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ABSTRACT
This paper investigates the relation between children’s joint gaze
and emotions with the information flow of the screen from a causal
point of view, in the context of collaborative coding. We employ
Granger’s definition of causality to extend the knowledge we have
about children’s collaborative activities from correlational methods.
We organised a coding workshop with 50 children (10 dyads and
10 triads; 13-16 years old). While the children were coding collabo-
ratively, their facial video and the screen were recorded. From the
screen recording we computed the information flow; and from the
facial video we computed children’s emotions (e.g., frustration and
boredom) and estimated their gaze. The gaze estimation was used
to compute the joint visual attention (JVA) of the team. Our results
show that for high performing teams JVA drives the information
flow; while for low performing teams we observe causal relation
between emotions and information flow. In particular for the low
performing teams, frustration and boredom drive the information
flow and the information flow then drives children’s confusion.
These results extend the understanding of the socio-cognitive pro-
cesses underlying collaborative performance, which is primarily
correlational in nature, with the causal relations between measure-
ments. These novel results have the potential to guide the design of
learning tools that scaffold children’s learning and collaboration.

CCS CONCEPTS
• Human-centered computing → HCI theory, concepts and
models.
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1 INTRODUCTION & MOTIVATION
As the phenomena surrounding the interaction between children
and computational and communication technologies advance [37],
so does the data produced from this interaction. During the last
years, researchers leverage on such data to portray children’s inter-
action trajectories/paths and support the design and development
of both the digital technology and the respective processes (e.g.,
instruction, treatment). In the context of collaborative learning,
data collected from child-computer interaction (CCI) are utilized to
support children’s cognitive and learning processes (e.g., adaptive
interfaces) [33, 68] as well as the quality of collaboration [98]. It is
important to support children’s collaboration due to the fact that
the collaborative learning is deemed as one of the 21st century skill
[105] not only for the adults [113] but also for the primary and
secondary education [11]. Collaborative learning is also important
for developing critical thinking capabilities [60] as well. To regulate
children’s expectations and improve collaboration, we have seen
in the literature the use of adaptive collaborative learning support
(ACLS) [43, 48, 81, 115]. ACLS leverages on intelligent technologies
to improve children collaboration and learning by identifying the
current state of the interaction and providing a tailored interven-
tion. For such systems to effectively operate, it is important to be
able to use highly temporal data to identify children’s interaction
and communication at the micro level.

To support the design and development of the aforementioned
technologies, this paper proposes the use of gaze-tracking (from
the frontal video and not eye-tracking), and facial-expressions (as
an input from the child) and the information representations of the
screen (as an input from the system) to assess children’s interac-
tion and collaboration, through the lens of the causal relationships
during CCI. We study these causal relationships while the children
are engaged in a collaborative coding workshop in dyads and triads.
Specifically, we investigate two causal relationships. First, between
children’s joint visual attention (i.e., how much they look at the
same area at the same time) and the information representations of
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the screen. Second, between children’s joint emotional state (i.e.,
how similar their emotions such as, boredom, confusion and frus-
tration are, at the given time) and the information representations
of the screen. For this analysis, we used time series data from the
children working on the Scratch code. We further investigate the
nature of the causal relationships among aforementioned measure-
ments with respect to children’s performance levels (high/low) in
the collaborative coding task.

Why causality is important? A causal relation between time series
of two measurements represent an essential “active connection” be-
tween them [35, 116]. Untangling correlation and causation has re-
cently received increased attention across multiple disciplines, with
documented benefits in both HCI [82, 112] and learning [94, 96].
Investigating the causal relationship allows us to understand deeper
the causal interactions between children and technology, ultimately
leading to the design of improved interactive technology. Causa-
tion goes far beyond correlation between variables and accounts
for the "information exchange" (interaction) and the underlying
processes that are responsible for the two variables under investiga-
tion. For example, there is a vast collection of studies that show the
correlation between the information content and the joint visual
attention in collaborative scenarios [7, 85, 97]. However, in absence
of a causal link between the two measurements (i.e., joint visual
attention and information content) it becomes difficult to design
real-time adaptive systems to support processes that enable effi-
cient consumption of the information [69]. Causal relations allow
us to account for relationships that are inextricably intertwined
with humans’ interactions (e.g., emotions, see [82] and provide the
decision makers (e.g., designers, researchers) a stronger basis (as
compared to correlations) to decide upon the necessary actions for
a given desired result [69]. This paper exemplifies how causal anal-
ysis can support CCI research by showing the direction of causality
between screen’s information representations and children’s joint
visual attention, and screen’s information representations and chil-
dren’s joint emotional states, in the context of collaborative coding
workshop. We also show how these relationships change based on
the task-based performance levels (high and low) of the children.
Specifically, we address the following research questions:
RQ1 What is the causal relation between information flow and
joint visual attention of children during coding?
RQ2 What is the causal relation between information flow and
joint emotional state of children during coding?
RQ3 How are these causal relations affected from children’s per-
formance levels?

To tackle the aforementioned research questions, we conduct
a study in which we use frontal videos to capture children’s gaze
and emotions during a coding activity. The data is coupled with
the information presentation (captured with screen recording) and
children task-based performance (captured with the produced arti-
facts). We then apply Granger causality to investigate the causal
interactions between children and technology during collabora-
tive coding. By investigating the casual interactions we provide
a path towards a technology design that support children’s col-
laboration and learning. In particular, this works contributes to
CCI in three ways: Methodologically, utilizing children’s facial
videos and screen recordings to study the relationship between
their collaboration and emotional state with the information pre-
sented. - Analytically, showing that children’s emotions drive the

use of block-based programming technology (e.g., Scratch) more
often than the other way around, and providing several insights
on this relationship. - Conceptually, highlighting implications for
practice and research in both technology design and facilitation to
support collaborative coding activities for children.

2 RELATEDWORK
2.1 Joint Visual Attention in education and CCI
In collaborative learning and problem solving contexts, Joint Vi-
sual Attention (JVA) has been used to explain the socio-cognitive
processes underlying expertise [50], performance [92] and learning
gains[73]. JVA has been computed as the cross-recurrence (discrete)
of the gaze-behaviour of the collaborators [34, 78], and as the simi-
larity of two gaze-patterns (continuous) [73, 92]. In both cases, JVA
is a measurement of collaborators looking at the same set of objects
or similar parts of the stimulus at the same time or in the same time
window.

Specifically, students having high JVA during their collaboration
translates to a higher level of “mutual understanding” of the con-
cept used [91]. Collaboration involves multiple verbal and deictic
references to the visual task at hand [49]. In that way, the peers
establish a “common ground” to work/learn together[17, 18]. By
using eye-tracking, it is shown that peers who follow each other’s
deictic [49] and verbal [34] references perform better than those
who do not. In addition, early eye-tracking studies show that there
is a coupling between speaker’s gaze and the listeners’ gazes that
tells us about how well they are following each other in the col-
laborative space [1, 41, 78]. Another phenomenon that explains
the high collaborative performance is the “convergent conceptual
change” (CCC) [80, 93, 108]. When peers collaborate, they change
the conceptual understanding of the learning material/domain [80].
It is shown that teams who collaborate better, have less difference
between peers’ understanding after, than that before the collabo-
ration [13, 80, 108]. In other words, high performing peers have a
converging change in their conceptual understanding, while this
can not be said about the low performing pairs [13, 80]. In recent
eye-tracking studies, it was shown that JVA can explain CCC among
peers in collaborative learning settings [93].

In CCI research, JVA has been used to explain/predict the coding
performance [73], learning gain [66] and expertise [97]. In a col-
laborative coding study, it was shown that children with high JVA
(gaze similarity) have higher learning gains than those with low JVA
[73]. Various studies, in different contexts, have shown that JVA can
explain the collaboration quality of the teams (e.g., learning to code
[73, 97]; fractions [7, 66]; neuroscience [84]). Furthermore, Sharma
et al. showed that the expertise moderates the relation between
JVA and learning outcome [97]. In all the aforementioned studies,
the relation between the JVA and collaborative processes has been
examined from a correlational view-point. The aim of this study is
to analyse the causality between the children’s JVA and the screen’s
information flow and show how the causal relation changes based
on children’s collaborative coding performance.

2.2 Emotions in education and CCI
CCI researchers, have measured emotions via various modes of
data collection, for example, self reports [36, 89], physiological
data [23, 57, 101, 107], and facial features [53, 56, 110]. Children’s
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emotional/affective state is an important topic in CCI, with several
studies focusing on usability [36, 110], learning processes [101], per-
formance [98], , engagement [57] and enjoyment [56]. Regarding
the emotions that are considered important in educational settings,
there are two primary strands. The first one is motivated by the
Control Value Theory (e.g., happiness, sadness, anger, surprise,
disgust) [74] and the second one uses the affective states (e.g., frus-
tration, confusion, delight, boredom) [29]. Previous work has shown
that happiness is related to success [32] and anger to failure [8]. Fur-
thermore, frustration appears as a common feeling among students
involved in online collaborative learning experiences [61]; whereas,
boredom and confusion are related to poor academic performance
[5, 28]. Further, emotions/expressions/affective states have been
used in educational research to provide feedback [100, 110, 117],
improve students’ interaction [44, 75, 106] and performance [51].
For a detailed review affective states and emotions in education
please see [77].

While students collaborate in front of a computer during a cod-
ing task, they are socially engaged with the same goal to success-
fully create an artifact [72]. During students’ collaboration, it is
important to maintain durable relationships and acceptable levels
of participation. Interactions that are associated with these aspects
of the group performance can be typified as social-emotional in-
teractions [55]. In collaborative settings, frustration was found to
be prominent during online interaction [10] and online discussion
forums [14]. Confusion occurs when the groups have to reinforce
their pre-existing mental models with new information [16, 29],
and was also found to lead to impasses in collaborative learning
[114]. Finally, boredom is mostly observed in the cases where the
problem at hand is far too easy or repetitive[70]; as it is the case
with individual learning [19]. In this paper, we decided to focus
on these three emotions because these emotions were found to be
most prominent in a selective meta-study with 21 studies [26].

Regarding Joint Emotional State (JES) during collaborative learn-
ing, in a recent study [98], it was shown that the JES was correlated
with the perceived collaborative performance. As it is the case with
JVA, all the aforementioned studies present the relation between
the JES and collaborative processes from a correlational view-point.
Additionally, there are only few studies that analyse children’s emo-
tional states (or facial expressions) using a collaborative measure.
At the same time there is a need for further research to examine
children’s collaborative coding processes using the rich nonverbal
communications such us facial expressions [111]. Most of the stud-
ies use individual emotions or the average value of emotions as the
collaborative measure. In this paper, we will analyse the causality
between the children’s JES (a collaborative measurement of their
emotional states) and the screen’s information content (information
flow) and show how the causal relation changes based on children’s
collaborative coding performance.

2.3 Exploring Causality in HCI and education
Causal analysis is not new in the fields of neuroscience [25, 38],
economics [46, 52], and life-sciences [79]. However in HCI and ed-
ucation, formalising causal relations involving multiple individuals
and groups is a rather recent practice [54, 119]. For example, Van
Berkel and colleagues showed that the number of notifications on a

mobile phone causes the number of times the user switches on the
screen [112]. Further, Sarsenbayeva and colleagues, showed that
the emotions such as, contempt, disgust and joy cause application
launch events such as, communication, social and work [82]. On
the other hand, sadness and surprise are cause by launching social
and communication applications [82].

In digital education, it was shown that for instruction style had a
mediation effect on the direction of causality between the students’
cognitive load and information flow [94]. For static instruction
(learning code-debugging) information flow causes cognitive load,
while for dynamic instruction (video-based learning) cognitive load
causes information flow [94]. In collaborative learning situations
involving children, recent research have focused on explaining
the causal relation between individual gaze and JVA [95, 96]. In
two different studies, first it was shown that for high performing
students JVA was causing the individual gaze; and for the low
performing students the individual gaze was causing the JVA [95].
Second study showed that when high performing students were
involved in problem solving dialogue their JVA was causing the
individual gaze [96]. The aforementioned results are in individual
settings [82, 94, 112], discrete events [82, 112], or investigating
causal relations between uni-modal measurements [95, 96] (e.g.,
gaze-based variables). In this paper, we present the causal relations
between multi-modal measurements (e.g., gaze, emotions, screen’s
content).

3 METHODS
3.1 The coding activity
We designed and implemented a coding activity at the Norwegian
University of Science and Technology (NTNU), Trondheim, Norway.
The activity follows the constructionist approach, and the main
principles of “Making” [71]. The workshop had an informal envi-
ronment and was organised, as an out-of-school activity. Children
ranging from 13–16 years old, were invited to participate in the
activity, which did not require any previous knowledge of coding
from them. Specifically, children were introduced to block-based
programming through Scratch and were instructed to modify and
develop their own games, working collaboratively in dyads or triads
(depending on the number of children). Student assistants were the
instructors of the activities and were supporting children’s teams
as needed. Each instructor was observing one or two teams. In
addition, three researchers were also present in the implementation
of the workshops and apart from taking care of the execution of the
workshop, they were observing and writing notes. The workshop
was divided into two sections and lasted for approximately 4 hours.
Children created their games step by step by iterative coding and
testing them. After completing the games, all teams reflected and
played each others games. The session lasted approximately three
hours.

3.2 Sampling and data collection
The studywas conducted in Autumn 2017; children from 8th to 10th
grade (age 13-16 years old) participated in the coding workshop,
after their school–teacher applied to attend it. The sample consisted
of 105 participants in total, 69 boys and 36 girls (mean age: 14.55, SD:
0.650). We video recorded 10 dyads and 10 triads while they were
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coding their games. The children were randomly assigned to their
dyads or triads. Following all recommendations and regulations
for research which children in Norway, data were collected after
having the necessary consent from both the child and the legal
guardian. The invitation for participation was sent to almost all the
schools in the Trondheim region with children in that age that had
the possibility to bring them in our premises; from those, all schools
who responded and showed interest were accepted to participate
in our workshops. In particular we used:

Video recording: To capture children’s facial expressions while
coding their game, and detect their emotions, we used a wide-angle
Logitech Webcams. The web camera was zoomed at 150% into the
children’s faces capturing video at 10 FPS. In total, we collected
videos from 50 children (29 females), 10 triads and 10 dyads.

Artifacts (developed games): We collected the games as artifacts
created from of the children. For each team, four game versions
were saved. The first versionwas saved 45minutes after they started
coding and since then, each game version was saved every 45 min-
utes. This decision was suggested from the instructors who run
the coding workshops and have a lot of experience with how the
children in the specific workshop are progressing with the activ-
ity they need to accomplish. According to them, saving the game
every 45 minutes is a good time frame that allows us to monitor
the children’s progress (e.g. not too short or too disturbing, not too
long to lose monitoring important part of progression).

3.3 Measurements
3.3.1 Joint Visual Attention (JVA). This is defined as the proportion
of time that children of the same team spend looking at the similar
set of objects in the same given time window. Following are the
steps to compute the JVA from the facial video of the collaborating
children: a) Detect the faces in every frame of the video. b) Compute
the gaze direction from the facial image in the frame for each face
detected (by giving a 3D vector pointing at the screen, see Figure
1 top-left). OpenFace provides a 3D vector towards the center of
the camera to represent the gaze direction. c) Extend the 3D vector
of the gaze direction to intersect the plane of the computer screen.
The point of intersection of the 3D gaze-vector and the plane of the
computer screen provides the point where the child is looking at.
We call this gaze-point (Figure 1 top-left). d) Once we have the gaze
point of all the participants in the frame, divide the whole screen
space into a grid of 20 rectangles (four rows and five columns)
and assign the gaze-point to one of the 20 rectangles (Figure 1
top-right). e) Compute the cross-recurrence [78] between all the
children present in the video to identify their JVA; and normalise
using the group size (2 or 3).

3.3.2 Joint Emotional State (JES). This is defined as the propor-
tion of time that children spend in a given emotional state (i.e.,
frustration, boredom, confusion) in the same given time window.
We selected these states because these were found to be the most
prominent across a wide range of studies [5, 26, 27]. Following are
the steps to compute the JES from the facial video of the collaborat-
ing children: a) Detect the faces in every frame of the video (Figure
2 top-left). b) Align the faces across the frames so that same faces
are being tracked and assigned the same ID in every frame by using
the method described in Sharma et. al. [98] (Figure 2 bottom-left).

Figure 1: Top-left: example of multiple face detection, with
the gaze direction estimation. Top-right: example of the grid
layover on the stimulus (code on the screen). Bottom: Sum-
mary of steps from the individual time series of gaze on the
boxes to group’s cross recurrence (JVA). Each colour repre-
sents a different box on the screen.

c) Once we have the faces with correct IDs, use OpenFace [2, 6]
to compute the Action Units (AUs) [42] for each frame (Figure 2
right). d) From the AUs compute the proportions of the three emo-
tions: frustration, boredom and confusion [62] during a fixed time
window of ten seconds [98]. We used a generalised additive model
to combine the AUs to compute the expressions [59]. Frustration
was computed as a combination of AU12 and AU43; boredom was
computed as a combination of AU4, AU7, and AU12; finally, confu-
sion was computed as a combination of AU1, AU4, AU7, and AU12.
e) Once we have the proportions of the three emotions, compute
the cosine similarity among the probabilities for each children.

Figure 2: Top-left: example of multiple face detection.
Bottom-left: example of providing a consistent ID to all the
faces with face tracking using facial recognition. Right: Set
of typical Action units.

3.3.3 Information Flow. Information flow (i.e., stimulus entropy)
was computed for each frame of the screen recording. This indicates,
in a direct manner, the amount of information transmitted to the
student via the screen. We would like to point out here that our def-
inition of information flow is slightly different from the definitions
used in the information theory research [58, 99]. Smith (2009) uses
the amount of information exchange between two nodes (input
and output) as the definition of information flow, which is prone
to loss of information [99], while Liang (2018) provides multiple
definitions of information flow based on the Shanon entropy (sim-
ilar to our definition) and divergence based methods [58]. In our
case, we depend on the Shannon entropy of one node/channel only.
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To compute the stimulus entropy for each frame, using a window
of 10 seconds, we have used the three separate grey images (one
each for red, green, and blue channels). This gives us three 2D ar-
rays of values between 0 and 2551. We then compute the Shannon
entropy of these three arrays using the following formula. This is
a widely used method to compute RGB image entropy in image
processing applications [39]. The mean entropy of the three arrays
gives us the stimulus entropy (i.e., Information Flow). As indicated
before, Shannon entropy is a direct measurement of the informa-
tion content of the communication medium. This can be seen in
the different cases shown in the Figure 3 for the coding workshop.
We can see how the amount of information present on the screen
changes with content of the screen. The entropy values increase
from top to bottom panels, as it can be also seen from their color
histograms, which show the information content on the screen.

Figure 3: Typical examples for stimulus information flow
calculation. We can visually notice that the top figure has
low amount of information and the bottom figure has high
amount of information.

The mean entropy of the three arrays gives us the stimulus en-
tropy (i.e., Information Flow). As indicated before, Shannon entropy
is a direct measurement of the information content of the commu-
nication medium. This can be seen in the different cases shown in
the Figure aa for the coding workshop. We can see how the amount
of information present on the screen changes with the content of
the screen. The entropy values increase from top to bottom panels,
as it can be also seen from their color histograms, which show the
information content on the screen.

3.3.4 Coding Performance. Children’s coding performance is based
on the artifacts (Scratch code) that has been collected every 45
minutes. Those artifacts were used as the basis for computing
their progress based on a widely used tool, called DrScratch [64].
DrScratch provides a fine-grained analysis of Scratch projects by
supporting the assessment of computational thinking (CT) skills,
using seven CT components: parallelism, logic, flow control, data
representation, abstraction, user interactivity, and synchronisation.
DrScratch allows the automatic, easy and quick analysis of Scratch
projects providing feedback based on the score [64] with the re-
sults indicating comparable assessment with the one of a human
expert [65]. Previous research has also used DrScratch to look at
1One could also use the greyscale image for computing the entropy of each frame in
the screen recording. In this paper, we have used all the three channels for having a
more accurate value of the entropy than while using a single greyscale image.

the development of each CT component as students design their
games over time [109].

Each project (in our case all four versions of the games created
from the teams) was uploaded and analysed by DrScratch system.
The results give a general score to the project (i.e., max 21) which
is the sum of the individual scores for each of the seven CT com-
ponents (i.e., from 1 to 3). After having the general scores for each
version of the games, we computed the gain between two consecu-
tive versions. In that way, we have three "performance gains" for
each team. For the rest of this paper, we will refer to “coding perfor-
mance gains” as “gains”. Then, based on these the three gains, we
use a median cut to divide the teams of children into high and low
gain groups. This happened for all the three different gains (i.e. from
the first until the forth and last version of the game) corresponding
to the three phases.

3.4 Data Analysis: Granger causality for more
than one pair of time series data

To identify the casual relations between the measurements, we
employed Granger causality [40] test. Granger causality has two
assumptions [40], first is that cause occurs before effect and second
is that the cause has information about the effect that is more
important than the history of the effect. In terms of the nature of the
concerned time-series, Granger causality is defined for linear and
stationary time-series contexts, but variations for non-linear [3, 24]
and non-stationary [15, 45] contexts exist. Granger causality is one
of the various data analysis techniques to identify causal relations
(e.g., Convergent Cross Mapping is also used in HCI studies [82,
112]). Granger causality was selected since it has proven usefulness
in the context of learning technologies [94, 96]. For more details and
the mathematical formulation of Granger Causality in the context
of learning technologies please see [94, 96]. Here we provide a
summary of steps so the method can be replicated based on this
paper only. Lets assume that we are modelling the Granger causality
between two variables X and Y .

(1) For each group compute the following:
(a) Compute the partial η2 for the model “X Granger causes

Y ”.
(b) Compute the partial η2 for the model “Y Granger causes

X ”.
(c) Compute the partial η2 for the model “Y linearly predicts

X ”. This is similar to a correlational model.
(d) Compute the difference between the η2 of the two Granger

causal models. This is the effect size of the Granger causal-
ity. This is represented on the x-axis of the figure 4.

(e) Compute the difference between the Granger causal model
with higher η2 and the η2 of the correlational model. This
is the significance of the Granger causality. This is repre-
sented on the y-axis of the figure 4.

(2) Once we have the effect size and the significance of the
Granger causality for each group, plot them on a Cartesian-
coordinate system (e.g., Figure 4).

(3) Next, we can compare the effect sizes of the Granger causality
across the two levels of gains.

For additional details about Granger causality with more than
one participant/group, please see previously published works in
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Figure 4: A visualization to summarize causality results for
multiple participants. For each participant we calculate the
difference between the two causalmodels (‘x causes y’ and ‘y
causes x’) and the respective difference between causal and
correlational models.

the context of learning technologies and HCI [94, 112]. The afore-
mentioned steps were followed to identify the causal relations of
children’s JVA and information flow (RQ1) and JES and information
flow (RQ2). Finally, to identify potential differences on the causal
relations between children groups with low and high performance
(RQ3), we employed a Wilcoxon test. Wilcoxon test allows us to
compare the strength of the causal relations between groups. We
used a non-parametric test because there is neither theoretical nor
practical basis for assuming that effect sizes would follow a known
statistical distributions (e.g., Gaussian, Poisson, Student-t).

4 RESULTS
We checked the bias of the number of members in a team on all the
measurements (dyads vs. triads). We did not find any significant
difference between the dyads and triads. In the next subsections we
will present the results base don the causal analyses between: 1) JVA
and information flow of the screen (RQ1), and JES and information
flow of the screen (RQ2). Further, we analyse these causal relation
with respect to the children’s performance (RQ3). Before presenting
the results, it is important to explain how the figures can be read in
this section. Each figure in this section shows the strength (effect
size) of the causal relation on the x-axis and the significance of the
causal relation on the y-axis. Each point on the figures represents
one group. The colour of the point depicts the high/low performance
levels. Any point with negative y-axis should be ignored. Further,
the positive y-axis on each figure is divided into two vertical halves.
Any point in the left half shows that the information flow is causing
the respective measurement (JVA or JES); and any point on the
right half shows that the respective measurement is causing the
information flow.

4.1 Information flow and JVA
We investigated whether the information flow is controlled by the
children’s JVA or the other way round. For this, we analysed the
relation based on Granger causality between information flow and
JVA. When considering both high and low performing groups, the
results depict that JVA causes the information flow (the vertical
lines in all the panels of figure 5 show the mean effect size for

the whole sample). From all the panels of Figure 5 we can see the
mean of the effect size, i.e., the difference between the two causal
models: 1) the information flow Granger-causes the JVA, 2) the JVA
Granger-causes the information flow. The mean effect sizes for the
three phases are 0.19 (SD = 0.15), 0.25 (SD = 0.20), 0.30 (SD = 0.25).
This indicates that children’s JVA Granger-causes the information
flow (RQ1). Therefore, in the context of collaborative coding
activities the way children collaborate (i.e., JVA) drives how
the information is presented on the screen (i.e., information
flow).

When we compare the effect size of the Granger causality be-
tween the teams with high and low gains (RQ3), we observe that
for all the three gains the effect size of JVA Granger causing the
information flow for high gain teams was significantly higher than
that for the low gain teams. Meaning that the groups of chil-
dren that performed high, also maintained a JVA that was
a strong driver of the information flow. On the other hand
this causality is weak for the low performing group. More-
over, this difference is consistently increasing as children progress
during the activity (i.e., the gain children obtained during the first
45 minutes (first gain) (W = 120, p < .00001) to the second 45 min-
utes (second gain) (W = 122, p < .00001) to the third 45 minutes
(third gain) (W = 124, p < .00001)).

Figure 5: Results from analyzing the relation between Infor-
mation flow and JVA.

4.2 Information flow and JES (RQ2 and RQ3)
4.2.1 Boredom. We investigated whether information flow is con-
trolled by children’s boredom JES or the other way round. For
this, we analysed the relation based on Granger causality between
information flow and boredom JES. When considering both high
and low performing groups, the results depict that boredom JES
causes the information flow (the vertical lines in all the panels of
figure 6 show the mean effect size for the whole sample). From all
the panels of Figure 6 we can see the mean of the effect size, i.e.,
the difference between the two causal models: 1) the information
flow Granger-causes the boredom JES, 2) the boredom JES Granger-
causes the information flow. The mean effect sizes for the three
phases are -0.26 (SD = 0.31), -0.25 (SD = 0.17), -0.14 (SD = 0.18).
This indicates that in formation flow Granger-causes children’s
boredom JES (RQ2). Therefore, in the context of collaborative
coding activities how the information is presented on the
screen (i.e., information flow) drives joint emotional state
of boredom.
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When we compare the effect size of the Granger causality be-
tween the teams with high and low gains (RQ3), we observe that for
all the three gains the effect size of information flow Granger caus-
ing the boredom JES for low gain teams was significantly higher
than that for the high gain teams.Meaning that the groups of
children that performed low, also had information flow as a
strong driver of their boredom JES.Moreover, this difference is
consistently increasing as children progress during the activity (i.e.,
the gain children obtained during the first 45 minutes (first gain)
(W = 117, p < .00001) to the second 45 minutes (second gain) (W =
121, p < .00001) to the third 45 minutes (third gain) (W = 122, p <
.00001)).

Figure 6: Results from analyzing the relation between Infor-
mation flow and boredom JES

4.2.2 Confusion. We investigated whether information flow is con-
trolled by children’s confusion JES or the other way round. For this,
we analysed the relation based on Granger causality between infor-
mation flow and confusion JES. When considering both high and
low performing groups, the results show confusion JES causing
the information flow (the vertical lines in all the panels of figure
7 show the mean effect size for the whole sample). From all the
panels of Figure 7 we can see the mean of the effect size, i.e., the
difference between the two causal models: 1) the information flow
Granger-causes confusion JES, 2) confusion JES Granger-causes the
information flow. The mean effect sizes for the three phases are 0.33
(SD = 0.25), 0.18 (SD = 0.17), 0.16 (SD = 0.13). This indicates that
children’s JVA Granger-causes the information flow (RQ1). There-
fore, in collaborative coding context, the way children feel
confused together (confusion JES) drives how information
is presented on the screen (i.e., information flow).

When we compare the effect size of the Granger causality be-
tween the teams with high and low gains (RQ3), we observe that
for all the three gains the effect size of confusion JES Granger
causing the information flow for low gain teams was significantly
higher than that for the high gain teams.Meaning that the groups
of children that performed low, experienced confusion to-
gether, and that was a strong driver of the information flow.
Moreover, this difference is consistently increasing as children
progress during the activity (i.e., the gain children obtained during
the first 45 minutes (first gain) (W = 114, p < .00001) to the second
45 minutes (second gain) (W = 110, p < .00001) and the third 45
minutes (third gain) (W = 110, p < .00001)).

Figure 7: Results from analyzing the relation between Infor-
mation flow and confusion JES.

4.2.3 Frustration. We investigated whether the information flow is
controlled by children’s frustration JES or the other way round. For
this, we analysed the relation based on Granger causality between
information flow and frustration JES. When considering both high
and low performing groups, the results show frustration JES causing
information flow (the vertical lines in all the panels of figure 8 show
themean effect size for the whole sample). From all the panels of Fig-
ure 8 we can see the mean of the effect size, i.e., difference between
the two causal models: 1) the information flow Granger-causes
frustration JES, 2) frustration JES Granger-causes the information
flow. The mean effect sizes for the three phases are -0.31 (SD = 0.32),
-0.26 (SD = 0.24), -0.10 (SD = 0.13). This indicates that information
flow Granger-causes children’s frustration JES (RQ2). Therefore,
in the context of collaborative coding activities how the in-
formation is presented on the screen (i.e., information flow)
drives joint emotional state of frustration.

When we compare the effect size of Granger causality between
teams with high and low gains (RQ3), we observe that for all the
three gains the effect size of information flow Granger causing
the frustration JES for low gain teams was significantly higher
than that for the high gain teams.Meaning that the groups of
children that performed low, also had information flow as a
strong driver of their frustration JES.Moreover, this difference
is consistently increasing as children progress during the activity
(i.e., the gain children obtained during the first 45 minutes (first
gain) (W = 120, p < .00001) to the second and third 45 minutes
(second and third gains) (W = 121, p < .00001).

5 DISCUSSION
5.1 Interpretations of Results
For this discussion, wewill refer to “Granger cause/causal/causality”
as “cause/causal/causality”. Our results are consistent for all three
phases of coding activity, where we calculated the gain between
consecutive code evaluation based on the computational thinking
components. The results show that there are clear differences based
on the coding performance gain. We observe that for high gain
groups JVA causes the information flow and there is a weak causal
relation between the JES (boredom, confusion, and frustration)
and information flow. On the other hand, for the low gain groups,
we observe a weak causal relation between JVA and information
flow. Moreover, for the low gain teams the information flow causes

356



IDC ’21, June 24–30, 2021, Athens, Greece Sharma, et al. 2021

boredom JES and frustration JES; while the confusion JES causes
the information flow.

Figure 8: Results from analyzing the relation between Infor-
mation flow and Frustration JES

One of the reasons that JVA causes the information flow for
the high gain teams might be the fact that these teams produce
more code when they have a high JVA level compared to when
their JVA levels are low. JVA is found to be correlated with mutual
understanding [84] and high collaboration quality [49].When teams
have high JVA they can be said to "be together" [91] and this could
be one of the reasons that their code is of high quality, which is
not the case in the low performing teams (where children have
low JVA). Another important observation from the causal relation
between JVA and information flow is that the difference between
the strength of “JVA causing information flow” for high and low
performance teams is increasing from the first phase to the second
and the third phases. The primary reason for this could be based
on theory of “convergent conceptual change” [80, 93, 108]. When
collaborating peers are performing well in a given learning task,
their conceptual models undergo a change such that the difference
in their mental models about the problem is reduced than that
of the beginning of the task [80]. This might be the case with
the high performing teams; we observe that as the collaboration
proceeds, such teams produce more content while being in a highly
convergent (high JVA) state and less content while they are in a
divergent (low JVA) state. The teams that do not show evolution
of this behaviour end up performing poorer than the teams which
achieve a converging conceptual change. This result is in line with
related research [93, 108] which is primarily based on correlational
methods.

Concerning JES, we observe that the low performing teams show
strong causal relations with the information flow of the screen and
not the high performing students. The emotions used in this paper
were frustration, boredom and confusion, because they were the
most prominent ones across different studies [5, 26, 27]. For low
performing teams, the confusion JES causes the information flow
of the screen, while the information flow causes the frustration JES
and boredom JES. One reason for these results could be that when
the peers in a low performing team are confused together, they try
and produce a significant amount of content. It has been shown that
teams experience confusion when their mental model about the
problem/conversation at hand conflicts with the current state of the
problem/conversation [16, 29]. Therefore, when teams are confused,
it is unlikely that they produce high quality code and get a low
performance rating. Once the code produced by the teams is of low

quality, at a later stage of collaboration, the information content
of the screen might cause boredom and/or frustration. This might
induce the “vicious cycle” [29] of confusion phases of producing
low quality code and that in turn causes boredom/frustration. It has
been shown that in the case of boredom, students tend to “game
the system” [4, 20], and in case of frustration their behaviour is
“outside the locus of their control” [61]. In either of the cases the
level of engagement with the problem at hand is deemed to be low
[19]. Such situations should be avoided and the students should be
supported to prevent these “vicious cycles”.

In a nutshell, our results show that the teams that produce code
when they are in a convergent state (high JVA) are the high perform-
ing teams. The low performing teams are the ones that produce
code when the peers are confused and later bored/frustrated due to
the produced code (poor quality) in earlier phases. These results,
based on causal inference, provide us with a unique opportunity to
design feedback/scaffolding tools that can aid the students to avoid
the frustrating and boring episode; and at the same time, encourage
them to work together. Moreover, we extend the previous findings
about the socio-cognitive and affective processes, and how they
relate to collaborative performance.

5.2 Implications for Research
The causal relation between JVA and information flow for the two
performance levels (JVA causes information flow for high perform-
ing teams and no causal relation between JVA and information
flow for low performing teams), extends the current knowledge
about the relation between JVA and collaborative performance. In
several studies, JVA was shown to be indicative of the “mutual
understanding” between collaborators [49, 67, 86]. JVA was found
to be correlated with collaborative learning performance [83, 92],
including collaboration among children [73]. Further, JVA was also
found to be correlated with the artefact quality [91], reason being
the higher “mutual understanding” among the peers [66, 96]. Our re-
sults show that high performing teams add more content (increased
information flow) in the moments of high-quality collaboration
(increased JVA), which can not be said for the low performing stu-
dents. Therefore, we extend the correlational equivalence of mutual
understanding and JVA by showing that it is not the high perfor-
mance that is “related” to high JVA, but it is the information flow
that is “caused” by JVA for high performing teams. Therefore, we
argue that the future research should consider the interplay per-
formance and information presented on the stimulus to analyse
JVA. Furthermore, since there is more information embedded in
a causal relation than that in a correlation-based inference, there
should also be a push for more causal inferences based studies.

When it comes to the facial expressions and/or the emotions in re-
gards to collaborative learning and coding scenarios, our results ex-
tend the current state of knowledge. Recent research has shown that
there is a clear relation between performance and emotions such as,
frustration, confusion and boredom [5, 27, 47, 90, 118]. In certain
studies evaluating the relation between the emotions and learning
performance show a positive correlation between confusion and col-
laborative learning outcomes [29, 30]; while others report a negative
correlation between collaborative learning outcomes and emotions
such as, frustration and boredom [5, 28, 87]. Our results show that
for low performing teams information flow causes boredom and
frustration, while confusion causes information flow. Whereas, for
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high performing teams only a weak causation could be found. Our
results extend the correlational knowledge-base with a causality-
based knowledge; providing certain methodological implications
for research in this area, and driving future works that will go
beyond correlations and account for the causal relationships. More-
over, during collaboration among children, there has been some
evidence that the JES is correlated to collaborative outcomes and ex-
periences [98]. Our results not only extend such results by showing
the causality between JES and information flow, but also explore
the JES with respect to individual emotions (frustration, confusion,
boredom). Exploring JES for individual emotions/expressions is
important because if doing it without considering the actual emo-
tion/expression, we are only considering children’s similarity of
emotions but not which emotions are they exhibiting [98]. This
additional knowledge when combined with the causal information
extends the framework of affective equilibrium for complex learn-
ing [29] (involving confusion, frustration, and boredom). This is
achieved by adding the additional notion of causality with respect
to the information flow as an external that might trigger impasses
and affective disequilibrium [102].

Furthermore, When it comes to the choice of the method to ana-
lyze the causality between the different pairs of measurements. In
this paper, we used the definition of causality provided by Granger.
There are three other methods that could be used to show the causal-
ity between different variables: 1) Structured Equation Modelling
(SEM, [31]) 2) Cross-convergent mapping (CCM, [104] intervention
experiment where the hypothesised “cause” is controlled and the
hypothesised “effect” is measured [88]. SEM does not necessarily
contain the information required to consider a causal relationship.
Statistically speaking, testing a SEM is not a test for causality. How-
ever, there are certain mathematical formulation under which SEM
can be used for causal inference [103]. Bollen and Pearl [9] provide
a detailed account describing how SEM should not be used for mod-
elling causal relations between variables. The second method, CCM,
is useful in cases where the time series is stationary (i.e., mean and
variance of the variable do not change over time) and non-linear
(i.e., there is no auto-correlation in the time series). Eye-tracking
data is stationary (which can be tested using the Ljung-Box test) but
auto-correlated (where users look at current time instance vastly
depends on where they were looking at previous instances). This is
why CCM is not an adequate method for such data. CCM was used
in recent contributions [82, 112]. Finally, in the case of identifying
causal relations between two variables through an experimental
or pseudo-experimental setup, such setups are typically costly or
require an extensive duration in order to identify the cause-effect
relationship between the two variables in question [12]. Moreover,
it has also been shown that for longer time series data the Granger
causality outperforms other contemporary methods [120].

5.3 Implications for Design
Better ACLS can be designed by using the causal relations than
correlational results because causality accounts for the information
exchange and the underlying processes that are responsible for
the two variables. From our results, there are two clear ways of
providing adaptive support to the teams based on the two causal
relations. Both the support types depend on the fact that we should
look for the causal relation in real-time and find the moments
when the causality changes the direction (or is no longer observed).

On one hand, “JVA causing the information flow” should be sup-
ported and such behaviour should be encouraged; on the other hand
“frustration and boredom JES causing the information flow” and
“information flow causing confusion JES” should be prevented and
appropriate scaffolding to avoid such behaviour should be provided
to the children. We discuss these two cases in detail.

First, the strength and nature of the causal relationship between
JVA and information flow differ across the performance levels has
direct implications on the design of adaptive collaborative learning
support (ACLS); e.g., a decrement in the strength of “JVA causing
information flow” indicates potentially low performance. In this
moment, the support system can trigger help which can increase
the JVA among peers by directing their attention to a common
(specially incomplete) part of the code. This is a way to ensure that
the teams will add new content (increased information flow) with
high JVA. Another use-case for providing JVA-based support, is
during imbalanced division of labour. For example, if we observe
that the level of JVA is decreasing (which will decrease the informa-
tion flow), because there is only one child working on the code, we
can direct the attention of non-contributing (or less contributing)
child(ren) to the place where the contributing child(ren) is looking
at. Gaze-aware feedback tools have been shown to have a positive
impact on the collaborative learning performance [84], specially
during coding scenarios [21, 22].

Second, we have shown that for low performing teams confusion
JES causes the information flow, and information flow causes bore-
dom JES and frustration JES. It is interesting that information flow
causes the two JES (boredom and frustration) which are important
to monitor for keeping an appropriate level of engagement in adap-
tive conditions [19]. Boredom is often mitigated by creating more
challenging events during the interaction whereas, frustration is
negotiated by providing content-based hints to make the content
easier to understand. Based on the current state-of-the-art in af-
fective means to support educational activities, both frustration
and confusion might be beneficial for learning (confusion, [30];
frustration, [5]), while boredom can be detrimental for learning
outcomes [28]. In this paper, we are considering the JES of theses
emotions and suggest that we should avoid the situations where all
members in a team have similar levels of these emotions. Baker et al
[20] argue that boredom and confusion should be mitigated as soon
as possible, while Mentis [63] argues that frustration might not
require intervention at all. Pour et al. [76] suggest that boredom and
confusion can be mitigated by directing children about “what needs
to be fixed” and helping them understand the concepts, respectively.
We propose that by providing similar support, the JES of boredom
and confusion can be brought to a lower level so that the children
do not produce content while experiencing these emotions. Further,
from a study-design point of view, using webcam-based videos to
estimate the gaze of the children addresses the ecological-validity
threats that are imposed by the eye-tracking equipment. This also
provides a method to have a low-fidelity but highly cost effective
solution for the expensive eye-trackers.

Causal relations provide the instructional designers an oppor-
tunity to take appropriate actions so that the students access the
information presented to them in an efficient and effective man-
ner. By knowing the causal relations between the information
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flow and JVA/JES can provide instructional designers with guide-
lines/recommendations [82, 94, 104] to control the cause andmodify
the effect in the desired manner. The understanding of causal rela-
tionships could also help the teachers and researchers in avoiding
unforeseen situations in the collaborative learning settings.

5.4 Limitations & Future Directions
The generalizability of our findings might be restricted by the specif-
ically designed tasks; other tasks (e.g., video-based or game-based
learning), or different representations of the same tasks (e.g., text-
based coding) might affect the results. In particular, we used a
specific task (i.e., collaborative coding with Scratch) to portray an
active learning performance (i.e., the dependent variables). This
tasks present a good case study in terms of the research questions,
however, there are significant differences with other tasks that
might affect the outcome. Therefore, we suggest the use of different
tasks to portray learning performance in the future. Furthermore,
the participants were from schools who showed interest in partici-
pating in our workshops, so other sampling methods could have
been applied to attract more children leading to a more represen-
tative sample size of the target community. Furthermore, we only
consider the whole interaction as one “session” to compute the
causality between the information flow and the two measurements
(JVA and JES). However, collaboration is dynamic and the causalities
might change and provide more information if we consider smaller
temporal windows. In the future, we will also aim to explore the
changing nature of causal relations among multiple measurements
to enhance our understanding. In addition, in this study we did not
take into consideration the children’s individual prior knowledge
which might had affected the developed artifacts.

6 CONCLUSION
We presented causal relations between the information flow of the
screen and the collaborative behaviour of ten dyads and ten triads
from a coding workshop. On one hand, the high performing teams
produce code when they have high levels of common ground and
mutual understanding (JVA causes information flow) while on the
other hand, the low performing teams produce code when they are
confused (confusion JES causes information flow) and that in turn
bores/frustrates them (information flow causes boredom JES and
frustration JES). This might be the key explanation for teams’ per-
formance levels. We argue that there should be consistent efforts for
exploring causality rather than conventional correlational analysis
of behaviour and outcome because causal relations provide more
information about the interplay of behavioural measurements than
correlation.

7 SELECTION AND PARTICIPATION OF
CHILDREN

All the participants of the study were students from the Norwegian
University of Science and Technology (Trondheim, Norway) region
whose teachers have applied to participate in our workshops as an
out-of school activity. Studies took place at the university campus
in specially designed rooms. Data related to the study were col-
lected after permission from the national Data Protection Official
for Research, following all the regulations and recommendations for
research with children. A researcher contacted the teacher and the

legal guardian of each child to get a written consent that gave per-
mission for the data collection. The children were informed about
the data collection process and their participation in the study was
completely voluntary. They could withdraw their consent for the
data collection at any time without affecting their participation in
the coding activity.
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