
A Multimethod Approach to Multimodal Function Optimization
Fredrik Foss

NTNU
fossfredrik@yahoo.com

Ole Jakob Mengshoel
NTNU & CMU

ole.j.mengshoel@ntnu.no

ABSTRACT
Multimodal functions play a central role in artificial intelligence.
In this paper we attempt to address limitations in existing research
on multimodal function optimization by developing a novel multi-
method memetic algorithm (MMA). We empirically test MMA on
synthetic and natural combinatorial optimization problems, includ-
ing feature selection. Our initial experiments suggest that MMA
preserves diversity well and consistently finds good solutions.
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1 INTRODUCTION
Feature selection is a problem that continues to be important as
datasets continue to grow, both in terms of number of features and
number of cases [3, 7]. Redundant and irrelevant features not only
reduce the performance of supervised learning models, but also
force users to gather more data than they need in order to continue
using the learned model in the future, potentially increasing cost.

Variants of local search (such as backward selection and forward
selection) have traditionally been employed for wrapper-based
feature selection [3]. More recently, other methods including ge-
netic algorithms [4], stochastic local search [9, 10], and memetic
algorithms [12] have been used. The plethora of methods studied
suggests that the feature problem is both complex and multimodal.

Problems. While there is a broad and deep literature on mul-
timodal optimization, we find several under-researched areas as
follows. First, much recent research on multimodal optimization
using evolutionary algorithms (EAs) has focused on continuous op-
timization, while in machine learning one is often concerned with
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combinatorial optimization. Second, many EAs focus on so-called
repetitive problems [1], where the goal is to quickly find good solu-
tions to problems. However, many important problems are design
problems [1]; one is willing to spend a long time to find a few good
solutions. Third, in cases where EAs perform combinatorial opti-
mization, there has been little emphasis on diversity maintenance
[14]. Fourth, existing multimodal optimization EAs often search for
“as many local optima as possible,” causing the exploring part of the
population to dwindle as poor optima are found and preserved [5],
thus limiting the explorative power of the algorithm.

Contributions. We attack the above problems and introduce a
novel multimodal optimization algorithm for combinatorial design
problems. We call it the multimethod memetic algorithm (MMA).
MMA integrates stochastic local search, evolutionary computing,
crowding, clustering, and feedback control. We briefly report on
empirical results in this short paper.

2 PROBLEM STATEMENT
Many computational problems can be formalized as state space
search and optimization. The state space considered here is the
lattice of a bitstring of length 𝑛: {0, 1}𝑛 . While broadly applicable, a
natural domain (feature selection) and a synthetic domain are used
to empirically demonstrate the performance of the MMA.

Feature selection can be described as an 𝑛-dimensional multi-
modal optimization problems, where the objectives are to minimize
the number of features and maximize the performance of a learned
classifier [14]. MMA uses a single-objective fitness function that lin-
early combines maximizing classification accuracy and minimizing
the number of features.

In addition to feature selection, we study synthetic continuous
multimodal optimization problems [11]. These synthetic test func-
tions, which we adapt to our combinatorial setting, are scalable
to any number of dimensions and are harder than many other
synthetic fitness functions when scaled appropriately.

3 MULTIMETHOD MEMETIC ALGORITHM
The MMA attempts to find multiple locally optimal, or close-to
locally optimal, solutions to a combinatorial optimization problem.
In large feature selection datasets, the solution with the highest clas-
sification accuracy will often be the best choice, but if the dataset is
poor, it may be advantageous to have multiple candidate solutions
so that a decision maker can sanity check multiple candidate solu-
tions. In order to support this use case, and similar ones, the MMA
allows the user to specify the number of optima ℓ to be found. Due
to the stochastic nature of the MMA it is impossible to guarantee
that exactly ℓ optima are found, but results are usually close.

In short, MMA works as follows: At the start of every genera-
tion, a clustering algorithm partitions the population into niches. A
feedback controller uses the niching-data to adjust the generalized
crowding GA (GCGA) scaling factor 𝜙 [2]. The goal is to have ℓ
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distinct niches in the population. A specialized algorithm, LazySLS,
is applied to the best individual in each niche. If a niche has more
than Ψ individuals, surplus individuals are culled from the popu-
lation. Afterwards, the best niches are marked for elitist survival.
Finally, GCGA evolves a new generation of candidate solutions.1

Large values for GCGA’s parameter𝜙 have a tendency to increase
the number of niches in the population, whereas small values of 𝜙
have the opposite effect, tending to abandon poor niches in favour
of better ones [2]. The feedback controller balances exploration and
exploitation by modifying 𝜙 mid-run. Let |𝑁 | denote the number of
niches in the population and ℓ the number of niches the controller
should aim for. If |𝑁 | ≠ ℓ , the controller adjusts 𝜙 based on the
difference between |𝑁 | and ℓ [13].

One can use any clustering algorithm with MMA, but some
traits are important to optimize performance. First, the clustering
algorithm needs to include outliers. If outliers are not clustered,
lone niches will be ignored by local search and elitism. Second, the
clustering algorithm should not cluster too aggressively. If close but
distinct niches are grouped together, only one of them will survive.
A third desireable trait is speed. Clustering is performed once per
MMA generation and some algorithms have high computational
complexity. So far, our empirical evidence points to MEC [6] as
being the most suitable clustering algorithm.

Stochastic local search (SLS) seeks to reach local optima bymeans
of different heuristics, such as noise, greedy, and restart steps [8, 9].
The noise step provides an explorative drive by flipping a random
bit, while the greedy step works by testing all possible bitflips until
an improvement is found. Feature selection problems vary in size,
with high-dimensional problems having thousands of features.With
a naive implementation of the greedy step, simple SLS is very slow
when applied to high-dimensional problems. As MMA attempts
to optimize multiple local optima at once, using simple SLS on all
niches is too time-consuming for high-dimensional problems.

To handle this problem, a novel SLS variant dubbed LazySLS is
introduced. Instead of trying all possible bitflips, LazySLS will try
𝛾 randomly chosen indices. If no improvement is found, LazySLS
assumes optimality and stops local search. If run a sufficient number
of times, LazySLS is guaranteed to reach a local optima. Individual
niches will be optimized multiple times over the course of a run.
Instead of exhaustively optimizing each niche at one time and
marking it complete, this MMA approach will reach local optima
in a slower, more controlled fashion. This allows MMA to do global
search and local search concurrently.

4 EXPERIMENTS AND CONCLUSION
While space does not allow for a detailed discussion of our ex-
periments, we provide some highlights for a feature selection ex-
periment in which a naive Bayes classifier was used. As seen in
Figure 1, MMA uses fewer fitness evaluations to reach better results
when 𝛾 is optimized. This improvement happens, we hypothesize,
mostly because LazySLS spends less time optimizing optima that
later are abandoned. Another potential reason for the performance
increase is paradoxically because local optima are being reached

1The reason for this perhaps unconventional ordering of heuristics is the following.
The EA-step depends upon the elitism, which in turn depends upon the niching data.

Figure 1: MMA without SLS and with various values for
lazySLS’s 𝛾 ; 𝛾 varies from 𝛾 = 5 to 𝛾 = 80. Fitness evaluation
is on the 𝑥-axis; classification accuracy is on the 𝑦-axis. The
best value is 𝛾 = 5 from around 300 000 evaluations.

more slowly, preventing local optima from dominating promising
global search avenues in the parent selection phase.

More generally, experiments suggest that MMA preserves di-
versity and consistently finds good solutions for both natural and
synthetic functions. Various ablation studies and deeper dives into
the particular contributions of the different parts of MMA have
been performed. Results indicate that LazySLS is an interesting
contribution worth further research, as it provides the benefits
without spending too much time exploring non-optimal niches,
thus significantly outperforming simple SLS.

REFERENCES
[1] A. E. Eiben and J. E. Smith. 2015. Introduction to Evolutionary Computing (2nd

ed.). Springer-Verlag Berlin Heidelberg, Chapter 9.1.
[2] S. F. Galan and O. J. Mengshoel. 2010. Generalized Crowding for Genetic Al-

gorithms. In Proc. of the Genetic and Evolutionary Computation Conference 2010
(GECCO-10). 775–782.

[3] I. Guyon and A. Elisseeff. 2003. An introduction to variable and feature selection.
JMLR 3 (2003), 1157–1182.

[4] M. M. Kabir, M. Shahjahan, and K. Murase. 2011. A new local search based hybrid
genetic algorithm for feature selection. Neurocomputing 74, 17 (2011), 2914–2928.

[5] M. Kronfeld and A. Zell. 2010. Towards scalability in niching methods. In IEEE
Congress on Evolutionary Computation. 1–8.

[6] H. Li, K. Zhang, and T. Jiang. 2004. MinimumEntropy Clustering and Applications
to Gene Expression Analysis. (2004).

[7] J. Li, K. Cheng, S. Wang, F. Morstatter, R. P. Trevino, J. Tang, and H. Liu. 2017.
Feature Selection: A Data Perspective. ACM Comput. Surv. 50, 6 (2017).

[8] O. J. Mengshoel. 2008. Understanding the Role of Noise in Stochastic Local Search:
Analysis and Experiments. Artificial Intelligence 172, 8-9 (2008), 955–990.

[9] O. J. Mengshoel, Y. Ahres, and T. Yu. 2016. Markov Chain Analysis of Noise and
Restart in Stochastic Local Search. In Proc. IJCAI. 639–646. http://www.ijcai.org/
Abstract/16/097

[10] O. J. Mengshoel, D. C. Wilkins, and D. Roth. 2011. Initialization and Restart in
Stochastic Local Search: Computing a Most Probable Explanation in Bayesian
Networks. IEEE TKDE 23, 2 (2011), 235–247.

[11] B. Y. Qu, J. J. Liang, Z. Y. Wang, Q. Chen, and P. N. Suganthan. 2015. Novel
benchmark functions for continuous multimodal optimization with comparative
results. Swarm and Evolutionary Computation 26 (2015), 23–24.

[12] W. Sheng, X. Liu, and M. Fairhurst. 2008. A Niching Memetic Algorithm for
Simultaneous Clustering and Feature Selection. IEEE Transactions on Knowledge
and Data Engineering 20, 7 (2008), 868–879.

[13] J. Shi, O. J. Mengshoel, and D. K. Pal. 2014. Feedback Control for Multi-Modal Op-
timization Using Genetic Algorithms. In Proceedings of the 2014 Annual Conference
on Genetic and Evolutionary Computation. 839–846.

[14] B. Xue, M. Zhang, W. N. Browne, and X. Yao. 2016. A Survey on Evolutionary
Computation Approaches to Feature Selection. IEEE Transactions on Evolutionary
Computation 20, 4 (2016), 606–626.

http://www.ijcai.org/Abstract/16/097
http://www.ijcai.org/Abstract/16/097

	Abstract
	1 Introduction
	2 Problem Statement
	3 Multimethod Memetic Algorithm
	4 Experiments and conclusion
	References

