
Vol.:(0123456789)

Autonomous Agents and Multi-Agent Systems (2022) 36:8
https://doi.org/10.1007/s10458-021-09537-3

1 3

Fair allocation of conflicting items

Halvard Hummel1  · Magnus Lie Hetland1 

Accepted: 18 November 2021
© The Author(s) 2021

Abstract
We study fair allocation of indivisible items, where the items are furnished with a set of
conflicts, and agents are not permitted to receive conflicting items. This kind of constraint
captures, for example, participating in events that overlap in time, or taking on roles in the
presence of conflicting interests. We demonstrate, both theoretically and experimentally,
that fairness characterizations such as EF1, MMS and MNW still are applicable and use-
ful under item conflicts. Among other existence, non-existence and computability results,
we show that a 1∕Δ-approximate MMS allocation for n agents may be found in polynomial
time when n > Δ > 2 , for any conflict graph with maximum degree Δ , and that, if n > Δ , a
1/3-approximate MMS allocation always exists.

Keywords  Fair allocation · Graph coloring · Approximation

1  Introduction

We are interested in the problem of allocating a set of indivisible items among a set of
agents with additive valuations, and beyond finding an efficient solution, where the total
utility is high, we want the allocation to be fair, in some sense—a problem that has been
studied extensively in the last couple of decades [8]. More recently, variations of this prob-
lem have appeared, where the bundles of items allocated must conform to some constraints,
meaning that not all allocations are feasible. For example, if the items are structured as a
matroid, one may require that the set of all allocated items form a basis [18], or that each
bundle be an independent set of the matroid [4]. One might also partition the items into dif-
ferent categories, and limit each agent to a certain number from each [4]. Or the items may
be the nodes of a graph, where a natural requirement is for each bundle to be connected [7].

In this paper, we look at yet another form of constraint, where items may be in con-
flict with each other, and an agent may receive at most one of any two conflicting items.
This is a situation that may occur in many realistic allocation scenarios. For example, such
conflicts arise naturally in scheduling problems where the items represent participation in

 *	 Halvard Hummel
	 halvard.hummel@ntnu.no

	 Magnus Lie Hetland
	 mlh@ntnu.no

1	 Norwegian University of Science and Technology, Trondheim, Norway

http://orcid.org/0000-0001-5691-8177
http://orcid.org/0000-0003-4204-2017
http://crossmark.crossref.org/dialog/?doi=10.1007/s10458-021-09537-3&domain=pdf

	 Autonomous Agents and Multi-Agent Systems (2022) 36:8

1 3

 8   Page 2 of 33

some activities—such as conference sessions or panels at a convention—with limited seat-
ing. The activities are associated with time intervals, and no agent may participate in two
of them simultaneously. Thus when participants register for a prioritized subset, any fair
allocation must take care to avoid scheduling conflicts. In another scenario, the items may
represent sought-after administrative positions in an academic institution, where the con-
flicts are conflicts of interest. Positions should be allocated fairly among qualified appli-
cants, without anyone appointed to two positions where one has the power to approve pro-
posals submitted by the other, for example.

Our contributions. We study the problem of fairly allocating conflicting items, and pre-
sent several new results in this setting. We map out, both in broad strokes and for certain
special cases, to what extent envy-freeness up to one item (EF1) is guaranteed to exist,
as well as when it is guaranteed by maximum Nash welfare (MNW), and when it may be
achieved in polynomial time (Sect. 3.1). We adapt the randomized graph coloring proce-
dure of Pemmaraju and Srinivasan [30], which is expected to approximate any individ-
ual agent’s proportional share to within a factor of 1 − 1∕e , and guarantees that for large
instances of certain kinds, the deterministic proportionality guarantee does not fall far
below this expectation (Sect. 3.2). We then present a series of results on maximin share
(MMS) allocation with item conflicts (Sect. 3.3), with the main results being that, if the
maximum degree Δ of the conflict graph is lower than the number of agents,1 (i) there
exists an �-approximate MMS allocation, with 𝛼 > 1∕3 (Theorem 1); and (ii) an �-approxi-
mate MMS allocation may be found in polynomial time, with 𝛼 > 1∕Δ when Δ > 2 (Theo-
rem 2). Finally, we examine the behavior of various fairness measures in practice, that
is, empirically studying how random allocation, EF1, MMS, proportionality and MNW
are affected by the introduction of item conflicts, on 18,629 randomly generated graphs
(Sect. 4), with the main conclusion being that fairness is largely unharmed, with random
allocation improving as an MMS approximation, all instances exhibiting EF1 and MMS,
and MNW producing EF1 in almost all cases, with a tight approximation of MMS.

Prior work. Fair allocation of conflicting items has been studied by Chiarelli et al. [13],
who considered partial egalitarian (maximin) allocations, i.e., allocations that maximize
the value the worst-off agent receives, but where some items may remain unallocated.
In this paper, we study conventional (complete) allocations, and focus on other fairness
criteria such as envy-freeness, maximin share guarantees and Nash welfare.2 The rela-
tion between our scenario and that of Chiarelli et al. depends on the relationship of the
maximum degree of the conflict graph, Δ , and the number of agents, n. For the maximin
criterion used by Chiarelli et al., there is no difference between allowing and disallowing
partial allocations when n > Δ , which is also a precondition for several of our results. Con-
versely, the hardness results of Chiarelli et al. rely on graphs where Δ > n , which means
they do not contradict our approximability result for MMS (Theorem 2). Without the fair-
ness aspect, allocation with item conflicts reduces to the much-studied problem of graph
coloring [24], with each item becoming a node, and each color an agent. Some work has
already been done on equity in graph coloring [25], but links to the burgeoning field of fair
item allocation seem so far to be missing from the literature.

1  This restriction ensures that any partial allocation may be completed without reassigning any items.
2  Requiring complete allocations is necessary for some fairness criteria (e.g., EF1) to make sense, and may
be required in real-world allocation scenarios.

Autonomous Agents and Multi-Agent Systems (2022) 36:8 	

1 3

Page 3 of 33  8

2 � Preliminaries

We study the problem of fairly allocating a set of items among a set of agents, where cer-
tain pairs of items are not allowed together. We call this problem fair allocation of conflict-
ing items. In the following, for k ∈ ℤ

+ , [k] denotes the set {1, 2,… , k}.

Definition 1  An instance of the fair allocation of conflicting items problem, or more con-
cisely, a problem instance, is a quadruple (N, M, V, G), where
–	 N is a set of n agents;
–	 M is a set of m items;
–	 V is a family of n valuation functions, vi ∶ 2M → ℝ≥0 ; and
–	 G = (M,E) is an undirected conflict graph.
Unless otherwise stated, we assume N = [n] and M = [m].3

We say that two neighboring items in the conflict graph are conflicting items or, equiva-
lently, in conflict. Although more general valuations are possible, we shall assume that all
valuation functions are additive. For simplicity, we let both vij and vi(j) denote vi({j}).

For an instance of the fair allocation of conflicting items problem, an allocation,
A = ⟨A1,A2,… ,A�N�⟩ , is an |N|-partition of the set of items, assigning set Ai to agent i.
A set of items Ai ∈ A is called a bundle. An |N|-partition of a strict subset of the items is
called a partial allocation. An allocation that is not partial is complete.

We wish to find feasible allocations that are as fair as possible. An allocation is said to
be feasible if no bundle contains a pair of conflicting items. Note that any feasible alloca-
tion forms an |N|-coloring of the conflict graph and that each bundle in a feasible allocation
is an independent set in the conflict graph. What constitutes a fair allocation is less clear-
cut, and many characterizations exist. In this paper, we consider the four fairness criteria of
maximum Nash welfare, envy-freeness up to one good, proportionality and maximin share
guarantee.

The Nash social welfare function, or Nash welfare, is similar to a plain utilitarian wel-
fare, except that individual utilities are multiplied to produce an aggregate. For allocation
without conflicts, maximizing the Nash welfare leads to a good tradeoff between fairness
and efficiency and guarantees fulfillment or close approximation of several other fairness
criteria [12].

Definition 2  For a problem instance (N, M, V, G), the Nash welfare (NW) of a feasible
allocation A is given by

A is said to be a maximum Nash welfare (MNW) allocation if there is no feasible allocation
with a higher Nash welfare.

NW(A) =

(∏
i∈N

vi(Ai)

)1∕n

.

3  An exception is reduced instances where agents or items have been removed (cf. Sect. 3.3).

	 Autonomous Agents and Multi-Agent Systems (2022) 36:8

1 3

 8   Page 4 of 33

Envy-freeness is a very natural criterion for fair allocation, which requires that no
agent be envious of any other agent. Envy-freeness is often unobtainable when consid-
ering indivisible items. This is easily seen when allocating a single item to two agents.
Instead of full envy-freeness, we consider the relaxation to envy-freeness up to one
good, introduced by Budish [11]. This fairness criterion instead requires that for any
pair of agents i and i′ , the bundle Ai′ contains an item so that i would not envy i′ if the
item was removed from Ai′ . More formally:

Definition 3  For a problem instance (N, M, V, G), a feasible allocation A is said to be
envy-free up to one good (EF1) if for all i, i� ∈ N , where Ai′ ≠ ∅,

A different relaxation of envy-freeness is proportionality, where agents should
receive at least their subjective fair of the total value available. More formally:

Definition 4  For a problem instance (N, M, V, G), a feasible allocation A is called pro-
portional if each agent i assigns a value of at least vi(M)∕|N| to its bundle.

Maximin share guarantee is another fairness criterion introduced by Budish [11].
Here, we want to guarantee each agent a bundle valued at no less than what the agent
would have been guaranteed if it were to create a feasible allocation, but had to choose
its own bundle last.

Definition 5  For a problem instance I = (N,M,V ,G) , an agent i’s maximin share (MMS)
is given by

where F is the set of all feasible allocations of I. If the instance I is obvious from context,
we omit it and write �i.

A feasible allocation A with minAj∈A
vi(Aj) = �I

i
 for agent i is said to be an MMS par-

tition of I for i. A feasible allocation where each agent i receives a bundle it values at no
less than �i , is called an MMS allocation. Even without conflicts, there are instances for
which no MMS allocation exists [23]. Additionally, as calculating the MMS of an agent
is NP-hard [33], finding MMS allocations is generally infeasible. Instead, approxima-
tions are usually considered. We say that a feasible allocation is �-approximate MMS if
each agent receives a bundle they value at no less than ��i.

Several useful properties of MMS have been found in the ordinary, conflict-free set-
ting. Many of these are not easily extendable or applicable to allocation under item con-
flicts, as will be discussed later; However, the basic properties of scale-freeness and
normalization may be quite naturally extended to the new scenario. These properties
simplify working with approximations of MMS, especially when finding polynomial-
time algorithms. The proofs of the properties carry over from unconstrained allocation,
and have been omitted. See, e.g., the works of Amanatidis et al. [2] and Garg et al. [16]
for details.

vi(Ai) ≥ vi(Ai�) −max
j∈Ai�

vij.

�I
i
= max

A∈F
min
Aj∈A

vi(Aj),

Autonomous Agents and Multi-Agent Systems (2022) 36:8 	

1 3

Page 5 of 33  8

Lemma 1  (Scale-freeness) For a problem instance I = (N,M,V ,G) , let I� = (N,M,V �,G)
be the problem instance where the valuations of each agent i are scaled by some constant
ci > 0 . Then �I�

i
= ci�

I
i
 and all MMS allocations and MMS partitions of I are also MMS

allocations and MMS partitions of I′.

Lemma 2  (Normalization) If vi(M) = |N| for an agent i in a problem instance
I = (N,M,V ,G) , then �I

i
≤ 1.

Fair allocation of conflicting items is a generalization of fair allocation without conflicts,
which is the special case of G = (M, �) . A similar problem to fair allocation of conflicting
items, is fair allocation under cardinality constraints [4]. In this version of the problem, the
items are divided into categories and a bundle may not contain more items from a single
category than some given threshold. Instances of this version of the problem where each
category has a threshold of 1 may be reduced directly to fair allocation of conflicting items,
with the conflict graph becoming a collection of cliques, one per category.

While we only consider additive valuation functions in our instances, there exists
research on other classes of valuation functions. Some of our results rely on reduction to
unconstrained fair allocation with more complex valuation functions in order to maintain
the conflicts to a certain degree. A function f is fractionally subadditive (XOS) if there
exists a finite set F of additive functions such that for any set S, f (S) = maxf �∈F f

�(S) . Sub-
modularity is a more restricted case. For a submodular function f and any two sets S and S′ ,
f (S) + f (S�) ≥ f (S ∪ S�) + f (S ∩ S�).

A graph G = (M,E) is complete if all vertices are neighbors, and empty if E = � . Given
a set of vertices S ⊆ M , we let G[S] denote the induced subgraph of S on G, i.e., the graph
consisting of the vertices in S and all edges in E that connect pairs of vertices in S. We let
Δ(G) denote the maximum degree of the graph G, and C(G) the cardinality of its largest
connected component. A k-coloring of G is a coloring of the vertices in G using k distinct
colors, such that no two neighboring vertices share a color. We let �(G) denote the small-
est integer k for which a k-coloring exists for G. Note that the problem of determining if a
graph is k-colorable is NP-complete. However, a (Δ(G) + 1)-coloring always exists and can
greedily be found in polynomial time.

3 � Conflicting items in theory

We are interested in determining, theoretically, to what extent we can guarantee the agents
either fulfillment or approximation of various fairness criteria when there are conflicting
items. Besides theoretical results, we are interested in the degree to which such fairness can
be achieved in polynomial time. In this section, we explore the existence and non-existence
of EF1, both by itself and as a product of MNW. We also explore approximations to both
proportionality and MMS.

3.1 � Envy‑freeness up to one good

Without item conflicts, we know that EF1 allocations always exist [26]. With item con-
flicts, this is not always the case. The simplest example is when there are no feasible alloca-
tions at all, let alone EF1 allocations. We are more interested in cases where the items may,
in fact, be allocated—but even then there are instances that do not admit an EF1 allocation.

	 Autonomous Agents and Multi-Agent Systems (2022) 36:8

1 3

 8   Page 6 of 33

The following proposition shows that if an item is in conflict with as many items as there are
agents, there always exists a set of binary valuation functions that precludes EF1, even if feasi-
ble allocations exist.

Proposition 1  For any graph G = (M,E) with Δ(G) ≥ n , there is a problem instance
([n], M, V, G) that has no EF1 allocation.

Proof  First of all, the instance may be unfeasible, i.e., it may have no feasible allocation.
This would be the case, for example, for the complete graph Kn+1 . Assume that there is
some feasible allocation, and select some item j with degree at least n. For every agent, let
the neighbors of j get a value of 1, and let all other nodes get a value of 0. Some agent i
must receive item j, and some agent i′ must receive at least two of its neighbors, and i will
still envy i′ after removing one of the items allocated to i′ , which means that no allocation
for these valuations can be EF1. 	� ◻

In other words, an EF1 allocation is not guaranteed when the number of agents is no higher
than the maximum degree of the graph. This is quite natural, as a high degree in relation to the
number of agents limits the number of feasible allocations quite drastically. In the other direc-
tion, it is possible to show that for graphs with sufficiently small components, EF1 allocations
always exist.

Proposition 2  For any graph G = (M,E) with C(G) ≤ n , all problem instances
([n], M, V, G) have EF1 allocations that can be found in polynomial time.

Proof  Let I be the original instance, with conflicting items. We construct an instance I′
with cardinality constraints by introducing one category Ch for each connected component,
consisting of its vertices, and setting the corresponding threshold to 1, i.e., no agent can get
two items from the same category/connected component. Then I is a relaxation of I′ , and
any feasible allocation for I′ is feasible for I. Biswas and Barman showed that there exists
a polynomial-time algorithm that for any problem instance with cardinality constraints and
additive valuation functions finds an EF1 allocation [4]. Using their algorithm, an EF1
allocation can be found for I′ and consequently one can be found for I as well. 	� ◻

Propositions 1 and 2 establish the existence and non-existence of EF1 allocations at oppo-
site sides of a spectrum, in a sense, and leave open the question of whether EF1 exists when
Δ(G) < n < C(G) . At least for some small subset of such instances, it can be shown that no
EF1 allocations exist, as illustrated by the following example.

Example 1  Let G = K3,3 (see below) and let there be a total of 4 agents. Then we have
Δ(G) = 3 < 4 = n < C(G) . For all agents, let items 1, 2 and 3 have a value of 2 and items 4,
5 and 6 have a value of 3.

Autonomous Agents and Multi-Agent Systems (2022) 36:8 	

1 3

Page 7 of 33  8

1 2 3

4 5 6

v = 2

v = 3

Either (i) one agent receives a bundle with two or more items worth 3, or (ii) three
agents receive a bundle with one item worth 3. In the first case, we cannot guarantee the
worst-off agent a bundle worth more than 2. Since there is a bundle with at least two items
worth 3, this does not allow for EF1. In the latter case, the last agent receives all items
worth 2. After removing any item from this bundle, the value remains 4, which is more
than any other agent receives. Consequently, an EF1 allocation does not exist.

Remark 1  Interestingly, it can be shown that the instance in Example 1 contains the fewest
number of items for which there is no EF1 allocation when n > Δ(G) . For n = 2 , this fol-
lows directly from Proposition 2. When n ≥ 3 an EF1 allocation must always exist in this
situation when m ≤ n + 1 , as each agent can in turn choose their most-valuable remaining
item until either no more remain or each agent has received one item. If m = n + 1 , the last
item can be given to any agent without a conflicting item. Specifically for three agents, one
can show, by working through the possible cases, that all such instances with five items
admit an EF1 allocation.

The instance in Example 1 is not an isolated case. We can in fact find similar instances
for any number of agents greater than three.

Proposition 3  For any n ≥ 4 , there exists a graph G with n > Δ(G) and a set of valua-
tions V, so that the instance ([n], M, V, G) does not admit any EF1 allocations.

Proof  Let the graph G be the complete bipartite graph Kn−1,n−1 . This graph contains two
partite sets of n − 1 vertices, where there are no edges between vertices in the same set.
For each pair of vertices in different sets, there is an edge between them. This results in
the graph being regular, with a degree of n − 1 , as each vertex is connected to n − 1 other
vertices. If we use this graph as a conflict graph, each agent may only receive items from
the same partite set.

For all agents, let the items in one of the sets each have a value of 2, and the items in
the other set each have a value of 2n − 5 . Any feasible allocation must contain either (i) a
bundle with two or more items worth 2n − 5 or (ii) n − 1 bundles with a single item worth
2n − 5.

In the first case, all other bundles must contain a value of at least 2n − 5 for EF1 to be
possible (more if a bundle has 3 or more items worth 2n − 5 ). Each bundle must therefore
contain at least one item, and at least two bundles must contain items only from the set
where each item is valued 2. The total value of the items worth 2 is 2(n − 1) , allowing the
worst-off agent to receive a value of at most n − 1 . When n > 4 , 2n − 5 > n − 1 and this
case does not admit an EF1 allocation. For n = 4 , there are three items worth 2, and thus
one of the two agents cannot receive a value of more than 2 < 2n − 5.

In the second case, the last agent must receive all items worth 2 and has a bundle worth
2n − 2 . Removing any item from the bundle, results in a bundle valued at 2n − 4 > 2n − 5 .

	 Autonomous Agents and Multi-Agent Systems (2022) 36:8

1 3

 8   Page 8 of 33

Meaning that all other agents envy the bundle, even after removing an item. Consequently,
an EF1 allocation cannot exist. 	� ◻

Remark 1 and Proposition 3 show that when Δ(G) < n < C(G) , for n ≥ 4 , there are some
instances for which EF1 exists, and some for which it does not. Giving a more detailed
classification or characterization of such instances remains an open problem.

The instances used in Example 1 and Proposition 3 rely on very specific valuations for
the items in order to show the non-existence of EF1. Changing the valuations slightly may
easily result in the existence of EF1 allocations. Limiting the possible values each item can
take, allows for some special cases where we have existence proofs and polynomial-time
algorithms.

Proposition 4  If a problem instance (N, M, V, G), where |N| > 2 , has valuation functions
vi ∶ M → {0, 1} , and the components of G are paths, then the instance has an EF1 alloca-
tion, which may be found in polynomial time.

Proof  If there exists an item j with vij = 0 for each agent i ∈ N , who receives j does not
affect if an allocation is EF1, except to the extent that it may limit possible feasible allo-
cations. However, because |N| > 2 ≥ Δ(G) , for any feasible partial allocation of M ⧵ {j} ,
there exists at least one agent with no conflicting items to j. In practice, this means that all
items of this type can initially be removed and then, later, allocated arbitrarily. Thus, we
only need to consider instances where there are no such items.

In order to show that an EF1 allocation exists for all instances where no item is val-
ued at 0 by all agents, we will create a polynomial-time algorithm that iteratively allocates
items by considering the connected components of G one by one in arbitrary order. For
each component C, iteratively allocating the items in order—from one end of the path to
the other—while maintaining the following three properties.

(i)	� The allocation is EF1.
(ii)	� There exists an ordering, O , of the agents such that no agent envies earlier agents in

O.
(iii)	� If some, but not all, items in the currently considered component, C, are unallocated,

the agent i that received the last allocated item in C does not envy any other agent.

For property (ii), we rely on maintain an acyclic envy graph, i.e., a directed graph of the
agents, with an edge from agent i to agent i′ if i envies the bundle of i′ . When there are no
cycles in the envy graph, any topological ordering of the graph orders the agents so that no
agent envies earlier agents. We can easily find a topological ordering in polynomial time
for an acyclic graph. Lipton et al. [26] give a polynomial-time procedure that decycles an
envy graph, without breaking EF1 (property (i)), by exchanging bundles along the graph’s
cycles. Note that the procedure of Lipton et al. does not swap the bundles of agents that
prior to the application of the decycling procedure did not envy any other agent. Since
agent i from (iii) is an agent of this type, the decycling procedure does not change i’s bun-
dle. As the content of the other bundles does not change, only their owners, agent i will
remain unenvious of all other agents also after applying the decycling procedure. Conse-
quently, if (i) and (iii) hold prior to application of the decycling procedure, they also hold
afterwards.

Autonomous Agents and Multi-Agent Systems (2022) 36:8 	

1 3

Page 9 of 33  8

Our algorithm starts with an initially empty allocation, for which all three properties
hold. Then, in each step let C be the current component, O any ordering that fulfills the
requirements in (ii) and i the agent from (iii). Also, let j be the next unallocated item in C
and j′ the (unallocated) item following j, if any exists. (If j is the first item in C, then there
is no agent i.) Additionally, let i′ be the first agent in O with i′ ≠ i and vi� (j) = 1 , if any
exists. Since each item is valued at 1 by at least one agent, i′ always exists when i does not.
Then we allocate item j and, possibly, j′ by the following rules:

1.	 If i′ exists, then allocate j to i′.
2.	 If i′ and j′ do not exist, then allocate j to the first agent i�� ∈ O , i′′ ≠ i.
3.	 If i′ does not exist and j′ exists, then allocate j′ to the first agent i��� ∈ O with vi��� (j�) = 1

and j to any i�� ∈ N with i′′ ≠ i′′′ and i′′ ≠ i.4

We must now show that in each of these three cases, if (i), (ii) and (iii) hold prior to the
allocation, then they hold afterwards as well. As seen earlier, property (ii) can be achieved
by simply using the procedure of Lipton et al. after the allocations. Thus, we need only
show that after applying the rules, but before using the decycling procedure of Lipton
et al., (i) and (iii) hold. Let A = ⟨A1,A2,… ,A�N�⟩ be the allocation prior to giving away j
and, possibly, j′ in cases 1, 2 and 3, and A� = ⟨A�

1
,A�

2
,… ,A�

�N�⟩ the allocation afterwards.
Case 1: The only bundle that changes is i′ ’s bundle. That is A�

i�
= Ai� ∪ {j} . For any

agent i∗ ∈ N , i∗ ≠ i� we know that either vi∗ (Ai∗) ≥ vi∗ (Ai�) or vi∗ (j) = 0 . Otherwise, i∗ would
have appeared before i′ in O and been chosen instead of i′ . For any i∗ with vi∗ (Ai∗) ≥ vi∗ (Ai�)
we have vi∗ (A�

i∗
) ≥ vi∗ (Ai�) = vi∗ (A

�
i�
) − vi∗ (j) . Thus, since vi∗ (A�

i�
) = vi∗ (Ai�) for all other i∗ ,

A′ is EF1 and (i) holds for A′ . Additionally, with binary valuations each item is valued at
either 0 or 1 and combined with EF1 this implies that vi� (Ai�) ≥ vi� (Ai∗) + 1 for all i∗ ∈ N ,
i∗ ≠ i� . As a result, we have

and (iii) holds for A′.
Case 2: The only bundle that changes is i′′ ’s bundle. That is A�

i��
= Ai�� ∪ {j} .

Since the only agent that values j at 1 is i, the only way that EF1 can be broken in A′
is if i is envious of i′′ . However, since (iii) holds for A, vi(Ai) ≥ vi(Ai��) and we have
vi(A

�
i
) = vi(Ai) ≥ vi(Ai��) = vi(A

�
i��
) − vij . Hence A′ is EF1 and (i) holds for A′ . Since j is the

last item in C, the current component does not have any unallocated items and the next
component, if any, has no allocated items. Thus, (iii) holds for A′.

Case 3: The bundles of i′′ and i′′′ both change. That is A�
i��
= Ai�� ∪ {j} and

A�
i���

= Ai��� ∪ {j�} . Since i is the only agent that values j at 1, the changes to i′′ ’s bundle can-
not, by the same logic as in case 2, result in A′ not being EF1. Similarly, the changes to the
bundle of i′′′ are equivalent to the changes to i′ ’s bundle in case 1 (while the item differs,
the properties of the change are the same). Thus, A′ is EF1 and (i) holds for A′ . For (iii)
there are two possibilities, if i′′′ ≠ i , then vi��� (j) = 0 and vi��� (A�

i��
) = vi��� (Ai��) . Thus, due to

binary valuations and A being EF1, we have (as in case 1)

vi� (A
�
i�
) = vi� (Ai�) + vi�j ≥ vi� (Ai∗) = vi� (A

�
i∗
),

vi��� (A
�
i���
) = vi��� (Ai���) + vi��� (j

�) ≥ vi��� (Ai∗) = vi��� (A
�
i∗
),

4  An agent i′′′ always exists, as each item is valued at 1 by at least one agent.

	 Autonomous Agents and Multi-Agent Systems (2022) 36:8

1 3

 8   Page 10 of 33

for all i∗ ∈ N , i∗ ≠ i��� , and (iii) holds for A′ when i′′′ ≠ i . If i��� = i , then we have that
vi(A

�
i��
) = vi(A

�
i��
) + 1 . In which case the step vi��� (Ai∗) = vi��� (A

�
i∗
) from the above equation

does not hold when i∗ = i�� . Since vi(Ai) ≥ vi(Ai��) by (iii), the following equation holds

and (iii) also holds for A′ when i��� = i.
It can easily be verified that the three cases cover all possible situations and that no

agent receives two conflicting items. Since all three properties hold before and after each
step and all items are eventually given away, the algorithm produces complete EF1 alloca-
tions. It can also easily be verified that each of the described steps can be performed in
polynomial time in the number of agents and items. Since the number of steps is bounded
by the number of items, the algorithm runs in polynomial time. 	� ◻

As mentioned in Sect. 2, valid allocations for a given conflict graph G are merely the
n-colorings of G, and quite a lot of work has been done on certain forms of fairness in the
graph coloring domain. In particular, a coloring is said to be equitable if the number of
vertices colored by any two colors differ by at most one. For identical valuations, this is
equivalent to EF1. Lih [25] provides an overview of many results of the equitable coloring
problem for various graph classes, where the focus is on minimizing the number of colors.
In our setting, however, the number of colors is given, and we have already seen in Propo-
sition 1 that we need n > Δ(G) for all conflict graphs to have EF1 instances. In this case,
we are guaranteed an equitable coloring, or, equivalently, an EF1 allocation for identical
values.5

Proposition 5  If a problem instance (N, M, V, G), where |N| > Δ(G) , has identical val-
ues, i.e., vij = vi�j� for i, i� ∈ N, j, j� ∈ M , then the instance has an EF1 allocation, which
may be found in polynomial time. 	� ◻

In the context of equitable coloring, this is a well-known result, originating as a con-
jecture of Erdős. See, e.g., the 2008 paper by Kierstead and Kostochka [21] for some of its
history, as well as a simplified proof and corresponding algorithm.

An interesting result for unconstrained allocation is that MNW leads to EF1 [12]. With
conflicting items, we have seen that there are instances that do not admit an EF1 alloca-
tion, despite there being many feasible allocations. Consequently, we cannot guarantee that
MNW leads to EF1 in this setting. Even so, it may be useful to determine whether MNW
leads to EF1 when EF1 allocations do exist. This is not the case, as can be seen in the fol-
lowing proposition.

vi(A
�
i
) = vi(Ai) + vi(j

�) ≥ vi(Ai��) + vi(j) = vi(A
�
i��
),

Fig. 1   The graph classes P
3
 and P

3 1 2 3

P3

1 2 3

P3

5  Note also that for identical values, an EF1 solution will be MNW, and if EF1 exists, all MNW solutions
are EF1.

Autonomous Agents and Multi-Agent Systems (2022) 36:8 	

1 3

Page 11 of 33  8

Proposition 6  If the graph G = (M,E) is complete or empty, then for any problem
instance ([n], M, V, G) with n > Δ(G) , all MNW allocations are EF1. If G is neither com-
plete nor empty, there is a problem instance ([n], M, V, G) with n ≥ Δ(G) for which there
exists at least one EF1 allocation, but for which no MNW allocation is EF1.

Proof  First of all, if G = Kk for some k ≤ n , each bundle can only contain at most one item.
Obviously, all allocations must then be EF1. Note that the case of k > n has no feasible
allocations. When E = � , this is equivalent to the fair allocation problem without conflicts.
For this problem, Caragiannis et al. [12] showed that all MNW allocations are EF1.

If neither G = Kk nor E = � , then G contains at least one subset of three vertices that
form an induced subgraph of either P3 or P3 (see Fig. 1). If G = P3 or G = P3 , with two
agents, the valuations in Fig. 2 cause the maximum Nash welfare to be 5. However, the
only feasible allocation with a Nash welfare of 5 is ⟨{1, 3}, {2}⟩ . This allocation is obvi-
ously not EF1, as agent 2 envies agent 1, even after removing one item. EF1 allocations do
exist for these instances, with allocations ⟨{2}, {1, 3}⟩ and ⟨{1}, {2, 3}⟩ being EF1 for P3
and P3 , respectively.

For any graph with both G ≠ Kk and E ≠ ∅ , we can use the valuations for two agents on
P3 and P3 to construct an instance where MNW does not result in EF1. First, let n = Δ(G) if
Δ(G) + 1 = |M| and n = Δ(G) + 1 otherwise. Choose two agents and a set S of three items,
where the induced subgraph G[S] is either P3 or P3 . Let the two agents value the items in S
as shown in Fig. 2, and let them value all other items at 0. Since G contains at least Δ(G) + 1
vertices and |S| = 3 , either n = Δ(G) = |M| − 1 and |M ⧵ S| = Δ(G) + 1 − 3 = n − 2 or
n = Δ(G) + 1 ≤ |M| − 1 and |M ⧵ S| ≥ Δ(G) + 2 − 3 = n − 2 . Consequently, there is
always at least n − 2 items in M ⧵ S . Let S′ be a set of n − 2 items from M ⧵ S and let each
of the n − 2 remaining agents assign a non-zero value to each item in S′ and a value of 0 to
the items in M ⧵ S′.

The MNW of the constructed instance is non-zero, as it is possible to allocate at least
one item with non-zero value to each agent. For example, the items in S can be allocated
to the two agents that assign them a non-zero value, in a way that respects the item con-
flicts and gives each agent at least one item from S. The remaining n − 2 agents can then
be allocated one item each from S′ . When n = Δ(G) , this is a feasible complete allocation,
since M = S ∪ S� . When n = Δ(G) + 1 , the instance can contain additional items that are all
worth zero to all agents, i.e., M ⧵ (S ∪ S�) ≠ � . Since each item has at most Δ(G) conflicts,
there exists for each item at least one agent that has not been allocated a conflicting item,
no matter how the other items are allocated. Thus, any partial allocation that allocates all
goods in S and S′ can trivially be extended to a complete allocation. Consequently, the
MNW is only dependent on how S and S′ are allocated. Any allocation must allocate one
item from S′ to each of the n − 2 agents in order to have a non-zero Nash welfare. Each
item in S must be given to one of the two agents that give them a non-zero value; other-
wise, we could increase the Nash welfare by doing so. Thus, any MNW allocation must
maximize the Nash welfare for the two agents on the induced subgraph G[S], and, conse-
quently, the allocation cannot be EF1. In the same fashion, a non-MNW, EF1 allocation
may be constructed by allocating one item in S′ to each of the n − 2 agents and allocating

Fig. 2   Valuations for two agents,
where MNW is not EF1, for
G = P

3
 (left) and G = P

3

i vi1 vi2 vi3

1 2 2 3
2 6 5 6

i vi1 vi2 vi3

1 2 1 3
2 6 5 6

	 Autonomous Agents and Multi-Agent Systems (2022) 36:8

1 3

 8   Page 12 of 33

the items in S to the two agents in a way that neither envies the other after removing the
other’s most valuable item. 	� ◻

Proposition 6 has implications for fair allocation under cardinality constraints. Bis-
was and Barman have already pointed out that there exist instances of this problem where
MNW does not lead to EF1 [4]. However, they do not provide any classification of such
cases. By using similar valuations as those used to prove Proposition 6, one can construct
examples whenever there are at least two categories, one of which contains two or more
items and has a threshold of one. Then the same valuation function construction as for P3
can be used, picking two items from the category with a threshold of 1 and any item from
another category.

While Proposition 6 shows that MNW does not lead to EF1 in general, it may still be
possible that for some combinations of graphs, number of agents and restricted valuation
functions, MNW does lead to EF1. Biswas and Barman [4] showed that for cardinality
constraints (and other related matroid constraints), MNW leads to EF1 if all agents have
identical valuations. As fair allocation of conflicting items is equivalent to cardinality con-
straints when all components are cliques, MNW leads to EF1 for instances with this class
of conflict graph and identical valuations.6

3.2 � Proportionality

While equitable coloring is equivalent to EF1 with identical values, the weighted version
has not traditionally been a more general EF1 coloring, but is rather linked to the propor-
tion any color receives of the total weight. That is, each node is weighted, and a weighted
almost-equitable coloring is where each of the n colors covers nodes with a total weight
of at least W/n, where W is the total of all the weights in the graph. This, of course, is
equivalent to proportional allocation, where the agents have identical valuations (though
the items do not necessarily have identical values). Some results apply even for general
valuations (cf. Proposition 7).

Algorithm 1  This is the randomized coloring procedure with symmetry breaking,
described by Pemmaraju and Srinivasan [30]. Specifically, it is the version that applies to
weighted almost-equitable colorings.

1.	 Let � be a permutation of M, selected uniformly at random.
2.	 Tentatively allocate each item to an agent, selected uniformly at random.
3.	 If an agent received conflicting items j and j′ , where 𝜋j < 𝜋j′ , deallocate j′.
4.	 Allocate remaining items arbitrarily, avoiding conflicts.

Note that in step 3, conflicts are based on the initial, tentative allocation, before any
deallocations have taken place. Items j and j′ are considered to be in conflict even if j has
already been deallocated, so the order of deallocation is irrelevant.

6  Note that this argument does not work for all the instances that were reduced to cardinality constraints in
Proposition 2. When the components of the conflict graph are not cliques, there may be additional MNW
allocations for the item conflict instance that are not EF1; indeed, an allocation that is MNW under cardi-
nality constraints might conceivably, though feasible, not even be MNW under item conflicts.

Autonomous Agents and Multi-Agent Systems (2022) 36:8 	

1 3

Page 13 of 33  8

It should be obvious that this algorithm runs in polynomial time. What is more, it pro-
vides each agent with an expected fraction of 1 − 1∕e , or almost 2/3, of a proportional
share.

Proposition 7  Given a problem instance (N, M, V, G), where |N| > Δ(G) , Algorithm 1
finds an approximate proportional allocation with item conflicts, where each agent can
expect to get at least a fraction of 1 − 1∕e of its share.

Proof  Adapted from Lemma 5 of Pemmaraju and Srinivasan [30]. Specifically, their
result uses exactly Δ(G) + 1 colors, whereas we need to permit any n > Δ(G) . We wish to
describe pij , the probability that item j is allocated i after step 3. (Note that this value will
be identical for all i.) This will tell us the expected value of any bundle at that point, a value
that can only increase in step 4. That is, if we can show that pij ≥ (1 − 1∕e)∕n for every
item j, each bundle will—in expectation—be valued at no less than (1 − 1∕e) ⋅ vi(M)∕n by
agent i. In other words, each agent can expect a fraction of 1 − 1∕e of its share.

The probability that j is allocated to i in step 2 is 1/n. If exactly k of its neighbors are
ranked earlier by � , the probability that j is not removed again in step 3 is (1 − 1∕n)k ,
meaning that we would have pij = 1∕n ⋅ (1 − 1∕n)k . The probability of exactly k neighbors
are ranked before j is 1∕(�(j) + 1) , where �(j) is the degree of node j in G, which gives us:

This, then, produces the desired bound on the individual expectations. 	� ◻

Approximate proportionality implies approximate MMS, that is, if you receive a frac-
tion � of your proportional share, you receive at least a fraction � of your maximin share.
Note, however, that Proposition 7 only bounds the individual expectations. That is, this
is not the expectation of the proportionality or MMS guarantee, i.e., the lowest fraction
received by any agent.

The following result provides a deterministic bound for such a guarantee for proportion-
ality, in a scenario where all agents have identical valuation functions.7

Proposition 8  For a problem instance (N, M, V, G), where |N| > Δ(G) , if agents have
identical valuations v ∶ M → [0, 1] , there exists an �-approximate proportional allocation
with

for any c >
√
8 , where W = v(M).

pij =
1

n

�(j)∑
k=0

1

�(j) + 1
⋅

(
1 −

1

n

)k

=
1

�(v) + 1

(
1 −

(
1 −

1

n

)�(v)+1)

≥
1

n

(
1 −

(
1 −

1

n

)n)
≥

1

n

(
1 −

1

e

)

� ≥ 1 − 1∕e − cn
√
ln(n)∕W,

7  In this case, MMS allocations are guaranteed to exist.

	 Autonomous Agents and Multi-Agent Systems (2022) 36:8

1 3

 8   Page 14 of 33

Proof  Based on Lemma 6 of Pemmaraju and Srinivasan [30], adapted from using exactly
Δ(G) + 1 colors to permitting any n > Δ(G) . Let S be the bundle assigned to some agent by
Algorithm 1. The strategy is to show that for any fixed c > 0,

The probability that the leftmost inequality holds for at least one of the bundles is then, by
the union bound, at most n∕nc2∕8 = n1−c

2∕8 . Choosing c >
√
8 leads to a positive probabil-

ity that no agents receives less than (1 − 1∕e)W∕n − c
√
W ln n , which means that such an

allocation must exist. Dividing by W/n yields the approximation ratio �.
For simplicity, we renumber the items according to � , and define j ≺ k to mean that

j < k and jk ∈ E . Let a ∶ M → N represent the tentative allocation after step 2. We now
consider differences in conditional expectations along � , for use in Azuma’s martingale
inequality:

There may be no difference (i.e., we may have cj = 0 ), as the change need not affect our
bundle S. If, however, item j is added or removed, an expected proportion of 1/n of its
lower-priority conflicting items will consequently be removed or added, respectively. Thus
we can bound the differences by:8

Because values are in [0, 1], we have cj ≤ 1 + Δ(G)∕n < 2 . We also have

and
∑m

j=1
c2
j
< 2

∑m

j=1
cj < 4W . Azuma’s inequality then produces

which gives us (1). 	� ◻

While the bound given by Proposition 8 may be rather weak for many practical
instances, it does show that, given the assumptions about V, for a given number of agents,
the guaranteed fraction of proportionality improves as the number of items (or, rather, the
sum of their values) grows. That is,

(1)Pr

�
v(S) <

�
1 −

1

e

�
⋅
W

n
− c

√
W ln n

�
≤

1

nc
2∕8

.

cj =
||E [v(S) ∣ a1 = i1,… , aj = ij] − E [v(S) ∣ a1 = i1,… , aj = i�

j
]||

cj ≤
||||vj −

1

n

∑
j≺k

vk
|||| ≤ vj +

1

n

∑
j≺k

vk

m∑
j=1

cj ≤

m∑
j=1

vj +
1

n

m∑
j=1

∑
j≺k

vk ≤ W +
Δ(G)

n
⋅

m∑
j=1

vk < 2W,

exp

�
−t2

2
∑m

j=1
c2
j

�
≤ exp

�
−c2W ln n

8W

�
=

1

nc
2∕8

,

�(W) = 1 − 1∕e − o(1),

8  Pemmaraju and Srinivasan have a factor of 2 rather than 1 in front of the second term, leading to
c >

√
18 , rather than c >

√
8 [30]. This is presumably to account for a fraction of 1/n nodes lost as well as

gained, leading to an overly conservative bound.

Autonomous Agents and Multi-Agent Systems (2022) 36:8 	

1 3

Page 15 of 33  8

where W = v(M) . (Pemmaraju and Srinivasan [30] also present two other similar guaran-
tees, but they are given without proof, and so are not as straightforward to generalize to an
arbitrary number of agents.)

3.3 � Maximin shares

A common strategy for unconstrained MMS approximation is to use algorithms that
build on the basic concept of bag filling, where items are placed in a bag one by one. If
the bag reaches a certain value for some remaining agent, it is allocated as this agent’s
bundle. Then, the algorithm continues drawing items into a new bag, repeating the pro-
cedure until there are no remaining agents. It can easily be shown that a (1 − �)-MMS
approximation can be achieved using this method when no item is worth more than ��i.

Bag filling is usually combined with preprocessing procedures, in order to reduce the
impact of high-valued items on the achievable � . A common procedure is to carefully
construct a small set of high-valued items that combined are worth at least ��i to some
agent i. If the MMS of each agent is not reduced in the instance created by removing i
along with the items in the constructed set, i.e., assigning the set as i’s bundle, then one
can solve the problem for the reduced instance instead. A simple variant is to allocate
individual items worth at least ��i . Other somewhat typical steps are conversion to so-
called ordered instances [6] and creating initial bundles of high-valued items for the bag
filling to fill with low-valued items [see, e.g., 15].

For instances with conflicting items, the conflict graph and especially its degree,
Δ(G) , limits the viability of these strategies. Most are simply not possible as they would
cause the creation of infeasible bundles and their correctness proofs fail. Other strate-
gies can be modified to work with the conflict graph, albeit at the cost of reduced effi-
ciency. Bag filling is one of these, where instead of using M as the source of items,
we select one of a set of feasible bundles as the source for each bag to be filled, as
described in the following algorithm.

Algorithm 2  Takes as input a problem instance (N, M, V, G), a subset N′ ⊆ N , a feasi-
ble partition A = ⟨A1,A2,… ,A

�
⟩ of some M′ ⊆ M , where � ≥ 1 , and limits xi > 0 for all

i ∈ N� . Repeating the following steps until no suitable Ak is available will allocate bundles
to some subset of agents N′′ ⊆ N′ , with each bundle worth at least xi to the agent i that
receives it.

1.	 Let Ak ∈ A be a bundle with vi(Ak) ≥ xi for some i ∈ N�.
2.	 Let B be an empty bag.
3.	 Add items from Ak to B, one at a time, until vi(B) ≥ xi for some i ∈ N�.
4.	 Give B to some i ∈ N� with vi(B) ≥ xi , and let N� = N� ⧵ {i} and Ak = Ak ⧵ B.

Separating the items into several feasible sets prevents the creation of unfeasible bun-
dles. However, it will cause some items to stagnate, as some sets may be valued almost,
but not quite, xi and will therefore not be used in the algorithm. Consequently, the guar-
anteed value each agent will receive is generally lower with multiple sets, if all agents
are to receive a bundle. Lemma 3 provides a general formula to calculate the possible
guarantees, which depends on the value of M′ , and the number of source bundles, � , and
agents, |N′|.

	 Autonomous Agents and Multi-Agent Systems (2022) 36:8

1 3

 8   Page 16 of 33

Lemma 3  Given a problem instance (N, M, V, G), a subset of agents N′ ⊆ N and a feasible
partition A = ⟨A1,A2,… ,A

�
⟩ of some subset of items M′ ⊆ M , where � ≥ 1 , Algorithm 2

allocates a feasible bundle to each agent in N′ if vij ≤ xi and xi ≤ vi(M
�)∕(� + 2(|N�| − 1))

for all j ∈ M�, i ∈ N� . Items that are allocated are taken from at most min(�, |N�|) sets in A
and the procedure runs in polynomial time.

Proof  First, note that each allocated bundle consists of items taken from a single set
Ak ∈ A . Since A is feasible, each allocated bundle must be as well. Additionally, since each
bundle is created from a single set in A, the algorithm cannot use items from more than |N′|
sets in A, or � sets if |N′| > � . It is obvious that the procedure runs in polynomial time, as
all operations can easily be verified to be performable in polynomial time in the number of
agents and items.

If at all points during the execution of the algorithm, the remaining value in A, for any
remaining agent, i, is no less than �xi , there is always a bundle Ak ∈ A with vi(Ak) ≥ xi .
Consequently, step 3 will at some point create a bundle worth xi to i, that is allocated to i in
step 4. Note that since step 3 adds items to B one at a time, when vij ≤ xi , each remaining
agent, i, will value each already allocated bundle at no more than 2xi . Otherwise, the value
would already be at least xi before adding the last item. Hence, in the worst case, where
|N�| − 1 agents have been allocated a bundle, the remaining agent i will always value the
remaining items at no less than �xi if

which is the condition in the lemma. 	� ◻

The condition used in the proof of Lemma 3 where the remaining value is no less
than �xi , while sufficient, is overly strict for many inputs. In practice, one could, e.g.,
have that all remaining items are located in the same Ak ∈ A . In this case, it would be
sufficient that the remaining value is no less than xi . However, in the worst case, where
the remaining value is spread evenly across A, then �xi is the minimum possible value
for which the algorithm will allocate a bundle to each agent in N′.

As with unconstrained bag filling, the guarantees of Algorithm 2 are dependent
on the value of the highest-valued items. Thus, a way to handle high-valued items is
needed. The standard method used without item conflicts, is to create a maximal match-
ing between agents and items they value at least ��i . Allocating items based on this
matching guarantees that a subset of agents each receives a one-item bundle valued at
least ��i . In the reduced instance created by removing all matched agents and items,
each agent has at least the same MMS as in the original instance and no items are worth
��i or more. However, with a conflict graph, there are severe limitations on which allo-
cations are feasible, and these are highly dependent on the number of agents. Conse-
quently, a reduction using this type of matching of agent–item-pairs may lead either to
a reduction in maximin shares or to the reduced instance becoming infeasible. Nonethe-
less, we can replicate some similar results when constrained by a conflict graph.

Lemma 4  For a problem instance I = (N,M,V ,G) , with |N| > Δ(G) , let N′ ⊆ N and
M′ ⊆ M , such that a perfect matching exists between the agents in N′ and items they value

�xi ≤ vi(M) − (|N�| − 1)2xi

xi ≤
vi(M)

� + 2(|N�| − 1)
,

Autonomous Agents and Multi-Agent Systems (2022) 36:8 	

1 3

Page 17 of 33  8

at no less than ��I
i
 in M′ . Let I� = (N ⧵ N�,M ⧵M�,V �,G�) , where V � = {vi ∶ i ∈ N�} and

G� = G[M ⧵M�] . Then,

(i) 	 vi(M ⧵M�) ≥ |N ⧵ N�|�I
i
 for all i ∈ N;

(ii) 	|N ⧵ N�| > Δ(G�) ⟹ 𝜇I�

i
≥ 𝜇I

i
 for all i ∈ N ⧵ N� ; and

(iii) 	given a feasible partial allocation of I′ , where each agent i ∈ N ⧵ N� receives at least
��I

i
 , a feasible complete �-approximate MMS allocation of I can be constructed in

polynomial time.

Proof  Let A = ⟨A1,A2,… ,A�N�⟩ be an MMS partition of the original instance for one of the
agents, i ∈ N . After removing the items in M′ , at least |N| − |M�| = |N| − |N�| = |N ⧵ N�|
bundles in A remain unchanged. Each unchanged bundle is valued at no less than �I

i
 by

agent i. Consequently, vi(M ⧵M�) ≥ |N ⧵ N�|�I
i
 . Additionally, if |N ⧵ N�| > Δ(G�) , it is

possible to chose |N ⧵ N′| unchanged bundles in A and reallocate the remaining items in
the other bundles to these. This will be a feasible allocation of I′ , with each bundle worth at
least �I

i
 to i, i.e., �I′

i
≥ �I

i
.

For (iii), any perfect matching of the agents in N′ to items in M′ they value at no less
than ��I

i
 can be used to turn the feasible partial allocation of I′ into a feasible partial �

-approximate MMS allocation of I. The currently unallocated items can be arbitrarily allo-
cated to agents that have no conflicting items, to create a complete �-approximate MMS
allocation. Since |N| > Δ(G) , at least one such agent exists for each unallocated item. Both
of these steps can easily be performed in polynomial time. 	� ◻

A matching of the type required for Lemma 4 can easily be found in the same way as
in the unconstrained case. This is done by finding a maximum-cardinality matching in a
bipartite graph of the agents and items, connecting each agent and item by an edge if the
agent values the item at no less than ��i.9 Thus, finding an �-approximate MMS allocation
is equivalent to finding a feasible partial allocation in the reduced instance, where each
agent i receives a bundle valued at least ��I

i
 . We can use Algorithm 2 on varying colorings

of G to achieve this, providing different guarantees for � depending on the conflict graph
and the number of agents in the reduced instance.

Lemma 5  For a problem instance (N, M, V, G), with |N| > Δ(G) , let n′ be the number of
remaining agents after allocating items as described in Lemma 4, so that vij ≤ ��i for all
remaining agents and items. Then there exists a feasible �-approximate MMS allocation if
� is at most

Proof  Throughout the proof, assume that the valuations have been scaled so that �i = 1
for all agents i. As long as it can be shown that there exists a partial allocation where each

⎧
⎪⎨⎪⎩

1 if n� ≤ 1,

n�∕(3n� − 4) if n� = Δ(G) + 1 = 𝜒(G),

n�∕(2n� + 𝜒(G) − 3) if n� ≥ 𝜒(G),

n�∕(3n� − 3) if n� < 𝜒(G).

9  It is not strictly necessary to find a maximum-cardinality matching—a maximal matching is all that is
needed. In other words, one may arbitrarily allocate items one by one, to agents who value them at no less
than ��

i
.

	 Autonomous Agents and Multi-Agent Systems (2022) 36:8

1 3

 8   Page 18 of 33

agent in the reduced instance receives a bundle valued at least � , then by Lemma 4 a fea-
sible complete �-approximate MMS allocation exists in the original instance. Note that
Lemma 4 also guarantees that the items in the reduced instance are valued at no less than n′
by each agent in the reduced instance.

Case 1 ( n′ ≤ 1 ). The case of n� = 0 is trivial. If n� = 1 , at least one bundle of any of
the remaining agent’s MMS partitions of the original instance remains unchanged after the
reduction. Thus, the agent can be given this bundle valued at no less than 1.

Case 2 ( n� ≥ �(G) ). Create an MMS partition of the original instance for some agent i in
the reduced instance. Remove all items from the MMS partition that are not in the reduced
instance and perform Algorithm 2 on the MMS partition with all remaining agents, never
choosing i when breaking a tie in step 4. Finally, create a �(G)-coloring of the remaining
unallocated items in the reduced instance and perform Algorithm 2 on this coloring using
the remaining agents. Agent i is guaranteed to receive a bundle valued at � in the first bag
filling if � ≤ 1 , as there are at least n′ bundles valued at no less than 1 in the MMS parti-
tion. Any agent that did not receive a bundle in the first bag filling valued the bundle of i at
less than � . Thus, if there are n′′ agents remaining after the first bag filling, it follows from
Lemma 3 that all agents will receive a bundle in the second bag filling if:

Case 3 ( 𝜒(G) > n� ). This case can be solved in a similar way to Case 2. However,
instead of performing a second bag filling with a �(G)-coloring, choose an agent i′ that
did not receive a bundle in the first bag filling. For this agent, create an MMS partition of
the original instance and remove all items that are currently allocated, i.e., let only unal-
located items in the reduced instance remain. Perform Algorithm 2 on this partition using
all remaining agents. Repeat this last bag filling step, exchanging i′ with some remaining
agent, until there are no remaining agents. As in Case 2, agent i receives a bundle worth at
least � , when � ≤ 1 . For the remaining agents, we require that they receive a bundle when
Algorithm 2 is performed on their modified MMS partition. Lemma 4 guarantees that for
any agent i′ , there are at least n′ bundles in their MMS partition with a value of at least 1
each, before removing the allocated items in the reduced instance. Thus, it must be the case
that after the earlier bag fillings, there remains enough value across these n′ bundles that i′
is guaranteed to receive a bundle in the bag filling on its modified MMS partition. By the
same logic as in Case 2, this is by Lemma 3 guaranteed if:

Case 4 ( n� = Δ(G) + 1 = �(G) ). Create an MMS partition of the reduced instance for
some agent i and perform Algorithm 2 on this partition with all other agents in the reduced
instance. For these n� − 1 agents, we can choose an � = n�∕(3n� − 4) , by Lemma 3. Since
there are n′ bundles in the MMS partition and at most n� − 1 were used in the bag filling,
there is at least one untouched bundle in the MMS partition and this can be given to i guar-
anteeing a value of at least 1. In this specific situation, this method is slightly better than
Case 2. 	� ◻

�(G)� ≤ n� − (n� − n�� − 1)2� − � − (n�� − 1)2�

�(G)� ≤ n� − (n� − 2)2� − �

� ≤ n�∕(2n� + �(G) − 3)

n�� ≤ n� − (n� − 2)2� − �

� ≤ n�∕(3n� − 3)

Autonomous Agents and Multi-Agent Systems (2022) 36:8 	

1 3

Page 19 of 33  8

The minimum guaranteed value each agent will receive from Algorithm 2, is, as we
have seen, highly dependent on the number of bundles in the supplied partition of M′ .
The fewer bundles, the less value is required to guarantee the last agent a bundle and
the more value can be given away to each agent. While it is never possible to partition
G into fewer than �(G) feasible bundles, we saw in Lemma 5 that using specific parti-
tions of G provided a skewed distribution of the items across the bags, resulting in fewer
wasted items. Lemma 5 does, however, not fully take into consideration the possibilities
for reallocating items between bundles in order to slightly reduce the value of the unal-
located items at the end of the bag filling. Depending on the situation, it may be possible
to further limit the type of partition of M′ used, or either combine or reorganize some
of the bags during the execution of Algorithm 2, e.g., if the induced subgraph of G over
the remaining unallocated items can be colored with fewer than �(G) colors. While we
have not been able to find any general improvements, it is possible to use these insights
to find slightly better guarantees when there are three agents.

Lemma 6  For a problem instance (N, M, V, G), with |N| = 3 > Δ(G) , there exists a
2/3-approximate MMS allocation.

Proof  This result follows partially from Lemma 5. The lemma provides a guarantee of at
least 2/3 in all cases, except when both n� = 3 and �(G) ∈ {2, 3} . These cases have the
slightly worse guarantee of 3/5 and must be handled differently. For the remainder of the
proof, we assume that the values have been scaled so that for each agent i, �i = 1 . Conse-
quently, for each agent i, we have that vi(M) ≥ 3 and since n� = 3 , all items are worth less
than 2/3.

Let A = ⟨A1,A2,A3⟩ be an MMS partition for one of the agents. Let i and i′ be the two
other agents. If there is a way to create bundles Bi and Bi′ , worth at least 2/3 to respectively
i and i′ such that (Bi ∪ Bi�) ⊆ (Ak ∪ Ak�) , with k, k� ∈ {1, 2, 3} , then a 2/3-approximate MMS
allocation exists.

If there are two distinct bundles Ak,Ak� ∈ A such that vi(Ak) ≥ 2∕3 and vi� (Ak�) ≥ 2∕3 ,
assigning Ak to i and Ak′ to i′ is sufficient for a 2/3-approximate MMS allocation. Other-
wise, both i and i′ value only a single bundle Ak ∈ A at 2/3 or more. This bundle is then
worth at least 5/3 to both agents. We will show that it is always possible to partition Ak
together with possibly some items from another bundle Ak� ∈ A , into two feasible bundles
B1 and B2 both worth at least 2/3 to i. Consequently, one of the bundles must be worth at
least 5/6 to i′ and a 2/3-approximate MMS allocation exists.

If vi(Ak) ≥ 2 or there is at most one item in Ak valued more than 1/3, then Ak can be par-
titioned into two bundles worth at least 2/3 by performing bag filling, always selecting the
most valuable remaining item. Thus, assume that 5∕3 < vi(Ak) < 2 and that the two most
valuable items in Ak , j and j′ , are such that 1∕3 < vij� ≤ vij < 2∕3 . Let A�

k
= Ak ⧵ {j, j

�} .
Then vi(A�

k
) > 1∕3 and if vi(A�

k
) ≥ 2∕3 , then ⟨A�

k
, {j, j�}⟩ is a set of bundles that satisfies our

requirements.
We now assume that 1∕3 < vi(A

�
k
) < 2∕3 , which implies that vij > 1∕2 . Let Cj and Cj′ be

the set of items in M that conflict with, respectively, j and j′ . If vi(Cj) ≤ 2∕3 , there must exist
a set Ak� ∈ A ⧵ {Ak} , such that vi(Ak� ⧵ Cj) ≥ 1∕6 . In this case, ⟨{j} ∪ (Ak� ⧵ Cj),Ak ⧵ {j}⟩ is
a set of bundles that satisfies our requirements. If vi(Cj) > 2∕3 , on the other hand, then
because |Cj| ≤ Δ(G) , there must exist an item j�� ∈ Cj , with vi(j��) > 1∕3 . Depending on
whether j′′ is in Cj′ or not, one can combine either A′

k
 or j′ , respectively, with j′′ to produce

	 Autonomous Agents and Multi-Agent Systems (2022) 36:8

1 3

 8   Page 20 of 33

a bundle worth at least 2/3, which can be complemented by a bundle of the other items in
Ak . 	� ◻

Combining the results of Lemmas 4–6, it can be shown that any instance with
|N| > Δ(G) has an �-approximate MMS allocation with 𝛼 > 1∕3.

Theorem 1  For a problem instance (N, M, V, G), with |N| > Δ(G) , there exists an �
-approximate MMS allocation, where 𝛼 > 1∕3 . Specifically,

where n = |N|.

Proof  We proceed by cases.
Case 1 ( n ≤ 2 ). The case of n = 1 is trivial. For n = 2 , this follows from Lemma 5. The

same result could also be achieved by using the divide and choose protocol [31], which
works in a similar way to the method in the lemma for n = 2.

Case 2 ( n = 3 ). Follows directly from Lemma 6.
In the remaining two cases, we use the fact that Lemmas 4 and 5 guarantee the existence

of �-approximate MMS allocations if � is not higher than the limits in Lemma 5. Since we
cannot guarantee that a certain number of items are valued more than � in the general case,
the highest value for � we may choose is the one that works for all n′.

Case 3 ( n ≥ 4 and �(G) = 2 ). Either n� = 1 and � can be 1, or n� ≥ �(G) and we require
� ≤ n�∕(2n� − 1) . This is minimized when n� = n and thus � = n∕(2n − 1) will work.

Case 4 ( n ≥ 4 and �(G) ≥ 3 ). Here, one can easily verify that the guarantee of Lemma
5 increases on the interval [�(G), n] and decreases on the interval [1,�(G)] , if the improve-
ments in the special case of �(G) = Δ(G) + 1 are ignored. Thus, the worst case, n� = �(G) ,
allows for � = �(G)∕(3�(G) − 3) . 	� ◻

Note that Theorem 1 does not handle the case of �(G) = Δ(G) + 1 by itself, for which
Lemma 5 provides better guarantees. Remark 2 shows the achievable guarantees in this
case, which can be proven in a similar way to Theorem 1.

Remark 2  For a problem instance (N, M, V, G), with |N| > Δ(G) , |N| ≥ 4 and
Δ(G) + 1 = �(G) , slightly better guarantees than in Theorem 1 can be found for Δ(G) ≥ 2
using Lemma 5. Specifically,

Theorem 1 shows the existence of �-approximate MMS allocations with approxima-
tion factors better than 1/3. The proof of the theorem is in fact constructive. However,
the method used in the proof relies heavily on being able to both find a minimum vertex

� =

⎧
⎪⎪⎨⎪⎪⎩

1 if n ≤ 2,
2

3
if n = 3,

n

2n−1
if n ≥ 4 and �(G) = 2,

�(G)

3�(G)−3
if n ≥ 4 and �(G) ≥ 3,

𝛼 =

⎧
⎪⎨⎪⎩

𝜒(G)+1

3𝜒(G)−1
if 𝜒(G) < 7,

𝜒(G)−1

3𝜒(G)−6
if 𝜒(G) ≥ 7.

Autonomous Agents and Multi-Agent Systems (2022) 36:8 	

1 3

Page 21 of 33  8

coloring of G and being able to find MMS partitions for the agents. Both problems are
NP-hard, leaving us without a polynomial-time approximation algorithm. Relaxing the
approximation guarantees and employing some of the tricks used in MMS approxima-
tion when there are no restrictions on the bundles, it is possible to find a polynomial-
time approximation algorithm for cases where |N| > Δ(G) . Algorithm 3 outlines this
algorithm.

Algorithm 3  Given the problem instance (N, M, V, G), with |N| > Δ(G) , find an �
-approximate MMS allocation for sufficiently small 𝛼 > 0 .

1.	 Scale valuations so that vi(M) = |N| for all i ∈ N.
2.	 Repeatedly reduce the instance by allocating single items worth at least � to some

remaining agent. Let N′ and M′ be the remaining agents and items at any stage, respec-
tively. Rescale valuations to vi(M�) = |N�| for all i ∈ M� after each reduction.

3.	 (a)	 If |N�| = 1 , give the remaining agent i an approximate maximum weighted inde-
pendent set on G[M�] , weighted by vi , using the approximation algorithm of Halldorsson
and Lau [20].
(b)	 If |N′| ≥ 2 and G[M�] is Δ(G)-colorable, perform Algorithm 2 on any Δ(G)-coloring
of G[M�].
(c)	 If Δ(G) ≥ |N�| ≥ 2 and G[M�] is not Δ(G)-colorable, select an agent i ∈ N� . Create
a bundle B of i’s least-valued item in each non-Δ(G)-colorable component of G[M�] and
create a Δ(G)-coloring of G[M� ⧵ B] . Scale the valuations of i so that vi(M� ⧵ B) = |N�| ,
unless this results in vi(M�) > |N�| + 1 , in which case rescale to vi(M�) = |N�| + 1 . Per-
form Algorithm 2 on B and the Δ(G)-coloring, prioritizing other agents than i in when
breaking ties.
(d)	 If |N�| > Δ(G) ≥ 1 and G[M�] is not Δ(G)-colorable, perform Algorithm 2 on a
( Δ(G) + 1)-coloring of G[M�].

4.	 Allocate remaining items without introducing conflicts in any bundle.

Algorithm 3 uses the same basic strategy as the approach in the existence proof,
except that it relies on colorings that may be found in polynomial time. Note that instead
of each special case in the bag filling step of the algorithm, one could use a ( Δ(G) + 1)
-coloring of G[M�] . This would, however, result in a reduction in the highest viable � by
almost a factor of 2 in the worst case.

Theorem 2  For a problem instance (N, M, V, G), with |N| > Δ(G) , Algorithm 3 finds
an �-approximate MMS allocation in polynomial time, with 𝛼 > 1∕Δ(G) when Δ(G) > 2 .
Specifically,

Proof  In order for the algorithm to run in polynomial time, it cannot perform the NP-hard
calculation of �i . Instead, normalization is used, providing an upper bound on the value.

𝛼 =

⎧
⎪⎨⎪⎩

1∕2 if Δ(G) = 1,

3∕7 if Δ(G) = 2,

2∕(Δ(G) + 2) if Δ(G) > 2.

	 Autonomous Agents and Multi-Agent Systems (2022) 36:8

1 3

 8   Page 22 of 33

This is done by continuously scaling the values of each agent i, so that vi(M�) = |N�| before,
during and after step 2, where M′ and N′ are the remaining items and agents, respectively.
By Lemmas 2 and 4, this guarantees that �i ≤ 1 in all parts of the algorithm, except for
agent i in step 3c. The equivalent validity of the rescaling of agent i’s valuations in step 3c
will be covered later, together with the rest of the step.

In step 3a, all agents, except one, have received one-item bundles. This means that for
the remaining agent, the allocated items can at most have been taken from |N| − 1 of the
|N| bundles in any MMS partition of the original instance. Consequently, at least one of the
bundles in each MMS partition exists in G[M�] . Since a feasible bundle forms an independ-
ent set in the conflict graph, any maximum weighted independent set, S, of G[M�] weighted
by this agent’s valuations must fulfill vi(S) ≥ �i . The approximation algorithm of Halldors-
son and Lau [20] has an approximation factor of 3∕(Δ(G) + 2) , which for all Δ(G) ≥ 1 is
better than the limits of the theorem.

In step 3b, Lemma 3 guarantees that � can be |N�|∕(2|N�| + Δ(G) − 2) , which when
Δ(G) ≤ 2 is at least 1/2 and otherwise minimized when |N�| = 2 , i.e., � = 2∕(Δ(G) + 2) .
Similarly, in step 3d, the function is minimized when |N�| = Δ(G) + 1 , allowing for
� = (Δ(G) + 1)∕(3Δ(G) + 1) , which is 1/2 for Δ(G) = 1 , 3/7 for Δ(G) = 2 and otherwise at
least 2∕(Δ(G) + 2) , satisfying the guarantees of the theorem.

For step 3c we must show that (i) G[M� ⧵ B] is Δ(G)-colorable, (ii) the rescaling of agent
i’s valuation guarantees that �i ≤ 1 , and (iii) each remaining agent receives a bundle that
satisfies the requirements set forth in the theorem.

For (i), Brooks’ theorem [10] tells us that each non-Δ(G)-colorable component is either
the complete graph of Δ(G) + 1 vertices, KΔ(G)+1 , or, if Δ(G) = 2 , a cycle of odd length,
C2k+1 . Removing a single item from the component will result in an induced subgraph of,
respectively, KΔ(G) and a path. Each of these can easily be verified to be Δ(G)-colorable for
Δ(G) ≥ 2 . Subsequently, G[M� ⧵ B] is Δ(G)-colorable.

For the rescaling of agent i’s valuations, (ii), let A = ⟨A1,A2,… ,A�N�⟩ be any of i’s MMS
partitions of the original instance. Since G[M�] is not Δ(G)-colorable, either a subset of the
bundles in A that contained items allocated in step 2 must contain an item from each non-
Δ(G)-colorable component or at least Δ(G) + 1 ≥ |N�| + 1 bundles remain untouched in
step 2. In the first case, the remaining value is at least |N�|�i + vi(B) , i.e., vi(M� ⧵ B) ≤ |N�|
guarantees that �i ≤ 1 . In the latter, the remaining value is at least (Δ(G) + 1)�i , and
vi(M

�) ≤ |N�| + 1 ≤ Δ(G) + 1 guarantees that �i ≤ 1 . Scaling the valuations to the mini-
mum of these, guarantees that either the value of the bundles in the Δ(G)-coloring is |N′| or
the total value is |N�| + 1 . In the first case, Lemma 3 allows � = 2∕(Δ(G) + 2) for i, while
in the latter it allows � = 3∕(Δ(G) + 2) for i. In either case, agent i’s bundle is compatible
and � is at least as high as the one given in the theorem.

For the remaining agents, (iii), the bag filling algorithm is performed with Δ(G) + 1
bundles and a total value of |N′| . This would by Lemma 3 result in � = 2∕(Δ(G) + 3) ; how-
ever, since i is never selected when breaking ties, either all other agents are given a bundle
before i or the bundle given to agent i is worth less than � . Consequently, we need to select
� so that the following holds:

Lemma 4 guarantees that step 4 completes the �-approximate MMS allocation.
It can easily be verified that steps 1, 2, 3a and 4 can all be completed in polynomial time

in the number of agents and items. Checking that G[M�] is Δ(G)-colorable is equivalent

(Δ(G) + 1)� ≤ |N�| − 2(|N�| − 2)� − �

� ≤ 2∕(Δ(G) + 2)

Autonomous Agents and Multi-Agent Systems (2022) 36:8 	

1 3

Page 23 of 33  8

to checking if the induced subgraph contains either KΔ(G)+1 or if Δ(G) = 2 a component
that forms an odd cycle. Each of these checks can be performed in polynomial time. A
(Δ(G) + 1)-coloring can greedily be constructed in polynomial time and a polynomial-time
algorithm of Lovász [27] can be used to construct a Δ(G)-coloring in a Δ(G)-colorable
graph. Thus, steps 3b, 3c and 3d can be completed in polynomial time and the algorithm
will find an �-approximate MMS allocation in polynomial time. 	� ◻

Algorithm 3 relies on ( Δ(G) + 1 )- and Δ(G)-colorings in order to achieve its guar-
antee, as at least one of them can be constructed in polynomial time for any type of
graph. Many graphs admit colorings using fewer colors. Optimal colorings can gener-
ally not be found in polynomial time. However, for some restricted graph classes we can
find optimal colorings in polynomial time and for other there exists methods for finding
colorings within a certain factor of optimum. For these classes, using the simpler color-
ings (i.e., with fewer colors) will improve the guarantees of Algorithm 2, which would
improve the possible approximation factor that can be used in a polynomial-time algo-
rithm. One such special case, is bipartite graphs, for which a 2-coloring can be found
in polynomial time. Corollary 1 shows the possible approximation factor in this case,
which is almost as good as our earlier theoretical lower bound.

Corollary 1  For a problem instance (N, M, V, G), where G is a bipartite graph and
|N| > Δ(G) , a 1/2-approximate MMS allocation can be found in polynomial time.

Proof  When G is bipartite, we do not need to rely on a Δ(G)-coloring, as in Algorithm 3,
in order to find an approximation in polynomial time. Instead, a 2-coloring can greedily
be found in polynomial time. If the Δ(G)-coloring is replaced by a 2-coloring, the proof of
Theorem 2, without consideration for Δ(G)-colorablility and ( Δ(G) + 1)-colorings, guaran-
tees an � of 1/2. 	� ◻

While the use of better colorings can improve the value of � for specific graph
classes, there are still quite strong limitations on how well Algorithm 2 can perform on
a coloring of the graph. We will, for the straightforward approach used, be limited by
an � of around 1∕�(G)—and generally worse, because of the problems of finding a �(G)
-coloring. Using existing algorithms for more complex types of valuation functions with
no conflicting items, we can guarantee a constant approximation factor in polynomial
time for certain classes of graphs.

Proposition 9  For a problem instance (N, M, V, G) with |N| > Δ(G) , a 1/8-approximate
MMS allocation may be found in polynomial time if the maximum weighted independent
set problem can be solved in polynomial time on G and all induced subgraphs of G.

Proof  To find a polynomial-time algorithm, we will show a reduction to an unconstrained
instance with fractionally subadditive (XOS) valuations. Ghodsi et al. [17] showed that
for an instance of this type, a polynomial-time algorithm exists for 1/8-approximate MMS
allocations given a polynomial-time demand oracle and XOS oracle.

Recall that a set function f ∶ 2M → ℝ≥0 is XOS if it can be represented as a finite set
of additive functions F = {f1, f2,… , f

�
} , such that f(X) is the maximum of all the additive

functions applied to X, i.e., f (X) = max�
i=1

fi(X) . We will show that an oracle that finds the
maximum weight f(S) of an independent set in S ⊆ M is XOS. For a graph G, let I(G) be

	 Autonomous Agents and Multi-Agent Systems (2022) 36:8

1 3

 8   Page 24 of 33

the set of all the independent sets of G. For each I ∈ I(G) , let fI ∶ 2M → ℝ≥0 be an addi-
tive function, with values for m ∈ M given by

For a set of vertices S ⊆ M , fI finds the sum of the weight of the vertices in S ∩ I . Let
F = {fI ∶ I ∈ I(G)} . Because I(G) contains all possible independent sets of G, the XOS
function over F, f ′ , will for any set of vertices S ⊆ M be maximized by fI for any maxi-
mum weighted independent set, I, on G[S]. Thus, f = f � and the oracle is XOS. Conse-
quently, XOS valuations may be calculated for each agent i by using a maximum weighted
independent set oracle on the graph using agent i’s valuations as vertex weights.

We wish to use the 1/8-approximation algorithm for unconstrained MMS for instances
with XOS valuations to find 1/8-approximate MMS allocations for instances with addi-
tive valuations and conflicting items. In order for this to be possible, we need to show that
feasible allocations in either setting can be converted to feasible allocations in the other
with at least the same value. If this is possible, then the MMS guarantee is the same in both
settings and any �-approximate MMS allocation in one setting can be converted to an �
-approximate MMS allocation in the other setting.

Let A = ⟨A1,A2,… ,A�N�⟩ be an allocation in the XOS setting. For each agent i, a maxi-
mum weighted independent set, Si , of Ai , with respect to agent i’s valuations, will have
the same value as Ai . Consequently, S = ⟨S1, S2,… , S�N�⟩ is an allocation, possibly partial,
where each agent receives the same value as in A. Since each Si forms an independent set
in G, S is also a feasible partial allocation with respect to the conflict graph, where each
agent receives the same value as in the XOS setting. Without losing value, the unallocated
items may be allocated to arbitrary agents without conflicts, as |N| > Δ(G) . As a result, all
allocations in the XOS setting can be converted to ones in the conflicting items setting with
at least the same value.

Let A = ⟨A1,A2,… ,A�N�⟩ be a feasible allocation in the conflicting items setting. Then
each bundle Ai forms an independent set of G and Ai ∈ I  . Consequently, fAi

(Ai) = vi(Ai)
and bundle Ai has at least the same value in the XOS setting.

In order for the 1/8-approximation algorithm of Ghodsi et al. to be usable in polynomial
time, we must show that the reduction and subsequent conversion of the �-approximate
MMS allocation can be performed in polynomial time. The latter must be true, as it con-
sists of solving the maximum independent set problem |N| times in addition to reallocating
the set of unallocated items, which can both be performed in polynomial time given our
assumptions.

In order for the reduction to be performable in polynomial time, the demand oracle and
XOS oracle used in the algorithm of Ghodsi et al. must both be creatable and queryable
in polynomial time. The latter is an oracle that given a set of items, S, and the XOS func-
tion of an agent, fi , provides a representation of the value each item in S contributes in
the f ∈ Fi that is maximized for S. The construction of fi implies that f = fI , where I is a
maximum weighted set of G[S] with respect to agent i’s valuations. An oracle that finds I
and provides a representation of fI is therefore an XOS oracle. Both of these operations can
be performed in polynomial time, given our assumptions.

The demand oracle is an oracle that, given a list of prices ⟨p1, p2,… , pm⟩ and the
XOS function of an agent, fi , finds a set of items, S, that maximizes fi(S) −

∑
s∈S ps . In

the algorithm, the prices are non-negative, which implies that vis − ps ≤ vis . Let S′ be the
possibly empty set of items, where vis < ps . Then any maximum weighted independent

fI({m}) =

{
w(m) if m ∈ I;

0 otherwise.

Autonomous Agents and Multi-Agent Systems (2022) 36:8 	

1 3

Page 25 of 33  8

set, S, in G[M ⧵ S�] with weights vis − ps maximizes fi(S) −
∑

s∈S ps . To see that this is
true, let S be any set that maximizes the function. Any item in S′ would provide a nega-
tive contribution and cannot be in S, i.e., S ⊆ M ⧵ S′ . If S is an independent set, then
fi(S) −

∑
s∈S ps =

∑
s∈S(vis − ps) , and consequently if S is an independent set, it is a maxi-

mum weighted independent set in G[M ⧵ S�] with weights vis − ps . Now, we only need to
show that for any maximum that is not an independent set, there exists an independent set
with at least the same value. Assume that S is not an independent set, and let S∗ be a maxi-
mum weighted independent set of S with respect to the valuations of i. Then fi(S) = vi(S

∗)
and fi(S) −

∑
s∈S ps ≤ fi(S

∗) −
∑

s∈S∗ ps . Consequently, finding a maximum weighted inde-
pendent set maximizes the function. This can be done in polynomial time and thus, the
demand oracle can be queried in polynomial time. 	� ◻

The maximum weighted independent set problem is NP-hard, which limits the use-
fulness of Proposition 9. However, there are several graph classes where the problem is
solvable in polynomial time; two noteworthy examples are bipartite graphs and claw-free
graphs [29]. While we for bipartite graphs already know how to find 1/2-approximate
MMS allocations in polynomial time, there is no restriction on the possible values for �(G)
in claw-free graphs.10 As a result, the reduction to XOS valuations could provide major
improvements for dense, claw-free conflict graphs.

While we for some graphs cannot use the results of Proposition 9 to find 1/8-approxi-
mate MMS allocations in polynomial time, the reduction to XOS valuations holds nonethe-
less. This provides an alternative existence proof for MMS approximation, as Ghodsi et al.
[17] showed the existence of 1/5-approximate MMS allocations for XOS valuations. Note
that Ghodsi et al. also showed similar, but better, results for the more restrictive setting of
submodular valuation functions. It might tempting to think that the maximum weighted
independent set oracle is submodular; however, it is not, as is evident from Example 2.

Example 2  Consider a problem instance consisting of 4 items, where the valuation function
of agent i is given by vi1 = 5, vi2 = 3, vi3 = 5, vi4 = 3 . Let the conflict graph be as follows:

1

2

3

4

Let f be the function that given a set of items finds the weight of the maximum weighted
independent set using the valuations of the agent as vertex weights. If we let X = {1, 2, 4}
and Y = {2, 3, 4} , then f (X) + f (Y) = 12 < 16 = f (X ∪ Y) + f (X ∩ Y) . In other words, f is
not submodular.

10  For example, a complete graph is claw-free and has �(G) = Δ(G) + 1.

	 Autonomous Agents and Multi-Agent Systems (2022) 36:8

1 3

 8   Page 26 of 33

4 � Conflicting items in practice

We are interested in determining how fairness is affected, and the extent to which exist-
ing tools and formalisms still apply, with item conflicts. Specifically, when imposing item
conflicts:

RQ1	 To what extent do fair allocations (EF1, MMS) exist?
RQ2	 How is the fairness (MMS, PROP) of random allocation affected?
RQ3	 To what extent does MNW imply fairness (EF1, MMS)?

First of all, we wish to know to what extent fair allocation is actually possible in this new
setting (RQ1). We know EF1 is not guaranteed in this setting, and that MMS may not be
achievable even in the unconstrained case [23], but will the fairness guarantees go down to
the point where these properties become the exception rather than the rule? And if MMS
were to be unattainable for some instance, was it attainable without the item conflicts, or
could the opposite be true, because of declining individual maximin shares?

We also wish to look at the prevalence of fair allocations (RQ2). With item conflicts,
many allocations are no longer feasible, so utility will tend to decrease. However, whether
fairness decreases is not a given. For example, although individual maximin shares will
generally be lower in any setting with additional constraints, the degree of attainable MMS
approximation may very well go up. And although one may lose the fairest allocations, it is
quite possible that one loses many more unfair allocations; each item conflict, for example,
prevents some degree of hoarding, as no agent can hold both items. To examine this effect
empirically, we apply a random allocation procedure, as described in Proposition 7, study-
ing the effect on the approximation of both MMS and proportionality, the latter to separate
the effect of forced distribution of items from the lowering of individual maximin shares.
This question is of interest in its own right, describing inherent properties of the prob-
lem. An answer might, however, also shed some light on the relative hardness of finding
fair allocations, e.g., through randomized or heuristic procedures, with and without item
conflicts.

Finally, we look at the impact on the maximum Nash welfare (MNW), inspired by
the work of Caragiannis et al. (RQ3). They show that MNW is a useful tradeoff between
efficiency and fairness, in the unconstrained allocation setting [12]. Is this still the case
with item conflicts? For one thing, we look for a decrease in MNW, which might indicate
either lower efficiency or fairness, or both. And while MNW still implies Pareto optimality
when item conflicts are introduced, it no longer implies EF1 in general, and it is uncertain

Table 1   The ranges of the randomly selected graph parameters

Par. Range Description Model

n 2, 3,… , 10 The number of agents All
m 2n, 2n+1,… , 4n The number of items (vertices) All
p (0, 1) Edge probability Erdős−Rényi
k 1, 2,… ,m Initial size and connection degree Barabási−Albert
d 2, 4,… ,m∕2 Average degree Watts−Strogatz
� [0, 1) Rewiring probability Watts−Strogatz

Autonomous Agents and Multi-Agent Systems (2022) 36:8 	

1 3

Page 27 of 33  8

to which extent its approximation of MMS is preserved, so we explore the relationship
between MNW and both of these properties.

4.1 � Experimental setup

To address our empirical questions, we generated a collection of random instances, and
found randomized allocations, MMS allocations, MNW allocations with and without EF1,
all with and without item conflicts.

Problem instances. A central issue in generating instances is the choice of graph mod-
els. We selected three of the most popular and well-studied models of real-world graphs as
our constraints:

(i)	� The Erdős–Rényi model, where each edge is present with probability p [5];
(ii)	� The Barabási–Albert model, where a small graph is extended by preferential attach-

ment [1]; and
(iii)	� The Watts–Strogatz model, where the edges of a regular ring lattice are randomly

rewired with a certain probability [32].

Before producing an instance for a given graph type, all parameters were selected uni-
formly at random, in the ranges shown in Table 1. The limits for n and m are based on
real-world data from Caragiannis et al. [12], where the largest n observed was 10, and the
average ratio m/n was approximately 3. The upper limit for d is based on the assumption of
Watts and Strogatz that d ≪ m [32].

Once the parameters were set, a random graph G was generated. If the graph had no
edges, it was discarded, as this would merely be an instance of the ordinary allocation prob-
lem.11 If Δ(G) ≥ n , the graph was also discarded; for such instances, an allocation may not
be feasible, and many results and methods, including the randomized algorithm of Propo-
sition 7, do not apply. The process was repeated until we had 5000 graphs of each kind
for which n ≤ C(G) . This was done to have enough data to study the prevalence of EF1 in
cases where it is not immediately implied by Proposition 2. Finally, for each instance, a
valuation was created by randomly dividing approximately 1000 points among the items,
for each agent, in line with the value specification mechanism of Caragiannis et al. More
specifically, each item was given a random real value, and the sum for each agent was
scaled to 1000. Finally, individual values were rounded, as the mixed-integer program used
to find MNW requires integral valuations [12].

Implementation The experiments were implemented in the Julia programming lan-
guage, version 1.5.3 [3], using the LightGraphs package [9] for handling graphs, and the

Table 2   Summary of the
generated instances

Type Num. MMS n m |E| Δ C

Erdős−Rényi 8620 8583 6.4 18.1 17.4 3.6 11.4
Barabási−Albert 5000 4956 7.7 19.8 20.5 6.0 19.8
Watts−Strogatz 5009 4975 7.1 20.1 30.7 4.4 19.4

11  This only applies to the Erdős–Rényi case.

	 Autonomous Agents and Multi-Agent Systems (2022) 36:8

1 3

 8   Page 28 of 33

JuMP package [14] with Gurobi 9.1.1 [19] as the backend for solving mixed-integer linear
programs (MIPs).12 For the randomized allocation, 1000 trials were performed for each
instance, and the average recorded. Gurobi was run with a timeout of 5 min (on an 8-core
Intel i9-9900K at 3.60 GHz).

For finding individual maximin shares, a straightforward maximin MIP was used, with
n clones of the given agent. The MMS allocations were then found by another maximin
MIP, where agents’ values were divided by their maximin shares. These maximin shares
were also used to find the proportion of MMS for randomized allocation and MNW. The
MNW allocations were found by a MIP based on the one described by Caragiannis et al.
[12] (adapted to permit varying maximum bundle values), and MNW with EF1 was found
by the same program, with added constraints requiring EF1. In all cases, item conflicts
were handled by adding the necessary constraints to the relevant MIPs.

4.2 � Experimental results

A summary of the instances is given in Table 2. While running the experiments, 115
instances (0.006%) timed out when solving the mixed-integer programs for MMS, and
were dropped from any MMS-based calculations. The number of remaining instances are
listed in the MMS column. Following this are averages for the number of agents (n), items
(m) and edges ( |E| ), as well as for the maximum degree ( Δ ) and largest component ( C ).
Beyond timeouts, another issue is the required precision to compute MNW, which may be
quite high, even for a modest number of agents. When the precision is not available, the
result may not be exactly MNW, but will still—with much laxer precision requirements—
be Pareto-optimal and, for the unconstrained case, EF1 [cf. 12]. For our instances, only
24.15% had the sufficient precision, and were thus guaranteed to find an MNW allocation,
and not some close approximation. This means that our results may in some sense be seen
as an empirical evaluation of the mixed-integer program of Caragiannis et al. [12] for find-
ing MNW, rather than of the MNW itself. As this is currently the only feasible approach

0.0 0.2 0.4 0.6 0.8 1.0
0%

10%

20%

30%

α without item conflicts
0.0 0.2 0.4 0.6 0.8 1.0

α with item conflicts

Fig. 3   The distribution of the approximation ratio � for MMS of a random distribution, with randomized tie
breaking in the case of item conflicts (Algorithm 1). The bin labels indicate the lower inclusive limits. The
item conflicts are seen to force a shift toward MMS

12  The source code and raw experimental results are available as ancillary files for the preprint of this paper
at https://​arxiv.​org/​abs/​2104.​06280.

https://arxiv.org/abs/2104.06280

Autonomous Agents and Multi-Agent Systems (2022) 36:8 	

1 3

Page 29 of 33  8

for finding MNW solutions, this still tells us something about the usefulness of MNW in
practice. And although the solutions found might, in principle, lose some of the power of
a guaranteed MNW solution, it seems unlikely that they would do better on any fairness
criteria, at least in any systematic way; thus positive results could still be taken as support
for the use of MNW.

The existence of fairness. Without constraints, EF1 allocations always exist, and all but
the rarest instances have MMS allocations; we wish to know to what extent this holds true
also under item conflicts (RQ1). Under item conflicts, we have established that EF1 is not
guaranteed for any graph when n ≤ Δ(G) (Proposition 1), and is otherwise guaranteed in
some cases (Propositions 2, 4 and 5) but not in others (Proposition 3). The question is how
common it is in practice. Similarly, we have shown that many approximations to MMS are
guaranteed to exist, and although MMS is not guaranteed in general, might their existence
still be the rule, despite having conflicting items? Our results are easily summed up in the
affirmative: Every instance had both an EF1 allocation and an MMS allocation (also in the
unconstrained case).

Expected fairness. When allocating items randomly to agents, one would expect a fairly
even distribution, and introducing item conflicts does not affect this expectation too much
on an individual level (cf. Proposition 7). We wish to examine the effects on the minimum
as well, i.e., how closely we approximate MMS and proportionality (RQ2). For our random
instances, random allocation disregarding the conflicts (i.e., a lottery) achieved, on average,
an 0.23-approximate MMS allocation. With conflicts, however, we got an average approxi-
mation ratio of 0.30. A possible cause for the increase is that in the maximin problem being
solved, values are normalized by the individual maximin shares of the agents, and these
will generally go down with additional constraints. However, a similar increase is seen in
the approximation ratio for proportionality (from 0.22 to 0.29), which would seem to indi-
cate that the conflicts enforce a certain level of distribution of the items, with a forced
increase in fairness. The distribution of approximation ratios for MMS is shown in Fig. 3.

The fairness of MNW. As opposed to the proportion of MMS for randomized alloca-
tion, the maximum Nash welfare will never increase when adding item conflicts, simply
because the original is then a relaxation, with a higher possible optimum. The question
is how much this impacts its usefulness as a tool for fair allocation (RQ3). For one thing,
we know it can no longer guarantee EF1, even with n > Δ(G) (Proposition 6). It turns out,
however, that it is still very close, with 99.88% of the MNW solutions for conflicting items
being EF1. Conversely, adding a requirement of EF1 reduces the average MNW by 1.52%.

[0.7, ·) [0.8, ·) [0.9, ·) [1.0,∞)
0%

20%

40%

60%

80%

100%

0.016% 0.081% 0.378%

99.525%

α without item conflicts

[0.7, ·) [0.8, ·) [0.9, ·) [1.0,∞)

0.022% 0.157% 0.681%

99.141%

α with item conflicts

Fig. 4   The proportion of MMS attained by MNW before and after adding item conflicts

	 Autonomous Agents and Multi-Agent Systems (2022) 36:8

1 3

 8   Page 30 of 33

The reduction in proportion of MMS was not too substantial either. On average, the
MNW solutions for our instances were 1.43-MMS, and adding item conflicts reduced this
to 1.41-MMS (i.e., on average well above full MMS in both cases). The proportion of cases
where MMS was achieved fell from 99.52 to 99.14%, as illustrated in Fig. 4.

5 � Discussion

The main purpose of this paper was to explore how introducing item conflicts affects the
existence, prevalence and implications of fairly common fairness criteria. From a general
theoretical standpoint, item conflicts seem to result in a certain reduction in fairness guar-
antees. At least, both the existence of EF1 and the guarantee that MNW leads to EF1 no
longer hold. However, from a practical point of view, the reductions in guarantees seem to
be minor and for some cases—non-existence of EF1—do not occur in our randomly gener-
ated instances.

It is interesting to see that while our theoretical results show that MNW no longer leads
to EF1, in practice this only occurs in a handful of instances. Additionally, MNW seems to
produce only slightly worse MMS approximations than in the unconstrained setting, still
mostly resulting in MMS allocations. While no longer theoretically backed to the same
extent as in the unconstrained setting, in practice MNW still seems to mostly provide simi-
lar benefits as those advocated by Caragiannis et al. [12], providing a practical tradeoff
between efficiency and fairness.

For the non-existence of EF1, the experiments indicate that this most likely only very
rarely occurs. This might to a certain degree be indicative of the extent to which there exist
combinations of conflict graphs and number of agents such that we can construct instances
without EF1 allocations. An insight that might help for the earlier mentioned open problem
about which combinations of conflict graphs and the number of agents EF1 always exist
for.

Both the non-existence proofs and the relative dearth of counter-examples in practice
for both EF1 and the implication from MNW to EF1 tell us something about the prevalence
of these properties. They do not, however, tell the full story about the probability of occur-
rence of non-existence. It might be that instances generated in our experiments provide
types of instances where the non-existence is either likely or unlikely to occur in relation
to the overall likelihood for all instances. An exploration of the probability with which
each property is expected to occur would provide a better insight into the usefulness of the
properties in real-world settings. Note that similar studies have been performed for envy-
freeness in the unconstrained setting [see, e.g., 28].

For all but some special cases, there remains a large gap between our lower bound for the
theoretical approximation guarantees of MMS and what our polynomial-time algorithms
can guarantee. An interesting continuation of the research would be looking into improve-
ments of the guarantees, both in general and for polynomial-time algorithms, especially
considering that all instances in the experiments admit an MMS allocation. Conversely, it
would not be unlikely that some, not too great, upper bound on polynomial approximation
guarantees exist (unless P = NP ), because of the close relation to hard graph problems and
the upper bound for the closely related problem variant of Chiarelli et al. [13].

A natural extension to conflicting items that may be interesting to explore is introducing
additional conflicts between agents and items, as in the standard weighted bipartite match-
ing problem, where some agents simply cannot receive certain items. For example, this

Autonomous Agents and Multi-Agent Systems (2022) 36:8 	

1 3

Page 31 of 33  8

would be useful in the real-world example where items represent positions or roles in an
organization. With agent–item conflicts, it would be possible to limit certain agents from
taking on specific roles, either due to outside conflicts of interest or a lack of the require
skillset needed for the role. In the same way that allocations for conflicting items form
n-colorings of the conflict graph, the extension to item–agent conflicts would have alloca-
tions that form list colorings—a fairly well-known generalization of graph coloring, which
has also been studied in the context of equitable coloring [22, 25].

Funding  Open access funding provided by NTNU Norwegian University of Science and Technology (incl
St. Olavs Hospital - Trondheim University Hospital).

Declaration 

Conflict of interest  The authors have no relevant financial or non-financial interests to disclose.

Open Access  This article is licensed under a Creative Commons Attribution 4.0 International License,
which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long
as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Com-
mons licence, and indicate if changes were made. The images or other third party material in this article
are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the
material. If material is not included in the article’s Creative Commons licence and your intended use is not
permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly
from the copyright holder. To view a copy of this licence, visit http://​creat​iveco​mmons.​org/​licen​ses/​by/4.​0/.

References

	 1.	 Albert, R., & Barabási, A. L. (2002). Statistical mechanics of complex networks. Reviews of modern
physics, 74(1), 47.

	 2.	 Amanatidis, G., Markakis, E., Nikzad, A., & Saberi, A. (2017). Approximation Algorithms for Com-
puting Maximin Share Allocations. ACM Transactions on Algorithms, 13(4), 52:1-52:28. https://​doi.​
org/​10.​1145/​31471​73.

	 3.	 Bezanson, J., Edelman, A., Karpinski, S., & Shah, V. B. (2017). Julia: A fresh approach to numerical
computing. SIAM review, 59(1), 65–98. https://​doi.​org/​10.​1137/​14100​0671

	 4.	 Biswas, A., & Barman, S. (2018). Fair division under cardinality constraints. In: Proceedings of the
Twenty-Seventh International Joint Conference on Artificial Intelligence, International Joint Confer-
ences on Artificial Intelligence Organization, pp 91–97

	 5.	 Bollobás, B. (2001). Random Graphs (2nd ed.). Cambridge University Press.
	 6.	 Bouveret, S., & Lemaître, M. (2016). Characterizing conflicts in fair division of indivisible goods

using a scale of criteria. Autonomous Agents and Multi-Agent Systems, 30(2), 259–290. https://​doi.​org/​
10.​1007/​s10458-​015-​9287-3

	 7.	 Bouveret, S., Cechlárová, K., Elkind, E., Igarashi, A., & Peters, D. (2017). Fair division of a graph. In:
Proceedings of the Twenty-Sixth International Joint Conference on Artificial Intelligence, International
Joint Conferences on Artificial Intelligence Organization, Melbourne, Australia, pp 135–141, https://​
doi.​org/​10.​24963/​ijcai.​2017/​20

	 8.	 Brandt, F., Conitzer, V., Endriss, U., Lang, J., & Procaccia, A.D. (eds) (2016). Handbook of computa-
tional social choice. Cambridge University Press

	 9.	 Bromberger, S., & Fairbanks, J. et al. (2017). JuliaGraphs/LightGraphs.jl: LightGraphs. https://​doi.​org/​
10.​5281/​zenodo.​889971,

	10.	 Brooks, R. L. (1941). On colouring the nodes of a network. Mathematical Proceedings of the Cam-
bridge Philosophical Society, 37(2), 194–197. https://​doi.​org/​10.​1017/​S0305​00410​00216​8X, pub-
lisher: Cambridge University Press

http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1145/3147173
https://doi.org/10.1145/3147173
https://doi.org/10.1137/141000671
https://doi.org/10.1007/s10458-015-9287-3
https://doi.org/10.1007/s10458-015-9287-3
https://doi.org/10.24963/ijcai.2017/20
https://doi.org/10.24963/ijcai.2017/20
https://doi.org/10.5281/zenodo.889971
https://doi.org/10.5281/zenodo.889971
https://doi.org/10.1017/S030500410002168X

	 Autonomous Agents and Multi-Agent Systems (2022) 36:8

1 3

 8   Page 32 of 33

	11.	 Budish, E. (2011). The Combinatorial Assignment Problem: Approximate Competitive Equilibrium
from Equal Incomes. Journal of Political Economy, 119(6), 1061–1103. https://​doi.​org/​10.​1086/​
664613, publisher: The University of Chicago Press

	12.	 Caragiannis, I., Kurokawa, D., Moulin, H., Procaccia, A. D., Shah, N., & Wang, J. (2019). The unrea-
sonable fairness of maximum nash welfare. ACM Transactions on Economics and Computation, 7(3),
12:1-12:32.

	13.	 Chiarelli, N., Krnc, M., Milanič, M., Pferschy, U., Pivač, N., & Schauer, J. (2020). Fair packing of
independent sets. In: Combinatorial Algorithms, Springer International Publishing, Cham, Lecture
Notes in Computer Science, pp 154–165, https://​doi.​org/​10.​1007/​978-3-​030-​48966-3_​12

	14.	 Dunning, I., Huchette, J., & Lubin, M. (2017). Jump: A modeling language for mathematical optimiza-
tion. SIAM Review, 59(2), 295–320. https://​doi.​org/​10.​1137/​15M10​20575

	15.	 Garg, J., & Taki, S. (2020). An Improved Approximation Algorithm for Maximin Shares. In: Pro-
ceedings of the 21st ACM Conference on Economics and Computation, Association for Computing
Machinery, New York, NY, USA, EC ’20, pp 379–380, https://​doi.​org/​10.​1145/​33914​03.​33995​26

	16.	 Garg, J., McGlaughlin, P., & Taki, S. (2018). Approximating Maximin Share Allocations. In: Fine-
man JT, Mitzenmacher M (eds) 2nd Symposium on Simplicity in Algorithms (SOSA 2019), Schloss
Dagstuhl–Leibniz-Zentrum fuer Informatik, Dagstuhl, Germany, OpenAccess Series in Informatics
(OASIcs), vol 69, pp 20:1–20:11, https://​doi.​org/​10.​4230/​OASIcs.​SOSA.​2019.​20

	17.	 Ghodsi, M., Hajiaghayi, M., Seddighin, M., Seddighin, S., & Yami, H. (2018). Fair allocation of indi-
visible goods: Improvements and generalizations. In: Proceedings of the 2018 ACM Conference on
Economics and Computation, Association for Computing Machinery, EC ’18, pp 539–556, https://​doi.​
org/​10.​1145/​32191​66.​32192​38

	18.	 Gourvès, L., Monnot, J., & Tlilane, L. (2013). A Protocol for Cutting Matroids Like Cakes. In: Chen
Y, Immorlica N (eds) Web and Internet Economics, Springer, Berlin, Heidelberg, Lecture Notes in
Computer Science, pp 216–229, https://​doi.​org/​10.​1007/​978-3-​642-​45046-4_​18

	19.	 Gurobi Optimization L (2021). Gurobi optimizer reference manual. http://​www.​gurobi.​com
	20.	 Halldorsson, M. M., & Lau, H. C. (1997). Low-degree graph partitioning via local search with applica-

tions to constraint satisfaction, max cut, and coloring. Journal of Graph Algorithms and Applications,
1(3), 1–13. https://​doi.​org/​10.​7155/​jgaa.​00003, https://​ink.​libra​ry.​smu.​edu.​sg/​sis_​resea​rch/​173

	21.	 Kierstead, H. A., & Kostochka, A. V. (2008). A short proof of the Hajnal-Szemerédi theorem on equi-
table colouring. Combinatorics, Probability and Computing, 17(2), 265–270. https://​doi.​org/​10.​1017/​
S0963​54830​70086​19

	22.	 Kostochka, A. V., Pelsmajer, M. J., & West, D. B. (2003). A list analogue of equitable coloring. Jour-
nal of Graph Theory, 44(3), 166–177. https://​doi.​org/​10.​1002/​jgt.​10137

	23.	 Kurokawa, D., Procaccia, A.D., & Wang, J. (2016). When can the maximin share guarantee be guaran-
teed? In: Proceedings of the Thirtieth AAAI Conference on Artificial Intelligence, AAAI Press, Phoe-
nix, Arizona, AAAI’16, pp 523–529

	24.	 Lewis, RMR. (2016). A Guide to Graph Coloring. Springer International Publishing
	25.	 Lih, K.W. (2013). Equitable coloring of graphs. In: Pardalos PM, Du DZ, Graham RL (eds) Handbook

of Combinatorial Optimization, Springer, New York, NY, pp 1199–1248, https://​doi.​org/​10.​1007/​978-
1-​4419-​7997-1_​25

	26.	 Lipton, R.J., Markakis, E., Mossel, E., & Saberi, A. (2004). On approximately fair allocations of indi-
visible goods. In: Proceedings of the 5th ACM conference on Electronic commerce, Association for
Computing Machinery, New York, NY, USA, EC ’04, pp 125–131, https://​doi.​org/​10.​1145/​988772.​
988792

	27.	 Lovász, L. (1975). Three short proofs in graph theory. Journal of Combinatorial Theory, Series B,
19(3), 269–271. https://​doi.​org/​10.​1016/​0095-​8956(75)​90089-1

	28.	 Manurangsi, P., & Suksompong, W. (2018). When Do Envy-Free Allocations Exist? SIAM Journal on
Discrete Mathematics, 34(3), 1505–1521. https://​doi.​org/​10.​1137/​19M12​79125

	29.	 Minty, G. J. (1980). On maximal independent sets of vertices in claw-free graphs. Journal of Combina-
torial Theory, Series B, 28(3), 284–304. https://​doi.​org/​10.​1016/​0095-​8956(80)​90074-X

	30.	 Pemmaraju, S., & Srinivasan, A. (2008). The randomized coloring procedure with symmetry-breaking.
In: Aceto L, Damgård I, Goldberg LA, Halldórsson MM, Ingólfsdóttir A, Walukiewicz I (eds) Autom-
ata, Languages and Programming, Springer, Berlin, Heidelberg, Lecture Notes in Computer Science,
pp 306–319, https://​doi.​org/​10.​1007/​978-3-​540-​70575-8_​26

	31.	 Steinhaus, H. (1948). The problem of fair division. Econometrica, 16(1), 101–104.
	32.	 Watts, D. J., & Strogatz, S. H. (1998). Collective dynamics of ‘small-world’ networks. Nature,

393(6684), 440–442.

https://doi.org/10.1086/664613
https://doi.org/10.1086/664613
https://doi.org/10.1007/978-3-030-48966-3_12
https://doi.org/10.1137/15M1020575
https://doi.org/10.1145/3391403.3399526
https://doi.org/10.4230/OASIcs.SOSA.2019.20
https://doi.org/10.1145/3219166.3219238
https://doi.org/10.1145/3219166.3219238
https://doi.org/10.1007/978-3-642-45046-4_18
http://www.gurobi.com
https://doi.org/10.7155/jgaa.00003
https://ink.library.smu.edu.sg/sis_research/173
https://doi.org/10.1017/S0963548307008619
https://doi.org/10.1017/S0963548307008619
https://doi.org/10.1002/jgt.10137
https://doi.org/10.1007/978-1-4419-7997-1_25
https://doi.org/10.1007/978-1-4419-7997-1_25
https://doi.org/10.1145/988772.988792
https://doi.org/10.1145/988772.988792
https://doi.org/10.1016/0095-8956(75)90089-1
https://doi.org/10.1137/19M1279125
https://doi.org/10.1016/0095-8956(80)90074-X
https://doi.org/10.1007/978-3-540-70575-8_26

Autonomous Agents and Multi-Agent Systems (2022) 36:8 	

1 3

Page 33 of 33  8

	33.	 Woeginger, G. J. (1997). A polynomial-time approximation scheme for maximizing the minimum
machine completion time. Operations Research Letters, 20(4), 149–154. https://​doi.​org/​10.​1016/​
S0167-​6377(96)​00055-7

Publisher’s Note  Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

https://doi.org/10.1016/S0167-6377(96)00055-7
https://doi.org/10.1016/S0167-6377(96)00055-7

	Fair allocation of conflicting items
	Abstract
	1 Introduction
	2 Preliminaries
	3 Conflicting items in theory
	3.1 Envy-freeness up to one good
	3.2 Proportionality
	3.3 Maximin shares

	4 Conflicting items in practice
	4.1 Experimental setup
	4.2 Experimental results

	5 Discussion
	References

