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Abstract: Reuse, refurbishing, and recycling are the most sustainable options for handling waste
materials. However, for municipal solid waste (MSW) that is highly heterogenic, crude, contaminated,
and decrepit, thermal conversion in waste-to-energy (WtE) plants is an option. In such plants, the
fuel quality of MSW is difficult to predict and the substantial changes expected are challenging for
incineration stability. Development of new online sensor technologies for monitoring waste properties
prior to incineration is therefore needed. Sensors may contribute to increase WtE process stability,
as well as reducing the probability of incineration stops or emissions exceeding legal limits. In this
work, the operating principles of potential sensor systems for waste monitoring are categorized and
assessed to be implemented for providing parameters for process control or indicators for process
alarms in the waste incineration process. For transmissive settings, the use of inductance and hard
X-ray sensors are most promising, whereas for reflective settings, utilization of photonic, inductive,
soft and hard X-ray, as well as low-frequency radiowave sensors, are most promising. The analytic
capacity of single-point measurements with inductance, radiowave, photonic, or X-ray sensors are
limited to providing indicators for process alarms, whereas spectral imaging with X-ray or photonic
techniques are feasible for providing parameters for both process control and indicators for process
alarms. The results obtained in this sensor assessment will be important as a first step in guiding the
evolution of monitoring waste properties in the WtE industry to increase repeatability, performance
of energy production, and manual labor safety in controlling the waste incineration.

Keywords: waste-to-energy; waste characterization; sensor technologies; online monitoring;
feasibility studies

1. Introduction

Municipal solid waste (MSW) that is highly heterogenic, crude, contaminated, and
decrepit cannot be handled for reuse, refurbishing, or recycling. Such MSW materials are
usually landfilled or incinerated at waste-to-energy (WtE) plants. In view of a sustainable
future, landfills should only be used for pretreated waste. Thus, for waste streams for
which material recovery is not applicable, energy recovery using WtE plants is the path to
follow [1–3]. Due to variation in feedstock properties, WtE plants are today operated with
significant process safety margins, resulting in limited energy efficiency. Thus, to increase
the competitiveness of the WtE sector, optimization of the incineration process is needed.
To this effect, significant efforts have been turned towards sensors that could provide
supplementary information regarding the physical and chemical properties of the fuel
before it enters the combustion process. Information from such sensors, if integrated with
the process control system, could be used to automatically adjust the process to increase
stability of the energy production and avoid emissions exceeding legal limits or excessive
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fouling and corrosion. As a minimum, the process must be adapted to the strong variations
in the specific heat content and humidity of the waste.

While the use of sensor technologies to monitor and control the incineration process
is well-established in all WtE plants, no plants utilize sensors to provide information
regarding the properties of the waste fed into the incinerator; rather, various strategies for
bunker management and waste mixing are implemented to improve the process control
performance. However, these strategies have limitations due the handling of the large and
bulky waste volumes on the WtE facility resulting in low mixing frequency. On the other
hand, sensor technologies are routinely used for waste handling in plants for automated
sorting and recovery of recyclable materials. Recently, several reviews have addressed this
approach [4–8]. Unfortunately, the results from these studies are not transferable to the
challenge we address in this paper. First of all, a waste sorting plant entails a completely
different organization of waste handling compared with a conventional WtE plant. The
waste handling process strongly impacts what kind of sensor technologies are applicable
as well as how the sensor systems are implemented. Whereas in a waste sorting plant
the sensors may interact with smaller quantities of waste in a serial manner, the waste
handling in a WtE plant requires monitoring in bulk quantities. Second, the type as well
as the quality of information required is very different in a waste sorting plant and a WtE
plant. The process controller in a WtE plant needs both process-relevant parameters in
addition to a process alarm parameter (e.g., to warn about potential dangerous waste
compositions). Therefore, studies of sensor technologies for online monitoring of waste
entering the incineration process must start with a new look at both the applicable sensor
technologies as well as the applicable sensor system configurations. We are not aware of
any published studies addressing the sensor needs and possibilities for this application.
We note that Hitachi have started to address this need, as described in a recent paper [9].

Our objective with this first paper is to give the first input to this evolving need in the
WtE industry. The main contribution is the comprehensive sensor technology assessment,
including sensor technologies as diverse as sensors based on low-frequency electronic
sensors, such as resistive and capacitive sensors, to sensors based on high-energy particles
propagation in waste materials. The working principles of such sensors are very different
from one sensor system to another. The great variety of sensor solutions available that
could provide parameters for determining relevant properties, or fuel quality, of the WtE
feedstock are exemplified from previous work in [4,10–13]. Thus, identification of the most
appropriate sensor systems for fuel quality monitoring in WtE plants requires pairing
the various working principles with implementation constraints and abilities for specific
monitoring applications. The understanding of working principles will impose limitations
and elucidate the usability of the sensor technologies for waste characterization. With
holistic properties of the available waste monitoring systems established, it is possible to
detail the sensor techniques further to provide feedforward parameters for the WtE process,
such as for process control or for process alarm indicators. A first step in achieving waste
classification on general waste properties prior to incineration on a WtE plant has been
shown in [14].

The sensor assessment and feasibility studies in this paper are organized as follows.
The waste fuel properties, possible problematic waste, and its impact on the incineration
process are presented in Section 2. The literature review on the principles of the waste
sensor systems, considering the interaction of the generated sensor input with matter,
as well as the physical variables and constants affecting the detected signal output are
presented in Section 3. In Section 4, the methods used for the feasibility assessment and
assumption in moisture measurement computations are described. Next, in Section 5, the
monitoring feasibility is assessed based on the sensor principles presented in Section 3.
Finally, the findings on sensor implementation for transmissive or reflective settings for
process control or alarms are summarized in Section 6.
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2. Waste Properties and Impact on Incineration
2.1. Heating Value, Combustion Rate, and Problematic Materials

The combination of different waste materials contains desired or undesired features
as fuel. The fuel quality of waste encompasses features such as total energy content,
combustibility, and to which degree that it does not cause problems for the waste-to-
energy process. In this section, the fuel quality is described in terms of the heating value,
combustion rate, and problematic content of waste. This is further used for the assessment
of sensor technology options in Section 3.

2.1.1. Heating Value

MSW as combustible materials are generally characterized experimentally by bomb
calorimeter or predicted by models created from data composed of physical compositions
and proximate or elemental analysis of MSW [15–18]. The chemical entities in waste repre-
sent the local properties, whereas the heat value or combustion rate of the waste represents
the global properties. The global properties can be estimated using a homogenization
analysis, where the macro properties of a heterogeneous medium are studied by averaging
over its local properties [19,20]. The oxidation of carbon, nitrogen, hydrogen, sulfur, and
other elements in waste are local energy conversions, whereas the total combustible content
is the global energy conversion, i.e., the sum over the averaged local energy conversions.

The energy content of MSW can be described as the lower heating value (LHV),
expressed as the higher heating value of the ash and moisture free waste—also called
HHVawf—minus the latent heat of evaporation of moisture

LHVaw = HHVawf(1−Mw)− LvMw (1)

where Mw is the fractional moisture content and Lv is the latent heat of the vaporization
of water [18]. Equation (1) is based on homogenizing waste compositions into three
components: combustible, moisture, and ash. The LHV estimations can be used for
assessing the self-sustained combustibility. The self-sustained combustibility can also be
assessed by using graphical plots of the ash, moisture, and combustible content in the
Tanner diagram [21]. Moisture content variations in waste dominate over the variations in
ash and combustible content in increasing or decreasing the LHV. Therefore, moisture is an
important parameter for assessing the heating value of MSW. The LHV of MSW can also
be assessed by characterizing specific waste fractions with corresponding LHVs [22–26].
LHV estimation based on waste fraction compositions requires a preanalysis of the global
properties (moisture, ash, combustibles) of waste components such as food, organic waste,
plastic, textiles, paper and cardboard, leather, rubber, wood, metals, glass inserts, and fines.

2.1.2. Combustion Rate

Another important factor for the incineration processes is the local shape and size
properties of the waste compositions. The surface-area-to-volume ratio of waste is a
local parameter that influences the combustion rate of materials [27]. Local properties of
waste features such as pore, channel, and particle size can be homogenized into a global
parameter such as air permeability to estimate the combustion rate. Air permeability
depends on moisture content, hydrophilicity, compressive modulus, and compressive
strength of waste materials and can be used for estimating combustion rate for common
waste fractions [28–30].

2.1.3. Problematic Materials

Waste materials that result in dangerous flue gases containing heavy metals; increased
emissions of CO, NOx, or SOx, acid gas, and gas particulates; or degradation of the WtE
facility, such as corrosion of the grating, are problematic for the energy recovery process [31,32].
Some waste materials can also pose health and safety risks at the WtE plant [33]. Local
properties of problematic waste include chemical entities such as halogenated solids or liquids,
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heavy metals, high concentration of polysaccharides, fatty or amino acids, flame retardants,
water, and ash minerals [31,32]. Global properties of problematic waste consist of oversized
objects, compressed canisters or gas cylinders, high moisture content, high ash content, low
combustible content, and low combustion rate [15,31–33]. The characterization of problematic
materials in MSW requires assessment of both the local and global properties.

2.2. Impact of Heating Value and Combustion Rate of Waste on the Incineration Process

The incineration processes are generally controlled based on manipulating the vari-
ables of feeding rate, primary and secondary air flow, and grate speed transporting waste
through the different drying, pyrolysis gasification, oxidation, and burnout zones [15]. A
proportional–integral–derivative (PID) model is often used as a control strategy where the
manipulated variables are coupled in loop with the measured steam and oxygen flow of
the system. A schematic of a PID controller is shown in Figure 1.

Figure 1. Schematic of a PID controller for waste incineration (adapted from [34]).

In Figure 1, rst and rO2 are the desired set-points for steam and oxygen flow, respec-
tively, and rA/B is the desired set-point of the ratio between primary air flow FaI and
secondary air flow FaI I . With an increase in LHV, the steam flow Fst will increase due
to higher flue gas temperature heating up the boiler; meanwhile, oxygen flow FO2 will
decrease due to higher demand for oxygen in furnace. The PID-controller response to the
increase in steam flow and decrease in oxygen flow is a decrease in primary air flow, an
increase in secondary air flow, and an increase in feeding rate Fw and grate speed vgrate.
As a consequence of the increase in feed rate and grating speed, the PID controller will
further increase the steam flow and reduce the oxygen flow. The coupling between steam
production increase and oxygen reduction with the increase in feed rate and grating speed
are compensated by the primary airflow controller reducing its output and the secondary
airflow controller increasing its outputs. Similarly, with a decrease in LHV, the steam
flow decreases and oxygen flow increases. The PID-controller will then increase primary
oxygen flow, reduce the secondary oxygen flow and decrease feeding rate and grating
speed. The decrease in feeding rate and grating speed will further result in a steam flow
decrease and oxygen increase. The primary and secondary airflow controllers will increase
and decrease their outputs, respectively, to compensate for the coupled process between
steam production and oxygen flow with feeding rate and grating speed [35,36]. In addi-
tion, large changes in combustion rate will enhance the effect of high or low LHV on the
PID-controller. Large variations in LHV and combustion rate outside the PID controller’s
operating boundaries would result in an unstable incineration and require a more intense
supervision of the process by the plant operators.

3. Literature Review: Sensor Technologies for Waste Monitoring

A sensor is a device composed of a transducer and a recognition element. The sensor
recognizes parameters such as force, temperature, pressure, ionic strength, or pH, which
are converted into a signal by a transducer that is either electrical, optical, or mechanical.
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Different sensor techniques can be classified according to operation in contact, in proximity,
or in remote settings. In a WtE plant, sensor systems can potentially measure parameters
used for estimating fuel quality values that, in turn, can be used as feedforward for process
control or implemented as indicators for process alarms. Fuel quality values can contain
information about problematic waste material contents, the lower heating value, or the
combustibility. In operation, the information from sensor systems can help to remove
problematic waste materials, perform specific mixing of waste materials to improve the
homogenization, select specific waste to the incinerator, or used for control incineration
parameters. In the following sections, an overview of sensor categories most relevant
for waste monitoring and their fundamental operating principles are presented. The
fundamental operating principles of the sensor techniques are needed to evaluate their
utilization potential for monitoring applications relevant for identifying and quantifying
fuel quality parameters of MSW to increase the WtE performance.

3.1. Photonic Sensors

Photonic sensors operate in the ultraviolet (UV) from 10 nm to 400 nm, visible (VIS)
from 400 nm to 700 nm, or infrared (IR) from 700 nm to 1 mm wavelength range. The IR
domain is usually divided into subregions; near-infrared (NIR) from 700 nm to 1400 nm,
short-wavelength infrared (SWIR) from 1400 nm to 3000 nm, mid-wavelength infrared
(MWIR) from 3000 nm to 8000 nm, long-wavelength infrared (LWIR) from 8000 nm to 15 µm,
and far-infrared (FIR) from 15 µm to 1 mm wavelength. The FIR domain is often defined
in the frequency domain instead of the wavelength domain, i.e., from 300 GHz to 20 THz.
The amplitude, wavelength, phase, and polarization of the electromagnetic (EM) wave
can be used for sensing. For common applications such as imaging and spectroscopy, the
amplitude and wavelength parameters are used. EM waves interact with materials through
an energy exchange with its electronic or molecular vibrational and rotational transitions.
The different types of energy exchange events result in reflection, diffraction, scattering, and
absorption in materials. In the IR domain, the energy of photons corresponds mostly to the
vibrational and rotational energy transitions, whereas for absorption in the UV–VIS domain,
the energy of the photons corresponds mostly to electron energy transitions [37]. Since
the photon energy of UV–VIS and IR corresponds to different types of energy transitions,
the use of different wavelength domains in sensor techniques provides different type of
information about specific materials. By heating and atomizing materials, the electronic
transition energy itself can also be used for detecting the spectral signatures of emitted light
from elemental compositions. A highly energetic beam such as short laser pulses incident
on materials can heat up and atomize the sample such that a localized plasma plume is
created. The localized plasma plume consists of electronically excited atoms and ions that
will decay back to the ground state after the duration of the laser pulse. The decay in
atoms and ions from the plasma-induced excited state to ground state emits characteristics
wavelengths of light. The characteristic wavelength of the light have a photon energy equal
to the energy difference between the higher and lower electronic state that is unique to each
element heated and atomized by the short laser pulse [38].

For reflection and transmission in bulk materials, the light–matter interaction can be
described by the refractive index for different wavelengths. For an isotropic medium, the
complex refractive index can be expressed as

ñ(λ0) = n(λ0)− jκ(λ0) (2)

n(λ0) and κ(λ0) can be measured experimentally and used to estimate phase velocity,
attenuation (κ < 0), or gain (κ > 0) of light propagating in a medium [37]. For normal
incidence, the reflectance R(λ0) at an optically flat interface between two materials (material
1 and 2) is given by the Fresnel equations,

R(λ0) =

∣∣∣∣ ñ1(λ0)− ñ2(λ0)

ñ1(λ0) + ñ2(λ0)

∣∣∣∣2 (3)
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where ñ1(λ0) and ñ2(λ0) are the complex refractive index for mediums 1 and 2, respec-
tively [37]. The transmittance T(λ0, d) of a plane EM wave traveling through a medium
with depth d is given as

T(λ0, d) = |exp (−jñ(λ0)k0d)|2 (4)

where k0 is the vacuum wavenumber [37].
Particles or chemical entities in a (lossless or lossy) homogeneous medium cause addi-

tional absorption and scattering. The resulting transmittance for isotropic heterogeneous
mediums can be described by Lambert–Beer’s law,

T(σext, d) = exp (−σextρd) (5a)

σext(λ0) = σsca(λ0) + σabs(λ0) (5b)

where σext(λ0) is the extinction coefficient, σsca(λ0) is the scattering coefficient, σabs(λ0)
is the absorption coefficient, and ρ is the number density of particles or chemical entities.
For chemical entities, the term A = −σext(λ0)ρd can be expressed in terms of molar
absorptivity εa and concentration c as A = −εacd [37]. For spherical particles, the scattering
and extinction coefficient are given by the Mie Theory, whereas for spheroidal particles, the
coefficients are given by Gans theory, a generalization of the Mie theory [39–41].

In the UV–LWIR wavelength region, the penetration depths are short in most solid
materials such that only reflectance is of interest [10,42–46]. For LWIR–FIR, the penetration
depth is longer in most materials and both reflectance and transmittance measurements can
be performed. The exception is water and metals where the penetration depth is short [47].
Reflection and transmission of light in materials can be specular or diffusive. Diffusive
reflection and transmission are a result of surface roughness or multiple light scattering
within the material.

The identification, or characterization, of specific materials can be determined with
single-point spectroscopy measurements [42–45]. Spectral imaging, either multi- or hyper-
spectral, for the UV–SWIR wavelength domain can also be used [10,46]. The differentiation
and detection of specific materials is possible due to the materials exhibiting different
complex refractive indices and scattering and absorption cross-sections. Imaging in the
MWIR–LWIR wavelength domain is limited to detection of thermal radiation. Different
materials, at the same temperature, emit different thermal radiation intensities that can be
differentiated using MWIR–LWIR imaging [48]. MWIR–LWIR imaging can be performed
with or without an illuminating source. Without an illuminating source, elevated sample
temperatures are often necessary for material characterization. For FIR, the light interac-
tion with materials’ compositions are dominated by high reflection from metals and high
absorption in water, thus enabling specific detection of these respective components. For
other materials, the light–matter interactions in this wavelength range will normally be
dominated by scattering effects of material particles with dimensions on the order of the
wavelengths [47].

The photonic sensors are presented in Sections 3.1.1–3.1.3, where we focus on general
applications of photonic devices for MSW characterization limited to use of external light
sources and detectors without contact with the samples and without pretreatment of the
samples. This limits the relevant photonic sensors to single-point spectroscopy techniques
in the UV–LWIR wavelength domain, to multi- or hyperspectral imaging in the UV–SWIR
wavelength domain, and to THz spectroscopy in single-point or imaging measurements.

3.1.1. Single-Point Measurements in the UV–LWIR Wavelength Domain

Single-point MSW characterization with UV–LWIR spectroscopy uses either the re-
flected or transmitted light spectrum averaged over an area or volume of the sample within
the acceptance cone of the optical system [43,49]. For the NIR–LWIR wavelength domain,
the detector and the light source consist of semiconductor alloy systems (either II–VI-
or III–V-based alloys) and are mostly used for specialty applications such as measuring
specific gas molecules or remote monitoring of agriculture [37]. For NIR–SWIR, many
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components are used for telecommunication applications and are available at low costs.
For SWIR–LWIR, there are no high-volume applications and the light sources and detectors
used are often expensive. For the UV–VIS wavelength domain, the detector is silicon-based,
such as in charged couple devices (CCD) or complementary metal-oxide semiconductors
(CMOS), and are used in common devices such as cameras on smartphones or digital
single-lens reflex cameras. The light source in UV–VIS consists either of incandescent light
or semiconductors based diodes or lasers that are designed for emitting certain wavelengths
with a limited bandwidth and are used in most infrastructure light settings. The availability
of light sources and detectors used in the UV–SWIR wavelength domain result in low
manufacturing costs for the sensors. Light spectrum measurements can be performed
either by tuning the wavelength of the light source or by using a broadband light source
combined with a dispersive optical element with scanning slits behind the light source or
in front of the detector. Instead of scanning slits, an image sensor can be used where each
pixel measures photon count for each wavelength dispersed by an optical component [37].

Single-point waste material monitoring with UV–LWIR spectroscopy sensors are
mostly based on either laser-induced breakdown spectroscopy (LIBS) or absorbance spec-
troscopy. With LIBS, a highly energetic light beam is focused on the sample to generate
plasma and ionized matter that excites electronic transitions and spectral signatures of
chemical compositions in a solid, liquid, or gas state. The energetic light beam is created by
using pulsed light. The detection of emitted wavelengths from the sample are normally in
the UV–NIR range [38]. Typical waste materials detected with LIBS are halogenated plastic
or polymers [42]; metal scraps such as Fe, Cr, Ni, Mn, Mo, Cu, Si [50]; and industrial plastics
such as polyethylene terephthalate (PET), high-density polyethylene (HDPE), polyvinyl
chloride (PVC), light-density polyethylene (LDPE), polypropylene (PP), and polystyrene
(PS) [51]. With absorbance spectroscopy, a light beam is focused on the sample and the
transmitted or reflected light is measured relative to the incoming light intensity. Specific
light wavelengths with different energies will correspond to specific energy transitions
and result in characteristic absorbance dips in the transmittance or reflectance spectra [52].
For MSW monitoring, absorbance spectroscopy is mostly performed in the NIR and less
in the SWIR–LWIR and VIS wavelength domain. For NIR, waste materials detected by
multiple studies are PET and PVC [49]; PET, HDPE, PVC, PP, and PS [43]; carbohydrate,
nitrogen, and lipids [53]; organic waste [54,55]; and oil-contaminated cardboards [56]. For
SWIR–LWIR, industrial plastic waste can be detected such as PET, polyethylene (PE), PP,
PS, polylactic acid (PLA), HDPE, and LDPE [44]. For VIS, PP resins have been detected
based on color measurements [57].

3.1.2. Imaging in the UV–SWIR Wavelength Domain

For MSW characterization with UV–SWIR imaging, the reflected light from a material
is spectrally and spatially resolved. Each pixel in the image contains information about
photon intensity for multiple wavelengths [10,58]. Due to the vast amount of information
obtained with spectral imaging, this technique can be effectively used with supervised or
unsupervised machine learning methods for classification and linear regression analysis to
identify or quantify specific materials [59,60]. Image sensors for the UV–SWIR wavelength
domain are based on detectors mentioned in Section 3.1.1. To obtain spectral information,
there are three methods commonly used: mosaic color-filter adhered on image sensors,
color-filter wheel in front of the image sensor, and the push-broom scanner in front of the
image sensor [61,62].

Waste monitoring with UV–SWIR imaging techniques has mainly been focused on
hyperspectral (20–200 wavelength bands), multispectral (3–20 wavelength bands), and RGB
(3 wavelength bands) or monochrome cameras. RGB and monochrome camera have also
been used for 3D imaging, RGB color imaging, or for human intervened image analysis for
recognizing different type of fractions in MSW. With monochrome 3D imaging, the shape
and volume of waste can be estimated [63]; with RGB color 3D imaging, particles, plastic,
and metals can be detected [64]; with RGB color camera with human intervened imaging
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analysis, paper, card plastic, film plastic, dense plastic, wood, glass, organics, metals
textile, waste electrical and electronic equipment (WEEE), and inerts can be identified and
quantified [24,25]. Hyperspectral and multispectral imaging of MSW are used over the
whole UV–SWIR wavelength domain. Considering manufacturing cost, the imaging in the
UV–NIR band uses detectors at lower costs compared with detectors used for imaging in
the NIR–SWIR band. However, spectral imaging in the NIR–SWIR band results in higher
specificity in detecting materials compared with the UV–NIR, due to the overtones and
combination tones found in this spectral region.

UV–VIS–NIR-domain-based hyperspectral camera can detect waste materials such as
poly(methyl methacrylate) (PMMA), acrylonitrile butadiene styrene (ABS), polycarbonate
(PC), PVC, rubber, PE, PP, and particles [65]; polyefins, wood, foam, and aluminum [46]; or
biosolids [10]. In the VIS–NIR, hyperspectral techniques have been used for identifying
fine particles, electronic waste, and components such as CuZn, Fe, Cu, Al, and Ni [66]. For
hyperspectral imaging in the NIR–SWIR domain, it is able to detect plastic and nonplastic
waste [67,68]; moisture [58]; and raw cardboard, colored cardboard, newspaper, and printed
paper [69]. The identification of waste classes for general properties of waste has also been
demonstrated on a WtE plant using multispectral imaging in VIS–NIR with deep learning
methods [14].

3.1.3. Single Point and Imaging with THz Techniques

THz sensor system architectures can be configured for spectroscopy measurements
for single-point detection or for imaging. Measurements can be performed in the frequency
domain or in the time domain. For the frequency domain, measurement of the reflected or
transmitted light intensities over the sample result in contrast differences related to certain
materials such as metal or water. In the time domain, THz pulses are used. The reflected
or transmitted pulse amplitude and phase are measured as a function of time, followed
by a fast Fourier transformation to transform the amplitude–time measurements to the
frequency domain.

MSW characterization using THz is focused on moisture content detection in solid
materials. Applications also include nondestructive testing in the print industry, building
materials, biomass, plant cultivation, soil monitoring, or monitoring of oil–gas reservoirs.
For the frequency-domain, intensity measurements of moisture content in wood [70,71],
biomass [11], concrete [70,72], and paper [45] have been performed, whereas for THz imaging,
moisture content in leaf [73], soil [74], wood [71], and biomass [11] have been measured. THz
time-domain spectroscopy measurements have been performed to detect moisture in rapeseed
leaves [75], paper [76], polyamide and wood plastic composites [77], food wafers [78], and
active carbon pores [79]. For THz imaging with time domain spectroscopy, moisture content
in paper [76] and polyamide and wood plastic components [77] have been measured.

3.2. Radiowave Sensors

Radiowave sensors use frequencies lower than the FIR frequencies used for the pho-
tonic sensors. Thus, the radiowave domain starts at 300 GHz and goes as low as 3 kHz.
Generation and detection of radiowaves are performed using antennas with a transmitter
or a receiver [80]. Sources used include FET, Gunn, or IMPATT diodes based on solid-state
devices for low power, or a magnetron based on EM-controlled motion of electrons in
vacuum [81] for high power. To obtain optimum power transfer between the source or de-
tector and free space, impedance matching is needed using components such as feed-horns.
The horn-antenna provides a gradual transition structure to match the impedance of the
microwave source or the detector to the impedance of free space as well as directing or
collecting the radiation [82]. Radiowave interaction with materials can be described by the
complex refractive index in (2), as in the photonic domain, Fresnel equation in (3), wave
propagation in (4), and Lambert–Beer law in (5a). For mediums with magnetic permeability
included, the radiowave transmission can be attenuated, but this effect is not included in
the expressions used.
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The radiowave–matter interactions are dominated by water absorption and metal
reflection, as for light in the FIR wavelength domain, due to long wavelengths with
photon energies lower than most molecular energy transitions in materials. This results
in high transmittance of radiowaves in most materials except water and metals. The
high attenuation in water is due to excitation of rotational energy transitions of the water
molecules. The high reflection in metal is a result of the strong interplay between the EM
wave and the high density of the electrons in metals. For other materials, interactions
between EM wave and electrons are weaker and lead to low reflections [83]. Radiowave
reflectance or transmittance measurements can be used for detecting moisture or metal
content in materials. These measurements are often conducted as single-point spectroscopic
measurements. Radiowave imaging can also be performed, but the images obtained will
have a low resolution due to the long wavelengths used in this domain.

Radiowave sensors related to characterizing MSW properties are mostly based on
permittivity measurements [84] or on open-ended coaxial line probes (OECP) measuring
broadband dielectric properties [85]. For microwave techniques, not used in contact with
the sample, the transmittance measurements can be performed for frequencies between
2 GHz and 135 GHz. Either moisture content or dielectric properties can be measured in
various materials. Dielectric properties have been measured on granular matter such as
wheat, corn, and soybean [86] or biodegradable waste [87]. Moisture content has been mea-
sured in granular or particulate materials [88], pellet biomass [89], or mixed MSW [26]. The
OECP techniques must be performed in proximity to the sample and can obtain dielectric
measurements for frequencies between 30Hz and 15 GHz. Dielectric properties have been
measured for general material types [90] and heterogenic and dispersive clay materials [91].
Moisture content has also been measured with OECP techniques for sawdust [92].

3.3. Electric and Magnetic Sensors

Electric or magnetic sensors are electronic devices that can be used for measuring a
physical quantity, e.g., pressure, strain, compression, temperature, and magnetic or electric
fields [93]. This section mainly focuses on the use of capacitance, resistivity, time-domain
reflectrometry (TDR), and inductance to detect moisture or metal in MSW.

Capacitance sensors are based on detecting the electric charge of a system relative to
the corresponding difference in electrical potential. Capacitance can be described as

C =
Q
|∆V| (6)

where Q is the amount of charge stored in a capacitor and |∆V| is the potential difference
between the conductors [93]. Capacitance sensors can be based on a parallel-plate capacitor
consisting of two parallel plates with area A separated by a distance d. With a dielectric
material between the plates, the dielectric permittivity is given by ε = εrε0, where εr is the
relative permittivity. Gauss law can be used with (6) to find the electric field of the charge
distributions and the capacitance for the parallel-plate described as [93]

C =
εA
d

(7)

The dielectric can change as a function of a change in moisture in materials. Increasing
water content increases ε, which leads to an increase in capacitance. The capacitance can
also increase due to an increase in metal content. For increasing metal content, the dielectric
medium will, after a threshold value, become conductive and short-circuit the capacitor.
As seen from (7), capacitance is also inversely proportional to the distance, which limits
the capacitive sensor to operate in proximity to the sample. The moisture content of waste
has been estimated in proximity to the sample measuring the complex impedance and
capacitance [94].
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Resistivity sensors are based on detecting the change in current through a conducting
sample as a function of change in the resistivity of a material due to changes in moisture.
Resistance of a conductor is described as

r =
ρl
A

(8)

where ρ is the resistivity, l is the conductor length, and A is the cross-sectional area of the
conductor [93]. The most conventional method to perform resistivity monitoring is by
inserting two or more electrodes in a sample to measure the resistivity as a function of
material composition. Increasing water content in materials decreases the resistivity, and
the resistance is measured from the relation in (8). Resistivity detection is a contact method
since electrode probes are required to be inserted into the sample material to monitor
resistivity. By using a multielectrode principle for electrical resistivity tomography, the
moisture content has been detected in soil in field experiments [95]. For MSW, moisture
content has been estimated by performing resistive measurements using two electrodes in
a granular matrix [96].

TDR sensors are based on transmitting a pulse along conductors while measuring
the reflection as a function of the impedance differences in sample materials. Thus, TDR
sensors are similar to resistivity sensors as they require insertion of conductors to perform
resistance or impedance measurements and similar to radar or OECP since they perform
reflection measurements from the EM pulses transmitted along the conductors. The travel
time for the pulse to propagate the length of the conductors and back is a function of the
dielectric permittivity of the sample material and can be described as

t =
√

ε2L
c

(9)

where t is the travel time of pulse, L is the length of the conducting probes, ε is the effective
dielectric permittivity of the sample, and c is the speed of light [97]. For materials with
an increase in moisture content, the dielectric permittivity will increase and result in
a larger travel time of the pulse propagating along the conducting probes. The use of
wave propagation along a three-rod probe has been used for estimating moisture content,
metal, or salts in agri-food materials [98] or moisture content and density in unbound road
materials [99] from electrical permittivity measurements.

Inductive sensors are based on generating and detecting magnetic flux by using
inductive coils. The sample can be considered as a slab where a sender is located on one
side and a receiver located on one of the sides. The sender or transceiver coil is used for
projecting a magnetic flux onto the sample while a receiver coil is used for measuring the
magnetic flux generated from the sample. The magnetic flux from the sample is a result of
the eddy current induced by the incident magnetic flux. The magnetic flux density B is a
function of the magnetic field strength H and is used for finding the magnetic flux φ by
integrating over the enclosed surface area

φ =
∫

S
B · dA (10a)

B = Bi + Be (10b)

where S is the enclosed surface area, A is the area of the magnetic flux incident on sample,
Bi is the imposed magnetic flux density on the sample, and Be is the induced magnetic flux
density of the eddy field in the sample [94,100]. By using Maxwell equations, the eddy
current created by the charges in motion can be solved for a one-dimensional slab as

J(x) = − jkBi
µ0

exp (jkx)− exp (−jkx)
exp (jkd)− exp (−jkd)

(11)
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where k =
√
−jωσµ0 = q − jq is the complex wavenumber at low frequencies, ω is

the angular frequency, σ is the electrical conductivity, µ0 is the magnetic permeability in
free space, d is the thickness of the slab, and x is the position along the thickness of the
slab. The exponential component exp (jkx) in (11) can be rewritten for real and imaginary
components with q =

√
ωσµ0/2 into exp (qx) exp (jpx) to define the decay length 1/q as

the skin depth [94,100]

δ =

√
2

ωσµ0
(12)

As seen from (12), the skin depth of the magnetic flux will be highly dependent on
material compositions containing metals since it is inversely proportional to electrical
conductivity σ. By inducing eddy currents for different angular frequencies, different
entities with different electrical conductivities can be detected and differentiated in a mixed
material composition. Magnetic inductance spectroscopy has been used for measuring real
and imaginary components of the magnetic field to classify different nonferrous materials
in waste [101]. Inductive transceiver and receiver coils for single-frequency generation and
detection of magnetic fields have been applied for detecting metal in waste [12,102], the
detection and counting of ferrous and nonferrous particles [103], and sorting of nonferrous
metals [104,105].

3.4. High-Energy Particle Sensors

Photons are also understood as stable particles with no electric charge and no mass,
but with momentum and magnitude relative to the energy of the particle. Therefore,
in this section, high-energy photon sensors are categorized in the same class as high-
energy particle sensors. High-energy particle sensor systems use signal excitation sources
in an energy domain that are sufficiently high for ionizing materials or for stimulating
nuclear radiation emissions [106,107]. High-energy particle sensor systems used for MSW
characterization include X-ray techniques and neutron sensor probes [4,6].

X-rays are EM waves, such as light or radiowaves, but interact differently with matter
due to their high photon energy. Generation of an X-ray is achieved by applying high
voltage to a vacuum tube or X-ray tube. Detection of an X-ray is performed by using a
charge collector plate for detecting the X-ray and an image sensor for imaging the charge
collection [107,108]. The wavelength domain of X-rays is between 10 nm and 0.01 nm,
with energies corresponding to ionizing energy transitions in atoms. X-rays interact with
matter through photoabsorption, Compton scattering, and Rayleigh scattering [107,108].
Photoabsorption occurs as a result of X-ray radiation having an energy equal to or greater
than the binding energy of an electron in an atom. The X-ray photon is entirely absorbed by
the electron in an atom and the electron is ejected with a kinetic energy equal to the X-ray
photon. The ejected electrons are called secondary electrons. Ejection of electrons from
the inner orbitals create an unstable electron structure of the atom and result in electron
relaxation to fill the hole of the ejected electron. The relaxed electron emits a photon
energy equal to the energy difference between the two orbitals involved in the electron
relaxation [107,108]. For Compton scattering, an interaction occurs between the photon and
electrons in the outer orbital. This scattering process is inelastic, where the energy of the
photon is partially absorbed by the outer orbital electron resulting in electron ejection. The
kinetic energy of the ejected electron is equal to the energy difference of the photon before
and after the Compton scattering [107,108]. Rayleigh scattering is an elastic scattering
process where the photon is absorbed and re-emitted by the electron cloud of the atom
resulting in no ionization or energy transfer between photon and electron [107,108].

The photon energy range of X-rays is divided into two domains, where one domain
includes soft X-rays with wavelengths higher than 0.1–0.2 nm [108,109] and the other
domain includes hard X-rays lower than 0.1–0.2 nm [108,110]. Hard X-ray has a wavelength
with dimensions similar to atoms and scatters efficiently in periodic structures below one
nanometer; it also has a high penetration depth in many materials. Soft X-ray has high
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attenuation in most materials and ambient air with a photon energy corresponding to
binding energies of electrons of different elements in materials. The attenuation for soft
X-ray is mostly dominated by photoabsorption, whereas for hard X-ray, the interaction
with matter is mostly dominated by Compton scattering. The Rayleigh scattering events,
however, are small for both hard and soft X-rays [108–110].

The use of soft and hard X-rays for MSW characterization provides different informa-
tion about materials related to elemental composition or density. Reflection measurements
with soft X-ray can be used for elemental composition analysis since the photoabsorption
and relaxed electron-induced X-ray emission is highly dependent on the atom number of
an element. Transmission measurements with hard X-ray are used for density analysis of
certain materials since the Compton scattering in combination with photoabsorption is
highly dependent on the ion or electron density of material compositions. Earlier work
found in literature related to MSW characterization were based on imaging or spectroscopy
with dual-energy X-ray transmission (DE-XRT) or X-ray fluorescence (XRF). X-ray fluores-
cence is a technique based on photoabsorption of soft X-ray in materials where the energy
or wavelength difference between the excitation and emitted X-ray is measured and used
for characterizing elemental compositions in a sample [111]. DE-XRT is a technique based
on using dual emission of hard X-ray incident on the sample with different energies or
different wavelengths [112]. The attenuation of dual hard X-ray with different wavelengths
results in a difference in the transmission intensities related to the density differences in
a material. DE-XRT has been used for detecting and differentiating nonferrous metal in
waste [13], waste fraction by density [4], or cast and wrought aluminum [4]. For XRF
measurements, metal, plastic, and wood have been detected in waste [4]; retardants in
polymers and inorganic preservatives, arsenic contaminant, or moisture in wood [6]; and
primary raw materials in waste [113].

Neutron sensor probe is a moisture meter technique based on neutron particle emission
in materials. The neutron probe consists of a sealed metallic cylinder that contains a neutron
detector and a radioactive source emitting fast neutrons. The neutron sensor probe is in
contact with materials through an access tube that is protecting the probe [114,115]. The
radioactive source emits high-energy neutrons into the surrounding medium creating a
neutron particle cloud. The high-energy neutron particles in the cloud are more likely to
reflect and scatter in materials with light atomic weight elements such as hydrogen than
in those with high atomic weight elements. The interaction of the fast neutrons with light
atomic weight elements slows the neutrons to thermal or slow neutrons [114,115]. The
scattered slow neutrons are then detected and counted by a gauge in the neutron probe.
The equilibrium changes between the fast and slow neutron particle clouds in materials
can then be directly measured as a function of the amount of hydrogen or water content. A
calibration curve must be established to relate the measurements of thermalized neutrons
to the volumetric water content in materials [114,115].

The interaction volume of the neutron particle cloud has been found to have a radius
of 150 mm in wet soil and 700 mm in dry soil [116]. The macroscopic sampling around the
neutron sensor probe can then potentially be used for representing volumetric moisture
measurements in heterogeneous MSW materials. The moisture measurements with neutron
probe sensor are, however, not without cross-sensitivity issues. Hydrogen can be bound in
materials such as clay, wood, or plastic materials and will increase the count ratio of thermal
neutrons for constant moisture content [117]. Another cross-sensitivity issue is the neutron
capture effect. Thermalized neutrons are subject to capture for many elements. Elements in
MSW that capture slowed neutrons are iron, potassium, and chloride and will decrease
the count ratio of thermal neutrons for constant moisture content [117]. Due to the bound
hydrogen and neutron capture effect, the change in density of MSW would also change the
slow neutron count rate. Despite these cross-sensitive effects, neutron sensor probes have
been shown to perform well for moisture measurements, not only for soil materials but
also for MSW. Laboratory experiments have been performed to measure hydrogen content
in waste with neutron sensor probes as an indicator in estimating the quality of waste fed
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to the incinerator [118]. In other work, laboratory and field experiments were performed,
where moisture content was measured in MSW landfills with neutron sensor probes [117].

4. Material and Methods
4.1. Framework for the Assessment of MSW Sensor Technologies

The sensor techniques presented in Section 3 will be assessed in terms of the WtE
process plant design and framework of use as follows: (1) the incineration design is based
on the use of grabbing cranes to transport the waste to the feeder of the incinerator [23,119];
(2) the process design does not use shredding or magnets to process the waste prior to
incineration, i.e., the waste is bulky and is received ”as is“ from the municipal waste man-
agement suppliers [23,119]. The feasibility assessment is mainly focused on the adaptability,
versatility, specificity, and sensitivity of the different monitoring techniques. Adaptability
and versatility of sensor techniques are important for their impact in assessing the fuel
quality parameters. In general, a multimodal sensor system is preferred since monitoring
of multiple features in waste materials can be used to represent multiple different estimates
of the fuel quality. The assessment is initialized by categorizing the sensor techniques for
contact, proximity, and remote settings to elucidate the compatibility of the sensor methods
and the framework used for the WtE process plant.

4.2. Measurement Modes Used by MSW Sensor Methods

Sensors can operate in transmissive or reflective settings. A transmissive measurement
in this assessment is based on using a transmitter and detector, as shown in Figure 2a. For
the reflective method, the transmitter and detector are located on one side of the medium,
as shown in Figure 2b.

Transmitter/transceiver

and detector/receiver

Medium

Transmitter

or transceiver

Detector 

or receiver

Medium

Transmissive method

a)

Reflective method

b)

Figure 2. (a) Illustration of transmissive method. (b) Illustration of reflective method.

Using the measurement modes shown in Figure 2, the performance of potential sensors
techniques based on their fundamental operating principles are evaluated.

4.3. Assumptions Used for Computing Reflectance and Transmittance Changes to Moisture for
Radiowave and THz Frequencies

The use of radiowave or THz techniques for moisture measurements can be assessed
from estimations using (4) for transmittance and (3) for reflectance. The use of such simple
models represents near-ideal monitoring scenarios with the following assumptions applied:
(1) metal content is omitted; (2) the structures of the waste material components are much
smaller than the wavelength of EM waves so that scattering effects can be neglected;
(3) the variations of refractive index of waste materials is much smaller than the variations
of the bulk refractive index as a function of moisture content; (4) the waste medium
is homogenized with effective refractive index as a function of the volume fraction of
waste and water. We note that assumption (2) is rarely satisfied in the THz domain since
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wavelengths are in the dimension of 10 µm to 1 mm and will scatter from waste structures
with the same dimensions. Assumption (3) is equivalent to assuming that the refractive
index of waste materials (without water) is approximated to 1.

With these assumptions, we can estimate the ideal signal intensities for water volume
fractions and waste sample lengths as well as ideal intensity contrasts between low and high
water contents. The effects of metals, scattering processes, and waste material refractive
indexes will result in smaller signal intensities and lower intensity contrast between high
and low water contents. The complex dielectric values to be used with (4) and (3) of
waste materials with moisture can be estimated by using effective medium approximations.
This approximation uses volume averaging of refractive indexes, ñeff(λ0) = vwmña(λ0) +
vwtñb(λ0), where vwm = 1− vwt is the volume fraction of waste materials with complex
refractive index ña(λ0) and vwt is the volume fraction of water in waste materials with
complex refractive index ñb(λ0) [120]. The complex refractive index of moisture ñb(λ0) can
be found from experimental measurements performed by [121].

4.4. Performance Parameters Used for Assessing Implementation of MSW Sensor Indicators

The input parameters for process control and process alarms impose different de-
mands on sensor technique qualities in terms of dynamic range, specificity, and sensitivity.
Dynamic range is the highest and the lowest amount of an entity that is possible to be
measured. Sensitivity is the smallest change in the amount of an entity that is possible to be
detected. Specificity can be viewed as the possibility for a measurement to be sensitive to
one entity only. For process control, a sensor method with high specificity and sensitivity is
desired. With high specificity and sensitivity, it is possible to produce a small value change
in fuel quality estimations that is valid for a wide range of different waste material com-
positions. The dynamic range of the fuel quality measurements must be within a domain
relevant for the boundary conditions used by the process control. In addition, if sensor
parameters should be included as a forward loop in the process control, the time has to be
known between the waste monitoring event and the waste incineration event. For process
alarms, there are less demands on sensor dynamic range, specificity, and sensitivity. It is the
holistic quality of a sensor method that is important to evaluate its ability to produce alarms
with acceptably low levels of false positives and negatives. It is perhaps more important
for a measurement to be performed within the dynamic range required to initiate an alarm
on fuel quality values. For a large increase or decrease in fuel quality parameters, alarm
indicators may be be used to assist the operative control of the incineration.

5. Results and Discussion
5.1. Remote, Proximity, and Contact MSW Sensors

Contact sensors, including resistivity sensors, time-domain reflectrometry (TDR) sen-
sors, and neutron particle probe sensors, can only be operated when embedded into the
waste samples. Proximity sensors, including open-ended coaxial line probe (OECP) ra-
diowave sensors, X-ray sensors, capacitance sensors, and inductive sensors, must operate
in near-contact with the waste samples. Remote sensors, including ultraviolet (UV) to
long-wavelength infrared (LWIR) spectroscopy, UV to short-wavelength infrared (SWIR)
imaging, THz spectroscopy and imaging, as well as radiowave permittivity measurements,
can be operated with variable distances to the waste samples.

For the process design considered here, contact sensors can only work in an offline
setting where waste samples are transported into a separate and independent stream of
the process so the insertion of sensor probes can be controlled. Due to the challenge in
integrating fuel quality indicators from offline settings to the process control system, contact
sensors are the least adaptable technique for monitoring in the waste-to-energy framework.
Proximity sensors are able to operate in online settings. Scans over waste samples can be
performed using conveyor belts for controlled waste transport. Proximity sensors show
great potential for specific and sensitive detection of moisture, metal, plastic, and wood,
as presented in Sections 3.2–3.4. Remote sensors also operate in online settings and can



Energies 2022, 15, 1105 15 of 24

be adapted for different waste monitoring locations with variable monitoring distances to
waste samples. The wide spectral range used by the remote sensors enables the detection
of a wide range of materials, as presented in Sections 3.1 and 3.2. The main criteria for
further consideration of potential sensors is the possibility for online monitoring. Thus,
only remote and proximity sensors are included in the following sections.

5.2. Transmissive and Reflective Measurements with Remote and Proximity MSW Sensors
5.2.1. Transmissive Measurements

For transmissive measurements using photonic, radiowave, or X-ray techniques, the
electromagnetic (EM) wave incident on the waste surface interact with matter with a
decaying intensity over the waste sample depth. The EM wave absorption in materials can
be described by (4) or (5a). Transmissive measurements for photonic and radiowave sensors
highly depend on absorption or scattering, whereas for X-ray techniques, transmissive
intensity highly depend on the absorption and Compton scattering. For inductance sensors
(assuming the excitation and pick-up coil are on opposite sides of the waste volume for
transmissive measurement), the signal intensity from the eddy currents induced by the
magnetic flux incident on waste surface is dependent on the conductivity of the waste
sample. As seen in (12), the skin depth is inversely proportional to the square root of
conductivity and angular frequency of the charges in motion. The signal intensity of the
transmissive measurements with inductance sensors depend on the metal content and the
bulk-size of waste materials. For capacitance sensors (assuming electrodes are on opposite
sides of the waste volume for transmissive measurement), the dielectric measurements of
waste materials for metal or moisture detection are highly dependent on waste bulk-size
and electrode distance, as seen in (7).

5.2.2. Reflective Measurements

The signal intensity from EM waves reflecting off a waste surface depend on the
energy exchange events with molecules, as well as the scattering events of the EM wave at
the surface or within the interaction depth of a material. The reflected signal intensity at
the interface of two materials is dependent on their complex refractive index seen from (3).
Reflective measurements for photonic and radiowave sensors depend on the scattering
events of materials as well as the complex refractive index. Reflective measurements for
X-ray techniques depend on the photoabsorption in materials inducing photon emission or
Compton scattering events that induce inelastic scattered photons. For inductance sensors
in reflective settings (excitation and pick-up coil are on the same side of the waste volume),
the intensity is a function of the depth-position of conductive materials in waste that also
depends on the skin depth of the magnetic flux incident on the bulk waste sample. For
capacitance sensors (with both electrodes on the same side of the waste volume) in reflective
settings, the capacitance measurements can be related to moisture content in waste.

5.2.3. Assessment of Sensor Techniques in Transmissive or Reflective Settings

The feasibility of using electric or magnetic sensors for monitoring fuel quality of waste
based on moisture and metal content in the waste materials can be discussed in view of the
sensor technique intensity dependence in reflective and transmissive settings. Capacitance
sensors have low specificity in differentiating between metal or moisture detection since
the parameters measured are based on detecting the dielectric change in materials. Increase
in metal content and moisture will both result in an increase in the dielectric parameter.
The capacitor will also short-circuit for high metal contents. In transmissive settings,
it can be challenging to detect the dielectric change in materials independently of the
volume of the waste samples. To reduce the cross-sensitivity for size changes in waste
materials, shredding and conveyor belts can be used to obtain constant waste sample depth.
Concerning inductance sensors, they have high specificity in detecting metal in waste due
to detection of eddy currents from conductive materials. Depending on the conductivity of
bulk waste materials, inductance sensors also obtain sufficient reflective and transmissive
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intensities since different frequencies for magnetic flux generation can be used to optimize
the trade-off between signal strength and skin depth, as seen in (11) and (12).

For X-ray techniques, the feasibility for fuel quality monitoring in waste can be dis-
cussed considering the use of soft and hard X-rays. The high rate of photoabsorption of
soft X-ray in materials results in high attenuation and short penetration depths. Due to the
high attenuation, this domain is not suitable for transmissive measurements. For reflective
measurements, soft X-ray can be used for photoemission detection. The difference between
incident photoabsorption and emitted X-ray wavelengths used in techniques such as X-ray
fluorescence, spectroscopy, or imaging can be measured for characterizing elemental com-
positions in waste materials. In reflection and proximity settings, soft X-ray sensors are
feasible for monitoring elemental compositions in waste. For hard X-ray, the high-energy
domain and its interaction with matter are dominated by Compton scattering. Thus, hard
X-rays will have high transmission intensities for materials with a large fraction of elements
of low atom numbers and low transmission intensity for materials with a large fraction of
elements of high atom numbers. Since most MSW compositions have a large fraction of
elements with low atom numbers, hard X-rays may have a signal intensity that is possible
to detect in transmissive settings. The intensity contrast between high and low atomic
numbers visible in transmissive settings will also be visible in reflection settings. Therefore,
in proximity settings, the hard X-ray sensor can be considered feasible in use for detecting
different metals in both reflective or transmissive settings.

Radiowave and THz techniques can be discussed in view of the transmittance and
reflectance dependence on moisture content in waste materials to assess the feasibility for
monitoring the fuel quality. Using the assumptions described in Section 4.3, a computation
is made of the transmittance in the frequency range 0.2–4.2 GHz for a 0.4 m waste thickness
with varying water content, as shown in Figure 3.
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Figure 3. Transmittance as a function of frequency between 0.2–4.2 GHz with d = 0.4 m and vwt

between 0.05 and 0.3.

At vwt = 0.05 and vwt = 0.3, the transmittance is reduced to its half at 1.90 GHz and
0.78 GHz, respectively, illustrating the radiowave sensitivity to moisture. The change in
transmittance as a function of distance between 0.2 and 1 m can also be computed with a
constant water volume fraction at 0.3, as shown in Figure 4.

At 1.13 GHz and 0.3 GHz, a change in depth from 0.2 to 1 m reduces the transmittance
from 0.5 to 0.02 and from 0.93 to 0.687, respectively. For frequencies higher than 2 GHz,
the transmittance is lower than 0.1. The large variations in radiowave transmittance for
different distances shows that there is a high cross-sensitivity for moisture and waste
sample depth. With waste that has large variations in size or density, it can be challenging
to relate the change in transmittance amplitude to the change in moisture.

Using the same parameters as used for the computation in Figure 3, but with frequen-
cies in both the radiowave and THz domains, the reflectance is illustrated in Figures 5 and 6.
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Figure 4. Transmittance as a function of frequency between 0.2–4.2 GHz with vwt = 0.3 and d between
0.2 and 1 m.
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Figure 5. Radiowave reflectance as a function of frequency between 0.2–300 GHz and vwt between
0.05 and 0.3.

From Figure 5, the change in reflectance as a function of increasing vwt is larger for
low frequencies than for high frequencies. In the THz domain, as seen in Figure 6, the
reflectance is smaller than 0.05 for frequencies between 300–20,000 GHz. When comparing
Figures 5 and 6, the change in reflectance as a function of vwt is also significantly smaller
in the THz domain than for the radiowave domain. The scattering effects of THz waves
in waste materials would decrease the specificity of the reflectance amplitude change
to moisture. Hence, even with an ideal material composition for the THz domain, it
indicates that moisture detection with EM wave reflective measurements using frequencies
in the radiowave domain is more feasible than using frequencies in the THz domain. The
estimations presented above indicate that radiowave sensors have potential to be used as a
remote sensor in reflective settings, while for radiowave sensors in transmissive settings
and for THz sensors in reflective settings it is less feasible.

Considering UV–LWIR photonic techniques, their use in estimating fuel quality in
waste materials can be assessed concerning the wavelength dependence of light–matter
interactions. Single-point spectroscopy techniques can be conducted for the UV–LWIR
domain, whereas multi- or hyperspectral imaging can be performed for the UV–SWIR
domain. The penetration depth of light in the UV–LWIR domain is significantly short
(orders of cm to mm) and unsuitable for transmissive measurements [122–124]. Reflection
of UV–LWIR in materials can provide multiple and unique spectral fingerprints used
for detecting specific material components. In the NIR–LWIR, these spectral fingerprints
are more specific than in the UV–VIS; therefore, the detection of specific waste material
can be feasible using single-point absorption spectroscopy or laser-induced breakdown
spectroscopy (LIBS) in reflective settings.
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Figure 6. THz reflectance as a function of frequency between 300 GHz to 20 THz and vwt between
0.05 and 0.3.

Multi- or hyperspectral imaging provides spectral and spatial parameters for sensing
and can be adapted for detecting materials with a large variety in size, shape, or specific
chemical entities in mixed compositions. The spectral–spatial features in images obtained
with multi- or hyperspectral imaging techniques have been used for classification, linear,
or nonlinear analysis by using supervised of unsupervised methods to identify or quan-
tify specific components in mixed waste materials. Hence, due to the multiple sensor
parameters available, the use of spectral imaging in the UV–LWIR wavelength shows great
potential to be used as a remote sensor in reflective settings to identify or quantify specific
waste materials related to fuel quality.

5.3. Feasibility of Using MSW Indicators for Assisting Waste-to-Energy Plant
5.3.1. Single-Point Spectroscopic Measurements

For single point spectroscopic measurements it can be challenging to deconvolve
spectral intensity features that correspond to multiple specific materials in waste composi-
tions. This challenge can result in low specificity. For X-ray spectroscopy measurements,
the intensity dependence on elements with high or low atomic numbers will result in a
high specificity for materials with density differences in waste compositions. Radiowave
sensors have high specificity for both metal and moisture, but cannot differentiate between
the intensity differences corresponding to either moisture or metal. The signal amplitude
itself can also be challenging to relate to specific material components due to signal source
instability, noise limitations of the signal detector, or drifting of the signal amplitudes.
Challenges with specificity and sensitivity in single-point reflection or transmission spec-
troscopy measurements may limit the sensors only to be used for providing fuel quality
values as indicators for alarms depending on the analytic methods used. However, the use
of chemometric methods may provide solutions to improve specificity and sensitivity in
detecting chemical components and materials.

5.3.2. Imaging Measurements

Concerning imaging measurements with X-ray or photonic techniques, the physical
information obtained from the spatial dimensions can be used for estimating the volume
ratio of detected materials. For large surface areas, the area of a specific material detected
can be related to the volume using statistical analysis. For waste monitoring applications,
studies have been conducted where components in waste derived fuels are classified in RGB
images using an 11× 11 dot grid to estimate the area of each waste fraction material [24–26].
The measured area was used with the bulk density of each waste component to estimate
weight fraction. The use of an 11 × 11 dot grid to estimate the weight fraction of different
waste components had a strong correlation with the original weight fraction values and
showed that specific materials detected using surface monitoring represent the volume
content of specific materials in a waste sample. Thus, the use of X-ray or photonic imaging
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shows potential to be used for weight or volume fraction measurements of specific materials.
This quantitative approach using imaging techniques to estimate fractions of specific
materials have potential to be used for providing fuel parameters for process control.

6. Conclusions

This paper has critically assessed available sensor concepts, and their operating princi-
ples, for estimating fuel quality in MSW plants prior to incineration. Each group of sensors
such as photonic, radiowave, electric or magnetic, or high-energy photon or particle sensors
have been used for detecting a great variety of waste entities for waste sorting applications.
The feasibility assessment here, on the other hand, was conducted concerning the sensor
techniques to be installed and used in an operating WtE plant. The assessment concludes
that remote and proximity sensors, applied in either transmissive or reflective settings,
are preferred. For transmissive settings, it is most feasible to operate inductance and
hard X-ray sensors, whereas for reflective settings, it is most feasible to operate photonic,
low-frequency radiowave, soft and hard X-ray, and inductance sensors. The fuel quality
estimation capacity for single-point measurements with photonic, radiowave, inductance,
or X-ray techniques is limited to provide indicators for process alarms, while imaging
measurements with photonic or X-ray techniques have the potential to provide parame-
ters for both process control and indicators for alarms. The results present a first step in
understanding which sensor solutions can be implemented for process control or alarm
indicators. This knowledge and understanding will be important for guiding the evolution
of the WtE industry in using new monitoring methods to measure fuel quality in waste,
which will improve energy production stability, reduce the rate of incidental stops of waste
incineration, and reduce risk of critical events.

In future work, remote monitoring techniques such as radiowave and photonic sys-
tems are recommended to be pursued and assessed for estimating the fuel quality in waste.
Experiments and theoretical modeling should be conducted concerning moisture mea-
surements in MSW with radiowave techniques in the low-frequency domain in reflective
settings. Further investigation into using spectral imaging and deep learning for WtE pro-
cesses is recommended to unveil the links between imaging parameters and fuel quality in
waste so that objects and waste classes can be identified. The starting point for developing
such a system can be built on earlier work, such as [14].
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