
Stochastic Local Search for Efficient Hybrid Feature Selection
Ole Jakob Mengshoel

NTNU & CMU
Tong Yu
CMU

Jon Riege
NTNU

Eirik Flogard
NLIA & NTNU

ABSTRACT
There is a need to study not only accuracy but also computational
cost in machine learning. Focusing on both accuracy and computa-
tional cost of feature selection, we develop and test stochastic local
search (SLS) heuristics for hybrid feature selection.

CCS CONCEPTS
•Computingmethodologies→Randomized search;Discrete
space search; Heuristic function construction; Feature selec-
tion;

KEYWORDS
Pseudo-Boolean functions, feature selection, optimization, stochas-
tic local search, wrapper, filter

ACM Reference Format:
Ole JakobMengshoel, Tong Yu, Jon Riege, and Eirik Flogard. 2021. Stochastic
Local Search for Efficient Hybrid Feature Selection. In 2021 Genetic and
Evolutionary Computation Conference Companion (GECCO ’21 Companion),
July 10–14, 2021, Lille, France. ACM, New York, NY, USA, 2 pages. https:
//doi.org/10.1145/3449726.3459438

1 INTRODUCTION
Context. We study search over bit-strings B = {0, 1}𝑛 . Fitness 𝑓
is a pseudo-boolean function (PBF) that maps from B to the non-
negative real numbers R≥0. We seek to optimize (without loss of
generality, maximize) the fitness function 𝑓 :

𝒃∗ = argmax
𝒃∈B

𝑓 (𝒃) . (1)

In feature selection (FS) for machine learning (ML), each bit in a
bitstring 𝒃 ∈ B indicates whether a feature is included “1” or not
“0” when an ML model is induced. And 𝑓 is a measure of ML model
quality, in our case classifier accuracy [13, 15].

Typical benefits of FS include improved accuracy, interpretability,
and computational efficiency of the resulting ML model [3, 9, 11].
For example, the Naive Bayes classifier’s accuracy suffers if corre-
lated features are used [9], and FS can help by removing them. In FS,
one distinguishes between filter, wrapper, and embedded methods
[2, 9]. The filter approach selects features in a preprocessing step,
and the features selected do not depend on the ML algorithm used.
The wrapper approach, in contrast, uses an ML algorithm as part of

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
GECCO ’21 Companion, July 10–14, 2021, Lille, France
© 2021 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-8351-6/21/07.
https://doi.org/10.1145/3449726.3459438

FS. To hybridize the filter and wrapper approaches to FS, we study
an SLS algorithm in this paper, SLS4F.

Problem. We are interested in the problem of scaling SLS to
handle large FS problems; large both in the sense of number of fea-
tures and number of samples. What is the time it takes for an SLS
algorithm to find 𝒃∗ or a good approximation? There are several
factors. First, it depends on the time 𝑔(𝒃) it takes to evaluate 𝑓 (𝒃),
where 𝒃 ∈ B. Here,𝑔maps fromB toR≥0. Second, an SLS algorithm
will in general evaluate 𝑓 (𝒃) for many 𝒃 ∈ B when searching. Each
state in an FS search process represents a potentially computation-
ally costly (often on the order of seconds or minutes) induction
over a potentially large and high-dimensional dataset. In contrast,
computation time for each state of traditional SLS [6, 12] is fast
(often on the order of microseconds or milliseconds). In addition,
𝑔(𝒃) may vary dramatically over the FS search space.

Contribution. Efficient hybrid FS using SLS needs to consider
both maximizing ML accuracy and handling the computational cost
of FS; that is our focus in this brief paper.

2 SLS4FS: STOCHASTIC LOCAL SEARCH
Input. The SLS4FS algorithm takes these inputs: probability of
restart 𝑃𝑟 and of noise 𝑃𝑛 , adaptation rate of restart 𝛼𝑟 and noise
𝛼𝑛 , dataset 𝐷 (with number of instances 𝑑 and features 𝑛), ML
algorithm 𝐿, filter 𝐹 , fitness function 𝑓 (𝒃), time limit 𝜏 , and number
of neighbors 𝑁𝑟 . For FS problems, 𝑓 is defined via 𝐿 as follows: For
a subset 𝒃 , we run 𝐿 on D using the features indicated by 𝒃; 𝑓 (𝒃)
gives the estimated accuracy of the learned model [9].

Search. SLS4FS starts, using Restart(𝐹 ;𝐷), from a random initial
state 𝒃 ∈ B. Restart(𝐹 ;𝐷) initializes a bitstring using a filter method
𝐹 on dataset 𝐷 . SLS4FS searches B while optimizing 𝑓 . Let 𝑃𝑟 =

1 − 𝑃𝑟 and 𝑃𝑛 = 1 − 𝑃𝑛 . SLS4FS performs either: a greedy step with
probability 𝑃𝑟𝑃𝑛 ; a noise step with probability 𝑃𝑟𝑃𝑛 ; or a restart
step with probability 𝑃𝑟 . During search, SLS4FS keeps track of a
best-so-far 𝒃+. If, for the 𝑖-th search step 𝑓 (𝒃) > 𝑓 (𝒃+), then 𝒃 is
recorded as 𝒃+, the new best-so-far.1

Our SLS algorithm, SLS4FS, relates to existing research on SLS
[7, 12–14, 18]. SLS4FS scales the most closely related algorithm,
MarkovSLS [13], by adding three heuristics: (i) FS filters, (ii) ran-
domized neighborhoods, and (iii) soft greedy search.

(i) FS filters.When a filter 𝐹 is applied to a dataset for initialization
or restart, a score is calculated for each feature. For each bit 𝑏𝑖 , if
the corresponding feature’s score is in the 90th percentile, 𝑏𝑖 = 1,
else 𝑏𝑖 = 0. We tested the runtime and accuracy of well-known and

1We distinguish between SLS4FS variants, depending on how hyperparameters 𝛼𝑟
and 𝛼𝑛 are set. When 𝛼𝑟 = 𝛼𝑛 = 0, in static SLS4FS, they are set via offline tuning.
Otherwise, in adaptive SLS4FS, online control [10] is used. In offline tuning is the
probability parameters 𝑃𝑟 and 𝑃𝑛 are fixed; this enables analysis via homogeneous
Markov chains [12, 13]. Adaptive SLS4FS provides greater adaptivity to the problem
and search process at hand but goes beyond homogeneous Markov chains.

https://doi.org/10.1145/3449726.3459438
https://doi.org/10.1145/3449726.3459438
https://doi.org/10.1145/3449726.3459438

GECCO ’21 Companion, July 10–14, 2021, Lille, France Mengshoel et al.

prominent FS filters [1, 17]. Overall, chi-squared (𝐹𝜒2) had the best
performance in terms of runtime on almost every dataset. It also
had high mean accuracy for the datasets. Thus, for our experiments
we use 𝐹𝜒2 and 𝐹0s. 𝐹0s means starting with all-0s.

(ii) Randomized neighborhood. Let 𝑁𝑟 ∈ N+ with 0 < 𝑁𝑟 ≤ 𝑛. A
randomized neighborhood of size 𝑁𝑟 is defined as a set 𝑁 (𝒃, 𝑁𝑟):

𝑁 (𝒃, 𝑁𝑟) = {𝒃 ′ ∈ 𝑁 (𝒃) |𝒃 ′ is picked from 𝑁 (𝒃)}, (2)

such that |𝑁 (𝒃, 𝑁𝑟) | = 𝑁𝑟 . Here, “picked” means “picked uniformly
at random without replacement.”

(iii) Soft greedy. A greedy step Greedy(𝒃 , 𝑁𝑟 , 𝑓 ; 𝐿, 𝐷) starts from
𝒃 and seeks among 𝒃 ′ ∈ 𝑁 (𝒃, 𝑁𝑟) for a state that maximizes the
objective function 𝑓 (·). This is done by applying 𝐿 to 𝐷 . If there is
a tie in 𝑓 (·) among maximizing neighbors in 𝑁 (𝒃, 𝑁𝑟), one of these
is picked uniformly at random. A strict greedy step stays with 𝒃 if
𝑓 (𝒃) ≥ 𝑓 (𝒃 ′) for all 𝒃 ′ ∈ 𝑁 (𝒃, 𝑁𝑟), while a soft greedy step always
moves to a best-fit neighbor.

Termination and Output. Upon termination, SLS4FS outputs
𝒃+ as an approximation to 𝒃∗. In this work, SLS4FS terminates after
a given wallclock time limit has passed.

Dataset ML Feat. 𝑛 Inst. 𝑑 Time 𝜏 (s) 𝑵𝒓

breast cancer (UCI) SVM 9 700 100 1
m-of-n-3-7-10 (UCI) SVM 10 1 324 100 1
madelon [4] DT 500 2 000 100 50
bioresponse [8] NB 1 776 3 751 100 178
checklists DT 580 63 634 100 58
gas-drift (UCI) DT 128 13 910 100 13
crime (UCI) NB 124 2 215 100 13

Table 1: Experimental information for the 7 datasets, with
varying number of features (“Feat.”) and instances (“Inst.”).

Algorithm Configuration Mean R
RFE [5] model = linear SVM 0.734 9
ForwardSel. N/A 0.803 8
BackwardSel. N/A 0.826 6
AdaptiveNoise [6] 𝜙 = 0.2, 𝜃 = 1/6 0.834 5
AdaptiveSLS [13] 𝑃𝑛 = 0.0, 𝑃𝑟 = 0.0, 𝛼𝑛, 𝛼𝑟 = 0.32 0.844 4
SoftSLS [13] 𝑃𝑛 = 0.5, 𝑃𝑟 = 1/𝑛, 𝛼𝑛, 𝛼𝑟 = 0.0 0.856 3
SLS4FS/𝐹𝜒2 𝑃𝑛 = 0.5, 𝑃𝑟 = 0.0, 𝛼𝑛, 𝛼𝑟 = 0.0, 𝐹𝜒2 0.862 2
SLS4FS/𝑃𝑟 = 0.1 𝑃𝑛 = 0.5, 𝑃𝑟 = 0.1, 𝛼𝑛, 𝛼𝑟 = 0.0, 𝐹𝜒2 0.856 3
SLS4FS/𝐹0s 𝑃𝑛 = 0.5, 𝑃𝑟 = 0.0, 𝛼𝑛, 𝛼𝑟 = 0.0, 𝐹0s 0.878 1
SLS4FS/adaptive 𝑃𝑛 = 0.0, 𝑃𝑟 = 0.0, 𝛼𝑛, 𝛼𝑟 = 0.32, 𝐹𝜒2 0.807 7

Table 2: 10 FS algorithms, their configurations, and results
in experiments. These FS algorithms are well-known, from
the literature, or described in this paper. SLS4FS uses soft
Greedy and 𝑁𝑟 = 𝑛/10. The resulting mean accuracies
(“Mean”–higher is better) and ranks (“R”–lower is better) are
based for the data and settings in Table 1. The 3 best algo-
rithms are highlighted. Overall, SLS4FS (𝐹0s) is best.

3 SLS4FS: EXPERIMENTAL RESULTS
Goal. How does SLS4FS compare to other FS algorithms, including
those using local search?

Method and Data. Different FS algorithms, including SLS4FS
configurations, are benchmarked on several problems, see Table 1.2

2This includes a new dataset, checklists, which consists of inspections conducted
by the Norwegian Labor Inspection Authority (NLIA). The goal of the problem is to
predict the correct outcome (pass or fail) of the inspections.

Each problem consists of a dataset, an ML model, a time limit and a
neighborhood ratio.3 The ML models considered are the classifiers
Decision Tree (DT), Naive Bayes (NB), and Support Vector Machine
(SVM). Each fitness evaluation is done by using in𝐷 only features 𝒃 ,
initializing 𝐿, training with 𝐿 on 2/3 of the dataset, and calculating
the accuracy 𝑓 (𝒃) using the other 1/3. The accuracy 𝑓 (𝒃+) of the
best feature subset 𝒃+ for each algorithm is recorded.

Results and Discussion. Algorithm configurations and results
are summarised in Table 2.4 The top 3 performers, ranked by mean
accuracy (in the right-most column), are all variations of SLS4FS.
SLS4FS appears to be quite robust across all problems compared to
existing algorithms. For example, ForwardSelection achieves the
highest accuracy for 3 problems but is far behind for other problems,
leading it to be ranked as one of the last overall.5

REFERENCES
[1] A. Bommert, X. Sun, B. Bischl, J. Rahnenführer, and M. Lang. 2019. Benchmark

for filter methods for feature selection in high-dimensional classification data.
Computational Statistics & Data Analysis 143 (2019), 1–19.

[2] J. Chen, M. Stern, M. J. Wainwright, and M. I. Jordan. 2017. Kernel feature
selection via conditional covariance minimization. In NeurIPS. 6946–6955.

[3] I. Guyon and A. Elisseeff. 2003. An introduction to variable and feature selection.
JMLR 3 (2003), 1157–1182.

[4] I. Guyon, S. Gunn, A. Ben-Hur, and G. Dror. 2004. Result analysis of the NIPS
2003 feature selection challenge. In NIPS. 545–552.

[5] I. Guyon, J. Weston, S. Barnhill, and V. Vapnik. 2002. Gene Selection for Cancer
Classification Using Support Vector Machines. Machine Learning 46 (2002),
389–422. https://doi.org/10.1023/A:1012487302797

[6] H. H. Hoos. 2002. An Adaptive NoiseMechanism forWalkSAT. InAAAI. 655–660.
[7] H. H. Hoos. 2002. A mixture-model for the behaviour of SLS algorithms for

SAT. In Proceedings of the Eighteenth National Conference on Artificial Intelligence
(AAAI-02). Edmonton, Alberta, Canada, 661–667.

[8] Boehringer Ingelheim. 2012. Predicting a Biological Response. (2012). https:
//www.kaggle.com/c/bioresponse/data

[9] R. Kohavi and G. H. John. 1997. Wrappers for feature subset selection. Artificial
Intelligence 97, 1-2 (1997), 273–324.

[10] G. Krafotias, M. Hoogendoorn, and A. E. Eiben. 2015. Parameter Control in Evo-
lutionary Algorithms: Trends and Challenges. IEEE Transactions on Evolutionary
Computation 19, 2 (2015), 167–187.

[11] J. Li, K. Cheng, S. Wang, F. Morstatter, R. P. Trevino, J. Tang, and H. Liu. 2017.
Feature Selection: A Data Perspective. ACM Compututing Surveys 50, 6 (2017).

[12] O. J. Mengshoel. 2008. Understanding the Role of Noise in Stochastic Local Search:
Analysis and Experiments. Artificial Intelligence 172, 8-9 (2008), 955–990.

[13] O. J. Mengshoel, Y. Ahres, and T. Yu. 2016. Markov Chain Analysis of Noise and
Restart in Stochastic Local Search. In IJCAI. 639–646.

[14] O. J. Mengshoel, D. C. Wilkins, and D. Roth. 2011. Initialization and Restart in
Stochastic Local Search: Computing a Most Probable Explanation in Bayesian
Networks. IEEE TKDE 23, 2 (2011), 235–247.

[15] O. J. Mengshoel, T. Yu, and M. Zeng. 2020. Stochastic Local Search and Machine
Learning: From Theory to Application and Vice Versa. In ECAI. 2919–2920.

[16] M. Själander, M. Jahre, G. Tufte, and N. Reissmann. 2019. EPIC: An Energy-
Efficient, High-Performance GPGPU Computing Research Infrastructure. (2019).
arXiv:cs.DC/1912.05848

[17] R. Tibshirani. 1996. Regression Shrinkage and Selection via the Lasso. Journal of
the Royal Statistical Society. Series B (Methodological) 58, 1 (1996), 267–288.

[18] T. Weise, Z. Wu, and M. Wagner. 2019. An Improved Generic Bet-and-Run
Strategy for Speeding Up Stochastic Local Search. In AAAI. 2395–2402.

3Algorithms are implemented in Python version 3.6 and the numpy and scikit-learn
libraries are also used. Experiments are run on CPUs of the Idun cluster at NTNU
under Linux CentOS [16]. Except for the checklists dataset, where a Dell XPS 15 9570
with Windows 10, an i9 8950hk processor and 32GB RAM was used for legal reasons.
4Hyperparameters, including 𝛼𝑛 = 𝛼𝑟 = 0.32 used for AdaptiveSLS and SLS4FS
(adaptive), were optimized empirically, in pilot studies, using synthetic and real-world
data and kept constant in these experiments.
5For the checklists dataset, the most important identified features were in general
checklist Id, industry code, and location. Among the best performing configurations,
there were differences in the number of features that were found. SLS4FS/𝐹0s found 6
times as many features as ForwardSelection, AdaptiveSLS and SoftSLS in average. By
using a randomized neighborhood, SLS4FS is able to explore a larger part of the search
space which yields more features with approximatly the same computational cost.

https://doi.org/10.1023/A:1012487302797
https://www.kaggle.com/c/bioresponse/data
https://www.kaggle.com/c/bioresponse/data
http://arxiv.org/abs/cs.DC/1912.05848

	Abstract
	1 Introduction
	2 SLS4FS: Stochastic local search
	3 SLS4FS: Experimental Results
	References

