
AUTOMATED PATTERN RECOGNITION IN REAL-TIME DRILLING DATA FOR EARLY 
KARST DETECTION

Danil Maksimov1, Marius Alexander Løken1, Alexey Pavlov1, Sigbjørn Sangesland1

1Norges teknisk-naturvitenskapelige universitet - NTNU, Trondheim, Norway

ABSTRACT
Drilling in carbonate formations often poses a real chal-

lenge to operators, contractors and service companies. Severe
fluid losses, gas kicks and other unwanted situations increase
drilling risks. These risks are closely related to drilling through
karsts - vugs, cavities and fractures. Therefore it is important
to detect karsts early enough to avoid drilling into them or, once
drilling in a karstification region is detected, to prepare risk miti-
gating actions. Some geophysical methods can be used for karsts
detection, however, they have limitations and cannot guarantee
early detection of karsts. One of the recent studies has shown that
certain patterns in real-time drilling data can serve as indicators
of zones with a higher likelihood of encountering karsts. In this
paper, we demonstrate how these patterns can be detected in an
automated manner with an adaptive differential filter algorithm.
The method has been validated on real drilling data.

NOMENCLATURE
ADF Adaptive Differentiating Filter
BHA Bottom Hole Assembly
LCM Lost Circulation Material
LWD Logging While Drilling
PLA Piecewise Linear Approximation
PMCD Pressurized Mud Cap Drlling
RCD Rotational Control Device
ROP Rate Of Penetration
SPP Stand Pipe Pressure
WOB Weight On Bit
WR Window Radius

1 INTRODUCTION
Carbonate reservoirs are the most important sources of the
world’s oil and gas production [1]. The highest production
rates from carbonate reservoirs are commonly associated with
multiple-porosity systems and can generally be classified into
depositional (primary) and post-depositional (secondary pores).
On the one hand, such dual-porosity of carbonates makes them a
valuable geological target. On the other hand, the appearance of
secondary porosity is a direct consequence of dissolution of solu-
ble rocks [2] - the process that not only results in the development
of high-porosity reservoirs, but also contributes to the develop-
ment of vugs, enlarged fractures and caves [3]. These, are known
as karsts [4,5]. They can be found at different depths [6] and they
can be both - collapsed or not-collapsed.

Drilling through karsts can be equally dangerous, poten-
tially expensive and time consuming. Lost circulation of drilling
fluid and gas kicks often accompany drilling in such intervals.
Shell has reported that every sixth well drilling in carbonates in
Sarawak, Peninsular Malaysia, resulted in total losses (Sarawak,
Peninsular Malaysia) [7]. In Qatar a ”large volume of cement”
was pumped during few weeks to plug intervals of mud losses in
carbonates [8]. Similar problems exist on the Norwegian Con-
tinental Shelf, when drilling into karsts resulted in total losses
during a week [9–11].

Mitigation of these problems by adding Lost Circlation Ma-
terial (LCM) may give only a short-term effect and cannot help
when big karsts need to be plugged [12]. The use of Pressurized
Mud Cap Drilling (PMCD), when a sacrificial fluid is pumped
through the bit nozzles to fill karsts, is today the most common
solution to dealing with total losses in carbonates [13–15]. How-
ever, rigs are not always equipped with a Rotational Control De-
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vice (RCD) [16] required for PMCD and a significant volume of
sacrificial drilling fluid may not be readily available.

Prediction and/or early detection of zones with high likeli-
hood of karstification is important for drilling safety, as it allows
one to prepare risk mitigating actions early. Such prediction is
not a trivial task as even with the cutting-edge geophysical meth-
ods it is still challenging to detect karsts. For example, it was
shown that conventional seismic methods cannot detect caves
less than λ

4 (40 m) due to wave interference [17]. Based on the
experience of drilling in the Barents Sea, where the average size
of caves is less than a meter, we can conclude that even such rel-
atively small karsts are very dangerous for drilling and therefore
it is important to detect them [10]. The main drawback of Log-
ging While Drilling (LWD) tools is related to their investigation
area, which is located tens of meters behind the drilling bit and
around the tool. Therefore, the information about kartification
conditions that can be provided by LWD tools, arrives way too
late from the drilling safety point of view [18, 19]. Thus there is
no technology that would allow us to predict individual karsts or
zones of karstification based on direct measurements.

Another approach corresponds to early detection of karstifi-
cation zones based on analysis of real-time drilling data, which
was presented in [20]. In this paper it was shown that there are
certain patterns in real-time measurements that can be utilized as
indicators of karstification processes in the formation. Such indi-
cators can be drilling breaks, step changes in mud losses profile,
breccia type of cuttings. As it was shown in [20], even though
these events may not cause drilling challenges, their detection
can serve as an indicator of a zone with geological conditions
favorable to karstification and thus of an increased likelihood of
encountering karsts while drilling.

Manual detection of these events through the corresponding
patterns in the real-time drilling data may not be feasible as it re-
quires operator presence and attention 24/7. It may also be chal-
lenging as patterns in drilling data are usually masked by noise
and thus can be missed or misinterpreted. To address this chal-
lenge, in this paper we propose an algorithm that automatically
detects suspicious changes in the drilling data that may corre-
spond to these events of interest. It attracts attention to these in-
tervals, and the engineer can then analyze them closer to confirm
that they indeed correspond to karstification objects.

Detecting frequent events corresponding to karstification ob-
jects (and thus the fact that we are drilling through a karstification
zone) can be used for decision support, changing of well trajec-
tory, switching to PMCD type of drilling and preparing LCM.
Fully automatic detection of karstification objects from drilling
data is a very difficult task and can hardly be solved by an au-
tomatic algorithm. Therefore we provide a method that supports
engineers in this task by automatically marking suspicious peri-
ods for further analysis. It should be noted that the same method
can be adopted for automatic detection of other drilling events
not necessarily related to karsts.

FIGURE 1: BOREHOLE IMAGE OF NOT-COLLAPSED
CAVE

The paper is organized as follows. Section 2 introduces
karsts and discusses examples of karst-patterns in real-time
drilling data. Section 3 explains the concept of the suggested
automated event detection method. In section 4 relevant results
from the proposed method are presented. Conclusions, discus-
sion and future work are given in Section 5.

2 Karstification patterns
To understand how we can use drilling data to identify zones
with high likelihood of karstification, in this section we firstly
introduce some important characteristics of karsts and secondly
consider real-time drilling measurements which can be used for
their detection. We examine data from one of the carbonate fields
located in the Barents Sea.

One of the methods to investigate formation characteristics
around the wellbore is through borehole imaging. At very shal-
low depth of investigation we can obtain an image of wellbore
walls that can be used to visualize rocks and karsts and define
such properties of geological features as height, width, angle and
azimuth. In this study, borehole images were used for karst char-
acterisation.

Since many processes contribute to karstification, geometri-
cal properties of karsts vary significantly. Some of the karsts can
range from the vug-size small objects, up to the full-cave size.
In our case, with borehole images analysis of the entire field in
the Barents Sea region, we can conclude that the average vertical
size of the caves in this region is up to 2 meters. An example
of such a cave is shown in Fig. 1, with dimentions, according
to the borehole image, being height - more than 50 cm (19.7”)
and circumference - 21.6 cm (8.5 ” section of the well). Drilling
through such caves is dangerous as it can lead to total losses of
drilling mud, gas kicks and many other consequences. Drilling
through this particular cave led to a total mud loss situation with
full well control incident that came into effect. A week was re-
quired to take control over the well and manage the total mud
losses [11].

However, not all caves are open and, generally, after a cer-
tain size limit is reached, the cave starts to collapse. Products of
cave collapse are known as breccias and are defined as angular
fragments of rocks cemented together. An example of collapsed
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FIGURE 2: a) BOREHOLE IMAGE OF CAVE COLLAPSE
BRECCIA. b) CORE SAMPLE PHOTO OF BRECCIA

cave breccia created by evaporite dissolution is presented in Fig.
2. There are many other geological signs of karstfication, but
their discussion lies outside the scope of this paper.

Despite the fact that borehole imaging can provide a high
resolution data to characterize wellbore rock texture including
karsts, borehole images can only investigate the region located
tens of meters behind the drilling bit. Thus borehole images
are unsuitable for real-time karst detection. At the same time,
the identification of karsts and signs of karstification is possible
based on real-time drilling and mud loss data. This approach, de-
scribed in [20], is based on analysis of patterns of real-time data
corresponding to karstification objects.

Before describing these patterns, we review the real-time
measurements that can be used for karst detection while drilling.
Real-time measurements typically can be divided into surface
and downhole data (along-the-drillstring measurements are not
considered in this paper).

The surface set of measurements consists of: 1) distance
drilled per period of time (Rate Of Penetration) 2) the weight on
the hook (Hookload) 3) frictional pressure drop along the drilling
components in hydraulic circuit (Stand Pipe Pressure). More in-
formation about these measurements can be found in [21–23].

Along with the drilling dynamic data, mudflow measure-
ments should be considered to increase the accuracy of karst de-
tection. In some cases, when we cannot detect karsts based on
the BHA dynamic data, we can still detect them based on the
analysis of mud losses. As shown in paper [20], intervals of vugs
are characterized by moderate mud losses, without significant
changes, while in bigger caves we can observe a step change of
the delta flow profile. So, analysis of mudflow data can comple-
ment drillstring measurements. Two examples of the discussed
indicators are given below.

Drilling mechanic measurements in the interval of karstifica-
tion are shown in Figure 3. In this figure we can notice recurring
mud losses events at some distance from the cave marked with
the arrow #1. Small blue arrows indicate decreases of mud tank
volume. From the borehole image study of this interval, it was
confirmed that these mud losses were related to drilling through
vugs. Total losses were seen after drilling bit entered into a cave

FIGURE 3: DRILLING THROUGH AN INTERVAL OF VUGS
AND CAVE

at 09:34 marked with an arrow in the figure. This demonstrates
that detecting (minor) mud losses when drilling in carbonates is
important as as they can be related to drilling through karstifica-
tion objects. They can, as in this example, be an early warning
signal before drilling into a big cave leading to significant drilling
challenges.

When it comes to drilling mechanic measurements, the
drilling regime remains constant throughout this interval. How-
ever, we can clearly see a rapid increase of ROP(arrow#2) and
hookload weight (arrow#3) with a simultaneous drop of Weight
On Bit (WOB). This response observed in real-time drilling data
can be interpreted as a drilling break resulting from drilling into
an open karstic cave. The interval above the cave (based on core
sample data) is presented by a weakly cemented rock. Due to
significant drop of wellbore pressure (when total losses occur at
09:34) and high stress concentration around the cave the well-
bore started to collapse when the stress concentration exceed the
rock strength. This example supports the hypothesis that drilling
breaks and recurring mud losses events can indicate that the well
path is going through a karstification interval.

It should be emphasized that the probability of detecting
vugs using drilling breaks increases with an increase of vugs size.
Small vugs may not be big enough to effect the BHA mechani-
cal behavior (an increase of ROP, a decrease of WOB, etc.). Still,
small vugs can be detected by mud losses, as even small vugs can
be highly permeable to absorb drilling fluid, but not big enough
to influence on BHA drilling dynamic (an increase of ROP, a de-
crease of WOB, etc.). So, in [20] the authors suggest to utilize
both the mechanical drilling parameters and the mudflow data for
detecting karstification objects like vugs.

The next example demonstrates drilling through an inter-
val of large vugs, probably formed due to post-depositional (e.g.
karstic) carbonate dissolution. As shown in Figure 4, entering in
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FIGURE 4: DRILLING THROUGH THE INTERVAL OF
VUGS

a zone of vugs is also accompanied by a drilling break (high ROP
- arrow #2 and WOB drop - arrow #3). Here we can also observe
a decrease of Pump Pressure linked with losses of drilling mud
into conductive patches.

In this paper, we focus on the most reliable indicators of
karsts, which are drilling breaks and mud losses profile. Step-
changes of delta flow profile, can be related to drilling through
highly conductive karsts, or small fluctuations of delta flow, can
often be linked with a smaller karstification objects. To detect
drilling breaks we need to detect instances where ROP signifi-
cantly increases with a decrease of WOB. In both cases, we need
to detect a point of change in the corresponding time series and
classify whether this change is the one we are looking for (e.g.
the onset of reduction in delta flow with sufficiently high total
losses after that point, or a sufficiently high increase of ROP).

Detection of karstification-related patterns in the drilling
data requires that other possible factors affecting drilling and
mud circulation remain constant. In the scope of this study we
select/consider periods of data with other drilling parameters be-
ing constant.

3 ADAPTIVE DIFFERENTIATING FILTER (ADF)
One of the main challenges in analyzing drilling data is that im-
portant information is usually masked with noise. It is common
to utilize some kind of filtering to eliminate or reduce the noise
in the measured signal. While there are various filters that can
be applied to filter out the noise [24–26], one common charac-
teristic of many of them is what can be called a window size. It
tells how many data points are effectively used in calculating the
filtered value. For example, for the moving average filter, this
will be the size of the sliding window involved in averaging. The
proposed filter is a modification of the filter described in [27].

The window size of a filter affects both the noise and the
original signal. The higher is the window size, the better are the
noise attenuation properties of the filter. At the same time, the
window size used in averaging/filtering also affects the original
signal: large window size results in filtering out fast variations

of the signal, keeping only its slowly-varying components. De-
pending on the selected window size, the filter can have very
good noise attenuation properties, but bad performance in cap-
turing fast changes in the signal (for large window sizes); or it
can very well capture fast changes in the signal, but have low
noise filtering properties (for small window sizes). The former
one cancels the noise, but wipes out information from the signal.
The later keeps the information, but does not unmask it from the
noise. One should therefore choose the window size depending
on the properties of the signal and the noise. Signals significantly
change during drilling and for some instances one needs a filter
with a large window to capture small/slow changes in the signal,
while in other cases one needs a small window to accurately cap-
ture fast signal changes. This can be achieved by using several
filters and switching between them based on the user’s judgment.
This is not convenient, as it requires experience and multiple ac-
tions from the user, as well as introduces an additional human
factor in processing and analyzing the data.

In this section we propose an adaptive differentiating filter
that automatically adjusts the size of the window to achieve max-
imal allowable filtering while preserving desired accuracy in cap-
turing fast changes in the signal (as will be explained below).
The filter increases the window size when the noisy signal is
slowly varying and thus high-level filtering is needed to capture
these small slow changes. It automatically decreases the window
when the signal is quickly varying and it is more important to
capture these fast changes since the effect of noise becomes less
important. In addition to that, the filter estimates the derivative
of the signal, which is quite often very important in detecting
and classifying various events from time series. Optimal filtering
provided by the filter is especially helpful here, as the numerical
calculation of derivatives is especially sensitive to measurement
noise.

To present the filter, we consider a sequence of time in-
stances ti and the corresponding measurements yi, i = 1, ...N.
The measurement consists of the true signal ȳi and noise mi.

yi = ȳi +mi (1)

We assume that mi has zero mean.
The adaptive differentiating filter consists of two operations

conducted recursively: 1) signal and derivative estimation (given
a window) and 2) window adaptation.

1) Signal and derivative estimation: For a time instant t∗,
we define a window centered at t∗ and having a radius WR as
the sequence of instances W = [ti : i = ∗−WR,∗+WR], where
∗ corresponds to the index of t∗. To find an estimate of ȳ(t∗)
and its derivative dȳ/dt(t∗), from the data given in window W ,
we calculate the estimate of the signal ȳ(t∗) and its derivative
dȳ/dt(t∗) by solving the least-squares fit problem:

Copyright © 2021 by ASMEV010T11A001-4

D
ow

nloaded from
 http://asm

edigitalcollection.asm
e.org/O

M
AE/proceedings-pdf/O

M
AE2021/85208/V010T11A001/6780892/v010t11a001-om

ae2021-60529.pdf by N
TN

U
 U

niversitets Biblioteket user on 08 April 2022



∑
ti∈WR

|y(t)− (k(ti− t∗)+b)|2→min
k,b

. (2)

Then,

ŷ(t∗) = b (3)

dŷ/dt(t∗) = k, (4)

where ŷ(t∗) and dŷ/dt(t∗), are the estimates of ȳ(t∗) and
dȳ/dt(t∗).

2) Window adaptation: at this step we check the accuracy
of how the straight-line segment ŷ(t) = k(t − t∗) + b approxi-
mates the data series over the window W . If

(max
ti∈WR

|k(ti− t∗)+b− y(ti)|> δ ) & (WR >WRmin), (5)

i.e. if ŷ(t) does not fit y(t) over the window W with the required
accuracy δ (which is a design parameter of the filter) and the
window radius can be reduced without violating the lower limit
for the window radius WRmin (specified by the user), then the
window radius is reduced, the linear fit function is recalculated,
and the condition (5) is checked again. This is repeated until
either the accuracy requirement is met or the window radius has
reached the minimal value WRmin. This process is illustrated in
Figure 5.

If

(max
ti∈WR

|k(ti− t∗)+b− y(ti)|< δ ) & (WR <WRmax), (6)

i.e. ŷ(t) approximates the y(t) over the window W with the de-
sired accuracy, and window radius can be increased without vio-
lating the upper limit for windoe radius WRmax (specified by the
user), then the window radius is increased, the linear fit function
is recalculated until and the condition (6) is checked again. This
process is repeated until it is not possible to increase the window
radius without either violating the accuracy of approximation or
exceeding the upper limit WRmax. This process is demonstrated
by Figure 6.

The output of the algorithm at this stage is the estimate of
the signal and its derivative at time instant t∗ and the maximal
window radius WR∗ reached in the window adaptation process.
For the next time instant t∗, the initial window radius is taken

(a) Reduce WR and recalculate

(b) Accuracy reached

FIGURE 5: Window adaptation from a too large window radius
(a) to new window radius where the accuracy is reached (b)

as the largest window radius WR∗ from the previous step. This
significantly speeds up the calculation.

To summarize, the algorithm takes parameters WRmin,
WRmax and δ as inputs and processes the data series ti, yi to out-
put estimates of the signal ȳ(ti) and its derivative dȳ/dt(ti) as
well as the radius of the maximal window WR∗ corresponding to
these estimates.

Parameter WRmin determines the minimal level of filtering,
as the window radius will always be larger than or equal to
WRmin. Parameter WRmax determines the maximal level of fil-
tering, as the window radius will always be less than or equal to
WRmax. Parameter δ must be chosen such that the noise mi in
equation (1) satisfies |mi|< δ for all i. In practice this parameter
is either known or can be estimated from the data. The closer δ

to the actual limit on the noise, the more accurate is the filter for
the given WRmin and WRmax.

Performance of the filter is demonstrated in Figure 7 for the
case of ROP. In the presented interval, high values of ROP are
related to drilling into open karsts leading to BHA drops (spikes
in ROP). To capture this behavior, ROP is calculated from the Bit
Depth signal with the ADF filter (as a time derivative of the Bit
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(a) Increase WR and recalculate

(b) Maximal window radius with feasible approximation
is reached

FIGURE 6: Window adaptation starting from window radius
where the desired accuracy of the linear approximation is satis-
fied (a), to a maximal window radius having the desired accuracy
(b).

Depth). It can be seen that the window radius is minimal when
the signal experiences relatively fast changes. The small window
radius can be used as a flag indicating changes for detection of
drilling events, as, for example, in detection of drilling breaks
and mud losses corresponding to karstification objects.

In Figure 7 we also show a comparison between Gaussian
filtering of the ROP data and ADF filter. As illustrated in the
figure, the result of Gaussian filtering method with fixed param-
eters (shown in blue line) provides good filtering of the slowly
varying part of the ROP signal, but fails to properly capture the
ROP spike (as shown in the zoomed window). The ADF fil-
ter (green line) is adjusted automatically to keep the behavior of
initial signal (grey line). An overall view on the entire interval
shows that both main trends and high-amplitude changes in mea-
surements are successfully captured by the ADF algorithm. This
is an important property of the ADF algorithm for applications to
real-time measurements analysis when we need to capture both,

FIGURE 7: ADF algorithm implementation on filtering raw
drilling data - ROP

small/slow and large/fast changes in the data.
3.1 Windows radius for events detection
The adaptive window radius provides an effective and accurate
indication of variations in the time series. As the accuracy of
the approximation must be guaranteed, the adaptive window is
forced to drop whenever it encounters rapid or large changes in
the data signal where the linear polynomial no longer fits the
data. By utilizing an appropriate δ value as a threshold for win-
dow adaptation, abnormalities in the data may be discovered
from a drop in the window radius below a defined threshold.
This concept can be taken advantage of to detect changes in the
drilling data for event detection.

3.2 Pseudo-Code
Below, the workflow of the algorithm is described briefly in the
form of pseudo-code.

Algorithm for: Adaptive Differentiating Filter
Data: Raw measurements signal
Result: filtered signal, its derivative estimate and the ra-
dius of the maximal window
while data in stream do

1. Use current window radius around current time instant
2. Calculate least squares fit regression estimate over the win-

dow
3. Perform window adaption from accuracy check

if accuracy is not met, reduce window radius and re-
calculate until accuracy or minimum window reached
if accuracy sufficient, increase window radius and re-
calculate while the desired accuracy (specified by δ )
is maintained and the window radius is below WRmax

4. Utilize the already found optimal window radius for the next
time instant

end
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4 CASE STUDY - AUTOMATED DETECTION OF
KARSTS AND FRACTURES

The following section presents results from a case study on auto-
mated karst events detection using adaptive differentiating filter.
Here we apply ADF to the set of drilling data containing inter-
vals that the operator company reported as containing fractures,
vugs and caves.

Figure 8 presents a complete set of data, both raw and pro-
cessed, corresponding to the selected interval. The first track
(from top to bottom) displays the borehole image with marked
intervals of open fractures, vugs and cave in depth-domain. The
second track - ”drilling data”, displays a typical set of surface and
downhole measurements in time-domain such as Torque, Pump
Pressure, ROP, delta flow, hookload - the weight on the hook
to control the weight applying on the bit (WOB) and downhole
WOB measurements. These raw measurements are given to pro-
vide an overview of drilling within the discussed interval. Tracks
marked with letters a to f represent certain outputs of the ADF
algorithm used to detect events related to karstification objects.

Five time intervals will be considered as illustrated in the
figure (Events 1 to 5). The sections identified as open fractures
are intervals where the operator company encountered mud loss
situations. They are marked as Events 1, 2 and 4. Event 3 is in-
terpreted as vug interval. Event 5 illustrates cavity of more than
50 cm in length with circumference of 21.6 cm. These inter-
vals are highlighted in blue, denoting the start and stop time of
each event. These benchmark intervals will serve for validation
and evaluation of the ADF algorithm that automatically detects
changes in drilling data related to drilling breaks and mud losses.

In this example, drilling was performed with managed pres-
sure drilling system using a subsea module pump equipped with
high-precision sensors of mudflow rate. The measured flow rate
can give indications of loss zones, so the calculated delta flow is
utilized as one of the inputs for testing ADF for automated event
detection. Drilling breaks within carbonate intervals can often
indicate that the well trajectory encounters a karstification ob-
ject. Thus, we utilize sudden drops in WOB and surges in ROP
(drilling break pattern) as an indication of a karstification object
and capture these changes with the ADF filter.

Let us now consider an application of ADF algorithm for
drilling events detection based on three inputs: WOB, ROP and
delta flow, as demonstrated in Figure 8. The hypothesis of event
detection in the ADF algorithm is that the window radius expe-
riences a minimal value when the signal and its derivative ex-
perience rapid changes. The corresponding minima of the win-
dow radius are marked with stars. Changes of the window radius
for the given inputs are displayed in tracks b, d and f. Another
consideration which can be used for events detection is the rate
of change of the measurements. As was discussed earlier, it is
expected to observe a relatively sharp change in delta flow pro-
file when the well path crosses cave. A similar behavior is fair
for WOB and ROP measurements. For open fractures (fractures

with mud losses) the rate of change of the discussed measure-
ments is different from caves. Moreover, it is often the case that
open fractures are detected only by delta flow measurements and
not by ROP or WOB changes as some of the fractures can be
relatively small and might not affect the dynamics of the BHA.

For events 1, 2 and 4, benchmarked as open fractures we can
notice that the calculated rate of change of the delta flow drops
significantly compared to the average level, indicating mud loss
situations with sharp drops in the delta flow. For events 3 and 5,
which are benchmarked as karst features of different sizes, WR
of delta flow clearly indicates the interval of cave (event 5), the
detected mud losses (negative values in track e) did not have any
sharp changes in the delta flow, as indicated in no reduction of
WR in track f. For WOB (track b) and ROP (track d) inputs, WR
reaches its minimum in the intervals 2, 3 and 5, indicating quick
changes in these parameters.

The main value of the discussed approach in the context of
drilling events detection is that it simplifies the process of the
detection of suspicious changes in drilling data. For example, it
can not be clearly seen from the raw drilling data (shown in the
track ”drilling data”) that some events were occurring. While the
visual analysis of WR and the calculated signal derivatives can
easily indicate that there are changes in drilling data that might
be linked either with regular drilling instances or with drilling
through karsts.

In this section we have demonstrated that the ADF algorithm
is capable to reveal events in complex datasets such as real-time
drilling measurements. Validation of event detection hypothesis
showed the potential for online karst patterns detection from dif-
ferent real-time input signals such as delta flow, WOB and ROP.

From the presented case study we can see that the ADF
algorithm applied to WOB, ROP and delta flow measurements
successfully detects five out of five benchmark intervals corre-
sponding to fractures or karsts. This detection occurred using
either one, two or all three measurements. From the results, it is
clear that the ADF can be utilized to detect karsts and fractures
whenever they cause rapid changes in a measurement or its rate
of change.

For online drilling event detection, the ADF is robust and
reliable, as it is efficient in approximation and detection and ap-
plicable to various datasets. This algorithm is highly modular,
easy to tune and it can provide reliable results that match with
variations that can also be observed.

5 CONCLUSIONS
In this paper, we propose an algorithm, called adaptive differ-
ential filter, that can be utilized for automated detection of pat-
terns in real-time drilling data corresponding to karstification ob-
jects. The adaptive differential filter automatically detects step
changes in the delta flow as well as instances corresponding to
drill breaks. Both can correspond to encountering karstification
objects while drilling in carbonates.
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FIGURE 8: ADF algorithm implementation on drilling data

Based on a case-study corresponding to drilling in carbon-
ates in a field in the Barents sea, it can be concluded that the pro-
posed algorithm demonstrates good results for automated event
detection and can efficiently locate change points in measure-
ments corresponding to fractures, vugs, caves and possibly other
karst-related events with high precision.

It is the engineer’s responsibility to further investigate and
evaluate the changes in data indicated by the algorithm, taking
into account the totality of available information. In this way, the
final responsibility is still on the engineer, while the proposed
automatic algorithm helps the engineer to detect karstification
objects and zones.

Future work includes incorporating multiple inputs for in-
creasing reliability and confidence of karsts patterns and other
drilling events detection, as well as reducing the number of po-
tential false alarms. This will contribute to automation of karsts
and other events detection to a higher degree and help with more
consistent classification of complex real-time drilling data. Re-
search results presented in this paper also contribute to digitaliza-
tion and automation of today’s manual interpretation of drilling
measurements for detecting drilling events while drilling.
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