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Abstract. Many methods exist for indexing metric spaces, in order to
resolve similarity queries as efficiently as possible: A sample object is
provided, and similar objects from the indexed data set are found. In
general, the only ways to adjust the query are to replace the query object,
or to vary the search radius or nearest neighbor count. We explore a
generalization, where the desired result is a tradeoff between multiple
query objects. This builds on previous results on complex queries, such
as linear combinations. Here, we instead use measures of inequality, such
as ordered weighted averages, and use existing index structures to find
objects that minimize these. We compare our method empirically to linear
scan and a post hoc combination of individual queries, and demonstrate
a considerable speedup.

1 Introduction

From the early days, indexing metric spaces has mainly been in service of
straightforward similarity search: Given some query object q, find other objects o
for which the distance d(q, o) is low—either all points within some search radius,
or a certain number of the nearest neighbors. Alternative forms of search have
been explored, certainly, such as reverse nearest neighbor queries or similarity
joins. Some even combine multiple queries, imposing multiple requirements on
the results simultaneously. For example, one may impose limits on both on the
distance to q and on the number of nearest neighbors returned.

Of particular interest to us, is using multiple query objects qi, without
restricting the indexing methods used. That is, we wish to take any existing
metric index, already constructed, and execute a combination query on it. Such
a query may be specified directly by the user, or it may be used as a form of
interactive refinement. A user first performs a query using a single object. Then
she indicates which of the returned objects are most relevant (possibly to varying
degrees), and these are then used as a second, combined query. The result should
ideally be a tradeoff between the query objects. In particular, we wish to ensure
that the query result is a fair tradeoff between the query objects, borrowing
measures of fairness from the field of multicriteria decision making.

In this short paper, we introduce the idea of fairest neighbors (kFN), i.e., items
that are close to multiple query objects at once, as measured by some kind of
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Fig. 1. A complex query with two query objects (gray) and a ball region. The right-hand
subfigure shows the query and region in pivot space, where the two axes correspond to
distancs from the two query objects.

fairness measure. We formulate such queries in the context of the complex queries
of Ciaccia et al. [2], but extend the formalism applying linear ambit overlap [5]
to ordered weighted averages (OWA) and weighted OWA, for improved bounds.
The resulting queries may be resolved using existing metric index structures
without modification. We perform some preliminary experimental feasibility tests,
showing that such combined queries outperform linear scan and an alternative
strategy involving multiple kNN queries.

2 Complex Queries as Multicriteria Decisions

In 1998, Ciaccia et al. introduced a formalism for dealing with what they called
complex queries for metric indexes—queries involving multiple query objects,
along with some domain-specific query language, specifying which objects were
relevant and which weren’t [2]. Part of their formalism involved mapping distances
to similarity measures, which were then constrained by some query predicate,
though the core ideas apply equally well to distances directly. A central insight
is that monotone predicates may be used not just to detect whether an object is
relevant, but also whether certain regions might contain relevant objects.

Let x = [d(qi, o)]
m
i=1 be a vector of distances between query objects qi and

some potentially relevant object o. The relevance is then defined by some predicate
P(x). This predicate is monotone if for all x ⩽ y, we have that P(y) implies
P(x). That is, if we start with the distance vector of a relevant object, and we
reduce one or more of the distances, the resulting distance vector should also be
judged as relevant. In this case, using lower bounds for the individual distances
is safe (i.e., it will not cause false negatives). So, for example, if we know that
o is in a ball with center c and radius r, we can safely replace [d(qi, o)]i with
[d(qi, c)− r]i and apply P to determine potential overlap. One can then find the k
best objects by maintaining a steadily shrinking search radius encompassing the k
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best candidates found so far, just as one would do for kNN. The idea is illustrated
in Fig. 1: The vector x− r of lower bounds corresponds to the lower left corner
of the square enveloping the region in pivot space (the right-hand subfigure). A
monotone query and a ball region may overlap only if this lower left point is
inside the query definition in this space. Similarly, we may conclude that the
region is entirely inside the query (and thus return all its objects without further
examination) if the upper right corner (x+ r) satisfies the query predicate.

Two of the query types discussed explicitly by Ciaccia et al. are based on fuzzy
logic, and one uses a weighted sum. These permit indicating degrees of relevance
for the various query objects qi, but may have many equally good solutions, with
vastly different properties. What can be done if we wish to enforce some form of
tradeoff? Consider a query predicate of the form f(x) ⩽ r. Different monotone
functions f may yield very different query regions:

min(x, y) x+ y x2 + y2

Minimum (corresponding to maximum, or standard fuzzy disjunctions, in the
similarity formalism of Ciaccia et al.) produces results that are close to one or
the other of the two query points, but not both. A sum gives us points that can
lie anywhere between the two (in general within an ellipsoid). A sum of positive
powers, however, produces items that are between the query points—ideally in
the middle (i.e., in their metric midset). This is the kind of query we want.

Using sums of powers to characterize tradeoffs is a common approach in
cardinal welfarism, and it is one of a broader class of aggregation functions used in
multicriteria decision making [4].∗ These are all generally monotonically increasing,
with the optimum found for some fair tradeoff between their parameters. Applied
to individual query distances d(qi, o), our measure will of course need to be
minimized, and so must be an unfairness measure, rather than a fairness measure.
In the following, we will focus on ordered weighted average (OWA), and its
generalization, weighted OWA. The OWA of some vector x is based on a weighting
of the elements of x, just like a weighted average, except that the weights are
applied based on the rank of each element xi. That is, given a weight vector
w ⩾ 0, whose weights sum to 1, the OWA of x is wx". Here, x" is a sorted version
of x. As discussed in Section 3 (in a more general setting), by ensuring that w
is also sorted, we get an unfairness measure. Our overlap check with an r-ball,
using the complex query formalism, becomes:

f(x− r) ⩽ s ⇐⇒ wx" − r ⩽ s . (1)

For some structures, such as VP-trees [8], LC [1,6] and HC [3], we also need to
determine whether the query is entirely inside a ball region—or, equivalently,
whether it intersects with the complement of the ball. Our lower bound on each
∗ Though Ciaccia et al. do not directly address fairness or tradeoffs, their standard and

algebraic fuzzy conjunctions, correspond to the maximin and Nash welfare fairness
measures, respectively, if applied, in isolation, to similarities [2].
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distance between the query and the outside is r − xi, and using monotonicity
again, we get the criterion r−wx" < s. If, however, we do not treat the query as
a black-box monotone function, we can, as described in the following section, get
the stronger criterion r−wx# < s, where x# is x sorted in descending order. The
difference between these two bounds can be arbitrarily large, even for just two
query objects. The complemented ball is also just a particularly simple example
of a linear ambit with negative coefficients [5]; the situation is similar for other
such regions.

3 Ordered Weighted Averages and Linear Ambits

It is possible to construct a weighted generalization of OWA, called weighted
OWA (WOWA), where some individuals (i.e., query objects) get preferential
treatment when determining a tradeoff [7]. In this section, we examine the use of
WOWA for fair neighbor queries.

Definition 1 ([4,7]). Let p = [p1, . . . , pm] and w = [w1, . . . , wm] be weighting
vectors, such that pi, wi ∈ [0, 1] and

∑m
i=1 pi =

∑m
i=1 wi = 1. Then, the weighted

ordered weighted average (WOWA) of a vector x ∈ Rm with regards to p and w
is defined by:

WOWA(x; p, w) =

m∑
i=1

[
φ

(
m∑
k=i

pσ(k)

)
− φ

(
m∑

k=i+1

pσ(k)

)]
xσ(i) , (2)

where σ is any permutation of x in increasing order and φ : [0, 1] ! [0, 1] is the
function defined by linear interpolation between values φ(i/m) =

∑i
k=1 wm−k+1

and φ(0) = 0.

Ordinarily, WOWA uses decreasing weights, and is then a fairness measure. This
works well for similarities, but in the following, we wish to work with distances,
and thus need an unfairness measure. One way of achieving this is to simply
use an increasing weight vector. This makes intuitive sense, but for similarities
s(u, v) = 1 − d(u, v), as used by Ciaccia et al. [2], we can show that the least
unfair distance tradeoff is exactly the fairest similarity tradeoff.∗

Proposition 1. Let p, w and w′ be WOWA weighting vectors, with w′
i = wm−i+1

for all i ∈ {1, . . . ,m}. For any x ∈ [0, 1]m, we have that:

WOWA(x; p, w′) = 1−WOWA(1− x; p, w) (3)

Proof. Let φw and φw′ be the function φ, as defined in Definition 1, for w and
w′, respectively. Also, let σ and σ′ be permutations of, respectively, 1− x and x
in increasing order so that σ′(i) = σ(m− i+ 1). We have that:

WOWA(1− x; p, w) = 1−
m∑
i=1

[
φw

(
m∑
k=i

pσ(k)

)
− φw

(
m∑

k=i+1

pσ(k)

)]
xσ(i) (4)

∗ Note that, following Ciaccia et al., we assume s(u, v) ∈ [0, 1], which requires a bounded
metric, with d(u, v) ∈ [0, 1].
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Further, one can easily verify that φw′(b)− φw′(a) = φw(1− a)− φw(1− b) for
a, b ∈ [0, 1] and that

∑m
k=i pσ(k) = 1−

∑i−1
k=1 pσ(k). Thus,

WOWA(1− x; p, w) = 1−
m∑
i=1

[
φw′

(
i∑

k=1

pσ(k)

)
− φw′

(
i−1∑
k=1

pσ(k)

)]
xσ(i) (5)

= 1−
m∑
i=1

[
φw′

(
m∑
k=i

pσ′(k)

)
− φw′

(
m∑

k=i+1

pσ′(k)

)]
xσ′(i) (6)

= 1−WOWA(x; p, w′) (7)

Equation (3) can then easily be obtained from (7). ⊓⊔

For our overlap check, we wish to model a WOWA query as a linear ambit
B[q, s;W] = {o : Wxo ⩽ s}, where xo = [d(qi, o)]i, as introduced by Hetland [5].
While WOWAs are not linear functions, we can emulate a query with m query
objects as a linear ambit with m! facets, one per possible permutation of x.
Normally, the intersection check would require considering each facet in turn,
which would quickly become computationally unfeasible with an increasing m,
and could in theory lead to false positives.∗ However, when the weights for the
WOWA representing our unfairness measure are ordered in increasing order
(corresponding to a fairness measure on similarities, per Proposition 1), we can
show that membership and overlap checks need only consider one of the facets,
eliminating both of these problems.

Proposition 2. Let w and p be weighting vectors, where w1 ⩽ w2 ⩽ · · · ⩽ wm.
Let W be a matrix with m! rows, one for each possible permutation, σ, of a
m-dimensional vector. For a specific permutation σ, the value in column i of the
corresponding row is:

φ

 m∑
k=j

pσ(k)

− φ

 m∑
k=j+1

pσ(k)

 , (8)

where σ(j) = i and φ is the function from Definition 1. For x ∈ Rm
⩾0 and s ∈ R,

let wσ be the row in W corresponding to permutation σ. If σ orders x in increasing
order, Wx ⩽ s iff wσx ⩽ s. If σ orders x in decreasing order, Wx > s iff wσx > s.

Proof. For any permutation σ, we can create a new permutation σ′, with σ′(i) =
σ(i + 1), σ′(i + 1) = σ(i) for some i ∈ {1, . . . ,m − 1} and σ′(j) = σ(j) for
all j /∈ {i, i + 1}. Since w is ordered in increasing order, we know that the
growth of φ is monotonically decreasing over [0, 1]. Combined with the fact that
∥wσ∥1 = φ(1)− φ(0) = ∥w∥1 = 1 for all σ, we get that:

wσx ⩾ wσ′x if xσ(i) < xσ(i+1)

wσx ⩽ wσ′x if xσ(i) > xσ(i+1)

wσx = wσ′x otherwise
(9)

∗ This is discussed by Hetland in Sect. 3.1 [5].
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If a permutation σ does not order x in increasing order, there exists an i such
that xσ(i) > xσ(i+1). Thus, there exists another permutation σ′ with wσ′x ⩾ wσx.
Consequently, one of the permutations, σ, that maximizes wσx must order x
in increasing order. Note that by the third case in (9), if there are multiple
permutations that order x in increasing order, the value of wσx is equivalent for
all of them. In a similar manner, any permutation, σ, that orders x in decreasing
order minimizes wσx. ⊓⊔

Using the construct in Proposition 2, we can for a WOWA-based unfairness
measure, defined by weighting vectors w and p, create a linear ambit B[q, s;W]. As
long as the weighting vector w is in increasing order, i.e., w = w", the membership
check of this ambit, Wx ⩽ s, is equivalent to checking that WOWA(x; p, w") ⩽ s.
That is, this ambit is equivalent to a range query with the WOWA-based unfairness
measure. And when checking whether this query ambit overlaps with the inverted
s-ball round c, we can in principle perform m! individual checks like

r − wσx < s ⇐⇒ wσx > r − s , (10)

one per row σ.∗ Proposition 2 shows us that we need only consider the single
row, corresponding to ordering x in decreasing order. In other words, the overlap
check is strengthened from s > r−WOWA(x; p, w") to s > r−WOWA(x; p, w#).

4 Experiments

To demonstrate the practical feasibility of the method, even without any fine-
tuning or high-effort optimization, we have tested it empirically on synthetic and
real-world data, using the basic index structure list of clusters (LC), as described
by Chávez and Navarro [1]. Briefly, the LC partitions the data set into a sequence
of ball regions, each defined by a center, a covering radius, and a set of member
items. A search progresses by detecting overlap with each ball in turn, potentially
scanning its members for relevance. A defining feature of LC is that the points in
later buckets fall entirely outside previous balls, so that if the query falls entirely
inside one of the balls, the search process may be halted.

More specifically, bucket centers were chosen to maximize distance to previous
centers (heuristic p5 of Chávez and Navarro), with each ball constructed to
contain the 20 closest points to the center, as well as any additional points that
fall within the resulting radius.† The data sets used were:

– Synthetic: 100 000 uniformly random and clustered vectors from [0, 1]D,
D = 2, 4, . . . , 10. The clustered vectors were constructed by first generating

∗ This follows from the linear ambit overlap check described in Theorem 3.1.2 of
Hetland [5], as well as from the monotonicity result of Ciaccia et al. [2], inserting the
lower bound r − x into the ambit membership predicate.

† These choices were made based on the results of Chávez and Navarro [1], which
indicated that p5 yielded the best results overall, and a bucket size of 20 was a good
tradeoff between filtering power and scanning time for a wide range of data sets.
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1000 cluster centers, uniformly at random, and then generating 100 vectors
per cluster, by adding standard Gaussian noise.

– Real-world: The Colors, NASA and Listeria SISAP data sets.∗

With the vectors, Euclidean distance was used, while with the strings (Listeria),
Levenshtein distance was used. For the real-world data sets, the 101 first objects
were taken as queries, while for the synthetic data sets, 101 queries were generated
in addition. These were then used pairwise (1 and 2, 2 and 3, etc.) as the two
query objects in an OWA query with weights 1 and 3 (as in the Gini coefficient).
Fairest neighbor queries (kFN) were run for k = 1, . . . , 5. Performance, measured
by the number of distance computations needed to resolve the query, was averaged
over the 100 query object pairs.

The results are shown in Table 1. As a baseline, the number of distance
computations needed for a linear scan is listed, and the speedup for the combined
kFN query is shown for each k. As a comparison, we also performed a double
query, where a separate k was found for each of the two query objects, to ensure
that the true kFN would be returned,† and then two separate kNN queries were
performed, with the fairest neighbors found in their intersection.

The combined search used fewer distance computations than the alternatives
for every data set and parameter setting. On average, the combined search used
about half as many distance computations as the separate queries, and a quarter
of a full linear scan.‡

5 Conclusions and Future Work

Ordered weighted averages (OWA) and weighted OWAs (WOWA) may be used
as a query modality with any current metric index, when tradeoffs between
multiple query objects are needed, to find their k fairest neighbors (kFN). They
provide a large degree of customizability, both in terms of their fairness profile
and the relative weights of different query objects, and are easy to implement.
Other monotone (un)fairness measures may also be used, though possibly with
weakened overlap checks in some cases.

Some lines of research might involve looking into how index structures may
be adapted, perhaps by adjusting various construction heuristics, to such fair
neighbor queries, and whether the requirements for efficiency in practice are
different from, say, single-object ball queries. One might also wish to look into
generalizations of fairness, where one permits negative weights for certain objects,
which is straightforward for weighted sum, but whose implementation is less
obvious for WOWA.

∗ Available at https://sisap.org.
† Of course, these individual k parameters would not be available when resolving a

real query, but this gives an optimistic bound for the competition.
‡ More specifically, the average proportions, using the geometric mean, were 48.4%

and 25.7%, respectively, corresponding to speedups of 2.1 and 3.9.

https://sisap.org
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Table 1. Experimental results. For each of the double (two separate) and combined
queries, the speedup from the number of distance computations needed for linear scan
is listed for each k = 1, . . . , 5.

Double Combined

Data set Dim. Scan 1 2 3 4 5 1 2 3 4 5

Colors 112 225 162 3.29 3.09 2.98 2.91 2.84 5.55 5.22 5.04 4.91 4.80
NASA 20 80 098 1.57 1.46 1.42 1.38 1.36 2.64 2.48 2.39 2.33 2.28
Uniform 4 200 000 2.17 2.14 2.12 2.10 2.09 7.13 6.94 6.82 6.72 6.65

6 200 000 2.16 2.07 2.02 1.99 1.96 5.73 5.47 5.32 5.20 5.10
8 200 000 2.01 1.89 1.82 1.78 1.74 4.20 3.95 3.79 3.68 3.59

10 200 000 1.87 1.73 1.65 1.60 1.56 3.20 2.96 2.82 2.73 2.66
Clustered 4 200 000 2.28 2.25 2.22 2.21 2.19 7.62 7.47 7.37 7.30 7.23

6 200 000 2.39 2.28 2.22 2.17 2.14 6.17 5.91 5.75 5.62 5.53
8 200 000 2.07 1.93 1.87 1.82 1.79 4.41 4.12 3.95 3.84 3.75

10 200 000 1.84 1.72 1.64 1.60 1.57 3.20 2.96 2.83 2.73 2.66
Listeria — 41 118 1.25 1.17 1.16 1.13 1.06 1.28 1.28 1.27 1.27 1.27
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