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ABSTRACT
Identifying and supporting children’s play and problem solving be-
haviour is important for designing educational technologies. This
can inform feedback mechanisms to scaffold learning (provide hints
or progress information), and assist facilitators (teachers, parents) in
supporting children. Traditionally, researchers manually code video
to dissect children’s nuanced play and problem solving behaviour.
Advancements in sensing technologies and their respective Multi-
Modal Data (MMD), afford observation of invisible states (cognitive,
affective, physiological), and provide opportunities to inspect in-
ternal processes experienced during learning and play. However,
limited research combines traditional video annotations and MMD
to understand children’s behaviour as they interact with educa-
tional technology. To address this concern, we collected data from
webcam, wristband, eye-trackers, and Kinect, as 26 children, aged
10-12, played a Motion-Based Educational Games (MBEG). Results
showed significant differences in children’s experience during play
and problem solving episodes, and motivate design considerations
aimed to facilitate children’s interactions with MBEG.

CCS CONCEPTS
• Human-centered computing → Empirical studies in inter-
action design; Empirical studies in HCI; • Applied comput-
ing → Interactive learning environments.
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1 INTRODUCTION & MOTIVATION
Play can be described as the manifestation of children’s actions and
their own creative meaning [73], and is traditionally attributed as a
substrate for children’s individual understanding and experiences
of the surrounding world. During play, children submit to imagina-
tive thinking and are captivated by a rich multi-sensory experience
derived on their own volition [75]. Research shows that integrating
play into children’s problem solving scenarios, yields a multitude
of valuable outcomes, such as increased engagement [63], elevated
enjoyment [77], and amplified motivation [29]. Accordingly, play-
fully framed problem solving experiences may be more meaningful
[15] for children’s learning. Children demonstrate several different
problem solving strategies and behaviours that oftentimes need dif-
ferent level or forms of support [13, 100]. Identifying and properly
facilitating these behaviours has the potential to inform the design
of technological affordances and equip children’s support sphere
(i.e., learning facilitators, such as, teachers, parents, and therapist).
This support can guide appropriate feedback delivery to children
(e.g., via the system or the facilitator), with the goal of nurturing
children’s learning experience.

The last decade has given rise to an enormous penetration of
wearable technologies in children’s lives. Due to their ubiquitous
nature, these technologies have become more readily accessible for
use with young children; supporting their play, communication,
education and other endeavours. One such application is the devel-
opment of Motion-Based Educational Games (MBEG), which utilise
sensing devices (e.g., Microsoft Kinect) to capture, map and inter-
pret children’s full-bodied movements as game input [7]. Within
these games, playful expression emerges as children appropriate
the game context [82] by creatively interpreting, and engaging with,

https://doi.org/10.1145/3459990.3460702
https://doi.org/10.1145/3459990.3460702


IDC ’21, June 24–30, 2021, Athens, Greece Lee-Cultura, et al.

learning content, and at times challenging the game’s confines (i.e.,
rules, story line, and objectives) through freedom of movement.
Moreover, due to their “touchless” nature, MBEG have been shown
to provide children with a more natural [36] and engaging learning
experience [43]. The inherent richness of investigating the natu-
ral interactions exhibited by children during learning, highlights
MBEG as a potentially valuable untapped resource for better un-
derstanding children’s learning behaviours.

A core element of MBEG is the use of sensing technologies
(e.g., motion sensors), which enable the automatic, continuous, and
unobtrusive collection of Multi-Modal Data (MMD), such as physio-
logical, gaze, and skeletal data. Such data collections empower us to
transcend the limits of human observation, by accessing real-time
information on children’s seemingly “invisible” cognitive, affective
and physiological states [92]. Accordingly, sensing technologies are
gaining traction as useful, reliable means of investigative practice
for understanding multi-faceted problem solving phenomena and
supporting learning in-situ [11, 19], specifically in the domain of
children’s problem solving behaviours during interactive learning
experiences [33, 51, 52, 71]. Additionally, sensing technologies and
their respective MMD, allow us to closely monitor and understand
children’s play and problem solving behaviours, leveraging the key
affordances of MMD (e.g., temporality and direct access to indica-
tors of children’s cognitive and affective processes [19]). However,
despite this potential, limited research has attempted to interlace
these ideas by using MMD from sensing technologies to investigate
children’s play and problem solving behaviours. To bridge this gap,
our research attempts to address the following research question
(RQ).

RQ1 How do children experience play and problem solving
during their interaction with MBEG?

RQ2 How do children experience guessing and informed prob-
lem solving during their interaction with MBEG?

To explore these questions, we conducted an empirical study in
which 26 children, aged 10 − 12, played three games of a geometry-
focused MBEG, called Marvy Learns. We recorded children’s game-
play and employed various sensing devices which allowed us to
capture children’s MMD (e.g., gaze from eye-tracking glasses, physi-
ological from wristband, and skeletal from motion sensor). We man-
ually annotated the video recordings, and used a mixed-methods
approach to investigate how children experience play and problem
solving. We present the following contributions:

• We offer insights from an in-situ experiment where children,
aged 10− 12 years, were monitored by wearbles and sensing
technologies, as they played a geometry-focused MBEG.

• We outline the differences in children’s play and problem
solving behaviours during their interaction with MBEG.

• We elaborate on how our findings can be used to scaffold
children’s learning through provision of individually tai-
lored feedback mechanisms concerning student’s cognitive,
affective and physiological states.

2 RELATEDWORK
We draw inspiration from the domains of embodied interaction,
MBEG, MMD, and the confluence of play and problem solving in
Child-Computer Interaction (CCI). Here, we offer a overview of the
groundwork that directs our research.

2.1 Embodied Interaction and Motion-Based
Educational Games

Recent advancements in wearables and high precision motion sens-
ing devices (e.g., Microsoft Kinect) demonstrate the capacity to play
an instrumental role in the design and implementation of learning
experiences [25]. These interactive technologies encourage the cou-
pling of the mind and body, and have given rise to the concept of
embodied interaction. Embodied interaction describes the relation-
ship between one’s physical actions and mental faculties, combined
with their social and environmental context, and its influence on
the sharing, creation, and manipulation of knowledge through nat-
ural, meaningful interactions (i.e., gesture, full bodied movements,
facial expression) with technology [25].

MBEG allow children interact with learning resources in a natu-
ral and playful way, by using their body to improve cognitive skills
[104]. These games have gained traction as a powerful pedagogical
strategy to promote children’s learning [7, 43]. Concerning profi-
ciency in maths, MBEG have traversed a variety of sub-domains,
such as calculus [67], algebra [45], arithmetic [91], and geometry
[83]. Remarkable studies show that MBEG might bring benefits
to a player’s maths learning experience; especially concerning en-
hanced problem understanding [83], reduced anxiety [44], and
increased academic performance [93]. Additionally, the introduc-
tion of programming languages using motion-based technology (i.e,
Kinect2Scratch), may enhance students’ computational thinking
and problem solving skills [2].

These contributions illustrate that learning scientists, instruc-
tional designers and educational facilitators are beginning to con-
sider MBEG as a viable approach by which to complement current
education [43], specifically regarding maths. Moreover, the innate
ability of MBEG to foster children’s playful movement whilst learn-
ing, makes them attractive research candidates in the intersection of
education and MMD. However, despite the aforementioned benefits
of integrating opportunities for playful behaviour in educational
contexts, research addressing how MMD generated from children’s
play and problem solving interactions with MBEG is lacking. Ex-
ploring this untapped wealth of potential may help researchers
advance the design and development of MBEG (e.g., via games that
can recognise, support, adapt, or respond, to children’s cognitive,
affective, physiological and behavioural states in real-time during
game play sessions).

2.2 Multimodal data in child-computer
interaction

MMD combines multiple data modalities both from physical and
digital dimensions, allowing computational methods to access and
analyse them [11]. Leveraging on the key attributes of MMD, such
as temporality and possible direct access to novel measurements
of cognitive, affective, and physiological processes, consists of rel-
atively new sources of information in the domains of learning
sciences and CCI [19, 52]. There is an ongoing and increasing de-
bate on MMD opportunities to contribute to theories regarding
human behaviours in learning contexts [19]. Recent studies, such
as Worsley and Blikstein [102] and Lee-Cultura et al. [52], indicate
that the existing strategies for analysing MMD may contribute
more significant perspectives to complex learning processes than
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conventional methods. In a similar vein, a recent literature review
on MMD for young children [16], demonstrates this advantages,
while also highlighting potential ethical issues.

Large-scaleMMDcollection of children’s affective and behavioural
data is a relatively new practice in CCI research [41]. In recent years,
the CCI community has argued over the potentiality and ethical im-
positions of tailoring children’s experiences using ubiquitous tech-
nologies and their produced traces (e.g., MMD) [42]. Related works
encourage the use of MMD for analysis of complex interactions
between children and systems [10, 54]. This is mutually motivated
by different data stream’s capacities to inform on key aspects of
children’s behaviour [10, 54] and lead to a comprehensive under-
standing of their interplay. For instance, kinaesthetic data combined
with system logs, have been used to evaluate and support children’s
short term memory during MBEG play [48]. To predict children’s
learning performance in a construction task, kinaesthetic data was
combined with electrodermal activity (EDA) and video data [101].
Improvements in wearable sensors have bolstered research using
EDA and Blood Volume Pulse (BVP) [62, 72]. Moreover, integration
of EDA and BVP data with system logs have explained differences
between various task performance levels in construction-based
activities [11]. Furthermore, hand movement and video data sup-
ported the interpretation of children’s understanding of learning
material [4]. Further, range of gesture/movement, combined with
video, speech and eye tracking, was used to explain children’s en-
gagement with different activities [3]. By analysing gaze tracking,
facial expressions and speech, it is also possible to automatically
recognise real-time social signals, and understand affective states,
including children’s basic and complex emotions (i.e., happiness,
sadness, confusion, frustration) [23, 61].

Standard access to MMD devices has increased their adoption for
understanding and/or explaining children’s play [17, 64] and prob-
lem solving behaviour [1, 86]. For example, audio and video record-
ings were used to detect children’s affective states as they solved
sorting and pattern recognition problems [105]. System log and fa-
cial video analysis have also led to the development of constructive
user-friendly experiences to promote fun and learning in the acqui-
sition of programming skills [1]. More recently, Sridhar et al. [86]
demonstrated the use of Heart Rate Variability (HRV) and galvanic
skin response to differentiate between children’s cognitive-affective
states as they executed tasks of variable mental effort. Physiological
data has been leveraged during learning tasks to help manage cog-
nitive load, as both overload and underload can result to weakness
[14, 50]. EDA, HRV and affective states have also been assessed
to understand children’s level of physiological arousal [35] and
stress [21], the dynamics of goal-oriented open-ended gameplay,
proxemics, and to encourage group collaboration [17]. Collectively,
these studies highlight the importance of using MMD to further
our understanding on children’s experiences during learning and
play activities.

2.3 Play and Problem Solving in CCI
When a child lacks the answer to a proposed problem, they en-
gage in a cognitive processing called problem solving, directed at
determining the solution. The problem solving process has four
notable characteristics [57]. It is cognitive, involves representing

and manipulating knowledge, is directed by the problem itself, and
is personal (i.e., the individual knowledge and skills of the child
determine the problem’s difficulty or ease). Problem solving is an
extremely important educational goal and is a behaviour that can
greatly benefits children as they find themselves in new situations
[57]. It is part of our daily lives [31] and is, thus, critical in children’s
learning and for their future integration to society [30, 46].

Play is a core activity for children as it contributes to their well-
being and development. In particular, playful technologies have
been successful in motivating children “off the couch” to support
learning and recreational activities [20]. Many researchers in the
fields of education and child psychology have studied how play
promotes emotional, cognitive, language, and physical development,
and can be seen as a positive and natural means of engaging children
in problem solving and knowledge building [74, 99].

Play and problem solving are coherently and well integrated
into most new learning technologies. Children assume different be-
haviours throughout various phases of the learning process. Thus,
it is advisable to know how to distinguish and interpret them to pro-
mote better educational experiences. Related studies have examined
ways of detecting such learning behaviours by utilising different
features derived from system-generated data which identify the
various stages of children’s experiences [34, 40]. In particular, it is
possible to understand when a child engages in guessing behaviour
[100] or informed problem solving behaviour [13]. Previous re-
search has employed various parameters to automatically detect
children’s behaviours, such as response times, number of attempts
to respond correctly, and the response itself [47, 55]. Nevertheless,
the bulk of these studies have been based on system logs and very
few studies have examined the use of motion features to investigate
children’s play and problem solving behaviours during their inter-
actions. For instance, Olugbade et al. [66] explored the automatic
detection of reflective thinking through motion data while children
solved a maths problem in order to tailor feedback/support via
technology for learning. Shin et al. [81] analysed learner’s finger
movements as they played KitKit School, a tablet based game, recog-
nising guessing behaviour from solution behaviour. Despite these
limited studies, the majority of CCI works utilise video annotations
(i.e. manual coding) conducted by experts as the standard method
for characterising children’s experience (e.g., playing, problem solv-
ing) [94]. This study aims to combine human coding methods and
MMD to identify how children experience play and problem solving
behaviours in the context of MBEG.

3 MARVY LEARNS: THE MBEG
In our study, children played a single-player MBEG called Marvy
Learns, which aims to develop their maths skills, specifically con-
cerning geometry. Children assisted a large blue monster, named
Marvy, in sorting a collection of cards by moving them into labelled
boxes according to geometric shape attributes. Each game session
consisted of six cards to be sorted to the correct box (each card
represents a problem to be solved). The game had two different
types of geometry questions (i.e., shape-grid and shape net), which
were used in separate game sessions. In shape-grid questions, as
shown in Figure 1, each card showed a 4x4 grid with disconnected
blue points. When connected, the points formed a 2D polygon.
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Figure 1: Marvy Learns requires a child to match a grid card to a labelled box according to its geometric characteristics. left:
child reads the instruction and assesses the cards to sort into the labelled boxes. centre: child chooses a trapezoid card. The
card is selected when it turns blue. right: Marvy Learns requires a child to match a grid card to a labelled box according to its
geometric characteristics.

These cards included shape-grids for: rhombi, trapezoids, isosce-
les triangles, right triangles, rectangles, and squares. In shape-net
questions, each card displayed a flattened, or unfolded, 2D rep-
resentation of a 3D shape. When folded, the resulting 3D shapes
included: tetrahedrons, triangular prisms, cubes, and cuboids. In
both cases, children were asked to either visualise the geometric
shape that results from connecting the multiple grid points to their
2D shape name, or match the flattened 2D shape to its 3D shape
name. The boxes were labelled with the shape names. In this way,
children learned geometry shapes (e.g., qualities and characteristics
of, different dimensional representations of) and the respective
terminology by associating the cards with the shape names on the
boxes. Marvy Learns also fosters logical and inductive thinking
through practice of arranging and classifying objects.

For example, a collection of six cards that a child must sort, may
consist of 3 rhombi grids, 2 trapezoid grids, and a square grid (Figure
1, left); with boxes labelled as Rhombus, Trapezoid, and Square. To
answer a question, the child must examine the cards and read the
box labels (i.e., see and understand the question), visualise the shape
resulting from connecting the blue points on the grid, determine its
corresponding labelled box, select the card by performing a specific
gesture/posture, and re-locate the selected card to the labelled box
bymaintaining the posture andmoving their body to the proper box
to place the card. The Marvy avatar mirrors the child’s movement,
so arrangement of cards takes place as the child moves their body
in physical space. In our example (Figure 1), the child would be
expected to match 3 rhombi to the red Rhombus box, 2 trapezoids
to the green Trapezoid box, and 1 square to the orange Square
box.

When a question was answered correctly, children received a
positive reinforcement message (e.g., "Good Work!", "Nice!"), cou-
pled with celebratory animations (e.g., eruptions of confetti or
sparkles). Incorrect answers prompted messages of encouragement
(e.g., "Try Again!"), and the incorrectly matched card was automat-
ically returned to its original location. Children were permitted
unlimited match attempts and not penalised for incorrect answers.
Moreover, to mitigate additional pressure during the game sessions,
Marvy Learns did not display a timer or running game score. As
such, the game did not encourage or discourage guessing behaviour
[100]. Lastly, Marvy Learns affords opportunities for play through

children’s creative control of selected item cards and movement
synchronised direction of Marvy.

4 METHODS
4.1 Context
Our study was conducted during winter of 2019, in collaboration
with a grade six class from a local Norwegian public school. Re-
searchers and the class maths instructor, provided children with
a thorough explanation of the study and children were given the
opportunity to participate by their own free will. The study took
place in a room dedicated to concurrently accommodate two game
sessions (i.e., two children), and was specifically setup to avoid
distractions.

4.2 Participants
Our sample consisted of 26 typically developing children (10 M,
16 F), with an average age of 10.95 years (SD = 0.21 years). None
of the children had prior exposure to MBEG. Children engaged
in three gameplay sessions lasting, with an average duration of
8.63 minutes. Prior to their participation, verbal/written informed
assent/consent was obtained by children and their guardians re-
spectively. Additionally, each child received a gift card for their
time. All procedures were granted prior approval from the national
human research ethics organisation.

4.3 Procedure
We conducted a mixed methods study to investigate the use of
MMD to explore children’s play and problem solving behaviours
during their interactions with Marvy Learns, a geometry focused
MBEG. Children were given an Empatica E4 wristband and pair of
Tobii eye-tracking glasses to wear. Researchers then introduced the
children to the Marvy Learns game, explaining the game’s objective,
rules, and interaction techniques. Children were given opportunity
to ask questions to gain further clarity where needed, prior to
commencing the game. Children played three consecutive game
sessions: one practice session, during which children exercised their
understanding of the games rules and objective, and 2 non-practice
sessions. The 2 non-practice sessions delivered a different types
of geometry questions (i.e., shape-grid and shape-net, see section
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Figure 2: left: view from the Logitech web camera, of a child during an episode of play. They are wearing Tobii eye-tracking
glasses and an Empatica E4 wristband. right: view from the Tobii eye-tracking glasses, showing the Logitech webcamera and
Microsoft Kinect. The red dot on-screen represents the child’s real-time point of focus. The child does not see this during
gameplay.

3), and provided researchers the opportunity to collect more data
per child. As well, previous experience informed us that children
enjoyed the game and typically wanted to play several sessions. The
experimental setup of a child, wearing the data collection devices,
while playing Marvy Learns, is shown in Figure 2.

4.4 Data Collection
Children’s game sessions were recorded using a Logitech video
camera and three additional sensor devices: Tobii eye-tracking
glasses, Empatica E4 wristbands, and Microsoft Kinect. System logs
were also collected to observe event data and game analytics (e.g.,
response times, game score).

4.4.1 Logitech video camera. Children’s interactions were captured
using a front facing Logitech web camera, which was fastened to
the top of the game play screen. Because the children’s play space
was located approximately 1.5-2 metres from the camera, the HD
recording set to a zoom level of 200% and at 10 Frames Per Second
(FPS).

4.4.2 Tobii eye-tracking glasses. Children’s gaze data was collected
using Tobii eye-tracking glasses with a 50Hz sampling rate and
one-point calibration. The glasses contain an objective camera built
into the nose-bridge, which was used, in conjunction with Tobii
glass controller software, to capture children’s field of view. Video
resolution was 1920x1080 at 25 FPS.

4.4.3 Empatica E4 wristbands. Children’s wrist data was captured
using the Empatica E4 wristband, which collects four different
variables: HRV (1Hz), EDA (64Hz), skin temperature (4Hz), and
BVP (4Hz).

4.4.4 Kinect Skeleton. Children’s skeletal data was collected using
the Kinect sensor, which recorded at a sampling rate of 1Hz. This
data represented the 3D position of 20 joints: head, shoulder-centre,
spine and hip-centre, hand, wrist, elbow, shoulder, feet, ankle, knee,
and hip (both left and right for the last 8).

4.5 Data Pre-processing
4.5.1 Video Coding Procedure. To identify and annotate children’s
naturally expressed behaviours, two researchers with expertise in
learning theories and technologies (and who are authors), coded

the video data by adopting an iterative inductive coding approach
[58], as outlined in Figure 3. First, one coder viewed 27 game ses-
sions (i.e., 36% of video data) and made observational notes on
children’s innate behaviours. The coders discussed the findings
and, with support from previous relevant works in CCI [6, 28], cat-
egorised children’s actions as play, problem solving, and else codes.
Coders selected 15 new game sessions (i.e., 20% of video data) for
separate coding, according the initial coding criteria, after which
comparison of individual assignments commenced. To resolve dis-
crepancies, the coders parallel coded three new game sessions, and
engaged in discussion until consensus was reached. This resulted
in revision of the original coding criteria. The original 15 game
sessions were then re-coded separately according to the new re-
aligned understanding and the results from these individual codings
were used to determine inter-rater reliability. The consensus was
measured using Cohen’s kappa value. The result of the Kappa was
0.84, which illustrates substantial agreement [49]. The remaining 57
game sessions were divided and coded separately. In this way, the
coders settled on three non-mutually exclusive observable codes
(i.e., play, problem solving [sub-divided into informed [13] and
guessing [8, 100]], and else), grounded in CCI literature on play
and learning [6, 7, 28]. These behaviours manifested by children
naturally and were not intentions of the game. Play [28] concerned
interactions that were primarily directed at invoking fun, rather
than solving Marvy Learns tasks. Problem solving described the
process that children exhibited when attempting to match a card
to the correct box (i.e., determining a solution to Marvy Learns
tasks). For informed problem solving, children actively seeked to
determine the correct solution to a given question by considering
the information presented, and learning objective (i.e., determine
the correct name of the geometric shape), and through deductive
reasoning and logical thought, they attempted to construct a cor-
rect answer. Guessing behaviour [8, 100] was evident when a child
“chose multiple incorrect answers before the correct answer” [8]
(e.g., engaged in an exhaustive search). This was supported by chil-
dren’s response time Beal and Cohen [8]. Specifically, when children
responded (i.e., grabbed a card and attempted to match it to a box)
so quickly that their response time was less than the minimum time
required to read the question and consider the options presented
[100], children’s behaviour was coded as guessing. The else code
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Table 1: Coding scheme of children’s play and problem solving (guessing, informed) behaviours during their interaction with
Marvy Learns.

Code Description

Play Playing with the card included waving, exaggerated and exploratory movements. Playing with the avatar included
dancing, jumping, waving limbs, clapping, exaggerated, exploratory, celebratory movements.

Guessing Dragging a card to every box to find a match.

Informed Theory or evidence-based card-box matching included matching based on card characteristics, and recognising
similarities between boxed cards and unboxed cards.

Else Moments where the child did not exhibit any play or problem solving behaviours, such as: tying their shoe,
speaking to the experimenter.

Figure 3: The phases outlining the inductive category devel-
opment process, based on Mayring [58]

was applied to behaviour that could not be categorised as play or
problem solving (e.g., asking experimenters a question, stopping to
tie shoelace, etc). Examples of the different behaviours associated
with the play and problem solving codes are presented in Table 1.

4.5.2 Tobii eye-tracking glasses. Fixations and saccades were de-
tected using the Tobii’s default algorithm [65]. We also removed
blinks from the raw data before detecting the fixations and saccades
by using a speed based filter. To remove the noise and subjective
variance in the pupil diameter caused by factors such as brightness
of screen, time of day, the child’s gender, age, amount of sleep, and
contextual biases, we considered the first 30 seconds of eye tracking
data to normalise pupil dilation.

4.5.3 Empatica E4 wristbands. Similar to pupil dilation, HRV and
EDA can have subjective and contextual biases. Correspondingly,
we used the same pre-processing techniques to remove these biases

from the HRV and EDA data, which weree used with the pupil
diameter data (except the brightness-control step).

4.5.4 Kinect Skeleton. No pre-processing was required.

4.6 Measurements
We extracted the following six variables from the collected MMD:
cognitive load, perceived difficulty, physiological stress, physiologi-
cal engagement, emotional regulation, and fatigue (Table 2).

4.7 Data Analysis
Though our coding process included non-mutually exclusive codes
(play and problem solving, Figure 4), the resulting data revealed that
children’s interactions with MBEG contained minimal overlaps. To
accommodate for the few overlapping episodes, we adhered to the
following guidelines. Overlaps occurring at the transition between
the two codes (Figure 4, left), were discarded. Additionally, for short
duration overlaps with one code completely embedded within the
other, we discarded the minority episode and the dominant code
prevailed. This resulted in removal of 7%, 2.3% (Figure 4, centre),
1.8% (Figure 4, right) of the data, respectively. Furthermore, the
“else” category was also found to be negligible (1.7 % of total time).

To address the cognitive and affective differences that children
experienced during the play and problem solving episodes (RQs),
we conducted repeated-measure Analysis of Variance (ANOVA).
For ANOVA, we use the student ID as a grouping factor. We checked
the preconditions of ANOVA, i.e., normality and homoscedastic-
ity, using Shapiro-Wilk’s test [76] and Breusch-Pagan test [12],
respectively. Furthermore, we applied Bonferroni corrections for
p-values for multiple tests. Lastly, during a post-hoc analysis, we
compared play episodes against informed problem solving and
guessing episodes, separately. For this purpose, we used an ANOVA
in a similar way as for our two main research questions, RQ1 and
RQ2.

5 RESULTS
Initially, we verified the lack of age and gender bias for each of the
six MMD measurements. Additionally, we did not find any relation
between children’s time-on-task effect and MMD measurements.

To address RQ1, we compared the MMD measurements between
episodes of play and problem solving behaviour (see Figure 5). All
statistical analyses reported were conducted with a significance
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Table 2: Descriptions of the multimodal measurements used in our study, including their device source.

Measurement Data source Explanation and relevant citations
Cognitive
load

Eye-tracker This is the level of mental processing involved to solve a given problem. It is captured using
pupil diameter [26], and is related to performance and different phases of learning [68, 103]

Perceived
difficulty Eye-tracker

This is captured using saccades from the eye-tracking glasses, and is computed as the saccade
velocity in a given temporal window [22]. Perceived difficulty has been used in various
problem solving and educational contexts to differentiate between learning performance
levels [79, 80]

Physiological
Stress

Wristband
This is computed as heart rate’s increasing slope. The more positive the slope of the heart
rate is in a given time window, the higher the stress is [90]. The heart rate has been use to
measure stress in educational [79] and problem solving [59] contexts.

Physiological
engagement Wristband

This is computed as a linear combination of EDA’s increasing slope and the arrival rate of
EDA peaks. The more positive the slope of the EDA and the higher the rate of arrival of peaks
in a given time window is, the higher the engagement is [39, 53].

Emotional
regulation Wristband

This measurement is directly computed from HRV, captured by the Empatica E4 wristband.
The index of emotional regulation was computed as the rate of arrival of HRV peaks as
suggested by [9, 97]. The lower the arrival rate of HRV peaks the higher is the emotional
regulation.

Fatigue Kinnect

Fatigue is proportional to the Jerk in the movement. Jerk is computed as the time derivative
of the acceleration of the joint’s movement (also known as the fourth derivative of
displacement), and represents the average jerk of all of the joints. It is shown to be inverse
of the energy spent [37].

Figure 4: Annotations with overlapping episodes. left: episodes with discarded overlap.centre: episode considered as problem-
solving. right: episode considered as play.

level of 0.05. Results from the ANOVA revealed that physiological
stress in play episodes was significantly lower than physiological
stress in problem solving episodes (F[1,73] = 52.14, p < .0001). As
well, emotional regulation during play behaviour, was lower than
emotional regulation in problem solving episodes (F[1,73] = 38.14, p
< .0001). However, we found no significant difference between phys-
iological engagement during play and problem solving episodes
(F[1,73] = 3.80, p > .05). Cognitive load, on the other hand, was
significantly lower during play episodes, than during children’s
problem solving (F[1,73] = 31.97, p < .0001). Similarly, perceived
difficulty was also lower during play episodes than during problem
solving episodes (F[1,73] = 9.25, p < .01). Finally, fatigue was higher
during play episodes than during problem solving episodes (F[1,73]
= 10.39, p < .01).

To address RQ2, we compared the MMD between children’s
guessing and informed problem solving episodes. We observed
that children’s physiological stress during informed behaviour was
higher than their physiological stress during guessing behaviour
(F[1,73] = 19.30, p < .0001). Similarly, emotional regulation was
also higher during informed behaviour than during guessing be-
haviour (F[1,73] = 24.29, p < .0001). In line with the comparisons
between play and problem solving, children’s physiological engage-
ment did not warrant significant differences between informed and
guessing behaviour (F[1,73] = 2.95, p > .05). Considering the eye-
tracking measurements, cognitive load was higher during informed
behaviour than during guessing behaviour (F[1,73] = 24.29, p <

.0001); while perceived difficulty for informed behaviour was lower
than for guessing behaviour (F[1,73] = 4.11, p < .05). Finally, we did
not encounter a significant difference between children’s fatigue
during informed and guessing episodes (F[1,73] = 1.39, p > .05).

After identifying the differences between children’s play and
problem solving episodes (RQ1), and their guessing and informed
problem solving (RQ2) episodes, we performed a two part post-
hoc analysis during which we compared the MMD measurements
between children’s play and informed problem solving episodes.
We observed that children’s physiological stress (F[1,73] = 22.70, p
< 0.0001), emotional regulation (F[1,73] = 29.95, p < 0.00001), and
cognitive load (F[1,73] = 22.14, p < 0.00001), were higher during
informed problem solving episodes than during play episodes; how-
ever fatigue was lower for the informed problem solving (F[1,73]
= 6.14, p < 0.001); and no significant difference was observed for
engagement (F[1,73] = 1.80, p > 0.05) or perceived difficulty (F[1,73]
= 1.47, p > 0.05). During the second set of post-hoc comparisons,
we compared the MMD measurements between children’s play and
guessing episodes. We observed that physiological stress (F[1,73]
= 15.47, p < 0.0001), emotional regulation (F[1,73] = 7.40, p < 0.01),
cognitive load (F[1,73] = 5.01, p < 0.05), and perceived difficulty
(F[1,73] = 8.78, p < 0.01) were higher during children’s guessing than
during play episodes; fatigue was lower when children guessed,
as opposed to when they demonstrated play behaviour (F[1,73] =
18.54, p < 0.0001); and no difference between guessing and play
episodes was observed for engagement (F[1,73] = 0.03, p > 0.05).
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Figure 5: Differences between play and problem solving episodes (RQ1). The vertical bars show the 95% confidence interval.

6 DISCUSSION
6.1 Interpretation of Results
In the results section, we offer findings that address each RQ sepa-
rately. However, our discussion is primarily centred on the post hoc
analysis, as it provides the most detailed comparison/account of
children’s different play and problem solving behaviours (informed,
guessing) exhibited during their interactions with MBEG through
the lens of MMD.

During informed problem solving episodes, we observed that
children’s physiological stress, cognitive load, and emotional regu-
lation were the highest. When children are presented a problem to
solve, they may feel under pressure (external or self-imposed [60])
to answer the question correctly. An example of such pressure, is
the “fear of evaluation or fear to perform” which is characteristic
of examination anxiety [96]. During our study, children interacted
with a MBEG; however, despite the intended “fun factor” that typi-
cally accompanies games, the pressure to academically perform (i.e.,
correctly match a card-box pair) may have elevated children’s stress
levels [38, 87]. This may explain why children’s stress levels peaked
during episodes of informed problem solving. In a similar vein,
increased levels of cognitive load during informed problem solving
may be directly linked to the mental effort that children expended as
they reasoned through problems [88]. Lastly, emotional regulation
relates to children’s HRV [9, 97]. A plausible reason for observing

the highest levels of emotional regulation during informed prob-
lem solving might be due to the immediate feedback that children
received directly after they attempted to make a card-box match.
The anticipation of the MBEG assessment/evaluation may have
influenced children’s heart rate, causing high levels of variability
as children invested themselves in informed problem solving. Thus,
in accordance with prior research [32], we hypothesise that the
feedback in general, may have triggered cognitive and affective
responses which affected learning, particularly during this ongoing
tasks (i.e., a collection of questions asked in series).

Contrary to previous research [69, 84], our results did not indi-
cate a connection between guessing behaviour and children’s lack
of engagement during their interactions with the MBEG (Figure 6,
top right). As such, we propose that during episodes of guessing,
children experienced some degree of external and/or self-imposed
pressures to determine answers correctly (as during informed prob-
lem solving). Aside lack of engagement, it has been suggested that
children also exercise guessing behaviour when a question’s level
of difficulty exceeds the scope of their prior domain knowledge
and sits outside their problem solving ability [18]. We argue that
under these particular circumstances (i.e, children do not possess
the knowledge or problem solving skills required to reason through
the task at hand, but have not disengaged), children must receive
certain support (e.g., hints offered by the system or the educational
facilitator). Moreover, such scenarios can be prevented, or greatly
reduced, by adopting adaptive MBEG, which scale questions based
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Figure 6: Post-hoc analysis of measurements showing significant differences between the playful, guessing and informed
behaviours.

on their level of difficulty to appropriately match children’s prior
knowledge and demonstrated abilities (e.g., ongoing performance).

Children’s experienced the lowest stress, cognitive load, and emo-
tional regulation, during episodes of play. Playing is freedom [82],
and as children exhibited play behaviour, we observed that they
temporarily suspended their investment in Marvy Learns’ rules
and game objective, to freely and creatively engage in autotelic [82]
exploratory movements. Within play episodes, children were not
focused on solving the given task (i.e., making a card-box match),
and lacked (external and self-imposed [60]) pressures to academi-
cally perform. Rather, play episodes were comprised of exploration
into game aspects, such as its embodied affordances, and avatar
synchronicity. This finding potentially indicates a connection be-
tween play behaviour and low levels of stress, emotional regulation
and cognitive load. Moreover, children’s fatigue was significantly
higher during play, than during problem solving. Play encompassed
children’s behaviours which were directed at invoking fun, rather
than making card-box matches. These behaviours manifested as
physical interactions with on-screen content (e.g., Marvy and card),
and resulting in frequent, quick, directional changes resulting in
high amounts of movement (as confirmed by video data). On the
other hand, it was observed that on several occurrences during
problem solving episodes, children only moved once they knew
which box they planned to match the card to (either after reasoning
it through in the case of informed problem solving, or according to
a brute force approach if guessing). In this way, during the problem
solving episodes, children’s directional change in movement (aka,
fatigue) was reduced, as they already knew the exactly where they
planned to put the card once selected, and executed this movement
swiftly and purposefully.

6.2 Implications for Research
The bulk of contemporary research on children’s interactive learn-
ing technologies centres on data collection from surveys [104],
interviews [24] and observational practices (e.g., video data [5, 7]).
We recognise the merits of such practices, as they afford rich con-
textual details that MMD measures, derived from wearable and
ubiquitous sensors, lack. However, these techniques confine re-
searcher to children’s visible external behaviours (e.g., participant
observation [27]) and subjectively reported states (e.g., motivation
[93, 104], enjoyment [93]). Furthermore, manual video coding and
compilation of survey and interview data, requires a considerable
investment of resources (e.g., person hours) and does not warrant
real-time analysis. As a result, researchers [85] in CCI have empha-
sised the need for more feasible (i.e., resource friendly) methods
to provide additional perspectives (i.e., triangulation of data) and
facilitate their work. On the other hand, MMD devices strengthen
researcher’s arsenal with which to understand children’s invisi-
ble internal states (e.g., cognitive load, stress, perceived difficulty)
through the objective, real-time investigation of children’s interac-
tive learning experiences (i.e. MBEG). Recently, CCI researchers on
the cusp of MMD and education [33, 71, 101] have demonstrated
the value of applying wearable and sensing devices to learning
environments. However, MMD measures only report on specifi-
cally predefined metrics selected by researchers, and cannot discern
children’s nuanced behaviours.

Our research contributes to the detection of children’s “invisi-
ble” states, and showcases how sensing technology can augment
the results of experts’ annotations. This opens avenues for syner-
gies between sensor data and automated processes with traditional
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research methods (e.g., manual annotation) for deepening our un-
derstanding of children’s behaviours during their interactions with
technology. Moreover, by demonstrating the feasibility of using
MMD to identify differences in children’s play, guessing and in-
formed problem solving behaviours, future work can leverage these
differences to develop techniques which support human annota-
tions. Consequently, this may reduce the number of human hours
dedicated to video annotation, and enable a more elegant man-
agement of larger data sets (e.g., more participants, longer data
capture sessions). As well, this MMD provides additional means for
researchers to better understand and properly annotate challenging
episodes by augmenting researcher’s abilities and comprehension
capacities via examination of both sensor and video data. There-
upon, and in accordance with a newly emerging discourse [51, 52],
we highlight, and advocate, the complimentary of (human-centred)
traditional practices (e.g., observation, interviews) and wearable
and ubiquitous sensors, particularly when constructing a holistic
understanding of children’s learning experiences.

6.3 Implications for Design
Currently, feedback mechanisms integrated with children’s edu-
cational technologies are primarily based on performance metrics
(i.e., correctness of answers [89], response time [70]). However, the
added immediacy of sensor data leading to the identification of
children’s needs and different behaviours during learning activi-
ties (e.g., lack of move off-task behaviour), may afford researchers
and designers new opportunities for the creation and streamlining
of educational technologies. Augmenting children’s performance
metrics with the real-time assessment of their cognitive, affective,
physiological states, and learning behaviours (play, guessing, in-
formed problem solving) from MMD, could be used to identify
moments where children might benefit from additional assistance.
For instance, an educational technology could notify the child’s
learning facilitator (i.e., teachers, parents, therapist) so that they
can use their contextualised awareness of the child’s current inter-
actions, combined with knowledge of the child’s learner profile to
determine appropriate and timely means of feedback by which to
direct the child through their playful learning experience.

In this study, children’s behaviour was annotated as play, guess-
ing, and informed problem solving. Though some may criticise play
behaviour as a distraction from learning (e.g., steering children
away from learning and problem solving),CCI literature recog-
nises play as integral to the ways in which children learn [95],
and celebrates the many successful roles of play, such as support-
ing children’s social and emotional skills, and assisting children
with special abilities [98]). On the other hand, one main purpose of
MBEG is to facilitate the acquisition of knowledge through logical
and inductive thinking; a characteristic of informed problem solv-
ing but not guessing. With this in mind, our underlying motivation
for design recommendations centres on moving children away from
guessing behaviour.

Our results found that a children’s perceived difficulty was sig-
nificantly higher when they exercised guessing behaviour, rather
than during informed problem solving. It follows that once chil-
dren’s saccade speed exceeds a given threshold, children are most
likely employing a guessing tactic. Therefore, it seems plausible

to identify guessing behaviour from children’s gaze. In hopes to
encourage children towards an informed problem solving approach
(and away from guessing behaviour), in situations where children
demonstrate excessive saccade speed, we recommend offering prob-
lem solving hints (e.g., via the system or educational facilitator).
Additionally, we can take preventive measures to reduce children
guessing. Adapting content based on its difficulty is a common ap-
proach, but to achieve this, it is important to develop the necessary
infrastructure (e.g., question bank ranked on difficulty) and intelli-
gence in the system (i.e., learner model). Specifically, for games that
do not afford immediate content adaptation (e.g., when problems
are presented in tandem, such as in Marvy Learns), offering hints
may help children identify the next logical steps to pursue. On the
other hand, if the game content is malleable, then offering a slightly
easier problem may benefit children by redirect the child towards
informed problem solving. Additionally, re-engaging children with
informed problem solving by scaling the content difficulty to a
more manageable level, might also provide children with more op-
portunities to regain self-confidence using the informed strategy
[18]. Scaling the content difficulty would then occur as children’s
problem solving capabilities increase.

6.4 Limitations
The findings of this paper tackle the differences on children’s cog-
nitive and behavioural states during their play and problem solving
episodes. Our findings are subject to certain limitations, the age of
the children represent an adequate population for the indented tasks
(i.e., children who are grown enough to be able to read and perform
the needed motor movements, but not too old for the indented con-
tent). However, younger or older children might produce slightly
different results (e.g., more difficult to be stressed or to experience
mental overload). It was inherent part on our research design to con-
duct an in-situ study; meaning that the produced data exhibit high
ecological validity, but are vulnerable to potential disruptions and
noise. During our study we did not experience any long disruption
since we had an isolated space in a school, in turn, the data-quality
was very high. Sensor based measurements involve inference, and
inference within complex psycho-physiological constructs (such as
ours) involves a degree of error. In our study we selected time tested
sensing devices (e.g., Tobii, Empatica), and data streams that have
been used to infer various learning and user experience-related
constructs in previous works (e.g., [79]). Thus, although different
methodological decisions (e.g., different variables) might have had
a slight impact on the results, our general approach followed valid
and time-tested devices and variables. Lastly, we recognise that our
work constitutes a single study, and future longitudinal studies, are
needed to determine how our findings maintain and further unfold
over longer time (e.g., regular and everyday experience of play and
problem solving episodes).

6.5 Ethical aspects
Sensing technology is becoming more and more prevalent in CCI re-
search due to their inherent benefits (e.g., automatic, pervasive, tem-
poral insights), but also on their ability to be employed with more
traditional research methods and complement them [78]. From a
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practical standpoint, preparations of studies using sensing tech-
nologies require additional time and special attention to the ethics
of data collection [56]. From a recent literature review in CCI [78],
we can see the growth of sensing technologies in CCI research but
also clear recognition to the need for thorough consideration of the
ethical underpinnings. Most of the children and the adult facilita-
tors (e.g., teachers, parents) will be new to some of the technologies,
therefore, when planning to utilise MMD in your research, it is not
enough to just describe the details in the consent form. Rather, it is
extremely important to engage in discussion with the children and
parents to explaining the rationale and added value of such data
collections [78].

Specifically in this study, children were curious about what it
looked like (“can I see my heart rate?“), and inquired as to our mo-
tivations for collecting it (“what does my heart rate tell you about
how I learn/feel?”). For example, when shown the real-time tracing
of gaze movement from the eye-tracking glasses, one child became
excited that we could “see through his eyes“ and then asked why
this was important (“why do you care where I am looking?”). We
replied that it was interesting to see how much time the child spent
looking at different parts of the screen. This lead to more questions
(“why does it matter how long I look at the boxes or the cards
for?”, and “What if I look at the monster instead?”). This anecdote
illustrates the need to prepare child-friendly demonstrations and
explanations of how the wearable and ubiquitous sensing tech-
nologies are used, the data collection process and reason for use.
Children’s are naturally curious, and, as with any other user-group,
the indented use of the data collected from them needs be clarifying
prior to enrolling them in research. Consequently, given that it is
unlikely for written consents to capture all the potential questions
from children, researchers must anticipate these inherent needs
by allocating enough time to engage in meaningful child-friendly
discussion and demonstration when obtaining children’s assent, as
well as throughout the study. Parallel to this is the need to ensure
that parents feel comfortable with the data being collected. On a few
occasions, children where excited to wear the devices, but parents
needed additional assurance on the safety of the employed devices
and our ability and intention to anonymise children’s sensitive data.

7 CONCLUSION & FUTURE DIRECTIONS
Leveraging sensing technologies to explore children’s experience
while interacting with systems is a valuable evaluation method
[52, 56], but, rather like an observation without dialogue, the data
is enhanced in terms of its usefulness when the evaluation triangu-
lates with other methods [56] including observations, interviews,
verbalization methods and video annotation by human experts (in
our case). In this study we employed sensing technology (i.e., eye-
trackers, wristbands, Kinect motion sensor) to explore children’s
play and problem solving behaviour, and to provide academic stake-
holders (i.e., children, parents, teachers) with educational support,
during children’s interactions with MBEG. To do so we first apply
an inductive coding scheme to video data, to classify children’s be-
haviours as play, guessing, and informed problem solving. Then, we
explored potential differences on children’s cognitive, affective and
physiological states within these episodes, with the use of MMD

data produced during children’s interaction. The results demon-
strate significant differences between children’s cognitive, affective
and physiological states during children’s play, guessing and in-
formed problem solving behaviours. We provide insights to support
those episodes in educational games and help designers and facili-
tators to focus on children’s experience. Future work should focus
on developing consistent ways to account for children’s important
but sometimes "invisible" states thought either technological affor-
dances (e.g., intelligent agent, visualisations) and/or by adapting
the facilitation processes (e.g., revising the best-practices).

8 SELECTION AND PARTICIPATION OF
CHILDREN

All the study’s participants were students from public schools in
Trondheim, Norway. The study took place at a science museum
(Vitensenteret) and a primary school, in rooms strictly designated to
the experimental setup. Data related to the study were collected af-
ter approval from the national Data Protection Official for Research
(Norsk Senter for Forskningsdata), following all the regulations
and recommendations for research with children. A researcher con-
tacted the teacher and legal guardian of each child to obtain written
consent permitting the data collection. Children were informed
about the data collection process and their participation in the
study was completely voluntary. In addition, children were able to
withdraw their consent for the data collection at any time without
affecting their participation in the activity.

ACKNOWLEDGMENTS
We would like to thank Kinems Inc. for providing for free user
licenses of its educational gaming platform as well as access to the
skeletal data.

REFERENCES
[1] Efthimios Alepis. 2011. AFOL: Towards a new intelligent interactive program-

ming language for children. In Intelligent Interactive Multimedia Systems and
Services. Springer, 199–208.

[2] Ioannis Altanis and Symeon Retalis. [n.d.]. Amultifaceted students’ performance
assessment framework for motion-based game-making projects with Scratch.
Educational Media International ([n. d.]).

[3] Alejandro Andrade. 2017. Understanding student learning trajectories using
multimodal learning analytics within an embodied-interaction learning environ-
ment. In Proceedings of the Seventh International Learning Analytics & Knowledge
Conference. 70–79.

[4] Alejandro Andrade, Ginette Delandshere, and Joshua A Danish. 2016. Using
Multimodal Learning Analytics to Model Student Behaviour: A Systematic
Analysis of Behavioural Framing. Journal of Learning Analytics 3, 2 (2016),
282–306.

[5] Alissa N Antle. 2013. Exploring how children use their hands to think: An
embodied interactional analysis. Behaviour & Information Technology 32, 9
(2013), 938–954.

[6] Saskia Bakker, Panos Markopoulos, and Yvonne De Kort. 2008. OPOS: an
observation scheme for evaluating head-up play. In Proceedings of the 5th Nordic
conference on Human-computer interaction: building bridges. 33–42.

[7] Laura Bartoli, Clara Corradi, Franca Garzotto, and Matteo Valoriani. 2013. Ex-
ploring motion-based touchless games for autistic children’s learning. In Pro-
ceedings of the 12th international conference on interaction design and children.
ACM, 102–111.

[8] Carole R Beal and Paul R Cohen. 2008. Temporal data mining for educational
applications. In Pacific Rim International Conference on Artificial Intelligence.
Springer, 66–77.

[9] Gary G Berntson and John T Cacioppo. 2004. Heart rate variability: Stress and
psychiatric conditions. Dynamic electrocardiography 41, 2 (2004), 57–64.

[10] Matthew P Black, Daniel Bone, Marian E Williams, Phillip Gorrindo, Pat Levitt,
and Shrikanth Narayanan. 2011. The usc care corpus: Child-psychologist interac-
tions of children with autism spectrum disorders. In Twelfth Annual Conference

418



IDC ’21, June 24–30, 2021, Athens, Greece Lee-Cultura, et al.

of the International Speech Communication Association.
[11] Paulo Blikstein and Marcelo Worsley. 2016. Multimodal learning analytics and

education data mining: Using computational technologies to measure complex
learning tasks. Journal of Learning Analytics 3, 2 (2016), 220–238.

[12] Trevor S Breusch and Adrian R Pagan. 1979. A simple test for heteroscedasticity
and random coefficient variation. Econometrica: Journal of the Econometric
Society (1979), 1287–1294.

[13] Christine Bruce. 2008. Informed learning. Assoc of Cllge & Rsrch Libr.
[14] Fang Chen, Jianlong Zhou, YangWang, Kun Yu, Syed Z Arshad, Ahmad Khawaji,

andDanConway. 2016. Robust multimodal cognitive loadmeasurement. Springer.
[15] David Cohen. 2007. The development of play. Routledge.
[16] Lucrezia Crescenzi-Lanna. 2020. Multimodal Learning Analytics research with

young children: A systematic review. British Journal of Educational Technology
51, 5 (2020), 1485–1504.

[17] Ciera Crowell. 2018. Analysis of Interaction Design and Evaluation Methods
in Full-Body Interaction for Special Needs. In 23rd International Conference on
Intelligent User Interfaces. ACM, 673–674.

[18] Mihaly Csikszentmihalyi. 2020. Finding flow: The psychology of engagement with
everyday life. Hachette UK.

[19] Mutlu Cukurova, Michail Giannakos, and Roberto Martinez-Maldonado. 2020.
The promise and challenges of multimodal learning analytics.

[20] Bronwyn J Cumbo and Ole Sejer Iversen. 2020. CCI in the wild: designing for
environmental stewardship through children’s nature-play. In Proceedings of
the Interaction Design and Children Conference. 335–348.

[21] Sabrine DHAOUADI and Mohamed Moncef BEN KHELIFA. 2020. A multimodal
Physiological-Based Stress Recognition: Deep Learning Models’ Evaluation
in Gamers’ Monitoring Application. In 2020 5th International Conference on
Advanced Technologies for Signal and Image Processing (ATSIP). IEEE, 1–6.

[22] Leandro L Di Stasi, Andrés Catena, José J Canas, Stephen L Macknik, and Susana
Martinez-Conde. 2013. Saccadic velocity as an arousal index in naturalistic
tasks. Neuroscience & Biobehavioral Reviews 37, 5 (2013), 968–975.

[23] Sidney D’Mello. 2013. A selective meta-analysis on the relative incidence of
discrete affective states during learning with technology. Journal of Educational
Psychology 105, 4 (2013), 1082.

[24] Afke Donker and Panos Markopoulos. 2002. A comparison of think-aloud,
questionnaires and interviews for testing usability with children. In People and
computers XVI-Memorable yet invisible. Springer, 305–316.

[25] Paul Dourish. 2004. Where the action is: the foundations of embodied interaction.
MIT press.

[26] Andrew T Duchowski, Krzysztof Krejtz, Izabela Krejtz, Cezary Biele, Anna
Niedzielska, Peter Kiefer, Martin Raubal, and Ioannis Giannopoulos. 2018. The
index of pupillary activity: Measuring cognitive load vis-à-vis task difficulty
with pupil oscillation. In Proceedings of the 2018 CHI Conference on Human
Factors in Computing Systems. 1–13. https://doi.org/10.1145/3173574.3173856

[27] Adelmo Eloy, Danielle Cruz, Kavindya Thennakoon, and Wayne Grant. 2020.
Buildagram: a constructionist environment for spatial reasoning. In Proceedings
of the 2020 ACM Interaction Design and Children Conference: Extended Abstracts.
280–283.

[28] Julia Fink, Séverin Lemaignan, Pierre Dillenbourg, Philippe Rétornaz, Florian
Vaussard, Alain Berthoud, Francesco Mondada, Florian Wille, and Karmen
Franinović. 2014. Which robot behavior can motivate children to tidy up their
toys? Design and Evaluation of" Ranger". In Proceedings of the 2014 ACM/IEEE
international conference on Human-robot interaction. 439–446.

[29] Panagiotis Fotaris, Nikolaos Pellas, Ioannis Kazanidis, and Paul Smith. 2017. A
systematic review of Augmented Reality game-based applications in primary
education. In Memorias del XI Congreso Europeo en Aprendizaje Basado en el
Juego Graz. 181–191.

[30] Robert S Friedman and Fadi P Deek. 2002. The integration of problem-based
learning and problem-solving tools to support distributed education environ-
ments. In 32nd Annual Frontiers in Education, Vol. 2. IEEE, F3E–F3E.

[31] Joachim Funke and Peter Frensch. 1995. Complex problem solving research in
North America and Europe: An integrative review. Foreign Psychology 5 (1995),
42–47.

[32] Emily R Fyfe and Bethany Rittle-Johnson. 2016. Feedback both helps and hinders
learning: The causal role of prior knowledge. Journal of Educational Psychology
108, 1 (2016), 82.

[33] M. N. Giannakos, S. Papavlasopoulou, and K. Sharma. 2020. Monitoring Chil-
dren’s Learning Through Wearable Eye-Tracking: The Case of a Making-Based
Coding Activity. IEEE Pervasive Computing (2020), 1–12. https://doi.org/10.
1109/MPRV.2019.2941929

[34] Michail N Giannakos, Kshitij Sharma, Sofia Papavlasopoulou, Ilias O Pappas,
and Vassilis Kostakos. 2020. Fitbit for learning: Towards capturing the learning
experience using wearable sensing. International Journal of Human-Computer
Studies 136 (2020), 102384.

[35] Robyn M Gillies, Annemaree Carroll, Ross Cunnington, Mary Rafter, Kelsey
Palghat, Jeff Bednark, and Amanda Bourgeois. 2016. Multimodal representations
during an inquiry problem-solving activity in a Year 6 science class: A case study

investigating cooperation, physiological arousal and belief states. Australian
Journal of Education 60, 2 (2016), 111–127.

[36] Sukeshini A Grandhi, Gina Joue, and Irene Mittelberg. 2011. Understanding
naturalness and intuitiveness in gesture production: insights for touchless ges-
tural interfaces. In Proceedings of the SIGCHI Conference on Human Factors in
Computing Systems. 821–824.

[37] Emmanuel Guigon, Pierre Baraduc, andMichel Desmurget. 2007. Computational
motor control: redundancy and invariance. Journal of neurophysiology 97, 1
(2007), 331–347.

[38] Gary Hackbarth, Varun Grover, and Y Yi Mun. 2003. Computer playfulness
and anxiety: positive and negative mediators of the system experience effect on
perceived ease of use. Information & management 40, 3 (2003), 221–232.

[39] Uri Hasson, Orit Furman, Dav Clark, Yadin Dudai, and Lila Davachi. 2008. En-
hanced intersubject correlations during movie viewing correlate with successful
episodic encoding. Neuron 57, 3 (2008), 452–462.

[40] Curtis R Henrie, Lisa R Halverson, and Charles R Graham. 2015. Measuring
student engagement in technology-mediated learning: A review. Computers &
Education 90 (2015), 36–53.

[41] Juan Pablo Hourcade, Alissa Antle, Lisa Anthony, Jerry Fails, O Iversen, Elisa
Rubegni, Mikael Skov, Petr Slovak, Greg Walsh, Anja Zeising, et al. 2018. Child-
computer interaction, ubiquitous technologies, and big data. interactions 25, 6
(2018), 78–81.

[42] Juan Pablo Hourcade, Anja Zeising, Ole Sejer Iversen, Mikael B Skov, Alissa N
Antle, Lisa Anthony, Jerry Alan Fails, and Greg Walsh. 2018. Child-Computer
Interaction SIG: Ubiquity and Big Data–A Changing Technology Landscape for
Children. In Extended Abstracts of the 2018 CHI Conference on Human Factors in
Computing Systems. ACM, SIG07.

[43] Hui-mei Justina Hsu. 2011. The potential of kinect in education. International
Journal of Information and Education Technology 1, 5 (2011), 365.

[44] Katherine Isbister, Mike Karlesky, Jonathan Frye, and Rahul Rao. 2012. Scoop!:
a movement-based math game designed to reduce math anxiety. In CHI’12
extended abstracts on human factors in computing systems. ACM, 1075–1078.

[45] Keri Johnson, Jebediah Pavleas, and Jack Chang. 2013. Kinecting to mathematics
through embodied interactions. Computer 46, 10 (2013), 101–104.

[46] David H Jonassen. 2000. Toward a design theory of problem solving. Educational
technology research and development 48, 4 (2000), 63–85.

[47] E Joseph. 2005. Engagement tracing: using response times to model student
disengagement. Artificial intelligence in education: Supporting learning through
intelligent and socially informed technology 125 (2005), 88.

[48] Panagiotis Kosmas, Andri Ioannou, and Symeon Retalis. 2018. Moving bodies to
moving minds: a study of the use of motion-based games in special education.
TechTrends 62, 6 (2018), 594–601.

[49] J Richard Landis and Gary G Koch. 1977. The measurement of observer agree-
ment for categorical data. biometrics (1977), 159–174.

[50] Charlotte Larmuseau, Jan Cornelis, Luigi Lancieri, Piet Desmet, and Fien De-
paepe. 2020. Multimodal learning analytics to investigate cognitive load during
online problem solving. British Journal of Educational Technology 51, 5 (2020),
1548–1562.

[51] Serena Lee-Cultura, Kshitij Sharma, Sofia Papavlasopoulou, and Michail Gian-
nakos. 2020. Motion-Based Educational Games: Using Multi-Modal Data to
Predict Player’s Performance. In 2020 IEEE Conference on Games (CoG). IEEE,
17–24.

[52] Serena Lee-Cultura, Kshitij Sharma, Sofia Papavlasopoulou, Symeon Retalis,
and Michail Giannakos. 2020. Using sensing technologies to explain children’s
self-representation in motion-based educational games. In Proceedings of the
Interaction Design and Children Conference. 541–555.

[53] Dominik Leiner, Andreas Fahr, and Hannah Früh. 2012. EDA positive change:
A simple algorithm for electrodermal activity to measure general audience
arousal during media exposure. Communication Methods and Measures 6, 4
(2012), 237–250.

[54] Christian S Loh. 2012. Information trails: In-process assessment of game-based
learning. In Assessment in game-based learning. Springer, 123–144.

[55] Jing Lu, Chun Wang, Jiwei Zhang, and Jian Tao. 2020. A mixture model for
responses and response times with a higher-order ability structure to detect
rapid guessing behaviour. Brit. J. Math. Statist. Psych. 73, 2 (2020), 261–288.

[56] Panos Markopoulos, Janet Read, and Michail Giannakos. 2020. (in press) Design
of Digital Technologies for Children. Handbook of Human Factors and Ergonomics
5th ed (2020).

[57] Richard E Mayer and Merlin C Wittrock. 2006. Problem solving. Handbook of
educational psychology 2 (2006), 287–303.

[58] Philipp Mayring. 2000. Qualitative Content Analysis. Forum Qualitative Sozial-
forschung / Forum: Qualitative Social Research [On-line Journal], http://qualitative-
research.net/fqs/fqs-e/2-00inhalt-e.htm 1 (06 2000).

[59] Shayan Mirjafari, Kizito Masaba, Ted Grover, Weichen Wang, Pino Audia, An-
drew T Campbell, Nitesh V Chawla, Vedant Das Swain, Munmun De Choudhury,
Anind K Dey, et al. 2019. Differentiating Higher and Lower Job Performers in
the Workplace Using Mobile Sensing. Proceedings of the ACM on Interactive,
Mobile, Wearable and Ubiquitous Technologies 3, 2 (2019), 37.

419

https://doi.org/10.1145/3173574.3173856
https://doi.org/10.1109/MPRV.2019.2941929
https://doi.org/10.1109/MPRV.2019.2941929


Play and Problem Solving, MBEG, MMD IDC ’21, June 24–30, 2021, Athens, Greece

[60] Ranjita Misra, Michelle McKean, Sarah West, and Tony Russo. 2000. Academic
stress of college students: Comparison of student and faculty perceptions. College
Student Journal 34, 2 (2000).

[61] Behnaz Nojavanasghari, Charles E Hughes, and Louis-Philippe Morency. 2017.
Exceptionally social: Design of an avatar-mediated interactive system for pro-
moting social skills in children with autism. In Proceedings of the 2017 CHI
Conference Extended Abstracts on Human Factors in Computing Systems. ACM,
1932–1939.

[62] Omid Noroozi, Iman Alikhani, Sanna Järvelä, Paul A Kirschner, Ilkka Juuso, and
Tapio Seppänen. 2019. Multimodal data to design visual learning analytics for
understanding regulation of learning. Computers in Human Behavior 100 (2019),
298–304.

[63] Netta Ofer, Hadas Erel, Idan David, Tom Hitron, and Oren Zuckerman. 2018.
A little bit of coding goes a long way: effects of coding on outdoor play. In
Proceedings of the 17th ACM Conference on Interaction Design and Children.
599–604.

[64] Ayumi Ohnishi, Kaoru Saito, Tsutomu Terada, and Masahiko Tsukamoto. 2017.
Toward Interest Estimation from Head Motion Using Wearable Sensors: A
Case Study in Story Time for Children. In International Conference on Human-
Computer Interaction. Springer, 353–363.

[65] A Olsen. 2012. The tobii i-vt fixation filter: Algorithm descrip-
tion [white paper]. Retrieved from Tobii Technology from http://www.
tobiipro. com/siteassets/tobiipro/learn-and-support/analyze/how-do-we-classify-
eyemovements/tobii-pro-i-vtfixation-filter. pdf (2012).

[66] Temitayo Olugbade, Joseph Newbold, Rose Johnson, Erica Volta, Paolo Al-
borno, Radoslaw Niewiadomski, Max Dillon, Gualtiero Volpe, and Nadia Bianchi-
Berthouze. 2020. Automatic Detection of Reflective Thinking in Mathematical
Problem Solving based on Unconstrained Bodily Exploration. IEEE Transactions
on Affective Computing (2020).

[67] Héctor Manuel Ocampo Orona, Guillermo Silva Maldonado, and Norma Pa-
tricia Salinas Martínez. 2015. Kinect team: Kinesthetic learning applied to
mathematics using kinect. Procedia Computer Science 75 (2015), 169–172.

[68] Fred GWC Paas and Jeroen JG Van Merriënboer. 1994. Variability of worked
examples and transfer of geometrical problem-solving skills: A cognitive-load
approach. Journal of educational psychology 86, 1 (1994), 122.

[69] Zacharoula Papamitsiou and Anastasios A Economides. 2016. Process mining
of interactions during computer-based testing for detecting and modelling
guessing behavior. In International Conference on Learning and Collaboration
Technologies. Springer, 437–449.

[70] Zacharoula K Papamitsiou and Anastasios A Economides. 2013. Towards the
alignment of computer-based assessment outcome with learning goals: the
LAERS architecture. In 2013 IEEE Conference on e-Learning, e-Management and
e-Services. IEEE, 13–17.

[71] Sofia Papavlasopoulou, Kshitij Sharma, Michail Giannakos, and Letizia Jaccheri.
2017. Using eye-tracking to unveil differences between kids and teens in coding
activities. In Proceedings of the 2017 Conference on Interaction Design and Children.
ACM, 171–181.

[72] Héctor J Pijeira-Díaz, Hendrik Drachsler, Paul A Kirschner, and Sanna Järvelä.
2018. Profiling sympathetic arousal in a physics course: How active are students?
Journal of Computer Assisted Learning 34, 4 (2018), 397–408.

[73] Ingrid Pramling Samuelsson and Eva Johansson. 2006. Play and learn-
ing—inseparable dimensions in preschool practice. Early child development
and care 176, 1 (2006), 47–65.

[74] Mary Reilly. 1974. Play as exploratory learning: Studies of curiosity behavior.
Sage Publications, Inc.

[75] Lloyd P Rieber. 1996. Seriously considering play: Designing interactive learning
environments based on the blending of microworlds, simulations, and games.
Educational technology research and development 44, 2 (1996), 43–58.

[76] JP Royston. 1982. Algorithm AS 181: the W test for normality. Applied Statistics
(1982), 176–180.

[77] Calvin Rubens, Sean Braley, Julie Torpegaard, Nicklas Lind, Roel Vertegaal,
and Timothy Merritt. 2020. Flying LEGO Bricks: Observations of Children
Constructing and Playing with Programmable Matter. In Proceedings of the Four-
teenth International Conference on Tangible, Embedded, and Embodied Interaction.
193–205.

[78] Kshitij Sharma and Michail Giannakos. 2021. (forthcoming) Sensing Technolo-
gies and Child-Computer Interaction: Opportunities, Challenges and Ethical
Considerations. International Journal of Child Computer Interaction (2021).

[79] Kshitij Sharma, Zacharoula Papamitsiou, and Michail Giannakos. 2019. Building
pipelines for educational data using AI and multimodal analytics: A “grey-box”
approach. British Journal of Educational Technology (2019).

[80] Kshitij Sharma, Zacharoula Papamitsiou, and Michail N Giannakos. 2019. Mod-
elling Learners’ Behaviour: A Novel Approach Using GARCH with Multimodal
Data. In European Conference on Technology Enhanced Learning. Springer, 450–
465.

[81] Hyunjin Shin, Bugeun Kim, and Gahgene Gweon. 2020. Guessing or Solving?
Exploring the Use of Motion Features from Educational Game Logs. In Extended

Abstracts of the 2020 CHI Conference on Human Factors in Computing Systems.
1–8.

[82] Miguel Sicart. 2014. Play matters. mit Press.
[83] Carmen Petrick Smith, Barbara King, and Jennifer Hoyte. 2014. Learning an-

gles through movement: Critical actions for developing understanding in an
embodied activity. The Journal of Mathematical Behavior 36 (2014), 95–108.

[84] James Soland, Nate Jensen, Tran D Keys, Sharon Z Bi, and Emily Wolk. 2019.
Are test and academic disengagement related? Implications for measurement
and practice. Educational Assessment 24, 2 (2019), 119–134.

[85] Iris Soute, Saskia Bakker, Remco Magielse, and Panos Markopoulos. 2013. Eval-
uating player experience for children’s outdoor pervasive games. Entertainment
Computing 4, 1 (2013), 25–38.

[86] Priyashri K Sridhar, Samantha WT Chan, and Suranga Nanayakkara. 2018.
Going beyond performance scores: understanding cognitive-affective states in
kindergarteners. In Proceedings of the 17th ACM Conference on Interaction Design
and Children. ACM, 253–265.

[87] Marianne B Staempfli. 2007. Adolescent playfulness, stress perception, coping
and well being. Journal of Leisure Research 39, 3 (2007), 393–412.

[88] John Sweller. 2011. Cognitive load theory. In Psychology of learning and motiva-
tion. Vol. 55. Elsevier, 37–76.

[89] Sietske Tacoma, Paul Drijvers, and Johan Jeuring. 2020. Combined inner and
outer loop feedback in an intelligent tutoring system for statistics in higher
education. Journal of Computer Assisted Learning (2020).

[90] Joachim Taelman, Steven Vandeput, Arthur Spaepen, and Sabine Van Huffel.
2009. Influence of mental stress on heart rate and heart rate variability. In 4th
European conference of the international federation for medical and biological
engineering. Springer, 1366–1369.

[91] Varun Thakkar, Adeet Shah, Mohini Thakkar, Abhijit Joshi, and Neha Mendjoge.
2012. Learning math using gesture. In International Conference on Education
and e-Learning Innovations. IEEE, 1–3.

[92] Katherine R Thorson, Tessa VWest, and Wendy Berry Mendes. 2018. Measuring
physiological influence in dyads: A guide to designing, implementing, and
analyzing dyadic physiological studies. Psychological methods 23, 4 (2018), 595.

[93] Chih-Hsiao Tsai, Yin-Hao Kuo, Kuo-Chung Chu, and Jung-Chuan Yen. 2015.
Development and evaluation of game-based learning system using the Microsoft
Kinect sensor. International Journal of Distributed Sensor Networks 11, 7 (2015),
498560.

[94] Damyanka Tsvyatkova and Cristiano Storni. 2019. A review of selected methods,
techniques and tools in Child–Computer Interaction (CCI) developed/adapted
to support children’s involvement in technology development. International
Journal of Child-Computer Interaction 22 (2019), 100148.

[95] Lev S Vygotsky. 1978. Mind in society: The development of higher mental
processes (E. Rice, Ed. & Trans.).

[96] Justin W Weeks and Ashley N Howell. 2012. The bivalent fear of evaluation
model of social anxiety: Further integrating findings on fears of positive and
negative evaluation. Cognitive Behaviour Therapy 41, 2 (2012), 83–95.

[97] DeWayne PWilliams, Claudia Cash, Cameron Rankin, Anthony Bernardi, Julian
Koenig, and Julian F Thayer. 2015. Resting heart rate variability predicts self-
reported difficulties in emotion regulation: a focus on different facets of emotion
regulation. Frontiers in psychology 6 (2015), 261.

[98] Cara Wilson, Margot Brereton, Bernd Ploderer, and Laurianne Sitbon. 2018. My-
Word: Enhancing engagement, interaction and self-expression with minimally-
verbal children on the autism spectrum through a personal audio-visual dic-
tionary. In Proceedings of the 17th ACM Conference on Interaction Design and
Children. 106–118.

[99] Margaret Wilson. 2002. Psychonomic bulletin & review. Six views of embodied
cognition 9 (2002), 625–636.

[100] Steven LWise and Xiaojing Kong. 2005. Response time effort: A new measure of
examineemotivation in computer-based tests. AppliedMeasurement in Education
18, 2 (2005), 163–183.

[101] Marcelo Worsley and Paulo Blikstein. 2015. Leveraging multimodal learning
analytics to differentiate student learning strategies. In Proceedings of the Fifth
International Conference on Learning Analytics And Knowledge. ACM, 360–367.

[102] Marcelo Worsley and Paulo Blikstein. 2018. A multimodal analysis of making.
International Journal of Artificial Intelligence in Education 28, 3 (2018), 385–419.

[103] Chi Yang, Chun-Hui Jen, Chun-Yen Chang, and Ting-Kuang Yeh. 2018. Compar-
ison of animation and static-picture based instruction: Effects on performance
and cognitive load for learning genetics. Journal of Educational Technology &
Society 21, 4 (2018), 1–11.

[104] Kelly Yap, Clement Zheng, Angela Tay, Ching-Chiuan Yen, and Ellen Yi-Luen
Do. 2015. Word out!: learning the alphabet through full body interactions.
In Proceedings of the 6th Augmented Human International Conference. ACM,
101–108.

[105] Serdar Yildirim and Shrikanth Narayanan. 2009. Recognizing child’s emotional
state in problem-solving child-machine interactions. In Proceedings of the 2nd
Workshop on Child, Computer and Interaction. ACM, 14.

420

View publication statsView publication stats

https://www.researchgate.net/publication/352741585

	Abstract
	1 Introduction & Motivation
	2 Related Work
	2.1 Embodied Interaction and Motion-Based Educational Games
	2.2 Multimodal data in child-computer interaction
	2.3 Play and Problem Solving in CCI

	3 Marvy Learns: The MBEG
	4 Methods
	4.1 Context
	4.2 Participants
	4.3 Procedure
	4.4 Data Collection
	4.5 Data Pre-processing
	4.6 Measurements
	4.7 Data Analysis

	5 Results
	6 Discussion
	6.1 Interpretation of Results
	6.2 Implications for Research
	6.3 Implications for Design
	6.4 Limitations
	6.5 Ethical aspects

	7 Conclusion & Future Directions
	8 Selection and Participation of Children
	Acknowledgments
	References



