = 0 #classes.index(cls)
xmlbox = obj.find(’bndbox’)
b = (float(xmlbox.find(’xmin’).text),
float(xmlbox.find(’xmax’).text),
float(xmlbox.find(’ymin’).text),
float(xmlbox.find(’ymax’).text))
bb = convert((w,h), b)
out_file.write(str(cls_id) + "␣" +
"␣".join([str(a) for a in bb]) + ’\n’)

38 A. M. Staff: Cross-data Transference of Adversarial Attacks

Code listing 5.4: The conversion step called in 5.3

def convert(size, box):
dw = 1./(size[0])
dh = 1./(size[1])
x = (box[0] + box[1])/2.0 - 1
y = (box[2] + box[3])/2.0 - 1
w = box[1] - box[0]
h = box[3] - box[2]
x = x*dw
w = w*dw
y = y*dh
h = h*dh
return (x,y,w,h)

5.2.6 Preparing Datasets to Train the Attackers Model

With a performant model trained on the Hurtigruten dataset, it was time to train
a model on a disjoint dataset, which could act as surrogate in black-box attacks.
The data source chosen was the SMD [41] as this dataset seemed to have a lot in
common with the Hurtigruten dataset. It was partially collected from the bow of a
ship and initially consisted of videos with consistent resolution. To train a Darknet
model on SMD, it was necessary with some preprocessing. The first step was to
extract individual frames from the videos and save them as images. Extracting the
frames and creating corresponding annotation files was a fairly large challenge.
However, the hardest parts had already been solved by Bontzorlos [41]. Modifying
this code, and then using the XML to YOLO converter, as shown in listing 5.3,
made the data fairly easy to use. Though one could extract every frame from the
video as its own image, the decision was made to extract every fifth frame from
the dataset. This was so that the final dataset would be similarly sized to the
dataset used to train the target model. Additionally, successive frames are very
similar and so add little to the training model. Even using every fifth frame this
became an issue. Final size of the dataset was about 5100 images. Once images
had been extracted, the annotations also needed to be converted to an appropriate
format. This was a two stage process where the .mat files used by the videos were
converted to XML, which were then converted to You Only Look Once (YOLO)
annotations. Additionally, in this step all watercraft classes were merged to the
single class, boat, and any other classes were discarded. This was in order to bring
the surrogate model in line with the target model.

The initial surrogate model trained on the SMD had very poor performance
on the benchmark dataset. It achieved a mAP of 0.39. Therefore, a new surrogate
model was trained incorporating the Grini [43] data. As the primary target model
now only used the Hurtigruten dataset, the Grini data was free to use to train
surrogate models. Even though the Grini data was being used, only the boat labels
were desired to be trained on. To solve this a python script was written which
would loop through the annotations and discard all but the boat annotations. The
code is shown in listing 5.5.

Chapter 5: Implementation 39

Code listing 5.5: The conversion step called in 5.3

import os

def fix_annotation():
for filename in os.listdir(os.getcwd()):

if filename.endswith(’.txt’):
with open(filename, "r") as f:

lines = f.readlines()
with open(filename, "w") as f:

for line in lines:
The boat class is designated 0

if line.strip("\n")[0] != ’1’:
f.write(line)

os.chdir(’obj’)
fix_annotation()
print(’obj␣processed’)
os.chdir(’../test’)
fix_annotation()
print(’test␣processed’)

Though the model using SMD and data from Grini showed improvements,
models were trained using COCO data as well to see if these would perform bet-
ter on the benchmark dataset. A model was trained incorporating the COCO data
some of the SMD data, and the Grini [43] data. Finally, a model was trained mer-
ging all data available. This model, trained on a superset of the data sources would
be a good point of comparison for performance.

5.2.7 Training Configuration for the Target Model

YOLO operates with a fixed internal resolution which has to be a multiple of 32.
In the Darknet implementation images fed to the model are resized to fit the in-
ternal resolution. The initial model was trained at 416x416, for 6000 iterations.
Bochkovskiy et al. [40] suggests the number of training iterations should be 2000
iterations for each class, but no fewer iterations than training images, and no fewer
than 6000. The default training resolution of YOLO is 608x608, but a lower train-
ing resolution allows for faster training. With the initial model to compare to, at-
tempts were made to improve model performance. Previous work [40] suggested
increasing the internal resolution would increase precision. Increasing precision
would lead to an increase in mAP, the primary performance metric. Therefore, a
model was trained on the same dataset at 832x832. The higher resolution model
was also trained for 9000 iterations to make sure performance was as high as
possible. Instead of an increase in precision, an increase in recall was observed
accompanied by a decrease in precision, leading to an overall lower mAP. Study-
ing the data, it was clear that the higher resolution model was having trouble
with the building class. The data is shown in figure 5.6. Therefore a high resolu-
tion model was trained on the entirety of the Hurtigruten dataset without merging
inn the Grini [43] data. This model achieved higher performance than the initial
low resolution model trained on the merged dataset, making it the primary target
model for this thesis. The model achieved a mAP of 72.41.

40 A. M. Staff: Cross-data Transference of Adversarial Attacks

Figure 5.6: Comparison between training M1 at 416x416 (top) and 832x832
(bottom)

5.2.8 Training Configuration for the Attackers Model

As the goal was to train a surrogate model with similar performance to the target
model, all subsequent models were also trained at 832x832. Some models were
trained for more than 9000 iterations, as the training set was bigger. Training iter-
ations should be at least equal to the number of images in the dataset. Therefore,
increasing training iterations was important.

5.3 RQ2

To answer RQ2, the dataset intersection was calculated using a script that ac-
cessed all the datasets and compared the filenames pairwise. This returned the
intersection between each pair of datasets. The code is shown in 5.6.

Code listing 5.6: The code that finds the dataset intersection.

from glob import glob

def getImagesInDir(dir_path="data/test"):
image_list = []
files = (

glob(dir_path + "/*.jpeg")
+ glob(dir_path + "/*.jpg")
+ glob(dir_path + "/*.png")

)
for filename in files:

image_list.append(filename.split(’/’)[-1])

return image_list

Chapter 5: Implementation 41

base_path = "/cluster/work/alexamst/"
dir_list = [
"yolo-train",
"yolo-train/pure_hurtig",
"yolo-train/smd_merged",
"boat_coco",
"super",
"improved_coco"
]

for x_directory in dir_list:
for y_directory in dir_list:

if x_directory == y_directory:
continue

dir_x = getImagesInDir(base_path + x_directory + "/obj")
dir_y = getImagesInDir(base_path + y_directory + "/obj")
intersect = set(dir_x).intersection(dir_y)
print(str(round((len(intersect)/len(dir_x))*100, 2)) + "%" "␣of␣" +
x_directory.split(’/’)[-1] +
"␣intersects␣with␣" + y_directory.split(’/’)[-1])

5.4 Hardware

This section explores the different hardware setups used to train models and gen-
erate adversarial samples. Several training setups were attempted over the course
of this project. As all operations: training models, calculating mAP, and generat-
ing adversarial samples involve manipulating images, a powerful graphics card is
necessary.

5.4.1 Local

To begin with a local setup on a personal computer was attempted. The computer
had an Nvidia GTX 970 graphics card installed. The first challenge was building
Darknet from source and correctly installing CUDA drivers. As this was difficult
on Windows a Linux partition was installed to do computation tasks. Though de-
tection was fast and convenient on the local setup, training was much harder.
Training takes a long time on GTX 970, and using the computer for other things
while it trains a model is inconvenient. Not to mention trying to sleep in the same
room while the model trains. This setup was quickly abandoned due to lacking
hardware resources. With the local setup proving untenable, training in the cloud
would be preferable.

5.4.2 Colaboratory

Google Colab is a service that lets one run, and collaborate on, jupyter notebooks
on remote hardware for free. Though this gives free access to powerful hardware,
the service is not quite designed for training large models. The service is meant to
let researcher or students carry out many short computations. There is a premium

42 A. M. Staff: Cross-data Transference of Adversarial Attacks

tier meant for training large models and other tasks that require powerful hard-
ware for a longer time, but this is only launched in the US. To prevent one user
from tying up too many resources, operations are terminated after 12 hours. This
however is a maximum limit and the actual limit will change based on the load
the service is experiencing, and how much resources one has used lately. GPU re-
sources are especially limited. After long operations one will also be prevented
from starting new GPU sessions. Under these limitations a model was trained at
416x416, but trying to train another was unsuccessful due to constant disconnec-
tions from having used to many GPU resources.

5.4.3 NTNU IDUN Computing Cluster

The final migration brought the project to the execution environment which would
actually train all the models, generate the adversarial samples, and run mAP cal-
culations. Idun [46] is a computer cluster which students at the department of
computer science can apply for access to. The cluster has more than 70 nodes
and 90 GPGPUs. Each node contains two Intel Xeon cores, at least 128 GB of
main memory, and is connected to an Infiniband network. The cluster is accessed
through SSH which lets one carry out file management, code compilation, and
queuing jobs using the Slurm Workload Manager. Under training, a single Nvidia
V100 GPU was used. This allowed training a new model to complete in approxim-
ately 35 hours. Generating adversarial sets with all the models would take about 7
hours, while benchmarking all the models on all the adversarial sets was roughly
3 hours.

Chapter 6

Results

This chapter presents the results of the experiments. The composition of datasets
is detailed, and the performance of the models derived form the datasets is de-
scribed. All the code used for generating adversarial samples can be found here:
https://github.com/alexmstaff/TOG/

6.1 RQ1: Is It Possible To Generate Adversarial Samples
With One Model and Attack a Model Trained on Dif-
ferent Data?

Section 6.1 details the performance of black-box attacks on YOLO using the TOG
family of attacks. To begin with, datasets and their corresponding YOLO models
are presented. Their initial performance on clean samples form a baseline to com-
pare the adversarial attacks to. All mAP data is mAP .50. This is because, precisely
placed bounding boxes are not a focus of this thesis. Additionally, it makes the
data more comparable to other papers e.g. on object detection. A more in depth
discussion of mAP can be found in chapter 2.5.

6.1.1 Dataset Composition

The data sources available were quite different. An important difference is the
aspect ratio of images in the dataset. YOLO uses a fixed internal resolution and
resizes the images prior to training and detection. This results in objects in the
image changing appearance. When one trains the model on a dataset with the
same aspect ratio as the images used to test the model, this effect disappears as
the model learns how objects look when they are warped. The issue arises when
detecting on images of an aspect ratio not seen in the training set. In this case
recall and confidence drops.

The images shared from Grini [43] were compiled to train an object detector
for the ReVolt project. Most images are 1280x720, and captured in Høvik, Norway.
These images are also largely of smaller craft and kayaks. To ensure consistent

43

https://github.com/alexmstaff/TOG/

44 A. M. Staff: Cross-data Transference of Adversarial Attacks

labeling, these images were re-annotated. No other data source was re-annotated
as the datasets were far to big. This prevented the training of a larger two-class
detector, as none of the other data sources annotated buildings.

The Hurtigruten data was shared from DNV and contains images captured
from the bow of the Hurtigruten ferry as it travels up the Norwegian coast. These
images are captured at a resolution of 1920x1080. The watercraft in the images
are largely small to medium sized pleasure craft.

This is in contrast to the Singapore Maritime Dataset, where the images were
collected in the Singapore harbour. These images are dominated by large freight
ships. Due to this, models trained on the Singapore data struggle making accurate
predictions on the Hurtigruten dataset and vice versa. The Hurtigruten images and
the Singapore images share the same resolution, but the difference in subject is
the dominant factor in this case.

The () dataset is the most diverse dataset. Both in terms of resolutions and
watercraft. The images have various resolutions from 280x500 to 640x640. Addi-
tionally, watercraft appear in many different contexts, not simply on water. This
is important for a multi-class detector which needs to separate between several
classes. For a single-class detector designed to work in a specific context however,
images more closely resembling the intended domain are desirable.

Data Source Description Size
Grini data Images shared from Grini [43]. Re-annotated

for this thesis, two classes: Buildings, boats.
622

Hurtigruten Data shared from DNV. Collected from the
show "Hurtigruten minute by minute". Ini-
tially separate classes for different water-
craft, but these are are combined to a single
"boat" class for this thesis.

3740

SMD The Singapore Maritime Dataset [44] Con-
sists of a set of high definition videos taken
in the Singapore harbour. Initially separate
classes for different watercraft, but these are
combined to a single "boat" class. As the
dataset consists of videos, significant prepro-
cessing must be carried out before one can
train Darknet models on the dataset. To build
a set of images, every 5 frame from the videos
was used.

3590

COCO The COCO [19] dataset consists of over 200K
labeled images divided into 80 classes.

5123

Total 13075

Table 6.1: Data sources with their description

Numbers in Table 6.2 only include images in the training set, images in the

Chapter 6: Results 45

validation set are excluded. Aside from D5, datasets were kept at similar sizes.
SMD would be very large if every possible image was used. As well as being much
larger than the other datasets, consecutive frames are very similar and would
therefore not add a great deal to the model.

Dataset ID Source Datasets No. Images Total Size

D1
Grini data

Hurtigruten
497

2551
3048

D2
COCO

Grini data
SMD

3025
517

2060
5602

D3
Grini data

SMD
517

3590
4107

D4 Hurtigruten 3573 3573

D5

COCO
Hurtigruten
Grini data

SMD

3025
3573
517

3590

10705

D6
COCO

Grini data
5123
517

5640

Table 6.2: Assembled datasets with their composition

In Table 6.3, the Validation column shows the performance on the validation
set associated with the training set for the model. The Benchmark column how-
ever, shows the performance on the dataset used to gauge performance between
models, and to generate adversarial sets. The Benchmark dataset is the validation
set associated with D1. The reason M1 does not have the same performance on the
validation and benchmark datasets is that in the benchmark column, the images
have been resized. To generate adversarial samples the input image must match
the model dimensions, but annotations are not corrected for this difference. A
technique to correct the annotations was not explored due, to the mAP difference
being to small to affect data analysis. M2 and M4 are highlighted, as these mod-
els are the primary models used to answer RQ1. M4 is trained on private data,
and M2 is the highest performing model trained on public data. For context on
the performance numbers, the model with the highest mAP .5 on the 2017 COCO
bounding box challenge (the latest one held), achieved a mAP of 72.9. This num-
ber should not be directly compared with numbers in this thesis, but knowing
the state-of-the-art performance of a multi-class object detector, might be helpful
when comparing the performance of the models in this thesis to each other. The
reason these numbers are not comparable is that they were not achieved on the
same dataset. Furthermore, the performance of a single class model is not com-
parable to an 80 class model. Finally, the model that achieved the high score was
not a real-time model.

46 A. M. Staff: Cross-data Transference of Adversarial Attacks

Model ID Dataset Validation Benchmark
M1 D1 47.96 45.75
M2 D2 78.28 26.32
M3 D3 87.06 10.36
M4 D4 70.8 68.29
M5 D5 85.35 74.56
M6 D6 59.84 26.39

Table 6.3: Performance of models on clean samples

6.1.2 Attack Performance

Unless otherwise stated all adversarial samples are generated with an epsilon of
8. 8 is the default value for the TOG attacks, and using this value makes the num-
bers comparable to the data gathered by Chow et al. [1]. Epsilon represents the
maximum change allowed to any point using an L∞ distance metric, see Chapter
2.4.3. For an image, epsilon represents how much one can change a single pixel
with no limit on the amount of pixels changed. Since a greyscale pixel can hold
the values from 0 to 255, an epsilon value of 8 means no pixel is changed more
than 8

255 = 0.031 [4].

Figure 6.1: A detailed view of the output from the Darknet mAP measurement
tool

Table 6.4 shows the mAP achieved on the adversarial set generated by M2. The
Target Model column shows which model made detections on the dataset. White-
box attacks, where the source and target model are the same, are highlighted
in grey. Source model, refers to the model used to generate the adversarial set,
think, attacking model. The Clean column is the model performance on the unper-
turbed, but resized set. This is to ensure that the only effect being compared, is the
adversarial perturbation. The Untargeted column, refers to the model’s perform-
ance on images perturbed by the TOG untargeted attack. Similarly, the Vanishing
column, refers to the model’s performance on the TOG Vanishing attack. An ex-
planation of these attacks can be found in chapter 2.4.4. It is apparent from this
table that transference is very low. Although the white-box was very effective, M4
only took a minor hit to its mAP. An important aspect of these attacks is that bey-
ond testing attack performance with different source and target models, there is
also an element of cross-model transference to the attack. This is a consequence
of generating samples using the TensorFLow - YOLO model, and detecting with

Chapter 6: Results 47

the Darknet - YOLO model. An example of the difference in the detection between
the two models can be seen in Figure 6.5c. The figure shows that, although de-
tection is similar in broad strokes, several bounding boxes are placed in different
locations. Several bounding boxes that appear in the TensorFLow detection, are
missing form the Darknet detection. That is an indication that the perturbation
didn’t fully transfer.

Table 6.5 shows the mAP achieved on the adversarial set generated by M4.
In the table we see that only the untargeted attack was successful in white-box
mode. Neither attack transfer to M2 effectively.

Target Model Clean Untargeted Vanishing
M2 26.32 4.63 3.27
M4 68.29 61.62 63.55

Table 6.4: Performance on adversarial samples generated by M2

Target Model Clean Untargeted Vanishing
M2 26.32 24.4 25.17
M4 68.29 16.94 57.61

Table 6.5: Performance on adversarial samples generated by M4

6.1.3 Attack Performance Compared to Epsilon

D4, used to train M4, has no intersection with D2, D3, or D6. This allows black-
box transfer attacks, where the attacker does not have access to the dataset used
to train the victim detector. Figure 6.2 shows the mAP achieved by the models
on adversarial sets generated by M2 with increasing epsilon values. At the left
extreme we see the clean set performance. The largest mAP change is from clean
to 8 epsilon on M2. As this is the white-box attack, this is to be expected. Curi-
ously, though mAP was not reduced to 0, increases in epsilon did not decrease
performance further. Looking at the line for M4 we see a steeper slope between 8
and 32 than between 0 and 8. This indicates that the attack transference is poor
while epsilon is small, but once epsilon is large enough the attack strength im-
proves proportionally with epsilon. Attacking M4 effectively with M2 requires a
quite high epsilon, but by epsilon=24 the mAP of M4 is reduced to less than half.

On the other side, attacks generated by M4 attacking M2 show worse trans-
ference. Shown in Figure 6.3. An epsilon in the 20-30 range, is quite high in com-
parison to the white-box attacks. However, when attacking object detectors, an
epsilon of 20 is in line with other efforts [5][22]. The white-box attack stands
out as mAP decreases much faster than for any other model. In contrast to the
white-box attack in Figure 6.2, the mAP of M4 is reduced to 0 by the white-box
attack

48 A. M. Staff: Cross-data Transference of Adversarial Attacks

Figure 6.2: The black-box and white-box performance plotted against epsilon.
The adversarial set is generated by the M2 model

Figure 6.3: The black-box and white-box performance plotted against epsilon.
The adversarial set is generated by the M4 model

Chapter 6: Results 49

Figures 6.4a, 6.5a, 6.6a, and 6.7a show how the adversarial noise is increas-
ingly visible as epsilon is increased. Additionally, detections from the TensorFLow
model is contrasted with detections from the Darknet model. In a lot of cases the
predictions are quite similar, but these small differences can allow the Darknet
model to make correct predictions when the TensorFLow model is fooled by the
adversarial sample.

(a) Clean sample (b) Clean sample with pre-
dictions from the TensorFlow
model

(c) Clean sample with predic-
tions from the Darknet model

Figure 6.4: The clean samples

(a) Adversarial sample (b) Adversarial sample with
predictions from the Tensor-
Flow model

(c) Adversarial sample with
predictions from the Darknet
model

Figure 6.5: The adversarial samples, epsilon=8

Figure 6.8 shows a direct comparison between a subtle perturbation with epsi-
lon=8, and a much more obvious perturbation with epsilon=32. With epsilon=32
the sample no longer meets the definition of an adversarial sample by Szegedy
et al. [3]. The original adversarial samples were a result of imperceptible non-
random perturbations. However, this definition was developed when attacking
classifiers, and object detectors generally require greater perturbations before the
adversarial sample is effective. Additionally, there are now attacks which make no
attempt at imperceptibility, like patch attacks.

50 A. M. Staff: Cross-data Transference of Adversarial Attacks

(a) Adversarial sample (b) Adversarial sample with
predictions from the Tensor-
Flow model

(c) Adversarial sample with
predictions from the Darknet
model

Figure 6.6: The adversarial samples, epsilon=20

(a) Adversarial sample (b) Adversarial sample with
predictions from the Tensor-
Flow model

(c) Adversarial sample with
predictions from the Darknet
model

Figure 6.7: The adversarial samples, epsilon=32

Chapter 6: Results 51

Figure 6.8: Distortion comparison of epsilon=8 and epsilon=32

52 A. M. Staff: Cross-data Transference of Adversarial Attacks

6.2 RQ2: How Will Datasets Sharing Images Affect the
Transference of the Attack?

6.2.1 Dataset Intersection

Table 6.6 shows the intersection between the datasets. Each row shows what per-
centage the intersection with the model on the column is of its total size.

D2 ⊆D5
D2∩ D5

D5
=52%

(6.1)

Equation 6.1 follows from Table 6.6. The key finding in Figure 6.10 can be
seen when comparing the slope of M4 line, to the slope observed in Figure 6.2. In
Figure 6.10 the M4 slope is steeper due to the intersection between D4 and D5.
This intersection allows M5 to attack M4 more effectively than M2. Using Table
6.6 we can explain the performance difference between attacks on M5 generated
by M4, shown in Figure 6.3 and vice versa, shown in Figure 6.10, by the fact that
while M4 is a subset of M5, images in M4 only make up about a third of M5. Figure
6.10 also shows that the white-box attack on M5 is by far the most effective white-
box attack, compared to M2, and M4. This suggest that the M5 Darknet model is
more similar to its TensorFLow counterpart, than M2, or M4.

D1 D2 D3 D4 D5 D6
D1 100 16.31 16.31 65.58 81.89 16.31
D2 8.87 100 46 0 100 63.23
D3 12.1 62.75 100 0 100 12.59
D4 55.95 0 0 100 100 0
D5 23.32 52.33 38.37 33.38 100 33.09
D6 8.81 62.8 9.17 0 62.8 100

Table 6.6: The intersection between the various datasets

6.2.2 Attack Performance by Intersecting Models

This section presents attacks generated by models with dataset intersections. Mod-
els without intersections are also featured for context. Attacks on models with no
intersections are highlighted in green to make comparison easier.

Since M5 is trained on a superset of the other datasets, it shows the best trans-
ference of the attacks. See Table 6.9

M1 is the only two-class model, and Table 6.7 shows poor attack transfer per-
formance. The greatest mAP reduction besides the white-box attacks, is on M4 and
M5. It roughly achieves a 10 point difference. However, the white-box attack is
not particularly effective on M1 either, making the lack of transference expected.

Chapter 6: Results 53

Target Model Clean Untargeted Vanishing
M1 45.75 29.16 37.67
M2 26.32 25.15 24.59
M3 10.36 9.3 8.73
M4 68.29 47.15 61.44
M5 74.56 65.99 64.77
M6 24.74 23.25 24.71

Table 6.7: Performance on adversarial samples generated by M1

Target Model Clean Untargeted Vanishing
M1 45.75 40.7 41.66
M2 26.32 23.9 20.18
M3 10.36 2.13 0.94
M4 68.29 61.02 61.38
M5 74.56 64.14 59.34

Table 6.8: Performance on adversarial samples generated by M3

Target Model Clean Untargeted Vanishing
M1 45.75 37.66 41.4
M2 26.32 7.91 9.71
M3 10.36 4.77 5.41
M4 68.29 52.66 60.65
M5 74.56 1.87 9.16
M6 24.74 7.95 12.35

Table 6.9: Performance on adversarial samples generated by M5

Target Model Clean Untargeted Vanishing
M1 45.75 42.72 41.35
M2 26.32 15.12 10.99
M3 10.36 8.57 6.03
M4 68.29 57.8 59.8
M5 74.56 56.83 54.08
M6 24.74 1.24 0.09

Table 6.10: Performance on adversarial samples generated by M6

54 A. M. Staff: Cross-data Transference of Adversarial Attacks

Plotting these values against attack performance gives the correlation between
attack transference and dataset intersection, see Figure 6.9. It is apparent that
a greater intersection leads to more transferable attacks. Training on the same
images should make the two object detectors make similar predictions, which
make them vulnerable to the same adversarial sample.

Figure 6.9: The correlation between dataset intersection and attack performance

6.2.3 Different Source and Target Resolution

The data in Table 6.11 show that a mismatch in resolution between source and
target model incurs a penalty in attack strength. Table 6.12 compares the data
from Table 6.11 and Table 6.9. Looking at Table 6.12 we can see that the aver-
age performance drop between same resolution and different resolution attacks, is
22.5 percentage points. This is in line with the findings from Chow et al. [1]. They
found that downsampling an adversarial sample to a lower resolution always pro-
duced a weaker attack than upsampling the image. This implies that an attacker
who does not know the resolution of the victim detector should chose a lower res-
olution like 416x416 to raise the probability of the attack being upsampled rather
than downsampled.

Table 6.12 shows a comparison of the data in Table 6.9 with the data in Table
6.11. This shows the performance penalty incurred by downsampling the ad-
versarial sample. The attack penalty for mismatched resolutions is smaller than
the penalty for cross-dataset transference. This can be seen by comparing the
black-box attacks in Table 6.4 and 6.5, with the white-box attack in Table 6.11.
The black-box attacks achieve a mAP reduction of 6.67 and 1.92 respectively. The

Chapter 6: Results 55

Target Model Clean Untargeted Vanishing
M1 37.96 36.47 37.29
M2 12.52 5.71 6.19
M3 4.47 2.02 2.07
M4 50.47 43.76 44.16
M5 51.25 40.06 37.53
M6 11.14 4.76 4.96

Table 6.11: Performance on adversarial samples generated by M5 at 416x416,
but detected at 832x832 demonstrating the cross-resolution performance

white-box attack achieves a mAP reduction of 11.19. At small perturbations, a
private dataset gives adversarial robustness, while mismatched resolutions only
weakens the attack.

Target Model Untargeted 832 Untargeted 416 Difference
M1 21.44% 3.93% 17.51
M2 72.23% 54.39% 17.84
M3 55.31% 54.81% 0.5
M4 25.85% 13.30% 12.55
M5 98.70% 21.83% 76.87
M6 67.87% 57.27% 10.6

Average 22.50

Table 6.12: Relative mAP loss for samples generated and detected at the same
resolution compared to samples generated and detected at different resolutions.

6.2.4 Transfer Attack Performance Compared to Epsilon

Figure 6.10 shows that although epsilon=8 is a little too low to get a strong at-
tack transference between some models, by epsilon=20 the model performance
has dropped off sharply. This is a good indication, of how important the dataset
intersection is to get stronger transference. Comparing Figure 6.3 to Figure 6.10
it is apparent that M5 generates adversarial samples that are more likely to fool
M4, than M4 is to generate adversarial samples that fool M5.

The intersection between M5 and M4 allows for an epsilon reduction of almost
10, to achieve the same mAP reduction.

56 A. M. Staff: Cross-data Transference of Adversarial Attacks

Figure 6.10: The black-box and white-box performance plotted against epsilon.
The adversarial set is generated by the M5 model

Chapter 7

Discussion

7.1 RQ1

This section describes the contribution of the findings in section 6.1, as well as
comparison to related work.

7.1.1 Comparison to Related Work

Though other studies have been done on transferable adversarial attacks, few tar-
get real-time object detectors. Of the studies done on transferable samples target-
ing object detectors [1][22][5], none operate with the same black-box model used
in this thesis. They perform cross-resolution and cross-architecture transference,
but not cross-dataset. Zhang et al. [5] do include a cross-dataset transference,
but they use image independent universal perturbations. Their universal perturb-
ations are able to reduce the mAP of their YOLO model by 30.9% at an L∞ epsilon
of 20. Our M2 model is able to reduce the mAP of M4 by 49.7% at the same L∞
epsilon of 20.

The biggest issue encountered when attacking YOLO-Darknet is slight differ-
ence in prediction between the Darknet and TensorFLow implementations. Due to
these differences attacks generated using the TensorFLow models do not have the
same performance on the Darknet models. In this way the attacks can be thought
of as cross-model attacks in addition to being black-box. The ideal way to avoid
this would be to directly attack the Darknet models with TOG. To achieve that,
one would need TOG to call the Darknet model, and correctly interpret the output.
Such a setup seems achievable, but is left as future work.

Though other studies have looked at transference between YOLO detectors
using different backbone networks, looking at transference between two YOLO
models implemented in different frameworks was not found in other research. To
attack the Darknet model with the TOG attacks, code had to written to correct for
the resolution, the classes the model could detect, as well as the resizing method
used by TOG.

57

58 A. M. Staff: Cross-data Transference of Adversarial Attacks

7.1.2 Implications to Academia

Expanded knowledge about cross-dataset attacks, a rarely studied subject. Most
papers study cross-architecture, or cross-resolution. Furthermore, modified TOG
to allow adversarial attacks on Darknet models. The transfer attacks between data-
sets initially show quite low transference. However, by increasing epsilon from 8
to the mid 20s, the transference attack is able to reduce mAP by half. Though this
is a much larger perturbation, it is in line with what other studies have used to
achieve cross-architecture transference on object detectors [1][22][5].

7.1.3 Implications to Industry

Transfer attacks with subtle perturbations may not be an immediate threat. Though
at higher epsilon values the transfer attacks become effective. These larger per-
turbations could be detected and pre-filtered, to avoid the detector being exposed
to them [47].

7.2 RQ2

This section will discuss the findings in section 6.2, their contribution, and any
new insights reached through the experiments. The results will also be compared
to related work.

7.2.1 Comparison to Related Work

As cross-dataset transference on real-time object detectors is largely unexplored
no other studies were found that examined the correlation between attack trans-
ference and relative dataset intersection. Paudice et al. [48] find that they can
discover, and filter adversarial dataset poisoning attacks. However, if the samples
added to the dataset have no perturbation added to them, but only serve to create
an intersection between the target detector, and the attacker’s surrogate detector,
such techniques would be useless.

7.2.2 Implications to Academia

A correlation between relative dataset intersection and attack transference is found.
To explore this further, two models were trained. One model was trained on a su-
perset of the other model’s training data. We found that the model trained on
the superset, generated adversarial samples with better transference to the other
model, than vice versa. This indicates that it is not simply the size of the intersec-
tion that matters, but the size of the intersection relative to the total training set.
The average penalty to mAP reduction with attacking and target models at differ-
ent resolutions, was found to be 22.5. To arrive at this number, adversarial samples
were generated at 416x416, then detected at 832x832. Adversarial samples were
generated at a lower resolution than the target resolution due to findings in Chow

Chapter 7: Discussion 59

et al. [1]. They found that downsampling adversarial samples always produces a
weaker attack than upsampling it. This implies that an attacker who does not
know the resolution of the target model, should train their surrogate model at a
fairly low resolution like 416x416, to make it more likely that the sample is up-
sample rather than downsampled. We also found that the greater attack transfer-
ence gained through intersecting dataset, allowed for effective transfer attacks at
lower epsilons. Instead of epsilons of 24-28 with disjoint dataset, 16 was enough
to reduce mAP to less than half, when datasets intersected.

7.2.3 Implications to Industry

The training set for an object detector deployed in an autonomous vehicle must be
secured. Inclusion of public data must be carefully considered, as the public data
increases attack transference, allowing effective attacks with a smaller epsilon.
Comparing figure 6.2 to figure 6.10 shows that the M5 model, which was trained
on a dataset with a significant intersection with M4, produces perturbations which
are much more transferable than M2.

7.3 Threats to Validity

Internal validity is susceptible to selection and experimenter bias. Selecting an
appropriate attack framework was long process with several blind allays. To make
the selection process transparent, section 3.6 presents potentially relevant attacks,
and their suitability.

To avoid experimenter bias, the data presented in section 6.1.2, and section
6.2.2 is the data output from the Darknet mAP tool. When derived data is presen-
ted, the raw data is also available together with the calculations done to arrive
at the derived data. Section 5.2.2 describes how adversarial samples were gen-
erated, and section 5.2.3 describes how the performance was measured on clean
and adversarial samples.

External validity is susceptible to poor generalizability and replicability of the
results. This study is conducted with a single object detector, and attack frame-
work, which does limit the generalizability of the results. However, the fact that
adversarial samples transfer between dataset, architectures, even tasks, show that
results on one set of detectors and attacks, are relevant to other detectors and at-
tacks. Additionally, the scenario described in section 5.1 severally constrained the
object detectors and adversarial attacks which were relevant to this study. Since
the mAP score an object detection model achieves is highly dataset dependant,
several datasets were compiled, and trained on.

Aiding replication is that all the code used to train models, convert the weights
to TensorFLow weights, and measure mAP is public. Additionally, the pipeline
used to generate adversarial samples targeting Darknet models with the TOG
framework, is also public. Chapter 5 contains all the steps needed to replicate the

60 A. M. Staff: Cross-data Transference of Adversarial Attacks

experimental setup. However, one of the primary datasets used in this thesis con-
sists entirely of private data. Furthermore, the hardware required to train models,
and generate adversarial samples is extremely expensive, and so only available to
large companies, or universities.

Chapter 8

Conclusion

As all neural networks are vulnerable to adversarial examples, their adversarial
robustness must be well understood, if they are to be deployed in safety critical
contexts, like diagnosis, or autonomous vehicles. Though studies have been done
on the risk of cross-architecture and cross-resolution attacks on real-time object
detectors. Little work has been done on cross-dataset attacks.

This thesis studied cross-dataset transference by training Darknet models on
disjoint training sets. Then used the TOG framework to generate adversarial sets.
Once the adversarial sets were generated, attack performance was measured by
calculating the mAP achieved on the adversarial set, and comparing this value
with the mAP achieved on the clean set. We compared the attack performance
on the surrogate model with the target model, and measured how well the attack
transfers. At an epsilon of 8, the attack barely transferred, leaving the target model
unaffected. Raising the epsilon to the mid 20s makes the transference stronger and
reduces mAP on the target model by about half.

Additional models were trained on datasets with various intersection sizes.
Adversarial sets were generated, and the models were benchmarked on them to
find their mAP. Plotting the mAP reduction against the dataset intersection found
the correlation between attack transference and dataset intersection.

By comparing attack strength on the models with intersecting datasets to the
disjoint models, we found that epsilon could be lowered to 16 while retaining an
effective attack when there is a dataset intersection.

We found the average penalty to attack strength associated with cross-resolution
attacks. Combining this result with results from Chow et al. [1] implies that an
attacker should always choose to generate adversarial samples at a low resolution
to improve attack transference.

8.1 Future Work

The natural next step for this research is to add additional architectures to the
analysis. Comparing the results on YOLO with SSD and Faster R-CNN could lead
to further insights.

61

62 A. M. Staff: Cross-data Transference of Adversarial Attacks

Developing an interface in the TOG framework which enables direct attacks
on Darknet models would also be of interest. Eliminating the cross-model trans-
ference between to Darknet implementation and the TensorFLow implementation
could produce clearer results.

Testing cross-dataset transference on adversarial patches would also be of in-
terest. Adversarial patches avoid the issue of minimizing the perturbation, which
could suggest that they offer strong, cross-dataset transference. Studying physical
patches would make the attack even more relevant to autonomous vehicles.

Bibliography

[1] K.-H. Chow, L. Liu, M. E. Gursoy, S. Truex, W. Wei and Y. Wu, ‘Understand-
ing object detection through an adversarial lens,’ in European Symposium
on Research in Computer Security, Springer, 2020, pp. 460–481.

[2] Y. LeCun, Y. Bengio and G. Hinton, ‘Deep learning,’ nature, vol. 521, no. 7553,
pp. 436–444, 2015.

[3] C. Szegedy, W. Zaremba, I. Sutskever, J. Bruna, D. Erhan, I. Goodfellow and
R. Fergus, Intriguing properties of neural networks, 2014. arXiv: 1312.6199
[cs.CV].

[4] N. Carlini and D. Wagner, Towards evaluating the robustness of neural net-
works, 2017. arXiv: 1608.04644 [cs.CR].

[5] Q. Zhang, Y. Zhao, Y. Wang, T. Baker, J. Zhang and J. Hu, ‘Towards cross-
task universal perturbation against black-box object detectors in autonom-
ous driving,’ English, Computer Networks, vol. 180, p. 1, Aug. 2020, Copy-
right - Copyright Elsevier Sequoia S.A. Oct 24, 2020; Last updated - 2021-
01-11. [Online]. Available: https://search.proquest.com/scholarly-
journals/towards- cross- task- universal- perturbation- against/
docview/2476554302/se-2?accountid=12870.

[6] Y. LeCun, B. E. Boser, J. S. Denker, D. Henderson, R. E. Howard, W. E.
Hubbard and L. D. Jackel, ‘Handwritten digit recognition with a back-
propagation network,’ in Advances in neural information processing systems,
1990, pp. 396–404.

[7] A. M. Staff, Adversarial robustness and real-time object detectors, 2020.

[8] W. Liu, D. Anguelov, D. Erhan, C. Szegedy, S. Reed, C.-Y. Fu and A. C.
Berg, ‘Ssd: Single shot multibox detector,’ Lecture Notes in Computer Science,
pp. 21–37, 2016, ISSN: 1611-3349. DOI: 10.1007/978-3-319-46448-0_2.
[Online]. Available: http://dx.doi.org/10.1007/978-3-319-46448-
0_2.

[9] J. Redmon and A. Farhadi, ‘Yolov3: An incremental improvement,’ arXiv,
2018.

[10] J. Redmon and A. Farhadi, Yolo9000: Better, faster, stronger, 2016. arXiv:
1612.08242 [cs.CV].

63

https://arxiv.org/abs/1312.6199
https://arxiv.org/abs/1312.6199
https://arxiv.org/abs/1608.04644
https://search.proquest.com/scholarly-journals/towards-cross-task-universal-perturbation-against/docview/2476554302/se-2?accountid=12870
https://search.proquest.com/scholarly-journals/towards-cross-task-universal-perturbation-against/docview/2476554302/se-2?accountid=12870
https://search.proquest.com/scholarly-journals/towards-cross-task-universal-perturbation-against/docview/2476554302/se-2?accountid=12870
https://doi.org/10.1007/978-3-319-46448-0_2
http://dx.doi.org/10.1007/978-3-319-46448-0_2
http://dx.doi.org/10.1007/978-3-319-46448-0_2
https://arxiv.org/abs/1612.08242

64 A. M. Staff: Cross-data Transference of Adversarial Attacks

[11] Y. Zhao, H. Zhu, R. Liang, Q. Shen, S. Zhang and K. Chen, Seeing isn’t
believing: Practical adversarial attack against object detectors, 2019. arXiv:
1812.10217 [cs.CV].

[12] I. J. Goodfellow, J. Shlens and C. Szegedy, Explaining and harnessing ad-
versarial examples, 2015. arXiv: 1412.6572 [stat.ML].

[13] L. Deng, ‘The mnist database of handwritten digit images for machine
learning research [best of the web],’ IEEE Signal Processing Magazine, vol. 29,
no. 6, pp. 141–142, 2012.

[14] S.-M. Moosavi-Dezfooli, A. Fawzi and P. Frossard, Deepfool: A simple and
accurate method to fool deep neural networks, 2016. arXiv: 1511.04599
[cs.LG].

[15] N. Papernot, P. McDaniel, X. Wu, S. Jha and A. Swami, Distillation as a de-
fense to adversarial perturbations against deep neural networks, 2016. arXiv:
1511.04508 [cs.CR].

[16] K.-H. Chow, L. Liu, M. Loper, J. Bae, M. Emre Gursoy, S. Truex, W. Wei and
Y. Wu, ‘Adversarial objectness gradient attacks in real-time object detection
systems,’ in IEEE International Conference on Trust, Privacy and Security in
Intelligent Systems, and Applications, IEEE, 2020, pp. 263–272.

[17] X. Wei, S. Liang, N. Chen and X. Cao, ‘Transferable adversarial attacks
for image and video object detection,’ in Proceedings of the Twenty-Eighth
International Joint Conference on Artificial Intelligence, IJCAI-19, Interna-
tional Joint Conferences on Artificial Intelligence Organization, Jul. 2019,
pp. 954–960. DOI: 10.24963/ijcai.2019/134. [Online]. Available: https:
//doi.org/10.24963/ijcai.2019/134.

[18] M. Everingham, L. Van Gool, C. K. I. Williams, J. Winn and A. Zisserman,
‘The pascal visual object classes (voc) challenge,’ International Journal of
Computer Vision, vol. 88, no. 2, pp. 303–338, Jun. 2010.

[19] T.-Y. Lin, M. Maire, S. Belongie, J. Hays, P. Perona, D. Ramanan, P. Dollár
and C. L. Zitnick, ‘Microsoft coco: Common objects in context,’ in European
conference on computer vision, Springer, 2014, pp. 740–755.

[20] H. Zhang and J. Wang, Towards adversarially robust object detection, 2019.
arXiv: 1907.10310 [cs.CV].

[21] H. Zhang, W. Zhou and H. Li, ‘Contextual adversarial attacks for object
detection,’ eng, in 2020 IEEE International Conference on Multimedia and
Expo (ICME), IEEE, 2020, pp. 1–6, ISBN: 1728113318.

[22] S. Chen, F. He, X. Huang and K. Zhang, Relevance attack on detectors, 2021.
arXiv: 2008.06822 [cs.CV].

https://arxiv.org/abs/1812.10217
https://arxiv.org/abs/1412.6572
https://arxiv.org/abs/1511.04599
https://arxiv.org/abs/1511.04599
https://arxiv.org/abs/1511.04508
https://doi.org/10.24963/ijcai.2019/134
https://doi.org/10.24963/ijcai.2019/134
https://doi.org/10.24963/ijcai.2019/134
https://arxiv.org/abs/1907.10310
https://arxiv.org/abs/2008.06822

Bibliography 65

[23] O. Ronneberger, P. Fischer and T. Brox, ‘U-net: Convolutional networks for
biomedical image segmentation,’ in Medical Image Computing and Computer-
Assisted Intervention – MICCAI 2015, N. Navab, J. Hornegger, W. M. Wells
and A. F. Frangi, Eds., Cham: Springer International Publishing, 2015, pp. 234–
241, ISBN: 978-3-319-24574-4.

[24] K. He, X. Zhang, S. Ren and J. Sun, ‘Deep residual learning for image recog-
nition,’ in 2016 IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), 2016, pp. 770–778. DOI: 10.1109/CVPR.2016.90.

[25] Y. Jia, Y. Lu, J. Shen, Q. A. Chen, Z. Zhong and T. Wei, Fooling detection
alone is not enough: First adversarial attack against multiple object tracking,
2019. arXiv: 1905.11026 [cs.CV].

[26] S. Ren, K. He, R. Girshick and J. Sun, ‘Faster r-cnn: Towards real-time object
detection with region proposal networks,’ in Advances in Neural Informa-
tion Processing Systems, C. Cortes, N. Lawrence, D. Lee, M. Sugiyama and
R. Garnett, Eds., vol. 28, Curran Associates, Inc., 2015. [Online]. Available:
https://proceedings.neurips.cc/paper/2015/file/14bfa6bb14875e45bba028a21ed38046-
Paper.pdf.

[27] O. M. Nezami, A. Chaturvedi, M. Dras and U. Garain, Pick-object-attack:
Type-specific adversarial attack for object detection, 2020. arXiv: 2006.03184
[cs.CV].

[28] Y. Park and M. Kang, Membership inference attacks against object detection
models, 2020. arXiv: 2001.04011 [cs.CV].

[29] J. Bao, Sparse adversarial attack to object detection, 2020. arXiv: 2012.13692
[cs.CV].

[30] X. Kuang, X. Gao, L. Wang, G. Zhao, L. Ke and Q. Zhang, ‘A discrete cosine
transform-based query efficient attack on black-box object detectors,’ eng,
Information sciences, vol. 546, pp. 596–607, 2021, ISSN: 0020-0255.

[31] Q. Liao, X. Wang, B. Kong, S. Lyu, Y. Yin, Q. Song and X. Wu, Category-wise
attack: Transferable adversarial examples for anchor free object detection,
2020. arXiv: 2003.04367 [cs.CV].

[32] M. Lee and Z. Kolter, On physical adversarial patches for object detection,
2019. arXiv: 1906.11897 [cs.CV].

[33] Y. Wang, K. Wang, Z. Zhu and F.-Y. Wang, ‘Adversarial attacks on faster r-cnn
object detector,’ Neurocomputing, vol. 382, pp. 87–95, 2020, ISSN: 0925-
2312. DOI: https://doi.org/10.1016/j.neucom.2019.11.051. [Online].
Available: https://www.sciencedirect.com/science/article/pii/
S0925231219316534.

[34] A. Madry, A. Makelov, L. Schmidt, D. Tsipras and A. Vladu, Towards deep
learning models resistant to adversarial attacks, 2019. arXiv: 1706.06083
[stat.ML].

https://doi.org/10.1109/CVPR.2016.90
https://arxiv.org/abs/1905.11026
https://proceedings.neurips.cc/paper/2015/file/14bfa6bb14875e45bba028a21ed38046-Paper.pdf
https://proceedings.neurips.cc/paper/2015/file/14bfa6bb14875e45bba028a21ed38046-Paper.pdf
https://arxiv.org/abs/2006.03184
https://arxiv.org/abs/2006.03184
https://arxiv.org/abs/2001.04011
https://arxiv.org/abs/2012.13692
https://arxiv.org/abs/2012.13692
https://arxiv.org/abs/2003.04367
https://arxiv.org/abs/1906.11897
https://doi.org/https://doi.org/10.1016/j.neucom.2019.11.051
https://www.sciencedirect.com/science/article/pii/S0925231219316534
https://www.sciencedirect.com/science/article/pii/S0925231219316534
https://arxiv.org/abs/1706.06083
https://arxiv.org/abs/1706.06083

66 A. M. Staff: Cross-data Transference of Adversarial Attacks

[35] Y. Wang, H. Lv, X. Kuang, G. Zhao, Y.-a. Tan, Q. Zhang and J. Hu, ‘To-
wards a physical-world adversarial patch for blinding object detection mod-
els,’ Information Sciences, 2020, ISSN: 0020-0255. DOI: https : / / doi .
org/10.1016/j.ins.2020.08.087. [Online]. Available: https://www.
sciencedirect.com/science/article/pii/S0020025520308586.

[36] Y. Zhang, F. Wang and W. Ruan, Fooling object detectors: Adversarial attacks
by half-neighbor masks, 2021. arXiv: 2101.00989 [cs.CV].

[37] T. Sato, J. Shen, N. Wang, Y. J. Jia, X. Lin and Q. A. Chen, Security of deep
learning based lane keeping system under physical-world adversarial attack,
2020. arXiv: 2003.01782 [cs.CR].

[38] K.-H. Chow, L. Liu, M. E. Gursoy, S. Truex, W. Wei and Y. Wu, Tog: Targeted
adversarial objectness gradient attacks on real-time object detection systems,
2020. arXiv: 2004.04320 [cs.LG].

[39] C. Xie, J. Wang, Z. Zhang, Y. Zhou, L. Xie and A. Yuille, ‘Adversarial ex-
amples for semantic segmentation and object detection,’ in Proceedings
of the IEEE International Conference on Computer Vision, 2017, pp. 1369–
1378.

[40] A. Bochkovskiy, C.-Y. Wang and H.-Y. M. Liao, Yolov4: Optimal speed and
accuracy of object detection, 2020. arXiv: 2004.10934 [cs.CV].

[41] T. Bontzorlos, Singapore maritime dataset frames ground truth generation
and statistics, 2019. [Online]. Available: https://github.com/tilemmpon/
Singapore - Maritime - Dataset - Frames - Ground - Truth - Generation -
and-Statistics.

[42] H. G. Norbye, Real-time sensor fusion for the revolt model-scale vessel, 2019.

[43] S. V. Grini, Systematic training and testing of deep learning-based detection
methods for vessels in camera images, 2019.

[44] D. K. Prasad, D. Rajan, L. Rachmawati, E. Rajabaly and C. Quek, Video
processing from electro-optical sensors for object detection and tracking in
maritime environment: A survey, 2016. arXiv: 1611.05842 [cs.CV].

[45] Tzutalin, Labelimg, 2015. [Online]. Available: https://github.com/tzutalin/
labelImg.

[46] M. Själander, M. Jahre, G. Tufte and N. Reissmann, EPIC: An energy-efficient,
high-performance GPGPU computing research infrastructure, 2019. arXiv:
1912.05848 [cs.DC].

[47] R. Feinman, R. R. Curtin, S. Shintre and A. B. Gardner, Detecting adversarial
samples from artifacts, 2017. arXiv: 1703.00410 [stat.ML].

[48] A. Paudice, L. Muñoz-González, A. Gyorgy and E. C. Lupu, Detection of ad-
versarial training examples in poisoning attacks through anomaly detection,
2018. arXiv: 1802.03041 [stat.ML].

https://doi.org/https://doi.org/10.1016/j.ins.2020.08.087
https://doi.org/https://doi.org/10.1016/j.ins.2020.08.087
https://www.sciencedirect.com/science/article/pii/S0020025520308586
https://www.sciencedirect.com/science/article/pii/S0020025520308586
https://arxiv.org/abs/2101.00989
https://arxiv.org/abs/2003.01782
https://arxiv.org/abs/2004.04320
https://arxiv.org/abs/2004.10934
https://github.com/tilemmpon/Singapore-Maritime-Dataset-Frames-Ground-Truth-Generation-and-Statistics
https://github.com/tilemmpon/Singapore-Maritime-Dataset-Frames-Ground-Truth-Generation-and-Statistics
https://github.com/tilemmpon/Singapore-Maritime-Dataset-Frames-Ground-Truth-Generation-and-Statistics
https://arxiv.org/abs/1611.05842
https://github.com/tzutalin/labelImg
https://github.com/tzutalin/labelImg
https://arxiv.org/abs/1912.05848
https://arxiv.org/abs/1703.00410
https://arxiv.org/abs/1802.03041

N
TN

U
N

or
w

eg
ia

n
U

ni
ve

rs
ity

 o
f S

ci
en

ce
 a

nd
 T

ec
hn

ol
og

y
Fa

cu
lty

 o
f I

nf
or

m
at

io
n

Te
ch

no
lo

gy
 a

nd
 E

le
ct

ric
al

 E
ng

in
ee

rin
g

D
ep

ar
tm

en
t o

f C
om

pu
te

r S
ci

en
ce

Alexander Michael Staff

An Empirical Study on Cross-data
Transference of Adversarial Attacks
on Object Detectors

Master’s thesis in Computer Science
Supervisor: Jingyue Li
Co-supervisor: Elizabeth Traiger

June 2021

M
as

te
r’s

 th
es

is

	Abstract
	Sammendrag
	Preface
	Contents
	Figures
	Tables
	Code Listings
	Acronyms
	Glossary
	Introduction
	Background
	Convolutional Neural Networks
	Object Detectors
	Backbone Network
	Non-max Suppression
	Anchor Boxes

	YOLOv3
	Adversarial Examples
	Fast Gradient Sign Method
	Generalisation of Adversarial Examples
	Beyond FGSM
	TOG
	Transfer Attacks

	Performance Metrics

	Related Work
	Towards Adversarially Robust Object Detection
	Contextual Adversarial Attacks For Object Detection
	Relevance Attack on Detectors
	Cross-task Universal Perturbation
	Multiple Object Tracking Attack
	Attacks Analysis
	More details on TOG Attacks

	Method
	Motivation
	Research Questions
	Research Methodology
	Research Strategy
	Data Analysis
	Research Paradigm

	Implementation
	Attack Scenario
	RQ1
	Object Detection
	Generating Adversarial Samples
	Measuring Performance
	Data Sources
	Preparing Datasets to Train the Target Model
	Preparing Datasets to Train the Attackers Model
	Training Configuration for the Target Model
	Training Configuration for the Attackers Model

	RQ2
	Hardware
	Local
	Colaboratory
	NTNU IDUN Computing Cluster

	Results
	RQ1: Is It Possible To Generate Adversarial Samples With One Model and Attack a Model Trained on Different Data?
	Dataset Composition
	Attack Performance
	Attack Performance Compared to Epsilon

	RQ2: How Will Datasets Sharing Images Affect the Transference of the Attack?
	Dataset Intersection
	Attack Performance by Intersecting Models
	Different Source and Target Resolution
	Transfer Attack Performance Compared to Epsilon

	Discussion
	RQ1
	Comparison to Related Work
	Implications to Academia
	Implications to Industry

	RQ2
	Comparison to Related Work
	Implications to Academia
	Implications to Industry

	Threats to Validity

	Conclusion
	Future Work

	Bibliography

