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For over a century, reduced order models (ROMs) have been a fundamental discipline of theoretical fluid
mechanics. Early examples include Galerkin models inspired by the Orr-Sommerfeld stability equation and
numerous vortex models, of which the von Kármán vortex street is one of the most prominent. Subsequent
ROMs typically relied on first principles, like mathematical Galerkin models, weakly nonlinear stability theory,
and two- and three-dimensional vortex models. Aubry et al. [N. Aubry, P. Holmes, J. Lumley, and E. Stone,
Journal of Fluid Mechanics, 192, 115–173 (1988)] pioneered data-driven proper orthogonal decomposition
(POD) modeling. In early POD modeling, available data was used to build an optimal basis, which was then
utilized in a classical Galerkin procedure to construct the ROM. But data has made a profound impact on
ROMs beyond the Galerkin expansion. In this paper, we take a modest step and illustrate the impact of data-
driven modeling on one significant ROM area. Specifically, we focus on ROM closures, which are correction
terms that are added to classical ROMs in order to model the effect of the discarded ROM modes in under-
resolved simulations. Through simple examples, we illustrate the main modeling principles used to construct
classical ROMs, motivate and introduce modern ROM closures, and show how data-driven modeling, artificial
intelligence, and machine learning have changed the standard ROM methodology over the last two decades.
Finally, we outline our vision on how state-of-the-art data-driven modeling can continue to reshape the field
of reduced order modeling.
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I. INTRODUCTION

One of the very first exciting experiences that kids go
through is playing with water; they might throw a stone
in a lake, float a rubber duck in a bathtub, or even stir a
straw while enjoying a tasty cup of juice! They like doing
this over and over again because of the magnificent pat-
terns that keep forming every time. These patterns or co-
herent structures are ubiquitous in the world, in general,
and in fluid flows, in particular. They attracted Leonardo
da Vinci more than five centuries ago, resulting in some
of his outstanding artwork1. Fluid dynamicists are es-
pecially lucky to enjoy the beauty of these formations
on a daily basis. But other than their aesthetic value,
these patterns come with a practical benefit. In particu-
lar, these coherent structures are the cornerstone in the
development of reduced order models (ROMs) for fluid
flows. ROMs are built by using available data to iden-
tify and rank these structures, choosing the most effective
few of them, and tracking their dynamical behavior in or-
der to approximate the evolution of the underlying flow.

a)Electronic mail: osan@okstate.edu

The computational cost of the relatively low-dimensional
ROMs is dramatically lower than the computational cost
of a direct numerical simulation, which aims at captur-
ing all the flow scales. Since their introduction to the
field of fluid dynamics more than fifty years ago2, ROMs
have witnessed tremendous changes. Arguably, data-
driven modeling has been the main driving force behind
these changes. Over the last two decades, state-of-the-
art methods from machine learning (ML) have reshaped
the field of reduced order modeling.

The main objective of this study is to provide an
overview of data-driven reduced order modeling strate-
gies relevant to fluid dynamics applications. The topic
spans a wide spectrum, and there are many review arti-
cles on pertinent discussions, methodologies, and appli-
cations in fluids3–19 as well as closely related fields20–43.
Therefore, it is not our intention to include a detailed
discussion, but rather to survey one important ROM re-
search area, closure modeling, and provide our subjective
perspectives on how data-driven modeling has made an
impact in this area. In particular, given the recent inter-
est in ML applications in fluid dynamics, our survey is
intended to encourage cross-disciplinary efforts between
practitioners, physicists, mathematicians, and data sci-
entists. We hope that our paper will shed light on the
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new ideas of integrating both physics in ML models and
ML-enabled capabilities in principled models, a rapidly
emerging field that came to be known as physics-guided
ML (PGML). These developments are born to conform
with the scientific foundations that are moving rapidly
to the industry to enable the next generation of digital
twin technologies44.

This paper first aims at identifying imminent prac-
tical and mathematical needs in designing closure ap-
proaches for ROMs of nonlinear parameterized fluid dy-
namics systems, i.e., complex natural or engineered sys-
tems comprising coupled partial differential equations
(PDEs) with variable parameters, and initial and bound-
ary conditions45. Such models usually serve as the
inner-workhorse for outer-workflow loops such as optimal
design46, control47,48, estimation, and discovery49–53. In
particular, there has recently been an increasing inter-
est in ROMs from the fluid dynamics community, where
emerging data-driven methods prevail. This is primarily
due to the fact that data and centralized powerful open-
source machine learning and optimization libraries have
become widespread, as indicated in Figure 1. Although
we mainly focus on incompressible flows, we emphasize
that there have been inspiring works done in the com-
pressible case54–68.

To begin with, reduced order modeling can be viewed
as the art of converting existing prior information and
collected data into a dramatically more efficient, yet rel-
atively accurate, surrogate model to be used on demand.
For example, a conceivable strategy of flow control is
to put most of the demanding calculations offline and
to keep only low rank updates for fluid flow evolutions
online69,70. Emerging digital twin infrastructures are one
of the main beneficiaries and driving forces behind effi-
cient surrogate model development efforts71,72. Although
the ROM concept is not new in fluid dynamics, there are
still many new fronts and opportunities, mainly due to
the recent advances in ML algorithms and easy-to-use
open-source packages that can be utilized in many con-
trol and optimization processes. We also note that, in
many fluid dynamics applications, the typical data spar-
sity (due to the number of necessarily resolved degrees of
freedom being orders of magnitude larger than the avail-
able sensors) and corruption (e.g., due to signal noise, in-
terference, and sensor malfunctioning) motivate physics
informed data-driven modeling.

Among fluid dynamicists, projection-based linear
methods have become popular. Both proper orthogo-
nal decomposition (POD)73 and dynamic mode decom-
position (DMD)74 enabled approaches have been ex-
ploited. In our work, we mostly focus on POD rel-
evant literature and refer the reader to Kutz et al. 74

for the DMD principles. The mathematical foundations
behind the POD-based linear subspace approaches go
back to the principal component analysis (PCA), pi-
oneered by Karl Pierson75 in 1901 and later demon-
strated graphically by Harold Hotelling76 in 1933. This
powerful statistical approach (also known as Kosambi-

Karhunen-Loève expansion77,78 or empirical orthogonal
functions79,80) was first introduced in the fluid dynamics
community by John Lumley2,81,82, and came to be known
as POD. In practice, the method of snapshots, established
by Lawrence Sirovich83, was a key enabler to efficiently
determine the POD modes for large scale problems, of-
ten encountered in fluid dynamics. Of particular interest
when characterizing the dynamics of coherent structures
in wall bounded flows, the beauty of the POD modeling
approach was demonstrated in seminal works by Nadine
Aubry84,85. An admittedly incomplete chronological evo-
lution of projection-based ROMs is given in Table I.

A key advantage of POD is the guaranteed minimal
representation error for the employed snapshots with re-
spect to all other Galerkin expansions with the same
number of modes. Another advantage is the orthogo-
nality of the constructed modes that naturally leverages
the use of a Galerkin type projection onto the governing
PDEs to obtain a system of ordinary differential equa-
tions, defining a dynamical system for the amplitudes of
POD modes. These models are often intrusive in the
sense that both the governing equations and the prere-
corded snapshot data are required to build a ROM. Pos-
tulating an alternative approach, DMD based approaches
and many other nonintrusive models bypass this equa-
tion dependency in order to construct the ROM solely
based on the prerecorded snapshots13,14,28,40,86–95.

If we adopt the training and testing terminologies from
ML, both POD and DMD based models require the train-
ing snapshot data to build the ROM (i.e., data-driven
modeling). The fundamental question in practice is how
well these ROMs will perform in testing conditions (i.e.,
the conditions that are not included in the training data).
The trade-off performance between training and testing
constitutes one of the crucial questions about the credi-
bility of the proposed ROMs, and motivates more efforts,
ideas, and collaborations to push the frontiers of existing
ROM frameworks. Physics informed ML has also made
an impact in reduced order modeling. In this hybrid ap-
proach, while the training data provides a set of global
basis functions, the underlying governing equations (i.e.,
physics) constrain the evolution within the linear sub-
space defined by these POD basis functions. Deep discus-
sions on hybrid approaches that combine deterministic
and statistical modeling can be found elsewhere20,126–132.

Projection-based ROMs have been explored for
decades, and these explorations have been paying off in
many applications. They have great promise for flow con-
trol of industrial processes, for enlarging ensemble size for
flow problems with uncertain data, and even for provid-
ing accurate forecasts of fluid behaviour. The apparent
success of low-rank ensemble nonlinear filtering methods
utilized in weather forecasting centers also suggests that
there is a prospect of using a system whose dimension is
substantially lower than the dimension of the state space.
Yet, the ROMs’ potential has been only realized for a
small collection of canonical flows. One of the main road-
blocks for ROMs of realistic flows is that they are not ac-
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Reduced order representation (Sec. II)Physics-informed data-driven modeling (Sec. VI)

Data-driven closure modeling (Sec. V) First principle Galerkin method (Sec. III)

Most modeling problems require (a) data and (b) physics
knowledge. The evolution equations are computationally
too demanding. The ML model (e.g., autoencoder) 
often requires data as it can generally not be derived 
from first principles. However, the reduced dynamics 
on the manifold defined by autoencoder need first
principle dynamics as prior given sparse data.

Data-driven model identification (without
priors) often requires full data. With full
data standard models like k-nearest
neighbors (k-NN) for kinematics and
dynamics should work. With sparse
data, no model identification might work.
The lack of data has to be compensated
by priors/knowledge.

(1) Reduced order representations (RORs) are
possible when coherent structures are visible.

(2) The domain should be as small as possible
and as large as necessary. The correlation

length is a good initial reference scale.

(1) The ROR and the Galerkin
projection yield a ROM of the

Navier-Stokes equations.

(2) A physical Galerkin model
should only have bounded solutions.

resolved (v) + unresolved (w) components
Closure modeling (Sec. IV)

The unresolved dynamics term g has a high-frequency
stochastic component important for short-term

dynamics, and an energy-absorbing component important
for long-term boundedness. The first can be modeled by

a stochastic term, the second by an eddy viscosity model.

Flow A Functional

B Structural

C Stochastic

Figure 1. An overview of data-driven reduced order modeling in fluid dynamics.

curate models for the dominant modes. In practice, a clo-
sure or correction term is generally added113,114,133–140.
In many cases, there are complementary physical, sta-
tistical, and computational challenges that arise in the
development of ROMs and ROM closures, topics that we
will systematically survey in this work toward establish-
ing foundations to close the gap between what ROMs can
do and where they are needed.

II. REDUCED ORDER REPRESENTATION

A reduced order representation (ROR) can be viewed
as a generalization of the latent space or manifold, i.e., a
simplifying kinematic approximation. For example, the
POD procedure introduced in Section II B constitutes a
best-fit linear manifold to establish a ROR. The ROR
facilitates a data compression for an ensemble of snap-
shot data. Physically interpretable RORs are possible
when dominant coherent structure are present. This is
clearly ubiquitous in the fluid flows that we encounter
in our daily life, as introduced in Section I, as well as
large-scale and industrial settings. For spatio-temporal
dynamical systems, the rank-r ROR of the state u(x, t)
can be simply written as

u(x, t) =

r∑
i=1

ai(t)ψi(x), (1)

where x refers to the spatial coordinates, t is the time,
ψi denotes the i-th mode in the ROR, and ai is the
corresponding amplitude or coefficient. Although it is
generally assumed that the basis functions ψi are time-
independent and the dynamical evolution is encapsulated
in the coefficients ai, there have been studies that admit
a time-evolving basis functions as well111,141–143.

A. Eigenfunction expansion

Any set of n linearly independent vectors can serve
as a basis for an n-dimensional vector space. Any vec-
tor in this space can be expressed as a linear combina-
tion of these linearly independent basis vectors. In an
infinite dimensional vector space of functions, there ex-
ists an infinite set of linearly independent basis functions
{ψi(x)}i=1,2,... such that a given function u(x) in this
space can be written as a linear combination of these
functions. It is straightforward to show that any peri-
odic, piecewise continuous function can be written as an
infinite sum of sines and cosines (e.g., Fourier series144).
The eigenfunction expansion can be viewed as a gen-
eralization of the Fourier series expansion for arbitrary
boundary conditions, where the Sturm-Liouville theory
provides an infinite sequence of eigenvalue-eigenfunction
pairs. ROR also seeks an expansion of an arbitrary func-
tion in terms of a given set of basis functions. However,
in contrast to the methods mentioned in this section,
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Table I. An incomplete chronological list of key contributions to projection-based ROMs in fluid dynamics.

Year Study Key Contribution

1915 Galerkin 96 Galerkin method for solving (initial) boundary value problems
1962 Saltzman 97 Low-dimensional modeling (with 7 modes, see also Ref98 for a revisit)
1963 Lorenz 99 Low-dimensional modeling (with 3 modes)
1967 Lumley 2 Proper orthogonal decomposition (POD)
1987 Sirovich 83 Method of snapshots
1988 Aubry et al. 84 First POD model: Dynamics of coherent structures and global eddy vis-

cosity modeling
1994 Rempfer and Fasel 100 Linear modal eddy viscosity closure
1995 Everson and Sirovich 101 Gappy POD
2000 Ravindran 102 Galerkin ROM for optimal flow control problems
2001 Kunisch and Volkwein 103 First numerical analysis of Galerkin ROM for parabolic problems
2002 Willcox and Peraire 86 Balanced truncation with POD
2003 Couplet, Sagaut, and Basdevant 104 Guidelines for modeling unresolved modes in POD–Galerkin models
2004 Sirisup and Karniadakis 105 Spectral viscosity closure for POD models
2004 Barrault et al. 87 Empirical interpolation method (EIM)
2005 Mezić 88 Spectral decomposition of the Koopman operator
2007 Rozza, Huynh, and Patera 106 Reduced basis approximation
2007 Cao et al. 107 Galerkin ROM for four-dimensional variational data assimilation
2008 Amsallem and Farhat 108 Interpolation method based on the Grassmann manifold approach
2008 Astrid et al. 109 Missing point estimation
2009 Rowley et al. 110 Spectral analysis of nonlinear flows
2009 Sapsis and Lermusiaux 111 Dynamically orthogonal field equations
2010 Schmid 92 A purely nonintrusive perspective: Dynamic mode decomposition (DMD)
2010 Chaturantabut and Sorensen 91 Discrete empirical interpolation method (DEIM)
2013 Carlberg et al. 112 The Gauss–Newton with approximated tensors (GNAT) method
2013 Cordier et al. 113 Proof of global boundedness of nonlinear eddy viscosity closures

2014 Östh et al. 114
√
K-scaled eddy viscosity concept

2015 Ballarin et al. 115 Stabilization of POD Galerkin approximations
2015 Schlegel and Noack 116 On bounded solutions of Galerkin models
2016 Peherstorfer and Willcox 117 Data-driven operator inference nonintrusive ROMs
2016 Brunton, Proctor, and Kutz 118 Sparse identification of nonlinear dynamics (SINDy)
2016 Sieber, Paschereit, and Oberleithner 119 Spectral POD
2018 Towne, Schmidt, and Colonius 120 On the relationship between spectral POD, DMD, and resolvent analysis
2018 Reiss et al. 121 Shifted/transported snapshot POD
2018 Loiseau, Noack, and Brunton 122 Feature-based manifold modeling
2019 Mendez, Balabane, and Buchlin 123 Multi-scale proper orthogonal decomposition
2021 Li et al. 124 , Fernex, Noack, and Semaan 125 Cluster-based network models

ROR aims at finding a low-dimensional basis instead of
an infinite dimensional one.

To illustrate these concepts, let us consider a linear
advection problem in a spatial domain [0, L]:

∂u

∂t
+ c

∂u

∂x
= 0, (2)

where c is the wave speed. To select the appropriate basis
functions, we consider the boundary conditions. For ex-
ample, if we have homogeneous Dirichlet boundary con-
ditions, i.e.,

u(x = 0, t) = 0, u(x = L, t) = 0, for t ∈ [0, T ], (3)

we might choose a set of orthonormal basis functions
ψi(x) defined as

ψi(x) =

√
2

L
sin
( iπ
L
x
)
, (4)

in order to approximate u as follows:

u(x, t) =

r∑
i=1

ai(t)ψi(x). (5)

In a more sophisticated scenario with the homogeneous
Neumann condition on the left boundary (x = 0) and the
homogeneous Drichlet condition on the right boundary
(x = L = 1), i.e.,

∂u

∂x

∣∣∣
x=0

= 0, u
∣∣∣
x=1

= 0, for t ∈ [0, T ], (6)

we can define a set of non-orthogonal functions that sat-
isfy Eq. 6 as follows:

φi(x) = cos(iπx)− (−1)i (7)
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and apply the Gram-Schmidt orthonormalization process
to obtain the following set of basis functions:

ψi(x) =

√
4i− 2

2i+ 1

[
(−1)i+1

2i− 1
+ cos(iπx)

+
2

2i− 1

i−1∑
j=1

(−1)i+j+1 cos(jπx)

]
. (8)

Here, we note that these basis functions are orthonormal,
i.e., ∫ 1

0

ψi(x)ψk(x)dx = δik, (9)

and they are derived from the Fourier harmonics that
satisfy the boundary conditions.

Next, we focus on an illustrative example with periodic
boundary conditions, with the domain length L = 2π,
maximum time T = 2π, and wave speed c = 1. For a
given initial condition u(x, t = 0) = cos(x), Eq. 2 admits
an analytical solution in the form of a right travelling
wave u(x, t) = cos(x − t). Let us approximate u using
a modal expansion with only two Fourier harmonics de-
fined by

u(x, t) = a1(t) cos(x) + a2(t) sin(x). (10)

Substituting Eq. 10 into Eq. 2, we get

∂

∂t

(
a1(t) cos(x) + a2(t) sin(x)

)
+
∂

∂x

(
a1(t) cos(x) + a2(t) sin(x)

)
= 0. (11)

Once we multiply Eq. 11 with cos(x) and integrate over
the domain, we obtain an equation for a1(t),

da1

dt
= −a2, (12)

and similarly, multiplying Eq. 11 with sin(x), the evolu-
tion equation for a2 becomes

da2

dt
= a1. (13)

Eq. 12 and Eq. 13 constitute the well-known Galerkin
system. Using the initial condition given at t = 0,

a1(0) = 1, a2(0) = 0, (14)

we can obtain an analytical solution of the Galerkin sys-
tem given by Eq. 12 and Eq. 13 as

a1(t) = cos(t), a2(t) = sin(t). (15)

Therefore, the two-mode Galerkin model approximation
given by Eq. 10 yields a solution

u(x, t) = cos(t) cos(x) + sin(t) sin(x), (16)

which can be further written as

u(x, t) = cos(x− t). (17)

As we illustrated in this example, the two-mode approx-
imation retrieves the exact solution. One of the key as-
pects in such a modal scheme is therefore related to the
characteristics of the selected basis functions, which ul-
timately provided the best possible expansion in this ex-
ample. A central question is how we would know a priori
the appropriate cos(x) and sin(x) basis functions to ap-
proximate u.

We also note that the multimodal method utilizes sim-
ilar arguments to represent the solution as a superposi-
tion of an infinite set of generalized Fourier bases and
time-dependent coefficients. The multimodal method
has been extensively exploited to study the sloshing
problem145–147, where a set of natural harmonic func-
tions are defined to satisfy the boundary conditions. This
definition is challenging since each individual tank shape
requires a dedicated applied mathematical and physical
study. Moreover, Faltinsen and Timokha 148 reported
that the simple limitation of the infinite sum by a finite
number r can yield either inaccurate or expensive com-
putations. Thus, the selection of the dominant modes
is a non-trivial task. A truncation based on employ-
ing special asymptotic relationships, postulated follow-
ing mathematical or physical arguments, has been shown
to produce good results for the sloshing problem149–154.
Nevertheless, these relations are valid under reasonable
assumptions for specific tank geometries, which poses a
fundamental challenge in the multimodal method’s appli-
cation in arbitrary settings148. It is, therefore, tempting
to explore emerging data-driven tools to mitigate such
problems. For example, as discussed in Section II B, one
could consider the POD procedure, which provides a sys-
tematic framework that yields a set of basis functions (ac-
companied by a sorting mechanism) from a set of snap-
shots.

B. Proper orthogonal decomposition: linear best-fit basis
functions

In addition to boundary conditions, we might have
archival data (i.e., snapshot fields) to help us construct
the basis functions. PCA75 can be used to construct
the basis functions that optimally represent the data. In
1933, a geometric representation of PCA has been pro-
posed by Hotelling76, and this concept has later become
popular as empirical orthogonal functions (EOF)155 in
environmental science, and POD85 in the fluid dynamics
community. The method of snapshots83 has been instru-
mental in the development of POD based approaches19.
To compute the POD basis functions, let us assume that
we have access to m snapshots u(x, ti) for i = 1, 2, . . . ,m.
A Reynolds decomposition-like expansion can be written
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as

u(x, ti) = ū(x) + υ(x, ti), (18)

where ū(x) is a reference (e.g., ensemble mean) field,
which can be obtained as

ū(x) =
1

m

m∑
i=1

u(x, ti), (19)

and the set of anomaly snapshots υ(x, ti) for i =
1, 2, . . . ,m can be defined as

υ(x, ti) = u(x, ti)− ū(x). (20)

For clarity, we introduce the POD procedure for a
scalar field (POD is normally applied to the velocity vec-
tor field). Let us denote υ(x, tj) a component of the
anomaly velocity vector field (e.g., the x-component). A
temporal correlation matrix A = [αij ] can be constructed
from these anomaly snapshots:

αij =

∫
Ω

υ(x, ti)υ(x, tj)dx, x ∈ Ω, (21)

where Ω is the spatial domain, and i and j refer to the
snapshot indices. We define the L2 inner product of two
functions f and g as(

f(·), g(·)
)

=

∫
Ω

f(x)g(x)dx, (22)

which yields αij =
(
υ(x, ti), υ(x, tj)

)
from Eq. 21. The

data correlation matrix A = [αij ] is a non-negative, sym-
metric m×m matrix, also known as the Gramian matrix
of υ(x, t1), υ(x, t2), . . . , υ(x, tm). If we define the diag-
onal eigenvalue matrix Λ = diag[λ1, ...., λm] and a right
eigenvector matrix Γ = [γ1, ....,γm] whose columns are
the corresponding eigenvectors of A, we can solve the
following eigenvalue problem to obtain the optimal POD
basis functions102:

AΓ = ΓΛ. (23)

In general, most of the subroutines for solving Eq. 23 give
Γ with all of the eigenvectors normalized to unity. The
orthonormal POD basis functions for the anomaly field,
υ, can be thus calculated as follows:

ψi(x) =
1√
λi

m∑
k=1

γki υ(x, tk), (24)

where λi is the ith eigenvalue, γki is the kth component
of the ith eigenvector, and ψi(x) is the ith POD mode.

The eigenvalues are often stored in descending order
for practical purposes, i.e., λ1 ≥ λ2 ≥ ... ≥ λm ≥ 0,
and the eigenvectors are normalized in such a way that

the basis functions satisfy the following orthonormality
condition: (

ψi, ψj

)
=

{
1, i = j;

0, i 6= j.
(25)

Now, we can linearly represent the anomaly field variable
υ(x, t) using the POD modes as follows:

υ(x, t) =

r∑
i=1

ai(t)ψi(x), (26)

where ai are the time-dependent (pseudo) modal coeffi-
cients, and r is the total number of retained modes after
the truncation, with r � m. These r modes with the
largest energy content correspond to the largest eigenval-
ues (λ1, λ2, ..., λr). In general, adding more POD modes
reduces the POD-ROM error. We note, however, that
this is not always true. For example, adding POD modes
that are polluted by numerical noise can actually de-
crease the POD-ROM error (see, e.g., the numerical in-
vestigation in Ref.156). Often the value of r is determined
by using the relative information content (RIC) index157,
which is defined as

RIC =

∑r
i=1 λi∑m
i=1 λi

, (27)

where RIC = 1 refers to a complete representation of the
data snapshots. For example, if one records a set of snap-
shots from the field given by Eq. 17 (i.e., the solution of
the advection problem in Eq. 2), let us say m = 100 or
more equally distributed snapshots between t = 0 and
t = T , the POD analysis could offer a perfect representa-
tion with RIC = 1 using only two retained modes (r = 2)
since the underlying dynamics can be constructed by a
linear superposition of two harmonics. Of course, that
is not always the case, and RIC becomes smaller than
unity even if we retain a substantial number of modes,
especially for turbulent flows.

This need for a large number of modes is one of the
chief motivating factors for developing closure models to
compensate the effects of the truncated modes in ROMs.
However, it is believed that there is no separation of
scales in turbulence, and therefore, most turbulent flow
problems cannot be characterized by a high RIC index.
Specifically, if there is no significant pattern in the evolu-
tion dynamics, there is a slow decay rate for the eigenval-
ues λk, and retaining only a few modes cannot capture
the essential dynamics of turbulence. Thus, it is not sur-
prising that many ROM practitioners have often demon-
strated their proposed methodologies for problems that
show somehow an underlying pattern (e.g., a shedding
pattern in simulating the von Karman street).

This picture can be linked to the Kolmogorov
barrier158, where the linear reducibility (i.e., represent-
ing the underlying fluctuation field as a linear super-
position/span of a finite/limited number of basis func-
tions) is hindered. Modal expansions have an elliptic na-
ture by construction, and using such tools for convection-
dominated flows with higher degrees of hyperbolicity might
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often add another level of complexity when designing pro-
jection ROMs. Then, a central question might arise
about this data-driven procedure: Do we really get any
benefit using the POD basis functions generated from pre-
recorded snapshots? Although there might be a trade-
off between storage, accuracy, and efficiency, the answer
probably depends on the problem at hand. It might be
a big yes if there is an underlying pattern (e.g., limit
cycles or quasi-periodic oscillations), and might be a
no if the flow is highly turbulent in a statistically non-
equilibrium and chaotic state. In the latter case, one
might consider a standard local discretization (e.g., finite
difference/element/volume) method or a pseudo-spectral
method (supported by the harmonics that satisfy the
boundary conditions) without attempting to perform the
POD procedure to compute a set of data-driven global
basis functions.

For instance, the fast Fourier transform (FFT) pro-
vides an extremely efficient computational framework for
models with such global basis functions without requir-
ing any additional storage for precomputed or measured
snapshots to generate a set of data-driven basis functions.
The trade-off between accuracy and computational effi-
ciency should always be considered carefully in generat-
ing data-driven models like Galerkin ROMs. The com-
plexity of a typical right-hand side (RHS) computation
of a pseudo-spectral solver becomes slightly bigger than
O(n), where n refers to the number of grid points. In con-
trast, the complexity of a typical Galerkin ROM is O(r3)
(there are also additional costs associated with, e.g., col-
lecting and processing snapshots or solving an eigenvalue
problem to generate a set of basis functions). Therefore,
the Galerkin ROM becomes a computationally feasible
approach if and only if a few number of retained modes
are utilized. As a rule of thumb, r should be significantly
less than the number of grid points in each direction for a
canonical 3D problem (e.g., r � 256 for a 2563 problem).
Otherwise, it would be hard to justify that the model is
indeed reduced order, since instead we could simply use
the FFT algorithm to integrate the dynamical system
equations in the harmonic space. Same arguments hold
true for using a more flexible and convenient localized
model, especially for problems with more complicated
geometries (e.g., with the finite element, finite difference,
or finite volume method, where the RHS can be obtained
in O(n) computations).

C. Leveraging ROR

One of the major reasons for the inaccuracy of current
ROMs in the numerical simulation of complex flows is
the quality of ROR, which is the ability or inability of the
ROM framework to represent the underlying complex dy-
namics. Specifically, in order to determine whether there
is a valid ROR of the given system, we need to answer
the following questions: (i) Is the ROM basis able to ac-

curately approximate the dynamics? (ii) Is the Galerkin
projection yielding an accurate ROM?

Furthermore, the issue of the selection of a convenient
domain often comes into play. If the domain of influence
is too small, there might be no good dynamical predic-
tion. On the other hand, when it is too large, there could
be too many uncorrelated events that have to be lumped
in global modes. These uncorrelated events might work
against the modeling accuracy since they often increase
the deformation of modal expansion or degradation of the
model representation. In other words, the domain should
be as small as possible and as large as necessary. The cor-
relation length might be a good initial reference scale to
define the domain of interest. Dynamic mode adapta-
tion, parameter-space-time domain partitioning, as well
as smart clustering ideas have been explored, although
we believe this topic is still in its infancy.

In practice, the construction of a good low-order space
is a cornerstone in projection-based ROM. That said,
the representability of POD basis functions becomes
questionable for non-stationary, strongly-evolving, and
convection-dominated flows. Being a linear-based ap-
proach, POD might not be sufficient to describe nonlinear
processes. More importantly, using a Galerkin projection
based on elliptical ansatz for a hyperbolic problem could
generate numerical oscillations. Moreover, the POD is
optimal globally in the sense that it minimizes the aver-
aged L2 error across all the snapshot data. This raises the
issue of modal deformation by the rapidly varying flow
field state in such a way that the resulting modes are
not representative of any of the system’s states. Further-
more, since the POD modes are ranked based on their
energy content, excursions in state spaces that contain a
small amount of energy can be overlooked by POD even if
these excursions might have significant impact on the dy-
namical evolution (see Cazemier, Verstappen, and Veld-
man 159 for example). Similar scenarios arise for param-
eterized systems spanning a large parameter space when
the system’s behavior highly depends on the parameter
value. Therefore, we devote the rest of this section to
efforts aimed at enhancing the basis representability by
either improving the offline construction stages or effi-
ciently updating the ROM during online deployment.

One of the simplest approaches to improve the quality
of the POD basis functions is to enrich the snapshot data
matrix with extra information. For example, in addition
to the exact flow field data, the scaled difference between
consecutive snapshots (i.e., the difference quotients) can
be utilized such that the time derivative information is
better represented in the resulting modes160,161. More-
over, instead of collecting snapshot data at arbitrary time
intervals and/or parameter values, more effective sam-
pling techniques should be pursued. In Ref.162, a ROM
is integrated into a Markov chain Monte Carlo (MCMC)
framework, where the posterior distribution estimated by
the MCMC algorithm is utilized to adaptively select the
parameter values at which snapshots are evaluated.

In an effort towards the accurate identification of co-
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herent structures from experimental or numerical data,
a spectral POD approach has been developed119, and
its relationship to DMD and resolvent analysis has been
established120. These studies use a technique that per-
forms several PODs on individual frequencies obtained
from Fourier-transformed windows of snapshot data.
Thus, the modes we get for each frequency correspond
to a coherent frequency domain structure. If an analysis
of the eigenvalue spectrum for each frequency reveals co-
herent structures, it can indicate that there is a physical
process which is occurring at that frequency. Hence, this
becomes a useful data analysis tool on top of providing
orthogonal modes for ROMs. In addition, transported
snapshots POD approaches121,163 have been introduced
for convection-dominated transport systems. In partic-
ular, these studies use a shifting operator on the snap-
shots (requiring interpolation on unstructured grids and
some knowledge of the transport speed) to allow POD
or DMD to (more) efficiently approximate advective sys-
tems. In their recent works, Mendible et al. 164 employed
an unsupervised traveling wave identification with shift-
ing and truncation (UnTWIST) algorithm163 to discover
moving coordinate frames into which the data are shifted,
thus overcoming limitations imposed by the underlying
translational invariance and allowing for the application
of traditional dimensionality reduction techniques. Etter
and Carlberg 165 proposed a novel online adaptive basis
refinement mechanism for efficiently enriching the trial
basis in a manner that ensures convergence of the ROM
to the FOM.

Localization methods have been successfully pur-
sued to mitigate the modal deformation of the POD
basis by partitioning the state space166–169, time
domain158,170–177, physical domain178–181, or parameter
space182–184 using multiple local, piecewise affine sub-
space approximations instead of a single global approx-
imation. These partitioning or time varying approaches
work by parsing the available snapshot data into a few
overlapping or non-overlapping groups (e.g., based on so-
lution value, time, parameter, geometry, or component)
and applying standard modal decomposition techniques
(e.g., POD) for each region separately. This eventually
yields a library of compact ROMs, each suitable for a spe-
cific region and/or dynamics, and interpolation methods
can be utilized when the region of interest does not exist
in the available library.

In this context, clustering techniques can be also uti-
lized to effectively perform such partitioning. Indeed,
cluster-based reduced order models (CROMs) have been
proposed to tackle some of the potential pitfalls of clas-
sical GROMs (e.g., the mismatch between the modal
expansion approach and the underlying dynamics, see
Noack 185). CROMs start by sorting the snapshot data
into a small number of clusters (e.g., using k-means ap-
proach) with centroids being the representative states
in each cluster. Conceptually, this is similar to coarse-
graining the state-space (or generally the feature-space)
into centroidal Voronoi tessellation (CVT) generators186.

The transition dynamics between these centroids can be
modeled as a probabilistic Markov model187–189 or a de-
terministic–stochastic network model124,125,190.

As highlighted in Section II B, POD provides an ef-
ficient way to compress data and explain the variance
of the data better than any other linear combination191.
Indeed, from a linear algebra perspective, it can often
be formulated as a singular value decomposition, pro-
viding an optimal low-rank matrix approximation. This
can leverage highly performant and scalable algorithms
to handle extremely large datasets, benefiting from the
rich legacy of linear algebra investigations. From a sta-
tistical point of view, this orthogonal projection provides
linearly uncorrelated features. However, it cannot reveal
nonlinear correlations in the data. In contrast, manifold
learning (or representation learning) techniques aim at
accounting for such nonlinear correlations to further re-
duce the dimensionality of the problem. The generaliza-
tions of PCA to nonlinear settings often define a curve
in the latent space which minimizes the mean squared
error of all variables. Yet, the smoothness of the curve
can be varied by the method. For example, an autoasso-
ciative or autoencoding neural network model192–194 and
a kernel PCA195 are two successful approaches of such
a nonlinear PCA (NLPCA) framework. We refer the
reader to recent works196–198 for excellent discussions on
autoencoder technology in fluid dynamics (see Figure 2).
We also note that other nonlinear dimensionality reduc-
tion techniques, such as principal curves199, locally linear
embedding200, isomap201 and self-organized map202 ap-
proaches, can also be regarded as a discrete version of
NLPCA.

Encoder Decoder

Bottleneck

...

...

...
...

...

...

X Z Y

Figure 2. A schematic diagram for an autoencoder (AE) for
latent space construction, where the input X is the full field,
the output Y designates its reconstruction, and the bottleneck
Z represents the latent space (compressed) variables.

It is worth noting that during the modal truncation
step (reducing the dimensionality of the system), depen-
dencies among retained and discarded modes generally
yield inaccurate results if the closure problem is not ad-
dressed. In this regard, persistent homology (PH)203–207

provides a delicate balance between data simplification
and intrinsic structure extraction. PH is a tool in topo-
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logical data analysis that aims at studying and extracting
the features that persist across multiple scales by casting
the multi-scale organization into a mathematical formal-
ism. In particular, PH measures the lifetime of intrinsic
topological features using a filtration process to distin-
guish between the long-lived features and the short-lived
ones (which are considered topological noise)208.

However, the application of PH has been largely dedi-
cated to qualitative data classification and analysis, and
its utility for quantitative modeling and prediction (in-
cluding ROM) is scarce209. PH has been utilized to char-
acterize the time series from dynamical systems based
on topological features that appear in the solution mani-
fold or attractor210–212. Rieck and Leitte 213 used PH as
an evaluation tool to compare the performance of differ-
ent dimensionality reduction algorithms (e.g., PCA, and
isomap mentioned earlier). One of the major challenges
of employing PH is its prohibitive computational cost (for
the worst-case scenario). To increase the PH efficiency,
Moitra, Malott, and Wilsey 214 utilized a clustering tech-
nique to represent similar groups of data points with their
cluster centroid and applied PH onto these clusters.

III. FIRST PRINCIPLE GALERKIN METHOD

Finite dimensional low-order models routinely arise
when we apply Galerkin type projection techniques to
infinite dimensional PDE models215–217. We formalize
the model reduction problem for fluid flow systems, con-
sidering a generic prognostic equation as follows:

∂u

∂t
= F(u; x, t), (28)

where u denotes the discrete approximation of a three-
dimensional (3D) dependent variable (e.g., density, veloc-
ity, temperature, moisture); x denotes the independent
spatial variables (e.g., latitude, longitude, and height);
and F defines the model’s dynamical core (e.g., semi-
discretized PDEs representing mass, momentum, and
energy conservation), all written in vector-form. More
specifically, we explore the autonomous dynamics case
for a specific quantity of interest u, with F being decom-
posed into linear L and nonlinear N operators as

du

dt
= Lu +N (u), (29)

where u ∈ Rn, where n is the number of degrees of
freedom in the spatial discretization. Considering the
Navier-Stokes equations as a typical mathematical frame-
work for fluid flow modeling, we highlight that the linear
and nonlinear operators often represent the diffusive and
convective effects, respectively.

In order to build the projection-based ROM, the solu-
tion u is approximated in a low-dimensional affine sub-
space of dimension r via the Galerkin ansatz as follows:

u(t) ≈ ū + Ψa(t), (30)

where ū ∈ Rn is a reference solution representing the
affine offset, Ψ ∈ Rn×r denotes the trial basis, and
a(t) ∈ Rr is the vector of reduced (generalized) coordi-
nates, also called modal weights or coefficients. The ref-
erence solution ū as well as the basis Ψ are constructed
during an offline stage from a collection of FOM eval-
uations (called snapshots). Without loss of generality,
we suppose that the time-averaged field defines the ref-
erence solution, ū, and the basis Ψ is constructed using
the POD technique. Then, the low-rank approximation
given by Eq. 30 is substituted into Eq. 29 and an inner
product with a test basis is performed to yield a system
of ODEs for the unknown modal coefficients, a(t). In
Galerkin projection-based ROM (GROM), the test basis
is chosen to be the same as the trial basis. We make use
of the orthonormality property (i.e., Ψ>Ψ = Ir, where
Ir is the r× r identity matrix and the superscript > de-
notes the matrix transpose, assuming a Euclidean state
space) as follows:

Ψ>
d

dt
(ū + Ψa) = Ψ>L (ū + Ψa) + Ψ>N (ū + Ψa) .

(31)
Since both ū and Ψ are considered time-independent,
Eq. 31 reduces to

Ψ>Ψ
da

dt
= Ψ>Lū + Ψ>LΨa+ Ψ>N (ū + Ψa) . (32)

Note that Ψ>Lū and Ψ>LΨ can be precomputed dur-
ing the offline construction stage, reducing the online
computational cost of evaluating the first two terms on
the right-hand side to O(r) independent of the FOM
dimension, n. However, generally speaking, computing
the third term representing the system’s nonlinearity de-
pends on n, limiting the computational benefit of ROM.
In order to mitigate this limitation, hyperreduction ap-
proaches have been developed to relieve this dependency
on n, by approximating, rather than evaluating, the non-
linear term in a reduced order subspace64,218,219. Exam-
ples of hyperreduction include the empirical interpolation
method (EIM)87, its discrete version (DEIM)91,220, the
gappy POD101,112,221, and the missing point estimation
(MPE)109,222, where the approximation is performed us-
ing sampling techniques. On the other hand, tensorial
ROM can benefit from the quadratic (or generally poly-
nomial) nonlinearity, which is ubiquitous in fluid flow
systems, to rewrite Eq. 32 as follows:

da

dt
= B + La+ a>Na, (33)

where the vector B, the matrix L, and the tensor N are
precomputed during the offline stage, reducing the com-
putational cost of solving the GROM defined in Eq. 33
to O(r3) in case of quadratic nonlinearity (which is the
case for the Navier-Stokes equations). When the true
underlying dynamics of the system are non-polynomial,
lifting transformations can be exploited to yield a finite-
dimensional coordinate representation in which the sys-
tem dynamics have quadratic structure223–226. Although
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such transformation is not universally guaranteed, a large
class of smooth nonlinear systems that appear in engi-
neering applications (e.g., elementary functions like expo-
nential and trigonometric functions or polynomials) can
be equivalently lifted to quadratic form.

A. POD Galerkin projection: Burgers equation

To illustrate the POD Galerkin approach for flow sys-
tems with quadratic nonlinearity, let us consider the
Burgers equation

∂u

∂t
+ u

∂u

∂x
= ν

∂2u

∂x2
, (34)

which is often used as a simplified prototype by fluid
dynamicists. Using the POD procedure outlined in Sec-
tion II B, we can define the u(x, t) field as a linear super-
position of the mean field and the POD basis functions,

u(x, t) = ū(x) +

r∑
i=1

ai(t)ψi(x), (35)

and substitute this approximation of our field variable
into Eq. 34. Once we perform an orthonormal Galerkin
projection, the resulting dynamical system for ak(t) can
be written as

dak
dt

= Bk +

r∑
i=1

Likai +

r∑
i=1

r∑
j=1

Nij
k aiaj , (36)

where

Bk =
(
ν
∂2ū

∂x2
− ū∂ū

∂x
, ψk

)
,

Lik =
(
ν
∂2ψi
∂x2

− ū∂ψi
∂x
− ψi

∂ū

∂x
, ψk

)
,

Nij
k =

(
− ψi

∂ψj
∂x

, ψk
)
. (37)

This tensorial system consists of r coupled ODEs and it
is often written as Eq. 33, where a is the vector of un-
known coefficients ak(t), k = 1, 2, . . . , r, B is a scaling
vector coming from the reference mean field with entries
Bk, L is an r × r matrix with entries Lik for the contri-
bution stemming from the linear viscous term, and N is
an r× r× r tensor with entries Nij

k arising from the non-
linear advection term, 1 ≤ i, j, k ≤ r. In this tensorial
form, the corresponding model coefficients Bk, L, and
N are precomputed from the available snapshots. Alter-
natively, there are a number of online approaches where
we can compute the nonlinear part using hyperreduc-
tion or principled sampling strategies to approximate the
full nonlinear state from a small number of measurement
or collocation points87,91,101,227–229. Ştefănescu, Sandu,
and Navon 218 performed a comparative study between

the direct (online) and tensorial (precomputed) meth-
ods. Moreover, Karasözen, Yıldız, and Uzunca 230 re-
cently discussed structure preserving ROMs and com-
pared the direct and tensorial POD approaches.

B. Projection based ROMs

Computational models for the Navier-Stokes equations
could make a tremendous impact in critical applications,
such as the biomedical and engineering applications that
we describe next. Despite their enormous potential,
FOMs have not fully transitioned to engineering practice.
The main roadblock is the extraordinary computational
cost incurred by computational models in many applica-
tions. For example, although preliminary studies of aor-
tic dissections showed that uncertainties in the geometry
and inflow conditions have a fundamental role, perform-
ing an uncertainty quantification study requires a huge
number of computational model runs. Similarly, per-
forming a shape optimization study to determine the op-
timal vascular configuration for the total cavopulmonary
connection surgery requires again many computational
model runs. Also, in renewable energy applications, per-
forming data assimilation to incorporate the available
observations in the control of wind-power production re-
quires numerous model runs.

Since running current computational models hundreds
and thousands of times can take days and weeks on high
performance computing (HPC) platforms, a brute force
computational approach for these biomedical and engi-
neering applications is simply not possible. Therefore,
what is needed is a modeling strategy that allows model
runs that take minutes to hours on a laptop.

For structure-dominated systems, ROMs can decrease
the FOM computational cost by orders of magnitude.
ROMs are (extremely) low-dimensional models that are
trained (constructed) from available data. As explained
in Section III, in an offline phase, the FOM is run for
a few parameters values to construct a low-dimensional
(e.g., 10-dimensional) ROM basis {ψ1, . . . , ψ10}, which is
used to build the ROM:

da

dt
= f(a), (38)

where a is the vector of coefficients in the ROM ap-
proximation

∑10
i=1 ai(t)ψi(x) of the variable of interest

and f comprises the ROM operators (e.g., vectors, ma-
trices, and tensors) that can be preassembled from the
ROM basis in the offline phase. In the online phase, the
low-dimensional ROM given by Eq. 38 is then used for
parameters values that are different from those used in
the training stage. Since ROM is low-dimensional (10-
dimensional), its computational cost is orders of magni-
tude lower than the FOM cost. Thus, for the biomedical
and engineering applications described above, ROMs ap-
pear as a natural alternative to the prohibitively expen-
sive FOMs.
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Unfortunately, current ROMs cannot be used in clin-
ical and engineering practice, since they would require
too many modes (degrees of freedom). For example,
to capture all the geometric scales in aortic dissection,
one might need hundreds or even thousands of ROM
modes (e.g., see Table II). Similarly, to cope with the
high Reynolds number in the wind farm optimization, a
large number of ROM modes are necessary. Thus, al-
though ROMs decrease the FOM computational cost by
orders of magnitude, they are still too expensive: Cur-
rent ROMs cannot be run in minutes or hours on a laptop
and thus cannot be used easily in clinical and engineering
practice.

First principle Galerkin models1

Eddy viscosity closures2

Data-driven dynamical system
identification3

Smart physics-informed data-driven
models4

Figure 3. Evolution of the ROM approaches.

With the evolution of ROM approaches outlined in Fig-
ure 3 in mind, the ROM community is at a crossroads.
On the one hand, current ROMs can be used for aca-
demic test problems for which a handful of ROM modes
can model simple dynamics with substantial success. On
the other hand, realistic, complex flows require high-
dimensional ROMs that cannot be used in clinical and
engineering practice. What is needed is low-dimensional,
efficient ROMs that are accurate so that they can be
utilized in such vital applications.

One of the main reasons for the notorious inaccuracy
of current ROMs in complex clinical and engineering set-
tings is the drastic ROM truncation: Instead of using
many (e.g., 100) ROM modes {ψ1, . . . , ψ100}, current
ROMs use only a handful of ROM modes {ψ1, . . . , ψ10}
to ensure a low computational cost. This drastic trun-
cation yields acceptable results in simple, academic test
problems, but produces inaccurate results in practical
clinical and engineering settings114. Thus, for accurate
results, the ROM closure problem needs to be solved: One
needs to model the effect of the discarded ROM modes
{ψ11, . . . , ψ100} on the ROM dynamics, i.e., on the time
evolution of resolved ROM modes {ψ1, . . . , ψ10}:

da

dt
= f(a) + Closure(a), (39)

where Closure(a) is a low-dimensional term that models
the effect of the discarded ROM modes {ψ11, . . . , ψ100}

on {ψ1, . . . , ψ10}. The closure term is also known as un-
resolved tendency, or model error in different disciplines.

The closure problem is prevalent in numerical simula-
tion of complex systems. For example, classical numer-
ical discretization of turbulent flows (e.g., finite element
or finite volume methods), inevitably takes place in the
under-resolved regime (e.g., on coarse meshes) and re-
quires closure modeling (i.e., modeling the sub-grid scale
effects). In computational fluid dynamics (CFD), e.g.,
large eddy simulation (LES), there are hundreds (if not
thousands) of closure models236. This is in stark contrast
with reduced order modeling, where only relatively few
ROM closure models have been investigated. The rea-
son for the discrepancy between ROM closure and LES
closure is that the latter has been mostly built around
physical insight stemming from Kolmogorov’s statistical
theory of turbulence (e.g., the concept of eddy viscos-
ity), which is generally posed in the Fourier setting236,237.
Much of this physical insight is not generally available in
a ROM setting. Thus, current ROM closure models have
been deprived of this powerful methodology that repre-
sents the core of most LES closure models. To construct
low-dimensional and efficient ROMs that are accurate, a
set of principled, mathematical and/or data-driven ROM
closure modeling strategies need to be utilized. In Sec-
tion IV, we survey the main types of closure models de-
veloped in the reduced order modeling community.

IV. CLOSURE MODELING

Although the solution of Eq. 33 becomes independent
of the FOM dimension n, the cubic scaling with respect
to r hurts the turnaround of such ROMs. This is espe-
cially true for fluid flows of practical interest (e.g., tur-
bulent and convection-dominated flows), where the FOM
solution manifold is characterized by a large and slowly
decaying Kolmogorov n-width238,239. Thus, a large num-
ber of modes are required to maintain the solution ac-
curacy, resulting in excessive computational overhead,
which may even exceed the FOM computational cost.
Therefore, in these complex settings, ROM will always
incur a degree of under-resolution by sacrificing some
degree of accuracy for the sake of computational effi-
ciency. This under-resolution has direct and indirect con-
sequences. The direct outcome is the projection error
affecting the Galerkin ansatz (Eq. 30), where some of
the underlying flow features are lost. The indirect ram-
ifications are related to the nonlinearity of the system,
implying that the discarded modes indeed interact with
the retained ones. By performing severe modal trunca-
tion (remember, computational efficiency is a priority!),
we suppress these interactions and Eq. 33 no longer cap-
tures the projected trajectory, decreasing the solution
accuracy240.

To illustrate the above discussion, consider a state vari-
able u(t) ∈ Rn, which can be exactly written as a super-
position of n basis functions as u(t) = Ψa(t) + Φb(t),
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Table II. A non-exhaustive list illustrating energy characteristics and range of the number of retained modes r for m given
snapshots.

Study Problem r m Comment

Östh et al. 114 Ahmed body 10 – 100 2000 The first 500 modes resolve 60% of the
kinetic energy.

San and Borggaard 173 Marsigli flows 6 – 30 400 The first 30 modes resolve 90% of the
kinetic energy.

Rahman, Ahmed, and San 231 Quasigeostrophic flows 10 – 80 400 The first 50 modes resolve 80% of the
kinetic energy.

Ballarin et al. 232 Hemodynamics 50 400 O(10–100) modes are required to ob-
tain a reliable approximation.

VerHulst and Meneveau 233 Wind farm N/A 7200 430 POD modes are required to cap-
ture 80% of the total energy.

Shah and Bou-Zeid 234 Atmospheric boundary layer N/A 2500 500 POD modes are required to cap-
ture 80% of the total energy.

Zhang and Stevens 235 Atmospheric boundary layer N/A 5000 2000 POD modes are required to cap-
ture 80% of the total energy.

where Ψ ∈ Rn×r and Φ ∈ Rn×(n−r) represent the modes
to be retained and truncated, respectively, and a(t) ∈ Rr
and b(t) ∈ R(n−r) are the corresponding time-dependent
coefficients. A Galerkin projection of the governing equa-
tions onto Ψ and Φ yields the following:

d

dt

[
a
b

]
=

[
fa(a, b)
fb(a, b)

]
. (40)

We note that Eq. 40 is an exact representation of the
system’s dynamics. In reduced order modeling, we are
only interested in the resolved part of the dynamics,
which can be written as

da

dt
= fa(a, b). (41)

Nevertheless, Eq. 41 is not practical because its solu-
tion requires the knowledge of the unresolved variable,
b. In a classic truncated ROM, it is often assumed
that fa(a, b) = fa(a,0) = f(a). However, for non-
linear cases, this relation does not hold (i.e., fa(a, b) 6=
fa(a,0)).

Following the Kolmogorov hypotheses244,245 from tur-
bulence modeling and assuming an analogy between POD
and Fourier modes (see Figure 4), it is commonly agreed
in the ROM community that the first POD modes resolve
the large energy-containing flow scales, while the last
modes correspond to the low-energy dissipative scales.
Indeed, this analogy has been demonstrated theoretically
and numerically for different flow scenarios (e.g., flow
over a cylinder246 and a turbulent flow past a backward-
facing step104). Thus, truncating the low-energy scales
is believed to result in a pile-up of energy levels, leading
to solution instability. We also highlight that this ar-
gument has been recently the focus of scientific revisits.
For instance, Grimberg, Farhat, and Youkilis 247 state,
using mathematical arguments and analogies from finite
element analysis, that the solution instabilitiy observed
in most studies dealing with GROM is a byproduct of

the Galerkin projection step. Moreover, they show that
a ROM based on Petrov-Galerkin projection, where the
test basis differs from the trial basis, yields more accurate
and stable solution than standard Galerkin projection.
However, the test basis needs to be updated at each iter-
ation and time step, increasing the computational com-
plexity of the resulting ROM. As a highly promising ap-
proach, an adjoint Petrov-Galerkin method for nonlinear
model reduction has been recently put forth by Parish,
Wentland, and Duraisamy 248 . Rather than construct-
ing a low-dimensional subspace for the entire state space
in a monolithic fashion, Hoang, Choi, and Carlberg 249

recently proposed a dynamic methodology to construct
separate subspaces for the different subdomains. Al-
though the Petrov-Galerkin projection250 could mitigate
some of the challenges the Galerkin ROMs have to face
in the under-resolved simulation of turbulent flows, we
limit ourselves to Galerkin projection-based ROMs in the
current review, where closure models have been mainly
developed to improve the solution accuracy and stability
properties. The major aim of closure models is to make
up for the effects of discarded modes onto the dynamics
of resolved modes. Specifically, the objective is to modify
Eq. 33 to correctly resolve the time dynamics of Ψ:

da

dt
= B + La+ a>Na+ C, (42)

where C represents the closure model that needs to be
determined.

The closure problem has historical roots in CFD,
in particular in turbulence modeling, including the
Reynolds averaged Navier-Stokes (RANS) and LES. In
contrast, there are relatively fewer closure models that
have been investigated in a ROM context. In general,
the ROM closure modeling approaches can be classified
into (1) functional (phenomenological), which use physi-
cal insights to postulate a model form for the closure term
(e.g., a dissipative term) and (2) structural (mathemati-
cal), which often rely on filtering techniques to reveal the
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Figure 4. Closure modeling analogy between LES and ROM, where higher values of k and m refer to smaller scales (adapted
from241–243). Shaded areas in energy spectra represent the discarded scales that must be modeled.

closure term without using any physical assumptions or
additional phenomenological arguments. We emphasize
that placing a given ROM closure model in one of these
categories is not always straightforward, as these cate-
gories sometimes overlap. We also refer readers to the
unified exposition of several mean field modeling ideas251

as well as other closure techniques for probability den-
sity function (PDF)252 or moment closures for kinetic
theories253.

A. Functional closure models

The functional, or phenomenological, closure modeling
investigations have been largely focused on the concept of
eddy viscosity, which is added to the physical viscosity of
the system to drain the excessive energy. This modeling
concept is inspired by Kolmogorov’s ideas244,245 about
the energy spectrum and energy cascade. In this section,
we outline several functional (phenomenological) ROM
closure modeling strategies centered around the concept
of eddy viscosity.

a. Mixing-length ROM closure. The first
mixing-length ROM closure model was proposed by
Aubry et al. 84 , who studied the wall region of the
turbulent boundary layer and used a simple generaliza-
tion of the Heisenberg spectral model in homogeneous
turbulence to provide the eddy viscosity closure term.
Specifically, the authors assumed that the deviatoric
component of the Reynolds stress τ̂ of the unresolved
field (represented by truncated modes), acting on the
resolved field (i.e., retained modes), is proportional to
the strain rate S of the resolved field:

τ̂ = −2ανeS, (43)

where νe is the eddy viscosity parameter and α is a di-
mensionless adjustable parameter. Moreover, they ex-
pressed the eddy viscosity term as a function of the
eigenvalues and eigenfunctions of the first neglected

modes based on the assumption that the energy decreases
rapidly with increasing mode index. The adequacy of this
model was quantitatively validated using numerical sim-
ulations in Ref.278, and further investigations have been
performed by Podvin and Lumley (e.g., for minimal flow
unit279 and channel flow280) and also in Refs.136,281. The
two main drawbacks of the global eddy viscosity model-
ing approach are:

i. This formulation is equivalent to using Navier-Stokes
equations at a lower Reynolds number.

ii. In this formulation, a linear closure term models non-
linear turbulence dynamics.

b. Smagorinsky ROM closure. As an improve-
ment of the mixing-length model in Ref.84, the celebrated
Smagorinsky model282 developed for LES has been uti-
lized for the ROM closure problem. The eddy viscosity
coefficient adapts in time in the Smagorinsky ROM clo-
sure model, but not in the mixing-length ROM closure
model. Thus, the former is expected to be more accurate
than the latter. To our knowledge, the first Smagorin-
sky ROM closure model was proposed in Noack, Papas,
and Monkewitz 283 (see also284). Ullmann and Lang 285

used the same Smagorinsky closure model of the original
FOM simulations for ROMs based on LES snapshots of
the turbulent flow around a circular cylinder. However,
the eddy viscosity term does not appear explicitly in their
ROM equation. Instead, the reconstructed velocity field
is utilized to update the (spatially-varying) Smagorinsky
eddy viscosity term in the FOM space, which in turn up-
dates the corresponding model coefficients at each time
step of the time integration of the ROM. Borggaard, Ili-
escu, and Wang 259 proposed the inclusion of an artifi-
cial viscosity term in the ROM equation that resembles
the one used in the Smagorinsky model even if the orig-
inal FOM (for data generation) does not involve such
a term. Rebollo et al. 268 investigated the Smagorisnky
ROM closure model in a reduced basis method (RBM)
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Table III. A chronological list of key contributions to ROM closure modeling.

Year Study Key Contribution

1988 Aubry et al. 84 First closure model: global eddy viscosity modeling
1994 Rempfer and Fasel 100 Linear modal eddy viscosity closure
1995 Selten 254 Time averaging closure modeling
1997 Selten 255 A statistical closure of a barotropic model
1998 Cazemier, Verstappen, and Veldman 159 Penalty term closure model based on energy conservation principles
2003 Couplet, Sagaut, and Basdevant 104 Guidelines for modeling unresolved modes in POD–Galerkin models
2004 Sirisup and Karniadakis 105 Spectral viscosity closure for POD models
2008 Noack et al. 256 Finite time thermodynamics and ensemble averaging closure models
2009 Bergmann, Bruneau, and Iollo 257,258 Residual-based variational multiscale POD
2011 Borggaard, Iliescu, and Wang 259 First numerical analysis of closure models: artificial viscosity model
2011 Akhtar et al. 241 Nonlinear eddy viscosity model based on the Frobenius norm of the Jacobian
2011 Wang et al. 260 Two-level discretization model
2012 Wang et al. 136 Eddy viscosity variational multiscale and dynamic Smagorinsky closures
2013 Balajewicz, Dowell, and Noack 261 Subspace calibration using the Navier-Stokes equations
2013 Cordier et al. 113 Proof of global boundedness of nonlinear eddy viscosity closures

2014 Östh et al. 114
√
K-scaled eddy viscosity concept

2014 Iliescu and Wang 262 Projection-based eddy viscosity variational multiscale POD
2014 San and Iliescu 263 Smagorinsky and Chollet-Lesieur spectral vanishing eddy viscosity models
2015 Stinis 264 , Chorin and Lu 265 , Li et al. 266 Mori–Zwanzig (MZ) formalism
2017 Gouasmi, Parish, and Duraisamy 267 MZ ROM closures
2017 Rebollo et al. 268 Reduced basis methods for the Smagorinsky closure model
2017 Xie et al. 269 Approximate deconvolution reduced order modeling
2017 Benosman et al. 138 Lyapunov control theory to design learning-based closure models
2018 San and Maulik 270 Extreme learning machine closure model
2018 San and Maulik 271 Neural network closures for ROM
2018 Pan and Duraisamy 272 Sparse polynomial regression and neural network for closure model
2019 Rahman, Ahmed, and San 231 Dynamic closure model based on a test (secondary) truncation approach
2019 Stabile et al. 139 Reduced order variational multiscale approach for turbulent flows
2020 Imtiaz and Akhtar 273 Nonlinear closure model based on the Jacobian of the Galerkin model
2020 Reyes and Codina 140 Variational multiscale ROMs
2020 Xie, Webster, and Iliescu 274 Residual neural network closures
2020 Wang, Ripamonti, and Hesthaven 275 Recurrent neural network closures
2021 Mou et al. 276 Data-driven variational multiscale ROMs
2021 Gupta and Lermusiaux 277 Neural closure models

setting. A rigorous numerical analysis of the Smagorin-
sky ROM closure model was performed in259, where error
estimates for the time discretization were proven. To our
knowledge, this represents the first numerical analysis of
ROM closures. Error estimates for the time and space
discretizations of the Smagorinsky ROM closure model
were later proven in268 in an RBM context.

c. Dynamic SGS ROM closure. The dynamic
SGS model286 is the state-of-the-art closure model in
LES. The main improvement in the dynamic SGS model
over the standard Smagorinsky model is that it uses an
eddy viscosity coefficient that is updated in time by us-
ing a secondary filtering operation. The dynamic SGS
closure model was extended for the first time to a ROM
setting by Borggaard et al. 284 and was later investigated
by Wang et al. 136 in the numerical simulation of a 3D
flow past a cylinder, where it yielded significantly more
accurate results than both the mixing-length and the
Smagorinsky ROM closure models. A more efficient nu-
merical discretization of the dynamic SGS ROM closure

model was proposed by Rahman, Ahmed, and San 231 .

d. Mode-dependent eddy viscosity closure.
Rather than adopting a single global eddy viscosity value
νe for all the modes (as in the mixing-length ROM clo-
sure model), a mode-dependent eddy viscosity was pro-
posed by Rempfer 287 and Rempfer and Fasel 288 to use
a different amount of dissipation for each scale. In
Refs.287,288, the effective viscosity is calculated by re-
quiring the energy variation of different modes in ROM
to match the energy variation of the coherent structures
in FOM. A modification to the mixing-length model can
be incorporated by introducing a mode-dependent ker-
nel. The importance of such a mode dependent kernel
was first stressed by Rempfer100,287,288. Sirisup and Kar-
niadakis 105 applied a vanishing viscosity kernel, which
adds a small amount of mode-dependent dissipation that
satisfies the entropy condition, yet retains spectral ac-
curacy. The intrinsic stabilization scheme proposed in
Ref.133 utilizes information from available snapshots and
POD modes to define a mode-dependent stabilization. In
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Ref.263, linear, quadratic, and square-root kernels were
investigated for the 1D Burgers problem.

e. Variational multiscale eddy viscosity ROM
closure. The variational multiscale (VMS) methods
developed by Hughes and his collaborators289–291 have
made a significant impact in classical CFD. The VMS
methods center around the principle of locality of energy
transfer, which states that energy is transferred mainly
between neighboring scales or modes. Since ROMs use
hierarchical bases in which the large and small structures
are clearly displayed, the VMS framework was naturally
extended to the ROM setting. Next, we present some
of the eddy viscosity ROM closure models developed in
a VMS framework. Borggaard et al. 284 proposed the
first VMS ROM closure model, which was later inves-
tigated in Wang et al. 136 in the numerical simulation
of a 3D flow past a circular cylinder. The VMS ROM
in Refs.136,284 used a three-scale decomposition of the
flow field into resolved large, resolved small, and unre-
solved scales, and employed the Smagorinsky model to
dissipate energy only from the resolved small scales. A
two-scale decomposition of the flow field into resolved
and unresolved scales was used by Bergmann, Bruneau,
and Iollo 258 to develop a VMS ROM closure model with
a residual based eddy viscosity component. Iliescu and
Wang 262,292 put forth a three-scale VMS ROM closure
model, in which the ROM projection was used to con-
struct an eddy viscosity term that acts only on the small
resolved scales.

A similar three-scale VMS ROM was proposed
by Roop 293 for a generalized Oseen problem. Eroglu,
Kaya, and Rebholz 294 developed a different three-scale
VMS ROM that uses the ROM projection to add an eddy
viscosity term acting only on the small resolved scales in
a modular fashion. This VMS ROM was successfully
tested in the numerical simulation of a turbulent channel
flow at Reτ = 395294 and was extended by Eroglu, Kaya,
and Rebholz 295 to the Darcy-Brinkman equations with
double diffusive convection. Stabile et al. 139 proposed
a two-scale residual-based VMS ROM closure model in
which the VMS strategy is used at both the FOM and
the ROM levels to ensure model consistency. Reyes and
Codina 140 (see also Ref.296) developed a two-scale VMS
ROM which is equipped with time-dependent orthogo-
nal subgrid scales that leverage the orthonormal nature
of the POD basis. Two-scale VMS-ROMs based on or-
thogonal subgrid scales were used by Reyes et al. 297 for
thermally coupled low Mach flows and by Tello, Cod-
ina, and Baiges 298 for a fluid structure interaction prob-
lem. The first numerical analysis of VMS ROMs was
performed in262,292, where stability and convergence were
rigorously proven. Numerical analysis of VMS ROMs was
also performed by Roop 293 and Eroglu, Kaya, and Reb-
holz 294 . We also refer to the recent studies by Rubino
and his coworkers299,300 for multi-stage ROM stabiliza-
tion approaches in advection-dominated problems.

f. Finite-time thermodynamics ROM closure.
In the majority of the aforementioned studies, the clo-

sure term eventually appears as a linear term in the
GROM (i.e., C = B̃ + L̃a). (The Smagorinsky and dy-
namic SGS ROM closure models are notable exceptions.)
Noack, Morzynski, and Tadmor 301 highlighted that en-
ergy transfer is actually caused by nonlinear mechanisms.
Thus, they introduced a nonlinear eddy viscosity term
νe(a) that is state-dependent. A finite-time thermody-
namics (FTT)256 approach was utilized to quantify the
nonlinear eddy viscosity by matching the modal energy
transfer effect as follows:

νe(a) = ν0

√
K(t)

K̄
, (44)

where K(t) =
∑r
i=1

1

2
ai(t)

2 represents the total tur-

bulence kinetic energy resolved by the Galerkin expan-
sion and K̄ denotes its time-averaged value. This led
to damping levels more consistent with energy fluctua-
tions than those defined by a linear eddy viscosity model.
The FTT-based nonlinear eddy viscosity with an energy-
based scaling model was successfully applied to a 3D tur-
bulent jet302 and a 2D mixing layer113. It was further ex-
tended to a mode-dependent nonlinear eddy viscosity for
a high Reynolds number flow over a square-back Ahmed
body114.

g. Efficient numerical discretization of ROM
closures. Although the eddy viscosity closure models
discussed in this section can significantly improve the
ROM accuracy, their brute-force numerical discretization
can be extremely inefficient. For example, the Smagorin-
sky ROM closure model depends on the Frobenius norm
of the deformation tensor, which is a non-polynomial
nonlinearity that cannot be preassembled in the offline
stage. Thus, alternative, efficient numerical discretiza-
tions have been proposed over the last decade, which we
outline next. Wang et al. 260 proposed a two-level method
to avoid the brute-force discretization of the closure term
onto the FOM fine mesh. Specifically, the POD bases
constructed from the original fine grid resolution snap-
shot data were interpolated onto a coarse grid, and then
they were used to efficiently compute the ROM closure
term. To avoid the assembly of the FOM strain rate ten-
sor at each time step, Akhtar et al. 241 used the Jacobian
of the GROM right-hand side as an eddy viscosity co-
efficient. A pre-computed eddy viscosity approach was
adopted by San and Iliescu 303 by simplifying the nonlin-
ear interaction in the original Smagorinsky model. San
and Iliescu 263 also explored various closure approaches
including constant, polynomial, and spectral vanishing
viscosity models. Rebollo et al. 268 were the first to use
an efficient hyper-reduction method64 (i.e., EIM304) to
discretize the Smagorinsky ROM closure in an RBM set-
ting.
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B. Structural closure models

Structural closure models are generally derived
through mathematical rather than phenomenological ar-
guments. This often includes a filtering procedure, where
the filtered field is assumed to have larger spatial struc-
tures than those in the original one. Therefore, the fil-
tered flow variables require fewer modes in the ROM ap-
proximation. In other words, for the same number of
modes, ROM is capable of approximating the filtered flow
field more accurately than the unfiltered field. This ap-
proach is similar to LES, where the filtered flow variables
can be approximated on the given coarse mesh more ac-
curately than the original unfiltered flow variables. In
this section, we survey ROM closure models developed
by using different types of ROM filtering.

a. Spatial filtering: projection. Given the hier-
archical nature of the ROM basis, not surprisingly, the
most popular type of ROM filtering has been the ROM
projection, i.e., the projection of various (nonlinear)
terms living in the r-dimensional ROM space spanned
by the first r ROM basis functions onto a smaller, s-
dimensional ROM space spanned by the first s ROM ba-
sis functions, where s < r. A classical example of ROM
closure models constructed by using the ROM projection
is the VMS-ROMs139,140,296,305, which are discussed in
Section IV A. The ROM projection, however, has been
used to develop other types of ROM closures. For exam-
ple, the ROM projection has been utilized to construct
parametrized manifolds ROM closures306,307, which are
based on dynamical systems approaches, e.g., approxi-
mate inertial manifolds. The ROM projection has also
been used to build ROM closures based on stochastic dy-
namical systems ideas308–310.

b. Spatial filtering: differential filter and ap-
proximate deconvolution. Using the analogy be-
tween LES and ROM, we mention that a lot of ideas and
techniques in image and signal processing are also appli-
cable in ROM, and vice versa! In LES, the approximate
deconvolution (AD) represents one of the most popular
techniques in this class. It is based on the deconvolution
approaches developed in the image processing and inverse
problems communities to recover the original signal from
a blurred filtered signal.

In stark contrast to the abundance of functional clo-
sure studies (beginning in the 1980s), there are only a
few structural closure models in ROM literature. The
AD-ROM was proposed by Xie et al. 269 for the three-
dimensional flow past a circular cylinder. To construct
the AD-ROM, a ROM differential filter is applied to the
Navier-Stokes equations, followed by a Galerkin projec-
tion of the filtered equations. It is usually assumed that
the filtering and differentiation operators commute, and
the repercussions of this assumption are investigated in
Ref.311. Nonetheless, it is well known that, in general,
nonlinearity and ROM spatial filtering do not commute.
Therefore, the resulting equations include a filtered non-

linear term of the unfiltered variables (i.e., N̂ (u), where

the hat operator denotes the filtering process), rather
than a nonlinear operator of the filtered variables (i.e.,
N (û)). A regularized deconvolution is adopted to pro-
vide the ROM approximation of the unfiltered flow vari-
ables in order to compute the nonlinear term. Thus, the
filtering process increases the accuracy of the ROM in the
sense that the filtered field contains larger spatial struc-
tures, and thus can be sufficiently captured by the ROM
approximation. In addition, the AD technique solved
the ROM closure problem by providing an estimate of
the unfiltered flow variables.

Remark. We note that ROM spatial filtering has also
been used to develop regularized ROMs (Reg-ROMs), i.e.,
ROMs in which spatial filtering is used to smoothen (reg-
ularize) various terms in the Navier-Stokes equations and
increase the numerical stability of the ROM. We em-
phasize that, while related, regularization and closure
are different: The latter adds a closure term, whereas
the former usually does not. ROM spatial filtering has
been used to develop various types of Reg-ROMs: Wells
et al. 312 proposed, for the first time, an evolve-then-
filter approach in which the GROM (Eq. 33) is integrated
(evolved) for one time step, after which a ROM spatial fil-
ter is applied to filter the intermediate solution obtained
in the evolve step. This filtering reduces the numerical os-
cillations of the flow variables (i.e., adds numerical stabi-
lization to the ROM). Gunzburger et al. 313 proposed an
evolve-filter-relax approach that considers the additional
step of relaxation, which averages the unfiltered and fil-
tered flow variables to control the amount of numerical
dissipation introduced by the filter. Recently, Girfoglio
et al.314,315 have investigated the evolve-filter approach
in a finite volume setting. The ROM differential filter
has also been used to develop the Leray Reg-ROM in
Refs.316–318.

c. PDF filtering: Mori–Zwanzig formalism and
memory effects. A different type of filtering, based on
filtering with respect to the PDF of the initial conditions,
has been instrumental in adding memory effects to ROM
closures, with rationale based on the Mori–Zwanzig (MZ)
formalism319–321. More recently, the MZ formalism has
been intensely used to define closures for both LES and
ROM settings. Next, we outline some of these develop-
memnts. Stinis 264 introduced a generalized MZ frame-
work for the construction of ROMs for systems without
scale separation. For example, assume that Eq. 40 de-
fines the following linear system267,272,275,322:

d

dt

[
a
b

]
=

[
A11 A12

A21 A22

] [
a
b

]
. (45)

The evolution of the unresolved state b can be evaluated
as follows (assuming that a is known)267,275,322:

b(t) =

∫ t

0

eA22(t−s)A21a(s)ds+ eA22tb(0). (46)
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Therefore, Eq. 41 for the dynamics of a can be written
as

da

dt
= A11a+A12b

= A11a

+A12

∫ t

0

eA22(t−s)A21a(s)ds

+A12e
A22tb(0). (47)

Eq. 47 expresses the dynamics of the resolved scales us-
ing a Markovian term (i.e., A11a, which depends only on
the current value of a), a memory integral term depend-
ing on the history of the resolved scales a, and a term
describing the contribution of the initial conditions. This
derivation can be extended to nonlinear settings where,
for instance, the nonlinear ordinary differential equation
can be written as a linear partial differential equation us-
ing the Liouville operator. The exact evolution equations
for the reduced state can be written as

da

dt
= fa(a, 0)

+

∫ t

0

K(a(s), t− s)ds+O(a(0), b(0)), (48)

≈ f(a) + Closure(a). (49)

In Eq. 48, K is called the memory kernel andO designates
the contribution from the initial conditions. The memory
integral term implies that the accurate resolution of a
comprises a non-Markovian contribution. However, the
direct computation of Eq. 48 is generally prohibitive, and
estimation of the memory-effect is often sought.

Li et al. 266 included a great discussion on incorpo-
ration of memory effects in coarse-grained modeling via
the MZ formalism. A discrete approach to stochastic
parametrization, dimension reduction, and their connec-
tions to the MZ formalism of statistical physics has been
proposed by Chorin and Lu 265 . In an LES setting, Parish
and Duraisamy 323 framed the MZ closure modeling ap-
proach by exploiting similarities between two levels of
coarse-graining via the Germano identity of fluid mechan-
ics and by assuming that memory effects have a finite
temporal support. The concept has been also general-
ized to provide a mathematically consistent framework
for the construction of ROMs of dynamical systems267.
Moreover, Parish and Duraisamy 324 established an anal-
ogy between MZ and VMS approaches.

d. Ensemble averaging. Noack, Morzynski, and
Tadmor 301 first used ensemble averaging to construct a
finite-time thermodynamics (FTT)256 framework. Gun-
zburger, Jiang, and Schneier 325 built ensemble-based
POD ROMs, where the nonlinear advection term in the
Navier-Stokes equations is replaced by a linear term in
the equations for the resolved scales. This linearization
is performed by using an ensemble of solution trajecto-
ries by propagating an ensemble of ROMs with vary-
ing parameters and/or initial conditions and updating

the ensemble average at each time step. Later on, this
ensemble-based approach was equipped with Leray reg-
ularization to develop regularized ROMs for high values
of Reynolds number318.

e. Time averaging. Selten 254,255 used time aver-
aging to develop ROM closures. In particular, by es-
timating the rate at which the ROM trajectory drifts
away from the projection of the FOM solution on the
ROM subspace, Selten 254 added a linear damping to ex-
pand the doubling-time of the error resulting from the
modal truncation. Berselli et al. 326 developed math-
ematical support for eddy viscosity modeling of time-
averaged ROM closures. While being interested in a sta-
tistical equilibrium problem exploring possible forward
and backward average transfer of energy among ROM
basis functions, they found that the time-averaged en-
ergy exchange from low index POD modes to high index
POD modes is positive for long enough time intervals.
This study provides, for the first time, mathematical sup-
port for the ROM eddy viscosity methodology, where the
energy transfer to the truncated modes is modeled by em-
ploying extra viscous dissipation.

f. Calibrating the POD space with a Navier-
Stokes based side constraint. The last modeling ap-
proach that we discuss in this section is that proposed
by Balajewicz, Dowell, and Noack 261 . Although this ap-
proach does not add a ROM closure model, it does lever-
age mathematical arguments to model the effect of the
truncated modes. In this approach, the POD subspace
is subjected to a Navier-Stokes based side constraint.
Specifically, the power balance for the fluctuation energy
is required to be satisfied by the attractor data after the
Galerkin projection on the adjusted POD space. This
procedure can be conceptualized as rotating the POD
subspace into a more dissipative regime, in which the
extra dissipation is now performed by more dissipative
POD modes.

C. Stochastic closure models

Although we are mainly focusing on deterministic clo-
sure modeling in this review, we emphasize that the
need for stochastic modeling was already formulated in
Aubry et al. 84 to avoid statistically nonstationary be-
haviour for some homoclinic orbits. The dynamics of
the unresolved scales, and hence their interactions with
the resolved scales are unknown. Thus, we can only
form an approximate idea of how the truncated modes
behave and affect the ROM solution. Even with the
best closure model, we can never be certain about its
accuracy in practical settings. Thus, it is natural to
model the dynamics of the unresolved modes using a
random or stochastic process, from which we can infer
the unresolved modes’ contribution to the evolution of
large scales in a statistical sense. We refer to Chorin
and Lu 265 , Chekroun, Liu, and Wang 306 , Majda, Har-
lim, and Gershgorin 308 , Majda and Harlim 309 , Harlim,
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Mahdi, and Majda 310 , Leith 327 , Chorin and Hald 328 ,
Majda 329 , Resseguier, Mémin, and Chapron 330 , Lu, Lin,
and Chorin 331 , Lu 332 , Sieber, Paschereit, and Oberleith-
ner 333 for detailed discussions on the probabilistic mod-
eling of such random/chaotic systems as well as the de-
velopment of statistically accurate ROMs and stochastic
closure models111,334–341. We also note that nonparamet-
ric stochastic modeling approaches have been proposed
for representative stochastic Itô drift diffusion forecast
models342. Next, we briefly outline a few of these strate-
gies.

Stochastic closure approaches seek to account for the
effects of the unresolved scales on the long-term statistics
of the resolved scales. In particular, the closure term
is modeled by a stochastic process, usually represented
by Markovian and/or non-Markovian dynamics with a
random forcing (e.g., random noise). For a truncated
ROM of the Kuramoto-Sivashinsky system, Lu, Lin, and
Chorin 331 defined a discrete-time closure term zn at time
tn as follows:

zn = Φn + ξn, (50)

where ξ is a sequence of independent identically dis-
tributed random variables, which are sampled from Gaus-
sian distributions and characterize the stochastic compo-
nent of the closure, while Φ is a function of current and
past values of the resolved scales a and the forcing ξ. The
authors used the nonlinear autoregression moving aver-
age with exogenous input (NARMAX) approach to pa-
rameterize Φ. A similar approach was adopted in Ref.265

for the Lorenz 96 model and Ref.332 for the stochastic
Burgers equation. The multiscale Lorenz 96 model343,
which has been considered as a non-trivial test problem
for stochastic paramerization in geophysical fluid dynam-
ics studies, can be written as

dXi

dt
= −Xi−1(Xi−2 −Xi+1)−Xi −

hc

b

J∑
j=1

Yj,i + F,

(51)

dYj,i
dt

= −cbYj+1,i(Yj+2,i − Yj−1,i)− cYj,i +
hc

b
Xi,

(52)

where Eq. 51 represents the evolution of slow, high-
amplitude variables Xi (i = 1, . . . , I), and Eq. 52 de-
scribes the evolution of coupled fast, low-amplitude vari-
ables Yj,i (j = 1, . . . , J). In order to investigate different
closure approaches, X can be considered as the resolved
scales, while Y can be considered as the unresolved ones.
Therefore, Eq. 52 is assumed to be unknown and is only
used for generating true data. Furthermore, the form

of the term −hcb
∑J
j=1 Yj,i, representing the contribution

of Y to the dynamics of X, is also assumed to be un-
known. A closure term is parameterized as a function of
the resolved scales. Although the Lorenz 96 equations
are determinstic, Wilks 334 showed the existence of mul-
tiple closure values that are consistent with any given

large-scale variable, i.e., that different values of the clo-
sure term yield statistically similar results. Therefore,
Wilks 334 defined the closure term using both determin-
istic and stochastic components. Specifically, the author
used a fourth-order polynomial fitting for the determin-
istic part that represents the average trend, and a first-
order auto-regression model for the stochastic part that
defines the deviation of different realizations from the
fitted curve. Arnold, Moroz, and Palmer 338 explored
several parametrization schemes for the stochastic com-
ponent, including additive and multiplicative noise.

Although the distinction between resolved and unre-
solved variables in the multiscale Lorenz 96 system is not
driven by a Galerkin truncation as is the case for most
projection-based ROMs (which is the focus of the current
review), the same arguments apply in both scenarios. For
example, Mémin 344 assumed that the flow field is de-
composed into a deterministic resolved component and a
generalized random field that models the unresolved flow
component and all the uncertainties in the flow. In other
words, the projection of the flow field onto the truncated
space is treated as a realization or sample of the stochas-
tic component of the flow and is modeled using Brownian
motion. Resseguier, Mémin, and Chapron 330 provided
numerical investigations of this methodology using POD-
Galerkin projection for flow past cylinder. Nonetheless,
we believe that this is an open research area that needs
fresh ideas to translate statistical closure strategies345

from turbulence modeling to the ROM arena.

V. DATA-DRIVEN CLOSURE MODELING

With the abundant supply of big data, open-source
cutting edge and easy-to-use machine learning libraries,
cheap computational infrastructure, and high quality,
readily available training resources, data-driven closure
modeling has become very popular. Since projection-
based ROMs are usually constructed from snapshot data
(either collected experimentally or computationally), it
is natural to further exploit this set of data to estimate
the closure term efficiently.

In this section, we survey data-driven closure model-
ing approaches in which the closure problem is cast into
a regression task. The majority of the recent data-driven
closure studies can be viewed as a regression task, where
the closure model is defined partially or completely as
a function of available information (e.g., resolved scales).
We first discuss the early investigations based on classical
least-squares approaches. Then, we introduce ML tools
that perform this regression task using neural networks
and Gaussian processes regression. Finally, we explore
legacy data assimilation, parameter estimation, and sys-
tem identification tools that can efficiently be used to
solve the closure problem. We note that some subsections
are entirely devoted to closure modeling (Sections V A,
V B), some only partially address closure modeling (Sec-
tions V C, V E), and some do not address closure mod-
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eling at all (Sections V D, V F, V G). Although the ap-
proaches in the latter subsections have not yet been used
for closure modeling, we believe that they will soon make
an impact in this dynamic research field.

A. Trajectory regression vs. model regression

There are two main schools of thought in data-driven
ROM closure modeling: (i) trajectory regression, and (ii)
model regression.

The trajectory regression approach aims at finding the
ROM closure model C that yields the best ROM trajec-
tory. In this approach, the following constrained regres-
sion problem is solved:

minimize
C parameters

‖aROM − aFOM‖2,

subject to aROM solves closed ROM (Eq. 42)
(53)

where aFOM is the vector of ROM coefficients computed
with the FOM data and aROM is the vector of ROM
coefficients yielded by the closed ROM.

The model regression approach aims at finding the
ROM closure model C that yields the best ROM closure
model. In this approach, the following unconstrained re-
gression problem is solved:

minimize
c

‖CROM − CFOM‖2, (54)

where CFOM is the ROM closure model computed with
the FOM data, CROM is the postulated ROM closure
model form, and c is the vector of parameters used to
define the ROM closure model form. We note that the
model regression approach is similar in spirit to the a
priori testing used in LES236.

We emphasize that the two approaches are fundamen-
tally different. The trajectory regression is a black-box
approach in which the precise formula for the ROM clo-
sure term, C, is not actually known. Instead, the trajec-
tory regression first postulates a model form for C (e.g.,
by using one of the functional models in Section IV A),
and then solves the constrained optimization problem
Eq. 53 to find the closure model parameters that yield the
most accurate ROM trajectory (i.e., the trajectory aROM

that is closest to the projection of the FOM data on the
ROM basis, aFOM). In contrast, the model regression
first employs one of the filters described in Section IV B
to determine a precise formula for the ROM closure term,
CFOM. Then, it postulates a model form for CROM. Fi-
nally, it solves the unconstrained optimization problem
Eq. 54 to find the closure model parameters that yield
the most accurate ROM closure model (i.e., the closure
model CROM that is closest to the “true” closure model,
CFOM, computed from FOM data).

There are pros and cons for both approaches. The tra-
jectory regression is conceptually simpler than the model
regression since it does not need to determine the actual

form of the ROM closure term. The trajectory regres-
sion is also more flexible than the model regression since
it can model not only the ROM closure term, but also
other sources of ROM uncertainty, such as the numer-
ical discretization error and the missing data. Finally,
according to Noack’s conjecture346, the model regression
is more accurate in the predictive regime (i.e., outside
the training interval), whereas the trajectory regression
is more accurate in the reconstructive regime (i.e., inside
the training interval). Noack motivated his conjecture
by noting that using data to match models appears more
robust to perturbations than using data to match tra-
jectories. To our knowledge, Noack’s conjecture has not
been investigated numerically.

B. Least-squares regression

In this section, we survey the data-driven ROM clo-
sure models that use a least-squares formulation in the
optimization problems given by Eq. 53 and Eq. 54.

a. Trajectory regression. Given its conceptual sim-
plicity, the trajectory regression has been used from the
earliest days of reduced order modeling to develop clo-
sures. The general idea used to develop these closure
models is simple: (i) Postulate a ROM closure model
form, either functional (such as the eddy viscosity mod-
els surveyed in Section IV A) or structural (such as the
models surveyed in Section IV B). (ii) Use a least-squares
problem in Eq. 53 to determine the various parameters
in the postulated model form.

Functional models: Probably the first functional tra-
jectory regression closure is the mixing-length model pro-
posed in the pioneering work by Aubry et al. 84 , in which
trajectory regression is used to determine the mixing-
length constant (see136 for related work). A least-squares
trajectory regression was also used by Wang et al. 136 to
determine the eddy viscosity constants in the Smagorin-
sky and VMS closure models. Further improvements to
the least-squares trajectory regression of eddy viscosity
ROM closure models were proposed by Östh et al. 114

and Protas, Noack, and Östh 137 . The eddy viscos-
ity trajectory regression has also been used by Stabile
et al. 139 , Reyes and Codina 140 , and Bergmann, Bruneau,
and Iollo 258 .

Structural models: Probably the first structural tra-
jectory regression closures are those constructed with cal-
ibration methods, which have been introduced to directly
modify (or calibrate) the GROM polynomial coefficients
(i.e., B, L, and N), rather than introducing an additional
closure term. Buffoni et al. 347 calibrated the constant
and linear terms (i.e., B and L), while leaving the non-
linear term, N, as derived from the Galerkin projection
step. The modified coefficients are then found using a
pseudo-spectral method such that the model prediction
is as close as possible to the actual reference solution348.
An extension to calibrate all the polynomial coefficients
(linear and quadratic) was employed by Couplet, Bas-
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devant, and Sagaut 349 , where the cost function is de-
fined to penalize the deviation of the calibrated ROM
behavior with respect to the projection of true snapshot
data. Moreover, Perret, Collin, and Delville 350 consid-
ered a cubic polynomial to represent the dynamics of the
POD modal amplitudes for supersonic jet-mixing layer
data, and adopted a least-squares regression to define
the coefficients of the polynomial. Baiges, Codina, and
Idelsohn 351 used a calibration method in a VMS frame-
work to build a structural trajectory regression closure.
Specifically, the authors postulated a linear model for the
unresolved sub-scale term as a function of the resolved
field (i.e., C = B̃+ L̃a), and then solved the constrained

least-square problem Eq. 53 for the components of B̃ and
L̃.

An assessment of various calibration techniques using
the two-dimensional flow around a cylinder can be found
in Ref.352. A vital merit of the calibration methods is
that the computational costs of these methods are rea-
sonable since they employ the temporal part of the POD
information for the regression task, while the Galerkin
projection method exploits the much more voluminous
spatial POD information to construct the ROM polyno-
mial.

b. Model regression. These closure models are con-
structed as follows: (i) Use the filters surveyed in Sec-
tion IV B to determine a mathematical formula for the
“true” closure model, CFOM, computed from FOM data.
(ii) Postulate a ROM closure model form for the ROM
closure model, CROM. (iii) Use the least-squares prob-
lem in Eq. 54 to determine the various parameters in
the postulated model form. To our knowledge, the vast
majority of ROM closure model forms that have been
proposed in this direction are of structural type. A no-
table exception is the model proposed by Hijazi et al. 353 ,
which uses finite volume RANS data in conjunction with
a model regression approach to determine the eddy vis-
cosity component of the ROM.

A model regression closure that uses the ROM pro-
jection as a spatial filter is the data-driven VMS-ROM
model proposed by Mou et al. 305 . A two-scale ver-
sion was investigated in354,355, and a three-scale ver-
sion was proposed in305. Linear355, quadratic305,354,
and even cubic356 terms were used for the model form:
C = B̃+ L̃a+a>Ña+a>(a>Ña). A data-driven VMS-
ROM to increase the pressure accuracy was proposed
in357. The verifiability of the data-driven VMS-ROM was
proven by Koc et al358. Other model regression closures
that use the ROM projection as a spatial filter were em-
ployed to build parameterized manifold closures by Liu
and his collaborators306 , and by Lu and his cowork-
ers331,332,359 to construct stochastic ROM closures. A
model regression closure that uses the ROM differential
filter was proposed by Koc et al. 311 . The resulting data-
driven LES-ROM uses the ROM differential filter to de-
termine a mathematical formula for the “true” closure
model, CFOM, computed from FOM data. To our knowl-
edge, the data-driven LES-ROM in Koc et al. 311 is the

only model regression approach that utilizes a spatial fil-
ter (i.e., the differential filter) instead of the commonly
used ROM projection.

A model regression closure that uses the PDF filtering
in an MZ setting was proposed by Duraisamy, Parish,
and their collaborators248,267,360. In the MZ framework,
PDF filtering is used to express the “true” closure model,
CFOM, as a memory term, which is then approximated by
using the FOM data and solving the least-squares prob-
lem Eq. 54. Moreover, a model regression closure that
uses time filtering was proposed by Selten 255 and uti-
lized in the numerical simulation of a barotropic model.

Mohebujjaman, Rebholz, and Iliescu 361 used physical
constraints in the model regression closure to improve
the stability and accuracy of the data-driven VMS-ROM
model305. Specifically, they equipped the least-squares
problem Eq. 54 with physical constraints to enforce the
regressed matrix and tensor to have similar character-
istics as the GROM operators (e.g., L̃ being negative

semi-definite and Ñ being energy conserving). A similar
quadratic formula was adopted in Ref.362 to recover the
hidden physical processes (e.g., source terms) for system
with incomplete governing equations.

C. Neural network regression

The introduction of neural network regression into
ROM was highly motivated by the desire to con-
struct purely data-driven nonintrusive ROM (NIROM)
frameworks8,363, which solely rely on data to learn the
dynamics of the relevant solution manifold without the
need to access the governing equations. Non-intrusive ap-
proaches are attractive due to their portability since they
do not necessarily require the exact form of the equa-
tions or the methods used to generate the data. In ad-
dition, non-intrusive models offer a unique advantage in
multidisciplinary collaborative environments, where only
data can be shared without revealing the proprietary or
sensitive information. Non-intrusive approaches are also
useful when the detailed governing equations of the prob-
lem are unknown. This modeling approach can benefit
from the enormous amount of data collected from experi-
ments, sensor measurements, and large-scale simulations
to build NIROMs based on the assumption that data is
a manifestation of all the underlying dynamics and pro-
cesses.

Machine learning tools, in particular artificial neural
networks (ANNs) equipped with the universal approxi-
mation theorem364, have been widely exploited in this
regard. A typical feed-forward neural network is de-
picted in Figure 5, where a mapping M from the input
X to the output Y = M(X ) is inferred through a learn-
ing algorithm. For transient flows, a single-layer feed-
forward neural network was proposed by San, Maulik,
and Ahmed 365 to provide accurate predictions of the
ROM coefficients with varying control parameter values,
using sequential and residual approaches. In the sequen-
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tial approach, a mapping from the current values of a to
their future values is approximated. Moreover, the in-
put layer is augmented with the acting Reynolds number
and the time. That is, X = {Re, tn,a(tn)}, while Y =
{a(tn+1)}. On the other hand, the residual implementa-
tion relies on learning the deviation of the future state
from the current values (i.e., Y = {a(tn+1) − a(tn)}).
Pawar et al. 366 employed deep neural networks (DNN)
to bypass the Galerkin projection step and build a fully
NIROM for the two-dimensional Boussinesq equations
with a differentially heated cavity flow setup at vari-
ous Rayleigh numbers. In particular, the evolution of
the POD modal amplitudes a(tn+1) was predicted from
their past values using residual and backward differ-
ence scheme formulas. The application of variants of
ANNs as regression models for the dynamics of low-
order states (e.g., POD amplitudes) has gained substan-
tial popularity367–369, owing to the availability of open-
source and user-friendly ML libraries. This is a hot topic
and dozens of new papers appear every week in different
journals and conferences all over the world, dealing with
different aspects of NIROM based on ANNs (e.g., differ-
ent architectures, test bed problem, and error bounds).

Input layer

Hidden layers

Output layer

...

...
...

...

...

X Y

Figure 5. A schematic diagram of a typical feed-forward neu-
ral network with an input layer, hidden layers, and an output
layer. We note that these general-purpose dense deep net-
work architectures have been evolving to more specific neural
network designs370. We discuss some of them briefly in Sec-
tion VI.

Recurrent neural networks (RNNs) are very effective
for sequence predictions in numerous applications, e.g.,
speech recognition and translation. RNNs contain loops
that allow them to retain information from one time step
to another so as to enforce the temporal dependencies.
A deep residual recurrent neural network was utilized by
Kani and Elsheikh 371 for the model reduction of nonlin-
ear dynamical systems. However, one of the limitations of
RNNs is vanishing (or exploding) gradient to capture the
long-term dependencies, stemming from the repetitive
multiplication of gradient with potentially ill-conditioned
weight matrices during the back-propagation learning al-

gorithm. The long short-term memory (LSTM) neural
networks mitigate this issue by employing a gating mech-
anism that allows information to be forgotten. Vlachas
et al. 372 trained an LSTM to predict the derivative of
a with respect to time from a short history of a val-
ues, where a first-order forward difference scheme was
adopted to represent the temporal derivative. They also
combined the LSTM with a mean stochastic model to
cope with attractor regions that are not captured in the
training set. Mohan and Gaitonde 373 explored the bidi-
rectional variant of LSTM, employing two LSTM net-
works: one in the forward and the other in the re-
verse direction, for NIROM of forced isotropic turbulence
and magneto-hydrodynamic turbulence using the Johns
Hopkins turbulence database374. Rahman et al. 375 uti-
lized LSTMs for the NIROM implementation of the two-
dimensional single-layer quasi-geostrophic ocean circula-
tion model. A sliding window approach was adopted to
predict the evolution of the POD amplitudes. In another
interesting article, Wang, Ripamonti, and Hesthaven 275

utilized a conditioned LSTM for the memory term in
the GROM equations, representing the closure model,
for parametric systems.

Instead of using ML to entirely replace the GROM
with NIROM, data-driven ML can be utilized along with
the physics-based GROM to construct the closure model.
This hybrid approach was adopted in Ref.270, which used
a dissipative term employing an eddy viscosity coeffi-
cient and utilized a single layer extreme learning machine
(ELM) to estimate a modal νe as a function of the mode
index, GROM right-hand side (RHS), and modal ampli-
tudes. Furthermore, a clipping procedure was carried out
by discarding negative values of νe. ML tools can be ex-
ploited to provide the numerical value of the closure term,
without constraints on the functional form of the closure
model. San and Maulik 376,377 utilized an ELM378 to
learn the value of the closure term as a function of the
GROM RHS, i.e., C = f(B + La + a>Na). For train-
ing purposes, the true closure term is computed from the
projection of the pure evolution of the PDE onto the re-
duced space. In other words, Eq. 29 is first evaluated in
the FOM space, then projected onto the basis functions,
while the GROM RHS (Eq. 33) is computed directly in
the reduced space.

Wan et al. 379 utilized LSTM architectures to learn the
mismatch resulting from the imperfect GROM RHS as a
function of the sequence of past values of the resolved
state. The ML model is exploited to assist the imper-
fect model whenever data is available, while for loca-
tions with sparse data, the GROM still provides an ac-
ceptable baseline for the prediction of the system state.
The estimation of the closure term as a function of the
time history of the resolved scales has roots in the Mori-
Zwanzig formalism328,380 and the memory embedding of
LSTM implementation for closure modeling is supported
by the Takens embedding theorem381. Gupta and Ler-
musiaux 277 employed RNNs to learn the non-Markovian
term appearing in Eq. 48 using neural delay differential
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equations with discrete-delays as follows:

da

dt
≈ f(a)+gRNN (a(t),a(t−τ1), . . . ,a(t−τK); θ), (55)

where K is the number of discrete-delays and θ represents
the neural network weights. For distributed-delays, the
ROM dynamics is written as

da

dt
≈ f(a) + g

(
a(t),

∫ t−τ1

t−τ2
h(a(τ), τ)dτ, t

)
, (56)

where the delay is distributed over past time periods t−
τ2 and t − τ1. Gupta and Lermusiaux 277 approximated
the g and h functions defining the delay term using two
different coupled neural networks as follows:

da

dt
≈ f(a) + gNN (a(t), y(t), t; θg) (57)

dy

dt
≈ hNN (a(t− τ1), t− τ1; θh)− hNN (a(t− τ2), t− τ2; θh),

(58)

where the memory effect can be embedded without the
use of any specific recurrent neural network. The authors
showed that the non-Marovian closure outperforms its
Marovian counterpart (with no time delays).

D. Kernel regression

Gaussian process regression (GPR)382 has the advan-
tage of the simultaneous prediction of system’s dynamics
and the associated uncertainty. Although GPR provides
a powerful tool for probabilistic inference that enables
modelers to strike a balance between model complexity
and data fitting383, its use is often limited to relatively
small training data sets due to the well-known cubic scal-
ing characteristics of the Gaussian processes. However,
fast algorithms using approximate matrix-vector prod-
ucts can be utilized for large data sets384,385. GPR has
gained prominence providing surrogate models for com-
plex and multidimensional systems386–388. In ROM ap-
plications, these confidence measures can be particularly
informative when the ROM dimension is lower than the
intrinsic dimension of the system. Wan and Sapsis 389

formulated a stochastic model based on GPR dynam-
ics and utilized a Monte-Carlo framework for the fore-
cast of the system’s state and corresponding uncertainty.
Maulik et al. 390 utilized a Gaussian process emulator for
the dynamical evolution of the latent space state vari-
ables, obtained from POD and autoencoder compression,
for the shallow water equations. We also note that Raissi
and Karniadakis 383 developed a Gaussian process frame-
work to learn PDEs from relatively small quantities of
data. Xiao et al. 391 applied a second order Taylor series
scheme and a Smolyak sparse grid collocation method to
calculate the POD modal coefficients at each time step
from their values at earlier time steps. A radial basis
function (RBF) multi-dimensional interpolation was used

in Ref.392 for similar purposes. RBF interpolations have
been also utilized for parameterized problems as map-
pings from the parameter space to the ROM space393.

E. Data assimilation and error correction

An excellent discussion of the similarities between
ML and data assimilation (DA) tools has been recently
provided by Alan Geer394. The synergistic integra-
tion of ML and DA is essential for developing improved
approaches395–404. Looking at the ROM framework from
a data assimilation point of view opens up innovative av-
enues to tackle the closure problem. Ideas from optimal
control theory, data assimilation, and parameter estima-
tion were proven to be valuable in this regard. Data
assimilation is a generic framework combining the avail-
able observations with the underlying dynamical princi-
ples governing the system to estimate the physical quanti-
ties of interest. This is usually accomplished by starting
from a background solution and computing an optimal
estimation of the true state of the system that minimizes
the discrepancy between model predictions and collected
observations. This minimization problem is solved while
taking into account the respective statistical confidence
of different observations, background solution, and model
uncertainty405. In order to emphasize the model’s error
(due to truncation), D’Adamo et al. 406 added a Gaussian
variable to the ROM equation. This is similar to the weak
variational data assimilation framework implemented in
Ref.407 for ROMs using real experimental conditions with
noisy particle image velocimetry data. The GROM is
augmented with an additive stochastic control variable,
representing the model’s uncertainty that reflects the ef-
fect of unresolved scales on the resolved dynamics. Esti-
mating such uncertainty function can be incorporated to
improve the ROM predictions. Zerfas et al. 408 utilized
the nudging algorithm to improve predictions by adding
a feedback control term that nudges the ROM approxi-
mation towards the reference solution corresponding to
the observed data. The authors also presented a strategy
to dynamically adjust the nudging parameter by control-
ling the dissipation arising from the nudging term, as
well as a numerical analysis of the proposed DA-ROM.
A combination of the nudging methodology and LSTM
framework was adopted by Ahmed et al. 409,410 to cor-
rect the ROM trajectory, considering the initial condition
mismatch and GROM model deficiency.

DA has been also utilized to calibrate the ROM coef-
ficients so that the ROM predictions agree with avail-
able observations. Cordier et al. 113 adopted a four-
dimensional variational (4DVAR) formulation to tune the
computed ROM coefficients, where the background val-
ues were obtained from standard Galerkin projection.
The projection of snapshot data onto the POD basis was
treated as synthetic observations of the reduced system’s
state. Although a good match was observed within the
assimilation window, the model’s stability on the forecast
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window was not ensured. This is similar to the strong
variational formulation in Ref.406 aiming at directly cor-
recting the model’s coefficients assuming a deterministic
dynamical model.

DA tools can also be exploited to provide a good es-
timate of the free parameters in classical closure mod-
els. For example, Cordier et al. 113 adopted the nonlinear
eddy viscosity model from256,302 and applied the 4DVAR
framework to estimate the eddy viscosity parameter to
increase the physical reliability of the model beyond the
assimilation window. More recently, Ahmed et al. 411

used a linear eddy viscosity model and exploited the for-
ward sensitivity method (FSM) to compute and update
the mode-dependent eddy viscosity parameters. Given
the plummeting costs of sensors and the potential of
ROM in real time monitoring and control, we empha-
size that DA appears to be a good candidate for future
developments leveraging the increasingly available het-
erogeneous measurement data to build more robust ROM
closures.

F. Operator inference approaches

An operator inference (OI) approach was proposed by
Peherstorfer and Willcox 117 to infer the ROM operators
from data. Next, we briefly outline the OI approach.
First, we note that the quadratic term in Eq. 33 can be
written as [a>Na]k =

∑r
i=1

∑r
j=1 Nijkaiaj . In Ref.117,

this is rewritten as a matrix-vector product to exploit the
commutative property of multiplication and avoid redun-
dancy (i.e., we consider a single term aiaj as a represen-
tative of both aiaj and ajai) as follows:

da

dt
= B + La+ Da2, (59)

where D ∈ Rr×r(r+1)/2 is the quadratic operator and

a2 = [a(1)> ,a(2)> , . . . ,a(r)> ]> ∈ Rr(r+1)/2, with a(i) ∈
Ri defined as

a(i) = ai

a1

...
ai

 . (60)

Then, the components of B, L, and D are computed by
solving r least-squares problems, corresponding to each

mode dynamics (i.e.,
dak
dt

). The OI algorithm in Ref.117

can be extended to any arbitrary polynomial nonlinear
terms in the state. However, the computational cost
grows exponentially with the order of the polynomial
nonlinear term rendering it feasible only for low-order
polynomials. We highlight that even if the Galerkin pro-
jection step is not often required in the previous cali-
bration (and OI) studies, it is generally assumed that
the true governing equation has a quadratic (or polyno-
mial) structure. This limitation was addressed in Ref.412,
which introduced a lift & learn approach, where the ROM

polynomial coefficients are efficiently calibrated even if
the high-dimensional dynamics are not quadratic using
lifting transformations. Recent OI developments are dis-
cussed in413–416.

G. System identification approaches

In many fluid dynamics applications, system identifi-
cation approaches become viable tools to identify nonlin-
ear low-order models417. However, robust identification
of realistic dynamical systems constitutes a grand chal-
lenge. For example, let us decompose the flow into two
parts:

Flow = resolved + unresolved dynamics (61)

or

u = v +w. (62)

Then, the evolution equation for v can be abstracted as
follows:

dv

dt
= f(v,w)

.
= f(v, 0) + g(v,w). (63)

The unresolved dynamics term, g, has a high-frequency
stochastic component important for short-term dynamics
and an energy-absorbing component important for long-
term boundedness. The first component can be modeled
by a stochastic term, the second by an eddy viscosity
model as we discussed earlier.

In general, data-driven model identification (without
priors) requires full data. With full data a k-nearest
neighbor (k-NN) model for kinematics and dynamics
should work. With sparse data, no model identification
might work. The lack of data has to be compensated by
priors/knowledge. There are two issues here:

Warning 1. Lack of resolution (unknown w) leads to
one closure problem. Lack of data (under-resolved v)
leads to another closure problem.

Warning 2. The model complexity and data richness
are strongly interwoven418.

That being said, there are many methods for
model identification, starting with brute-force data
interpolation122. Although many of the methodologies
presented in Section V E can be viewed as system identi-
fication, we dedicate the following insights to the efforts
and potential opportunities that aim at revealing the
mathematical representation of the closure term. This
is in contrast to assuming a specific form for model clo-
sure and fitting it to data to compute the unknown pa-
rameters and/or coefficients. In this regard, symbolic re-
gression (SR) techniques have been recently exploited to
identify interpretable closed form approximations of the
governing equations, by observing the dynamical behav-
ior and response of the system of interest419,420. SR tech-
niques can be largely classified into two categories: (1)
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approaches that utilize compressed sensing and sparsity-
promoting techniques to choose a few functions from
a large feature library of potential basis functions that
have the expressive power to define the dynamics; (2)
evolutionary algorithms that search for functional ab-
stractions with a preselected set of basic mathematical
operators and operands. Examples that belong to the
first category include the sparse identification of nonlin-
ear dynamics (SINDy) framework118,421, the sequential
threshold ridge regression (STRidge) algorithm422, and
the PDE-functional identification of nonlinear dynamics
(PDE-FIND) technique422, while genetic programming
(GP)423–425 and gene expression programming (GEP)426

represent the major drivers for evolutionary SR explo-
rations.

Loiseau, Brunton, and Noack 427 utilized SINDy to
identify a system of nonlinearly coupled ODEs governing
the evolution of the first pair of POD modes’ amplitudes
(i.e., a1 and a2) for the 2D flow over a cylinder. Con-
sidering monomials of a1 and a2, a library of candidate
functions is constructed as follows:

Θ =
[
1 a1 a2 a2

1 a1a2 a2
2 a3

1 a2
1a2 a1a

2
2 a3

2

]
. (64)

The identified ROM equations thus take the form

da

dt
= Θζ, (65)

where ζ encapsulates the coefficient of each candidate
function, computed using a sparsity-promoting regres-
sion problem. Note that the library Θ can be enriched
with any arbitrary functions that potentially describe the
system’s dynamics. Since the system given in Eq. 65
is distilled from data, the effect of truncated modes on
a1 and a2 (i.e., the closure model) is inherited in the
identified model. Indeed, the results of integrating the
model derived by SINDy outperformed those from stan-
dard GROM. A recent innovation428, trapping SINDy,
identifies a dynamics with a trapping region, i.e., guar-
antees boundedness of the solution116. This innovation
is particularly important for higher-dimensional dynam-
ics, where sparse identification is prone to give rise to
unbounded solutions otherwise.

Symbolic regression approaches have been also pur-
sued to discover discrepancy models and reveal the hid-
den physics and dynamical processes that are not repre-
sented in the available governing equations. Vaddireddy
et al. 429 applied the GEP and STRidge algorithms to
recover the hidden physics (e.g., source or forcing terms)
in the 2D Navier-Stokes equations using Eulerian sen-
sor measurements. Likewise, Kaheman et al. 430 utilized
SINDy to model the mismatch between simplified mod-
els and measurement data. With particular relevance
to closure modeling, Vaddireddy et al. 429 also demon-
strated the application of GEP and STRidge to identify
the truncation error due to numerical discretization, and
recover the eddy viscosity kernels, manifested as source
terms in the LES equations. With the ongoing advance-
ment and maturity of SR tools, great leaps in closure

modeling are expected, especially given the lack of phys-
ical intuition in a ROM context.

VI. PHYSICS-INFORMED DATA-DRIVEN MODELING

In most of the works related to NIROMs, the general
idea is to employ the ML model to learn the temporal
evolution of the field variable in the reduced order sub-
space and thereby bypass the intrusive Galerkin projec-
tion. Gao, Wang, and Zahr 431 proposed a framework
that utilizes a fully connected neural network to approx-
imate the nonlinear velocity function in the ROM equa-
tions by leveraging the same data used for the reduced
basis construction. They illustrated the stable perfor-
mance of the framework in the parametric viscous Burg-
ers equation and two-dimensional premixed H2-air flame
model. Xu and Duraisamy 432 proposed a data-driven
framework composed of a convolutional encoder to iden-
tify nonlinear basis functions, a temporal convolutional
encoder to learn the temporal dynamics of latent vari-
ables, and a fully connected neural network to learn the
mapping between the parameters of the system and the
latent variables. They demonstrated the predictive per-
formance of this framework for problems involving dis-
continuities, wave propagation, and coherent structures.
Although NIROMs has been successful for many complex
nonlinear problems, the typical sparsity of data motivates
physics-informed data-driven modeling.

Remark. We note that most computational modeling ap-
proaches require (a) data and (b) physics knowledge. The
evolution equations are computationally too demanding
and numerical discretization methods are not feasible for
multi-query tasks. The data-driven methods are compu-
tationally efficient, but data-hungry in nature. For exam-
ple, the autoencoders require a lot of data to build the
generalizable ROM as it can not be derived from first
principles. However, the reduced dynamics on the au-
toencoder need to follow first principle dynamics, which
can be imposed as a prior given sparse data.

The neural networks are one of the most popular algo-
rithms for learning the reduced order dynamics of nonlin-
ear problems. However, as the complexity of the system
increases, the depth of the neural network also grows
to learn the complicated nonlinear dynamics, and the
number of trainable parameters explodes quickly. In the
presence of sparse data, deep neural networks exhibit
high epistemic uncertainty, and this adversely affects the
trustworthiness of NIROMs. In these situations, it is
important to inject physical relationships explicitly or
implicitly in the training process or the model architec-
ture. For example, partial differential equations, conser-
vation laws, and symmetries can be exploited towards
building physics-informed data-driven models. This will
allow the training of deep neural networks with limited
training data, speed up the training process, and also en-
sure physically consistent prediction. To this end, differ-
ent approaches have been proposed in scientific machine
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learning, e.g., cost function modification to accommodate
the model Jacobian433, grow-when-required network434,
physics-informed neural networks435–438, embedding hard
physical constraints in a neural network439,440, physics-
based feature extraction441, leveraging uncertainty
information442, developing visualization tool of the net-
work analysis443, physics-guided machine learning444,445,
and hybrid modeling20,240,410,446. Readers are referred
to the recent review article by Karniadakis et al. 438 for
a detailed discussion of embedding physics into machine
learning for tackling scientific problems. In recent years,
innovative applications of tailored neural network archi-
tectures have become increasingly common among fluid
dynamicists. A central question in many studies is of-
ten how to exploit prior knowledge about the problem at
hand to build more trustworthy models447. Various hy-
brid modeling principles that aim at combining machine
learning and data-driven models with physics-based mod-
els have been recently discussed by San, Rasheed, and
Kvamsdal 20 .

The physics-informed data-driven modeling has been
successful in many applications, such as turbu-
lence closure modeling448, super-resolution of turbu-
lent flows449,450, and generative modeling of dynamical
systems451–453, and it holds a great potential for ROMs.
Next, we present several recent developments in physics-
informed data-driven modeling. Chen et al. 454 built
the physics-reinforced neural network (PRNN) trained
by minimizing the mean squared residual error of the
reduced order equations, and the mean squared error be-
tween the neural network prediction and the projection
of high-fidelity data on the reduced basis. The incor-
poration of reduced order equations in the loss func-
tion can be considered as a physics-based regulariza-
tion. The PRNN was demonstrated to be more accu-
rate than a purely data-driven neural network for com-
plex nonlinear problems. Mohan et al. 439 proposed a
physics-embedded convolutional autoencoder (PhyCAE)
in which the divergence-free condition is imposed as a
hard constraint through non-trainable layers after the de-
coder. The PhyCAE combined with a recurrent neural
network for modal coefficients prediction can provide a
physics-constrained NIROM that satisfies the conserva-
tion laws. Lee and Carlberg 455 developed a framework
that computes the lower-dimensional embedding using a
convolutional autoencoder and enforces physical conser-
vation laws by modeling the latent-dynamics as a solu-
tion to a constrained optimization problem. The objec-
tive function of the optimization problem is defined as
the sum of squares of conservation-law violations over a
control volume of the finite volume discretization.

Kaptanoglu et al. 456 developed a physics-constrained
low-dimensional model for magnetohydrodynamics by
enforcing symmetries derived from global conservation
laws into data-driven models. Sawant, Kramer, and
Peherstorfer 457 proposed a physics-informed regularizer
and structure preserving (such as symmetry and defi-
niteness in linear terms) formulation of OI and demon-

strated their framework’s performance in terms of im-
proved stability and accuracy for nonlinear systems. The
OI framework with physics-based regularization has also
been applied for building predictive ROMs for rocket
engine combustion dynamics458. A constrained sparse
Galerkin approach has been introduced by Loiseau and
Brunton 417 . Finally, Mohebujjaman, Rebholz, and Ili-
escu 361 used physical constraints to increase the stability
and accuracy of their data-driven variational multiscale
ROM closure framework.

There are a number of limitations of data-driven meth-
ods, including extrapolation beyond the training dataset,
the curse of dimensionality, stability issues, and bound-
edness of the model. Many of these potential challenges
can be mitigated using the decades of progress in physics-
based modeling. For example, one way to address the
curse of dimensionality, i.e., when the optimization prob-
lem can become highly non-convex and computationally
expensive for very high-dimensional systems, is to tai-
lor the feature space based on prior knowledge about the
system459. Furthermore, the extrapolation beyond train-
ing dataset, which is a central challenge in many data-
driven methods, can be effectively tackled by enforcing
conservation laws or by using a custom neural network
architecture that incorporates prior information about
the system at hand. Finally, as the research in physics-
informed data-driven modeling is rapidly progressing,
reproducible research through open-source benchmark
datasets and test cases should also be developed.

VII. CONCLUSIONS AND OUTLOOK

The ever-increasing need for computational efficiency
and improved accuracy of many applications leads to
very large-scale dynamical systems whose simulations
and analyses make unmanageable demands on computa-
tional resources. Significantly simplifying the computa-
tional complexity of the underlying mathematical model,
ROMs offer promise in many applications, like shape op-
timization, uncertainty quantification, and control. Over
the past decades, for example, DNS, LES, and RANS
have made a tremendous impact in the numerical simu-
lation of turbulent flows. However, these FOMs cannot
be generally used in such many query applications be-
cause of their prohibitively high computational cost.

ROMs are efficient, relatively low-dimensional models
often created from available data. In fluid dynamics,
ROMs have been successfully used as surrogate models
for structure-dominated problems, mainly in simple, aca-
demic test problems. However, traditional ROMs gener-
ally fail for more realistic flows because a low-dimensional
ROM basis cannot accurately represent the complex dy-
namics, a topic that vastly waits for new explorations.
Our paper provides a glimpse into various approaches
to generating accurate ROMs, focusing on phenomeno-
logical, mathematical, and data-centric closure modeling
approaches. We primarily focus on subspace projection-



26

based methods and discuss their feasibility for various
nonlinear problems in fluid dynamics. A chief empha-
sis is given to closure methods and, in particular, to the
analogy between LES and ROMs. Various methodolo-
gies are leveraged and examples are included to provide a
broader overview of forward-looking reduced order mod-
eling practices in the age of data. Of course, our pa-
per is only a first step in an exhaustive discussion of
ROM closure modeling. Although we tried to include as
many relevant contributions as possible, we left out im-
portant developments (e.g., stochastic closure modeling,
compressible flows, and ROM pressure approximations).
We hope, however, that our paper will serve as a stepping
stone toward a more comprehensive discussion of the ex-
citing research areas of data-driven modeling and ROM
closures, where these and many other new developments
will be carefully presented.

We envision that ROMs will be a key enabler in the
development of a big data cybernetics infrastructure, an
approach to controlling an asset or process using real time
big data. These tools and concepts offer many new per-
spectives to our rapidly digitized society and its seamless
interactions with many different fields. With the recent
wave of digitalization, the latest trend in every industry
is to build systems and approaches that will help it not
only during the conceptualization, prototyping, testing,
and design optimization phase but also during the opera-
tion phase with the ultimate aim to use them throughout
the whole product life cycle. While the numerical simula-
tion tools and lab-scale experiments are clearly important
in the first phase, the potential of real time availability
of data in the operational phase is opening up new av-
enues for monitoring and improving operations through-
out the life cycle of a product. We believe that ROMs
will be crucial to the improvement of emerging digital
twin technologies.

Currently, the development of robust monolithic
ROMs for a single operating condition with adequate
data is a well-established art. We remark that ‘suffi-
cient data’ for post-transient dynamics implies that all
snapshots will be approximately revisited multiple times.
This is already quite a challenge for turbulent flows given
the stochasticity of the dynamics.

A much more common task is modeling transient, con-
trolled or multi-parametric dynamics. For instance, an
airplane needs to be designed to prevent flutter under a
large range of operating conditions, e.g., velocity, angle
of ascent or descent, position of flaps, and maneuvers.
There will never be enough data for these cases and the
large terra incognitae (oceans of missing data) have to
be replaced by prior knowledge or clever guesses. Hence,
physics-informed data-driven ROMs will become a neces-
sity for most applications.

Most likely, such a range of dynamics will not be fa-
cilitated by a single ‘monolithic’ reduced order represen-
tation, but a large set of representations, leading to a
large set of ROMs with overlapping domains of valid-
ity. This trend is already foreshaddowed for the transient

cylinder wake. An accurate reduced order representa-
tion requires about 50 POD modes122 or, staying in the
Galerkin framework, a set of adjustable mean-field and
adjustable Galerkin expansion modes460.

Another requirement is human interpretability of the
kinematics and dynamics. In an ideal case, this leads
to a low-dimensional manifold for the data and a sparse
representation for the dynamics. Most likely, only carto-
graphic visualization of the state space and the dynamics
will be achievable. One example is the cluster-based net-
work with many centroids for many operating conditions
and a transition network for the dynamics.

As the treasures of high quality experimental and nu-
merical data and the spectrum of increasingly powerful
methods are evolving, an open-source distribution of data
and methods becomes of increasing importance. Hith-
erto, sharing of data and methods is still in its infancy
and requires dedicated efforts. A noteworthy positive
development is ever-increasing number of journals that
encourage the publication of data and methods.

We conclude with two guidelines which are indepen-
dent of the field but may easily be overlooked. First,
there is the need for a well chosen set of guiding bench-
mark problems serving as lighthouses for model develop-
ment. The second advice is best formulated by Harring-
ton Emerson (1853–1931, efficiency engineer):

“As to methods there may be a million and
then some, but principles are few. The man
who grasps principles can successfully select
his own methods. The man who tries meth-
ods, ignoring principles, is sure to have trou-
ble.”
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“On the need for a nonlinear subscale turbulence term in POD
models as exemplified for a high-Reynolds-number flow over an
Ahmed body,” J. Fluid Mech. 747, 518–544 (2014).

115F. Ballarin, A. Manzoni, A. Quarteroni, and G. Rozza,
“Supremizer stabilization of POD–Galerkin approximation of
parametrized steady incompressible Navier–Stokes equations,”
International Journal for Numerical Methods in Engineering
102, 1136–1161 (2015).

116M. Schlegel and B. R. Noack, “On long-term boundedness of
Galerkin models,” Journal of Fluid Mechanics 765, 325–352
(2015).

117B. Peherstorfer and K. Willcox, “Data-driven operator inference
for nonintrusive projection-based model reduction,” Computer
Methods in Applied Mechanics and Engineering 306, 196–215
(2016).

118S. L. Brunton, J. L. Proctor, and J. N. Kutz, “Discovering gov-
erning equations from data by sparse identification of nonlinear
dynamical systems,” Proceedings of the National Academy of
Sciences 113, 3932–3937 (2016).

119M. Sieber, C. O. Paschereit, and K. Oberleithner, “Spectral
proper orthogonal decomposition,” Journal of Fluid Mechanics
792, 798–828 (2016).

120A. Towne, O. T. Schmidt, and T. Colonius, “Spectral proper
orthogonal decomposition and its relationship to dynamic mode
decomposition and resolvent analysis,” Journal of Fluid Me-
chanics 847, 821–867 (2018).

121J. Reiss, P. Schulze, J. Sesterhenn, and V. Mehrmann, “The
shifted proper orthogonal decomposition: A mode decomposi-
tion for multiple transport phenomena,” SIAM Journal on Sci-
entific Computing 40, A1322–A1344 (2018).

122J.-C. Loiseau, B. R. Noack, and S. L. Brunton, “Sparse reduced-
order modelling: sensor-based dynamics to full-state estima-
tion,” Journal of Fluid Mechanics 844, 459–490 (2018).

123M. Mendez, M. Balabane, and J.-M. Buchlin, “Multi-scale
proper orthogonal decomposition of complex fluid flows,” Jour-
nal of Fluid Mechanics 870, 988–1036 (2019).



30

124H. Li, D. Fernex, R. Semaan, J. Tan, M. Morzyński, and B. R.
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364B. C. Csáji, “Approximation with artificial neural networks,”
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