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Abstract
1.	 The restriction site-associated DNA (RADseq) family of protocols involves digest-

ing DNA and sequencing the region flanking the cut site, thus providing a cost 
and time-efficient way for obtaining thousands of genomic markers. However, 
when working with non-model taxa with few genomic resources, optimization of 
RADseq wet-lab and bioinformatic tools may be challenging, often resulting in al-
lele dropout—that is when a given RADseq locus is not sequenced in one or more 
individuals resulting in missing data. Additionally, as datasets include divergent 
taxa, rates of dropout will increase since restriction sites may be lost due to muta-
tion. Mitigating the impacts of allele dropout is crucial, as missing data may lead to 
incorrect inferences in population genetics and phylogenetics.

2.	 Here, we demonstrate a simple pipeline for the optimization of RADseq datasets 
which involves partitioning datasets into subgroups, namely by reducing and ana-
lysing the dataset at a population or species level. By running the software Stacks 
at a subgroup level, we were able to reliably identify and remove individuals with 
high levels of missing data (bad apples) likely stemming from artefacts in library 
preparation, DNA quality or sequencing artefacts.

3.	 Removal of the bad apples generally led to an increase in loci and decrease in miss-
ing data in the final datasets.

4.	 The biological interpretability of the data, as measured by the number of retrieved 
loci and missing data, was considerably increased.
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1  | INTRODUC TION

The establishment of high-throughput sequencing, together with 
bioinformatic processing tools—the genomics revolution—has im-
pacted biology during the last decade by resolving long-standing 
questions in phylogenetics (Abalde et al., 2019; Rochette et al., 2014; 
Struck et al., 2011), speciation and adaptation (Birkeland et al., 2020; 
Ravinet et al., 2017, 2018; Weber et al., 2019), and opening new ven-
ues of research such as genome-wide structural variants (Catchen 
et  al.,  2020; Faria et  al.,  2019). While genome-level data have be-
come widely accessible, population-level (i.e. population genomics) 
and species-level (i.e. phylogenomics) inference remains challenging 
due to the limited number of high-quality genomes and the costs 
associated with sequencing and analysing large datasets.

These challenges have encouraged the development and estab-
lishment of reduced-representation sequencing (RRS), where ge-
nomic complexity is reduced by sequencing only a portion of the 
genome. Chief among RRS is the ‘Restriction site-Associated DNA 
Sequencing’ (RADseq; Baird et al., 2008; Davey et al., 2011), a fam-
ily of techniques which involve digesting DNA using type-II restric-
tion enzymes and sequencing the flanking regions of the cut site. 
Benefiting from the distribution of restriction sites over the genome, 
RADseq-based approaches are cost and time efficient, typically pro-
viding thousands of independent loci for population and species-
level inference. For instance, Rochette et al.  (2019) estimated that 
for the price of a single whole genome resequenced three-spined 
stickleback Gasterosteus aculeatus, >100 individuals may be se-
quenced at similar depth using RADseq, which would only cover ~3% 
of the genome.

Since RADseq-based approaches rely on the existence of cut 
sites along the genome, the conservation of the cut site is of crit-
ical importance for recovering shared data among different indi-
viduals (Eaton et al., 2017; Huang & Lacey Knowles, 2016; O'Leary 
et  al.,  2018). Allele dropout occurs when a given locus or allele is 
not sequenced in one or more individuals, and it may result from 
biological divergence—when a mutation modifies the cut site. Rates 
of allele dropout are thereby expected to be correlated with the di-
vergence between lineages (Crotti et  al.,  2019; Eaton et  al.,  2017; 
O'Leary et al., 2018). However, allele dropout may also result from 
artefacts in the experimental design, such as sampling bias and low 
sequence coverage; or from problems associated with library prepa-
ration, such as issues with enzyme digestion or size selection, and 
human error; or from challenges in DNA extraction since, for some 
organismal groups, extracting DNA may still be non-trivial due to 
their reduced size or presence of chemical compounds which may 
interfere with the extraction; or from artefacts from bioinformatic 
analyses, such as problems associated with clustering of sequencing 
reads (Crotti et al., 2019; O'Leary et al., 2018). In fact, allele drop-
out originating from these technical artefacts can sometimes exceed 

dropout of biological origin under certain experimental conditions 
(Rivera-Colón et  al.,  2020). Whatever the case may be, high allele 
dropout translates to high rates of missing data in the dataset, which 
may dramatically influence allele frequency in the dataset (Arnold 
et al., 2013; Gautier et al., 2013; Hodel et al., 2017), or phylogenetic 
reconstruction (Crotti et al., 2019; Eaton et al., 2017).

Attempts to minimize the challenges posed by allele dropout 
include suggestions for parameter optimization and control (Paris 
et  al.,  2017; Rochette & Catchen,  2017), data-filtering and data 
exploration (O'Leary et  al.,  2018), data-cleaning thresholds (Crotti 
et  al.,  2019), and prospective and retrospective data simulation 
based on the reference genome available (Rivera-Colón et al., 2020). 
Despite these, retrieving an optimal dataset from a RADseq experi-
ment can pose challenges. On the one hand, technical expertise in-
volving enzyme selection, library size selection and selection of the 
number of PCR rounds (broadly library preparation) may be scarce 
for biologists working with non-model systems. On the other hand, 
post-sequencing approaches to filter data may lead to pruning of 
informative loci (Huang & Lacey Knowles,  2016; Lee et  al.,  2018), 
or to the retention of loci with particular characteristics in datasets 
with varying levels of species divergence (Dincă et al., 2019; Hodel 
et al., 2017).

Here, we suggest a simple method to mitigate allelic dropout is-
sues in datasets where biological allele dropout is mixed with allele 
dropout associated with biases in library preparation, experimen-
tal design and bioinformatic processing of the data. Simply put, by 
processing RADseq data in subgroups, which is at the population or 
species level (Figure 1), users will better distinguish between biolog-
ical and technical sources of allele dropout. While most RAD studies 
are comprised of a metapopulation, composed of several subpop-
ulations, most analyses focus on optimizing parameters across the 
metapopulation as a whole. Instead, here we suggest optimizing pa-
rameters directly in each subpopulation or subspecies. Using this ap-
proach in four datasets, we identified individuals with a high degree 
of missing data (hereafter bad apples) and removed them from the 
final analysis comprising all populations (Figure 1).

2  | MATERIAL S AND METHODS

2.1 | Data

To test the suggested pipeline, we used four datasets including: (a) 
a ddRADseq dataset comprising populations of the meiofaunal an-
nelid Stygocapitella zecae (J. Cerca et al, unpubl. data; 21 samples, 
six populations); (b) a single-digest RADseq dataset comprising sev-
eral species of Euhadra molluscs (Richards et al., 2017); 16 samples, 
four species); (c) a ddRADseq dataset comprising populations of the 
Antarctic sponge Dendrilla antarctica (Leiva et al., 2019; 62 samples, 
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seven populations); and (d) a hyRADseq dataset of Anthochaera phry-
gia combining museum and modern samples (Crates et al., 2019; 230 
samples, eight populations).

2.2 | Bioinformatic processing

A graphical overview of the bioinformatic processing is provided in 
Figure 1. We opted for a subgroup (i.e. population-by-population 
or species-by-species) analysis pipeline because analysing missing 
data at the level of the whole dataset would lead to the removal of 
whole populations—especially those which are more divergent. By 
running subgroup-level analyses, we explore the data at a reduced 
biological divergence level, thereby operating at a scale where 
most dropout is expected to derive from artefacts associated with 
molecular biology and sequencing. We processed the four datasets 
using the de novo pipeline implemented in Stacks v2.41 (Rochette 
et  al.,  2019). We began by optimizing the clustering parameters 
-M (number of mismatches allowed between stacks within indi-
viduals) and -n (number of mismatches allowed between stacks 
between individuals) following Paris et al. (2017)'s method to opti-
mize RADseq data in Stacks. Essentially, this method involves run-
ning Stacks with different -M -n combinations and determining the 
number of loci obtained, thereby choosing the ‘right’ parameter 

space - i.e. avoiding over-splitting or over-merging the data. We 
selected -M 2 -n 2 for the final analysis of every dataset, with the 
exception of the Anthochaera phrygia, where we selected -M 3 -n 
3. Using these parameters, we ran Stacks using the de novo wrap-
per thereby generating a dataset with the complete number of 
individuals available (hereafter unclean datasets; Figure  1, steps 
1–2).

After obtaining the unclean datasets, we ran Stacks for each pop-
ulation individually for the Stygocapitella, Dendrilla and Anthochaera 
datasets (Figure  1, step 3), and for each species separately in the 
Euhadra datasets (using default parameters and applying -M 2 -n 2 
for all datasets with the exception of Anthochaera, where -M 3 -n 3 
was used; Tables S1–S4), and generated a variant call format (VCF) 
file for each. We obtained information on missing data for each in-
dividual using vcftools (Danecek et al., 2011) (--missing-indv option; 
Tables S1–S4; Figure 1, step 4). Since coverage is a common prob-
lem in genomic-level studies, we also retrieved coverage informa-
tion using vcftools (--depth option; Tables S1–S4). With the whole 
dataset in mind, we labelled individuals as to keep or remove (bad 
apples), following a general strategy which included: (a) retaining a 
minimum of two individuals per population or species; (b) designat-
ing a threshold for missing data, based on the average missing data 
for each whole dataset (≥40% missing data for Stygocapitella, ≥30% 
for Euhadra, ≥65% for Dendrilla, ≥40% for Anthochaera). Notice that 

F I G U R E  1   Overview of the Stacks-based bad apples pipeline. 1—raw reads are first processed with process_radtags, which removes 
reads without barcode and cut-site, and de-multiplexes the raw-reads; 2—a Stacks run (u/c/s/gstacks) consisting of the whole dataset; 
3—identification of bad apples by running Stacks separately for each population or species (depending on the scale of the dataset); 
4—determination of bad apples based on individual-level missing data, as estimated with vcftools (--missing-indv); 5—identification and 
removal of bad apples from the population map (the file that Stacks uses to assign individuals to populations or species); 6—using the initial 
Stacks run (unclean dataset) together with a cleaned population map, users retrieve the final dataset using the populations module which will 
filter the bad apples from the original dataset (hybrid-clean approach)
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we kept some individuals with high missing data in the Anthochaera 
dataset since they are valuable historical specimens (Figure 1, step 
5). We have done this to recreate the conditions of a typical ancient-
DNA study. Additionally, since there was a very high range of missing 
data for Dendrilla, we also ran populations with -r 0.2 (minimum per-
centage of individuals in a population required to process a locus for 
that population) for this dataset.

After the identification of the bad apples, we generated three new 
datasets: clean, hybrid-clean and random. The clean dataset com-
prised only kept samples (that is every specimen not labelled as a bad 
apple) and involved rerunning the whole Stacks pipeline (starting in 
ustacks). The hybrid-clean dataset also included the same specimens 
as the clean one (all kept specimens) but involved reusing the unclean 
Stacks output as represented in Figure 1, step 6. Essentially, Stacks 
assembles loci across all samples first using u/c/s/gstacks, and then the 
data are filtered with the populations module. Therefore, the Stacks 
run behind the hybrid-clean dataset includes all individuals, and bad 
apples are only excluded at the filtering step. Finally, to understand the 
overall impact of removing specimens, we performed 10 random runs, 
where we removed the same number of specimens as the number of 
bad apples detected; however, specimens were removed haphazardly. 
The aim of the random dataset was to assess the effect of removing a 
certain number of specimens on the final dataset.

2.3 | Assessment of the results

To determine differences between the unclean, clean, hybrid-clean 
and random datasets at different filtering options, we generated (a) 
the overall number of loci (regardless of the number of SNPs per locus) 
provided by populations at different filtering thresholds, (b) the % of 
missing data also at different filtering thresholds (Table S5) and (c) 
explored whether there are differences between kept/removed loci. 
Specifically, to obtain the (a) number of loci, we ran populations with a 
fixed -p (minimum number of populations a locus must be present in to 
process a locus; -p 4 for Stygocapitella zecae, -p 4 for Euhadra spp., -p 
2 for Dendrilla antarctica and -p 2 for Anthochaera phrygia) and with -R  
of 0%, 10%, 20%, 30%, 40%, 50%, 60%, 70%, 80%, 90% and 100% 
(minimum percentage of individuals across populations required to 
process a locus). We opted for a fixed -p since the number of popu-
lations was constant across datasets, but varied -R since it relies on 
the number of individuals, which varies between the unclean and the 
remaining data. To obtain (b) estimates of missing data, we obtained 
estimates of missing data using vcftools, as reported above for the 
identification of bad apples. For both the number of loci and missing 
data, we determined the relative difference of the evaluated datasets 
(clean, hybrid-clean and random) to the value of the unclean dataset. 
In other words, first, we obtained the difference in the number of loci 
and missing data between the evaluated datasets and the unclean 
dataset; second, we divided the obtained result with the value of the 
unclean dataset. The relative differences were obtained as percent-
ages by multiplying by 100. We restricted these analyses to filtering 
thresholds, which generated at least 100 loci in the unclean dataset, 

since small denominators generate high relative values even when 
facing small changes. For example, in Stygocapitella, the filtering of 
-p 4 -R 1 generates only one locus in the unclean dataset and two 
in the hybrid-clean and clean ones. In relative terms, this is a 100% 
increase in loci, but, in practical terms, this does not translate to an 
improvement. Moreover, studies using RADseq do not typically rely 
on small numbers of loci, but usually consider hundreds or thousands 
of loci. Therefore, only filtering stages up to -R 0.6 were considered 
for Stygocapitella, -R 1.0 for Euhadra, and -R 0.5 for Dendrilla and 
Anthochaera (Table S5). Finally, (c) we explored whether removing in-
dividuals affected particular classes of loci by comparing the hybrid-
clean and unclean datasets, which share the same set of assembled 
loci (catalogue in Stacks), since they diverge only at the filtering stage. 
To do so, we converted the data to a present/absence data format 
and plotted the number of (a) loci kept in the whole dataset, (b) all loci 
in the bad apples, (c) all loci in kept specimens, (d) loci kept in the bad 
apples and (e) removed loci in bad apples.

A concern with removing bad apples in a genomic dataset is 
whether users remove genetically distinct individuals that may, for 
various reasons, occur in nature. To explore this, we performed a prin-
cipal component analysis (PCA) at a subgroup level, labelling bad ap-
ples and kept specimens. We also tested for deviations in nucleotide 
diversity (π) and Watterson's estimator (θ) between the uncleaned, 
hybrid-cleaned and cleaned datasets. The PCA was chosen since its 
calculation assumes average values when data are missing for a par-
ticular locus. As a result, individuals with high missing data will be 
represented in the middle of the PC axis. Deviation in π and θ should 
provide further evidence on whether we removed genetically distinct 
individuals. To carry out a PCA, we used the --write-random-SNP op-
tion while generating a variant call format file (vcf) using populations,  
so that linkage disequilibrium is removed. The vcf was then loaded to 
R using the package vcfR (Knaus & Grünwald, 2017), and a PCA was 
carried using functions included in the adegenet package (Jombart & 
Ahmed, 2011). For π and θ calculations, we retrieved fasta sequences 
using populations. Using custom perl and unix scripts, we split the 
fasta sequences into loci, and these, in turn, were split according 
to the subgroup (i.e. Locus1_populationA; Locus 1_populationB; … 
Locus N_population_X). From these, we selected loci with least miss-
ing data, by selecting the loci present in at least the number of kept 
specimens (i.e. in a population with nine individuals, including five 
kept specimens and four bad apples, we kept loci present in five or 
more specimens). These loci were then loaded in DNAsp v6 (Rozas 
et al., 2017), where we calculated loci-by-loci π and θ, as well as the 
averages for the whole population.

3  | RESULTS

3.1 | Data cleaning

There was a wide variation in terms of variant sites (SNPs) and 
missing data at the sample level (hereafter referred simply to 
missing data) when running different populations separately 
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in all four datasets (Tables  S1–S4). Nonetheless, the values for 
the number of variants and missing data do not correlate. For 
instance, in the Stygocapitella dataset, at one extreme the Ardtoe 
population has a total of 37,028 SNPs, while at the other end 
the Lødingen population has 2,821 SNPs (Table 1; random SNP 
per locus). Despite these differences, both populations have 
an average missingness of 53% and 55% respectively. These 
two, together with Henningsvær (53% missing data), are at the 

higher distribution of missing data (Table  1). The lowest value 
for missing data is 22% and found in Cutty Sark. According to 
the established protocol to label and remove bad apples, we re-
moved one individual from Ardtoe with 97% missing data, one 
individual from Lødingen with 71% and two from Henningsvær 
with 60% and 94%. No individual was removed from the 
Cutty Sark population (Table  S1). The remaining populations, 
Kristineberg and Musselburgh, have a number of variants within 

Population/species

Variant 
sites Average missingness in %

# All individuals All < threshold
All 
included

Stygocapitella zecae

Ardtoe 37,028 53 42 42

Cutty Sark 11,059 22 22 22

Henningsvær 13,893 53 28 28

Kristineberg 20,158 45 41 41

Lødingen 2,821 55 48 48

Musselburough 6,172 48 38 38

Euhadra spp.

Euhadra aomoriensis 33,866 28 22 22

Euhadra quaesita 40,493 23 21 21

Euhadra 
senckenbergiana

19,126 10 10 9

Dendrilla antarctica

Den_CIE (without -r) 5,155 74 — —

Den_CIE (with -r 0.2) 4,389 70 41 41

Den_DEC (without -r) 4,829 68 — —

Den_DEC (with -r 0.2) 4,083 65 44 44

Den_FIL (without -r) 3,613 77 — —

Den_FIL (with -r 0.2) 1,581 62 52 52

Den_HM (without -r) 2,162 67 — —

Den_HM (with -r 0.2) 1,944 64 55 55

Den_OHa  2,086 44 44 37

Den_PARa  636 39 39 30

Den_ROT (without -r) 6,317 71 — —

Den_ROT (with -r 0.2) 3,299 57 47 44

Anthochaera phrygia

ACT 937 38 20 24

ADL 428 34 29 31

NA 2,656 50 28 41

NNSW 361 33 25 27

NVIC 396 33 23 29

QLD 76 36 28 32

SVIC 467 40 23 31

BMTN 305 38 22 28

aThis population was assessed without filters due to the lack of data using filters and the average 
values for all individuals below the threshold and all included individuals were taken without the 
filters 

TA B L E  1   Results of the subgroup 
(population or species level) analyses 
including the number of variant sites 
and the average missing data. Total 
number of variant sites per population/
species and average missingness per 
population/species for all individuals, 
all individuals below the threshold and 
all included individuals are given. Since 
there was a very high range of missing 
data for Dendrilla antarctica, we also 
ran populations' filtering with -r = 0.2 
(minimum percentage of individuals in a 
population required to process a locus for 
that population) for this species
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the aforementioned ranges, and we removed one individual from 
each with 60% and 68% missing data respectively (Table S1). In 
total, we removed six individuals from a total of 21 (i.e. 29% of 
the dataset was removed; Table S1). This improved the average 
missing data for each population except for Cutty Sark, where 
no individuals were excluded (Table  1). The strongest change 
could be observed for the Henningsvær population, which de-
creased from 53% to 28% missingness. Importantly, bad apples 
do not strictly correlate with sequencing coverage. For example, 
in Henningsvær and in Kristineberg, the samples with the highest 
coverage (80× and 75×) were identified as a bad apple.

Of all four datasets, the Euhadra dataset has the highest number 
of SNPs and the lowest missing data (Table 1). When running species 
separately, Euhadra aomoriensis has the highest average missingness, 
with 28% over 33,866 SNPs, while E. quaesita yielded the most SNPs 
(40,493) and an average of 23% missing data. Euhadra senckenbergi-
ana had the lowest numbers in terms of variants and average missing 
data, with 19,126 SNPs and 10% respectively. In E. aomoriensis, we 
identified and removed two individuals with 44% and 34% missing 
data. In E. quaesita, we removed one individual with 30% missing 
data (threshold of 29%; Table S2). We also removed the individual 
of E. senckenbergiana with the highest degree of missingness (12%, 
Table S2), since we wanted to explore the effect of removing several 
individuals. In total, we removed four individuals from a total of 15 
(27% of the dataset removed; Table S2). The average missingness 
for each population was decreased with the steepest decrease in 
E. aomoriensis (Table 1). In Euhadra, we found a correlation between 
missing data (and therefore the labelling of bad apple) and coverage 
(Table S2).

The Dendrilla dataset has the highest degrees of missingness of 
all four datasets. When running different populations separately, 
average missingness values range from 39% in the population Den_
PAR to 77% in Den_FIL when no filtering is applied (‘-r’ flag, Table 1). 
The filter ‘-r 0.2’ decreased missingness (Table 1), but the popula-
tions Den_OH and Den_PAR have no SNPs left. These are also the 
two populations with lowest number of SNPs (i.e. 2,086 and 636) 
when no filtering was applied. The Den_ROT population yielded the 
most SNPs, with 6,317 without filtering (decreasing to 3,299 SNPs 
after filtering). The difference between the obtained number of loci 
before and after filtering was less substantial in the Den_CIE popula-
tion; in specific, there were 5,155 and 4,389 before and after filtering 
(Table 1). Using a threshold of 64% missing data, we removed at least 
one individual from each population (Table S3). The filtering was, in 
some cases, quite rigorous since it excluded a substantial number 
of individuals. For instance, in Den_CIE, we excluded as many as 
six out of nine individuals. We removed 31 individuals from a total 
of 62 (50% of the dataset; Table S3). Due to this rigorous removal 
of individuals, the average missingness decreased substantially in 
some populations (Table 1). For example, in Den_CIE, missing data 
decreased from 70% to 41%. Similar to the Stygocapitella dataset, 
there was no strict correlation between coverage and missing data, 
with multiple populations having the samples with most coverage 
removed (Table S3).

Finally, the Anthochaera dataset had the lowest number of SNPs 
across populations ranging from 76 in the QLD population to 2,656 
in the NA population (Table 1). The extent of missing data is com-
parable to that observed in the Stygocapitella dataset, with the NA 
population when ran separately, having the most missing data (50%), 
and NNSW and NVIC having only 33% (Table  1). We removed at 
least one individual in each population, following a threshold of 39% 
(Table S4). Importantly, we kept some individuals above this thresh-
old since the dataset included valuable individuals, namely histori-
cal specimens. We removed 41 individuals from a total of 230 (18% 
of the dataset was removed; Table S4), which led to a decrease in 
the missing data (Table  1). However, due to some of the retained 
individuals, which have substantially high values of missing data, 
the decrease is not substantial. For example, the decrease in the 
SVIC population is only from 40% to 31% instead of 23% (Table 1). 
In agreement with the Stygocapitella and Dendrilla datasets, we ob-
served that bad apples do not correspond to samples with low cov-
erage (Table S4).

3.2 | Improvement in the datasets after the 
removal of bad apples

In general, the clean and hybrid-clean datasets yielded substan-
tially more loci, in some cases as much as 300% more than the un-
clean dataset (Figure 2). Notably, the relative difference increases 
with decreasing numbers of loci in the unclean dataset. This ef-
fect cannot merely be attributed to having a smaller number of 
samples, as discussed above, since the random datasets yield less 
loci than the cleaned and hybrid-cleaned, despite having the same 
number of samples removed. This therefore confirms that bad ap-
ples have an overall negative effect on the number of loci of a 
dataset. While these effects are noticeable in every dataset, they 
are least pronounced in Euhadra. This is because Euhadra was, 
relatively, the best of all the analysed datasets, since it had lower 
missing data and a higher number of loci. In contrast to the re-
maining three datasets, in Euhadra, all -R filtering had >100 loci 
(Table S5). However, even in an excellent dataset, such as Euhadra, 
the increase in loci in the clean and hybrid-clean datasets at lower 
numbers of loci is easily observed (Figure  2). This indicates that 
even in an excellent dataset there is room for improvement and 
removing bad apples can be performed. Another interesting ob-
servation is that only at the least restrictive settings (-R 0, -R 0.1), 
which result in the greatest number of loci, there is no negative 
effect of removing the bad apples on the number of loci across all 
datasets (Figure 2). Considering this, and the difference observed 
between the Euhadra dataset and the other three, it seems that in 
these cases (i.e. very low restrictive settings or very good dataset) 
the unclean dataset reaches a high number of loci. However, in all 
other cases, removing bad apples has a clear, sometimes substan-
tial effect.

Except for the Anthochaera dataset, there is no obvious differ-
ence between the clean and hybrid-clean approach in terms of the 
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number of loci (Figure 2). In the Stygocapitella and Euhadra datasets, 
both these datasets retrieve nearly similar values. In the Dendrilla 
dataset, clean and hybrid-clean perform differently when varying -R 
values, with the clean performing slightly better at less restrictive 
settings. In the Anthochaera dataset, the clean approach performs 
much better than the hybrid-clean.

With respect to missing data, removing bad apples also improved 
the datasets. The only exceptions were two -R levels of the Euhadra 
dataset where there was no difference (0%) between the clean and 
unclean dataset (Figure  3). In the Dendrilla and Anthochaera data-
sets, the random datasets are clearly worse than the clean and 
hybrid-clean datasets. In the Stygocapitella dataset, there were dif-
ferent results following different filtering settings. In four cases, 
the clean and hybrid-clean approaches are clearly better than the 
random exclusion, while in three cases the random exclusion was 
good or even better than clean and hybrid-cleaned. In the Euhadra 
dataset, except for the two most restrictive settings, the cleaned 
and hybrid-cleaned are clearly better than the random exclusion. 
This may be explained by this being the best of all datasets, as pre-
sented above (Table 1, Table S5), and therefore there may be little 
room for improvement with respect to missingness at the most re-
strictive settings.

Considering the two cleaning approaches, clean and hybrid-
clean, there is no difference in performance in the Stygocapitella 
and Euhadra datasets (Figure 3). In the Dendrilla dataset, the clean 
approach appears to perform slightly better at more restrictive 

settings (i.e. higher -R, lower number of loci) and the hybrid-clean at 
less restrictive settings. In the Anthochaera dataset, the clean out-
performs hybrid-clean only in less restrictive settings.

Considering both the number of loci and the missingness, re-
moving bad apples always improves the dataset, and the random 
datasets are clearly performing worse than the clean and hybrid-
clean approaches (Figure 4). This difference is not as pronounced 
in the Euhadra dataset as in the other three. In the Stygocapitella 
and Euhadra datasets, the number of loci is increased and the miss-
ingness is reduced in the majority of the settings. However, the 
relationship between these two measurements is slightly nega-
tive. Hence, when there is little or no improvement in missingness, 
the number of loci increases and vice versa. The two cleaning ap-
proaches perform generally very similar in both datasets. In the 
remaining two datasets, the correlation is slightly different. In the 
Dendrilla dataset, both the number of loci and the missing data gen-
erally improve, but there seems to be no correlation between them. 
In contrast, in the Anthochaera dataset, using the hybrid-clean ap-
proach led to a generally positive correlation between both, while in 
the clean approach the improvement in missingness seems constant 
while the number of loci increases. In the Dendrilla dataset, the clean 
and hybrid-clean approaches perform slightly different, but no clear 
pattern being observed.

Removal of bad apples does not appear to bias the dataset 
against a particular class of loci (Figure 5). The removal of bad ap-
ples caused a removal of some loci, which had high missingness. 

F I G U R E  2   The relative difference in the number of loci for the random, hybrid-clean and clean datasets to the unclean dataset for 
Stygocapitella, Euhadra, Dendrilla and Anthochaera datasets in relation to the number of loci in the unclean dataset (the higher the number of 
loci, the lower the parameter R from the populations module). For the random datasets, the median and the standard deviations are given. 
The arrows indicate the directions of improvement and the grey zones the areas, where the unclean dataset is performing better



812  |    Methods in Ecology and Evolu
on CERCA et al.

F I G U R E  3   The relative difference in the average missingness for the random, hybrid-clean and clean datasets to the unclean dataset for 
Stygocapitella, Euhadra, Dendrilla and Anthochaera datasets in relation to the number of loci in the unclean dataset (the higher the number of 
loci, the lower the parameter R from the Populations module). For the random datasets, the median and the standard deviations are given. 
The arrows indicate the directions of improvement and the grey zones the areas, where the unclean dataset is performing better

F I G U R E  4   The relative difference in the number of loci in relation to the average missingness. For the random datasets, the median 
and the standard deviations are given. The arrow indicate the directions of improvement and the grey zones the areas, where the unclean 
dataset is performing better in one or both of the parameters
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This was also evident from the very small number of removed 
loci: in the Stygocapitella dataset, four loci were removed from 
a total of 3,875; for the Euhadra dataset, 321 loci were removed 
from a total of 22,753; in Dendrilla, 321 loci were removed from a 
total of 21,140; in Anthochaera 77 loci were removed from a total 

of 4,967. This suggests that the removal of some loci after the 
exclusion of bad apples is driven by the inherent stochasticity of 
locus presence/absence in both good individuals and bad apples, 
rather than by systemic differences in the set of loci present in 
bad apples.

F I G U R E  5   Distribution of loci in the whole dataset (a, f, k, p), in the removed samples or bad apples (b, g, l, q) and in the kept individuals 
(c, h, m, r). Distribution of only kept loci in the samples removed or bad apples (d, i, n, s), and the loci removed in the samples removed or 
bad apples (e, j, o, t). The four datasets Stygocapitella (a–e), Euhadra (f–j), Dendrilla (k–o) and Anthochaera (p–t) are presented. Notice different 
datasets had different cutting-thresholds
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3.2.1 | No removal of outliers

The removal of samples generally did not remove outliers from the 
dataset. In a PCA, individuals with most missing data are pulled to 
the middle since the algorithm assumes average values for those in-
dividuals. This is most perceptible in populations with seven or more 
specimens in the dataset. For instance, in Dendrilla and Anthochaera, 
most bad apples represent individuals with central positions in the 
PCs (Figure  S1). However, few samples in the extremities were 
also removed, as illustrated on DEN_OH, DEN_PAR (populations 
from Dendrilla), ACT, ADL and NA (populations from Anthochaera; 
Figure  S1). In Stygocapitella and Euhadra, subgroup-runs had very 
few specimens, but generally results were similar to Dendrilla and 
Anthochaera (Figure S1). Changes in π and θ between datasets were 
not very pronounced between the unclean, hybrid-clean and clean 
datasets (Table S6). The hybrid-clean and clean generally performed 
similarly in these comparisons.

4  | DISCUSSION

When considering the number of loci and missing data together, re-
moving bad apples (i.e. samples with high missing data) had a positive 
effect on the datasets, by increasing loci and/or decreasing missing 
data. This effect is not attributable to the removal of specimens, as 
the random dataset, where we removed a similar number of samples 
but chosen randomly, performed worse in comparison to hybrid-
clean and clean approaches. Namely, the random retrieved less loci 
and generally retained more missing data. The hybrid-clean and 
clean approaches generally yielded similar performances, both in 
terms of missing data and number of loci (Figures 2–4). While some 
differences could be observed between clean and hybrid-clean, 
they do not seem to be predictable, consistent and depended on the 
dataset and parameter space investigated. This suggests that users 
should replicate the hybrid-clean approach as it is less resource and 
time consuming (i.e. Figure 1).

4.1 | Optimization of RADseq data

The identification and removal of the bad apples on the studied 
datasets yielded up to a threefold increase in the number of loci 
(Figure  2), at the cost of the removal of 18%–50% of the speci-
mens. The retrieval of more loci allowed filtering the data more 
thoroughly, thus obtaining a ‘high-quality’ collection of variants 
(Paris et al., 2017). For instance, -R 0.6 in the hybrid-clean approach 
in Stygocapitella, a threshold considered for datasets consisting of 
highly diverged individuals (Paris et al., 2017), yielded more loci than 
-R 0.5 in the unclean dataset.

Despite these clear benefits, the identification and removal of 
bad apples should be conducted carefully. First, the principle behind 
bad apples requires that population and/or species are carefully 
determined as part of the experimental design. For most studies, 

the determination of populations and species is done a priori and 
is required by ‘population maps’, included as part of Stacks. The 
lack of precision, such as the inclusion of individuals from different 
populations together, may lead to the pruning of individuals from 
a minor/deviant genetic background. This may be particularly diffi-
cult for, for instance, marine populations where where the determi-
nation of population limits remains challenging (Cerca et al., 2018; 
Hellberg,  2009), or in cases where individuals from morpholog-
ically similar species (cryptic species) are overlooked (Struck & 
Cerca, 2019; Struck et al., 2018) and potentially considered as bad 
apples. However, these cases may be a minority in the landscape 
of RADseq studies. Second, some individuals may be of particular 
interest. For instance, hybridization or incomplete lineage sorting 
contributes to shifts in allelic frequencies (Sætre & Ravinet, 2019). 
If very divergent alleles lead to high missing data, and are restricted 
to only some samples, admixed individuals may then be wrongly 
pruned out. Third, historical specimens may be precious, as in the 
case of A. phrygia, even if yielding a high rate of allelic dropout. In 
practice, this translates that RADseq users need of carefully under-
stand their data. Using a PCA, where samples which are genetically 
distinct will be easily identified, we found that removing bad apples 
generally targeted samples occupying intermediate positions in the 
PC ordinates. However, we also note that some exceptions to this 
pattern occurred, with some non-intermediate samples being re-
moved. While these concerns may be applicable to particular data-
sets, we recommend researchers should always carefully analyse 
their data, either through simulation-based assessments (Rivera-
Colón et al., 2020) or through approaches which decompose genetic 
variation such as principal components, so that users are guaranteed 
that they are not pruning outliers from their data (Figure S1).

4.2 | Mitigating allele dropout

Current strategies to mitigate dropout focus on improving labora-
tory practices and bioinformatics, however they may not work for 
every case. For instance, high quantities of high-quality DNA are 
desirable, but this is difficult to achieve for many non-model taxa. In 
the Stygocapitella dataset, a whole genome amplification was done to 
increase DNA concentration. While this can be a powerful approach 
for microscopic eukaryotes, it may, nonetheless, introduce biases in 
RADseq datasets (de Medeiros & Farrell, 2018). In the Anthochaera 
dataset, >100-year-old museum samples were included, thus yield-
ing highly fragmented and low-concentration DNA. In these cases, 
optimization of libraries may be limited and, therefore, bioinformatic 
optimization may be needed. Attempts to mitigate dropout and 
its downstream issues include the removal of alleles below a cer-
tain coverage and identifying loci with high variance in read depth 
among individuals (O'Leary et al., 2018). Yet, these thresholds may 
not be applicable to the Stygocapitella and Anthochaera datasets. In 
the first case, it is because whole genome amplification may lead to 
differences in DNA coverage, as some strands of DNA may be over-
represented after whole genome duplication, thus translating to 
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differences among individuals. In the second case, coverage of his-
torical samples may be biased due to their inherent properties. Thus, 
suggested methods based on depth filters may not work (O'Leary 
et al., 2018).

The proposed method allows distinguishing between the two 
sources of allele dropout, with clear benefits for RADseq population 
genetics inference. Allele dropout may stem from biological diver-
gence (mutation in a restriction site; Ravinet et  al.,  2016) or from 
artefacts in library preparation or sequencing (O'Leary et al., 2018). 
By running Stacks at a subgroup level (population-by-population or 
species-by-species), we are able to set biological divergence aside 
during the optimization step of the pipeline, thereby isolating drop-
out stemming from artefacts in library preparation and sequencing. 
Removal of bad apples therefore targets poorly sequenced and pre-
pared samples. Lowering the rates of allele dropout in RADseq in-
ference is of significant importance since high rates of dropout can 
lead to bias in the estimation of various population-level statistics. 
For instance, high allele dropout (expressed by high levels of missing 
data) may lead to dramatically inflated estimates of FST and hetero-
zygosity, and deflated rates of FIS, as determined by comparisons be-
tween simulated data and empirical data (Arnold et al., 2013; Gautier 
et al., 2013; Hodel et al., 2017). Inflation of these metrics occurs be-
cause, with lower sample sizes, the extent of intra-population diver-
sity is not represented and, for example, when comparing between 
populations, estimates of FST tend to be higher. Therefore, mitigation 
of allele dropout should be a priority when designing RADseq-based 
projects. In agreement with these works (Arnold et al., 2013; Gautier 
et al., 2013; Hodel et al., 2017), we report slight differences between 
π and θ in the clean and hybrid-clean when compared to the unclean 
dataset. While we cannot determine the exact drivers of these 
changes, it is likely they may be attributed to the decreasing of miss-
ing data in the cleaned and hybrid-cleaned datasets. We therefore 
conclude that the clean and hybrid-clean datasets may yield more 
correct estimates of π and θ.

Phylogenetic inference will also benefit from decreased rates of 
allele dropout. Best practices for the optimization of RADseq data-
sets for phylogenetic inference suggest that researchers pruning 
datasets for missing data cannot be too stringent or too permissive 
(Crotti et al., 2019) as, in either case, loci kept may have particular 
characteristics (Lee et al., 2018). On one hand, being conservative 
may exclude fast-evolving loci, thus jeopardizing the resolution of 
terminal branches (Eaton et al., 2017; Huang & Lacey Knowles, 2016; 
Lee et al., 2018). On the other hand, being too permissive may jeop-
ardize phylogenetic inference as the signal to noise ratio will be 
blurred by missing data (Crotti et al., 2019). An important result from 
our approach is that excluded loci do not seem to differ from kept 
loci in any obvious way, suggesting that removing bad apples does 
not bias the final set of loci. In this way, recovery of more loci and 
reduction of missing data when building a phylogenetic data matrix 
may allow researchers to obtain improved inferences.

While we have optimized and applied currently suggested filter-
ing method using the pipeline Stacks, we expect this approach to be 
applicable to other pipelines focusing on RADseq data analysis. This 

expectation results from other RADseq analysis pipelines, including 
ipyrad and dDocent (Eaton & Overcast,  2020; Puritz et  al.,  2014), 
analyse sequences in a similar framework as Stacks. Since these also 
output similar files (e.g. genotypes, vcf), implementing the bad ap-
ples approach is likely to yield similar results, and should be as easy 
to implement as it is for Stacks.

5  | CONCLUSIONS

The biggest advantage of genomics, that is the retrieval of a large 
amount of genetic data, is intimately coupled with its biggest hin-
drance, that is biases associated with big data. RADseq-based 
methods allow obtaining genomic-level data for phylogenetic and 
population genetic inference at affordable costs for organisms where 
reference genomes lack. However, optimizing de novo RADseq data-
sets still remains challenging, particularly when specimens are not 
closely related and when problems associated with library prepara-
tion and sequencing occur. Here, we suggest a simple procedure to 
mitigate some issues associated with allele dropout, which consists 
of the identification and removal of individuals with high degrees 
of missing data (bad apples) on a subgroup level (population-by-
population level or species-by-species level). Comparisons of data-
sets with and without bad apples clearly suggest that removal of bad 
apples leads to an increase in the number of loci and/or lowering of 
missing data (Figure 4), while not removing outliers (Figure S1; Table 
S6). The more robust datasets obtained by removing bad apples are 
likely to improve phylogenetic and population genetic inferences. 
We recommend that users:

•	 Generate an unclean dataset and explore the level of missing data, 
as we did above, using vcftools (--missing-indv) and by exploring 
genetic variance-based clustering (principal component analysis).

•	 Determine bad apples by running Stacks at a reduced level of lin-
eage divergence in the dataset (e.g. population-by-population or 
species-by-species, depending on the scale of the dataset). After 
running Stacks at the reduced level, users should obtain missing 
data using vcftools (--missing-indv) and determine bad apples as 
specimens by setting a by setting a missing data cut-off. For ex-
ample, cutting specimens in which missing data is higher than the 
mean of missing data for that particular population.

•	 We advise against rerunning the whole pipeline of Stacks to gen-
erate a clean dataset, but only rerun the populations module, 
with bad apples removed, therefore reproducing the hybrid-clean 
dataset herein introduced. In this way, computational resources, 
including disc space and running time, will be saved.
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