Symmetric Key Exchange with Full Forward
Security and Robust Synchronization

Colin Boyd!, Gareth T. Davies2[0000-0002—-5935-5725] B} de
Kocl![0000-0003-3143-4381] K ai (Gellert2[0000-0003-0985-7265] ihor Jager?, and
Lise Millerjord®

! NTNU - Norwegian University of Science and Technology, Trondheim, Norway
2 Bergische Universitit Wuppertal, Wuppertal, Germany

Abstract. We construct lightweight authenticated key exchange proto-
cols based on pre-shared keys, which achieve full forward security and
rely only on simple and efficient symmetric-key primitives. All of our
protocols have rigorous security proofs in a strong security model, all
have low communication complexity, and are particularly suitable for
resource-constrained devices.

We describe three protocols that apply linear key evolution to pro-
vide different performance and security properties. Correctness in par-
allel and concurrent protocol sessions is difficult to achieve for linearly
key-evolving protocols, emphasizing the need for assurance of availabil-
ity alongside the usual confidentiality and authentication security goals.
We introduce synchronization robustness as a new formal security goal,
which essentially guarantees that parties can re-synchronize efficiently.
All of our new protocols achieve this property.

Since protocols based on linear key evolution cannot guarantee that all
concurrently initiated sessions successfully derive a key, we also propose
two constructions with non-linear key evolution based on puncturable
PRFs. These are instantiable from standard hash functions and require
O(C - 10og(|CTR|)) memory, where C is the number of concurrent ses-
sions and |CTR| is an upper bound on the total number of sessions per
party. These are the first protocols to simultaneously achieve full forward
security, synchronization robustness, and concurrent correctness.

1 Introduction

Authenticated key exchange protocols based on pre-shared long-term symmetric
keys (PSK-AKE) enable two parties to use a previously established symmetric
key, agreed upon via out-of-band communication, to (mutually) authenticate and

This work was supported by Deutscher Akademischer Austauschdienst (DAAD) and
Norges forskningsrad (NFR) under the PPP-Norwegen programme. Colin Boyd and
Lise Millerjord have been supported by NFR project number 288545. Tibor Jager
and Gareth T. Davies have been supported by the European Research Council (ERC)
under the European Union’s Horizon 2020 research and innovation programme, grant
agreement 802823.

2 C. Boyd et al.

derive a shared session key. Prominent examples of such protocols are the PSK
modes of TLS 1.3 and prior TLS versions, but these examples still make use of
public-key techniques for key derivation, even if authentication uses symmetric
keys. PSK-AKE protocols can be significantly more efficient than classical public-
key AKE protocols, particularly when they can be constructed exclusively based
on symmetric key primitives (“symmetric AKE”) for both authentication and
key derivation. Therefore such protocols are especially desirable for performance-
constrained devices, such as battery-powered wireless IoT devices, where every
computation and every transmitted bit has a negative impact on battery life.
More generally, such protocols may be preferable in “closed-world” applications,
such as industrial settings, where pre-sharing keys may be easier and more prac-
tical than deploying a public-key infrastructure. Furthermore, protocols based
purely on symmetric-key techniques, such as hash functions and symmetric en-
cryption, also achieve security against quantum attacks by adjusting security
parameters appropriately.

Forward Security in Symmetric AKE Protocols. Forward security is today a
standard security goal of key exchange protocols. It requires that past session
keys remain secure, even if the secret long-term key material is compromised.
Note that this is only achievable if past session keys are not efficiently computable
from a current long-term key. Forward security is comparatively easily achievable
if public key cryptography is used. For instance, a classical approach is to use
ephemeral keys for key establishment, such as the Diffie-Hellman protocol or,
more generally, a key encapsulation mechanism (KEM). Independent long-term
keys can then be used for authentication via digital signatures or another KEM.
The only currently known way to avoid public key techniques and use only
symmetric key primitives is based on the “derive-then-evolve” approach, where
first a session key is derived from a long-term key, and then the long-term key
is evolved. This key evolution prevents efficient re-computation of prior session
keys which yields forward security. Both steps can be implemented with simple
key derivation functions. There are two common ways to use this approach:

1. Synchronized key evolution. In this case, both parties evolve their long-term
keys in “epochs”, e.g., once per day. Note that this approach cannot achieve
“full” foward security, but only a weaker “delayed” form. This is because all
session keys of the current epoch can be computed from the current long-term
secret, so forward security only holds for session keys of past epochs. More-
over, this approach requires synchronized clocks between parties, even to
achieve correctness. For many applications this seems impractical, in partic-
ular for cheap low-performance devices, for which symmetric AKE protocols
are particularly relevant.

2. Triggered key evolution. In this case the protocol ensures that both parties
advance their key material during protocol execution. This approach directly
achieves “full” forward security for every session, and therefore seems prefer-
able. However, this apparently simple approach turns out to be much less
trivial to realize than might be expected, because both parties must remain

Symmetric KEX with Full Forward Security and Robust Synchronization 3

“in sync”, such that correctness is guaranteed even in presence of concur-
rent sessions or message loss due to network failures or active attacks. This
approach has similarities with ratcheting [1], but there are significant differ-
ences in our setting as discussed under Related Work below.

Concurrency and Key-Fvolving Protocols. The possibility of running concurrent
protocol sessions in parallel is a standard correctness requirement for protocols,
and reflected in all common AKE security models, such as the BR and CK
models [8,15] and their countless variants and refinements. The main technical
challenge of key evolution is to achieve full forward security while maintaining
correctness in the presence of parallel and concurrent protocol sessions.

Even if we assume that all parties are honest and that all messages are
transmitted reliably (i.e., without being dropped because of an unreliable net-
work or influence from an adversary) this is already highly non-trivial and we
do not know of any currently existing forward-secure symmetric AKE protocol
which achieves correctness and full forward security in such a setting. The diffi-
culty is essentially that one session might advance a key “too early” for another
concurrent session to be completed, which breaks correctness. No such difficulty
appears in classical forward-secure public key protocols, since long-term keys are
usually static and different sessions use independent randomness. So it turns out
that, somewhat surprisingly, forward security and correctness is more difficult
to achieve for symmetric AKE.

To complicate matters even further, note that the assumption of honest par-
ties and reliable message transmission is very strong and may not be realistic for
many applications. Therefore we actually want to achieve forward security and
“synchronization robustness” in the presence of an adversary which intention-
ally aims to break synchronization, e.g., by adaptively dropping or re-ordering
messages. Such an adversary is attacking awailability properties of the AKE
protocol, an important aspect of security usually omitted from key exchange se-
curity models. The development of techniques to ensure availability for stateful
key exchange is an unsolved foundational problem.

Our Contributions. In this work we develop several new lightweight forward-
secure symmetric AKE protocols with different efficiency and correctness prop-
erties. Table 1 summarizes the main security and efficiency properties of our new
protocols. This includes the first protocols that provably achieve synchronization
robustness, a formal availability security notion we introduce, and correctness in
the presence of concurrent sessions. More concretely we achieve the following.

Security model. We describe a security model suited to forward-secure sym-
metric AKE capturing entity authentication (one-sided and mutual), in-
distinguishability of established keys, and forward security. Our model fol-
lows a standard approach for AKE protocols based on the Bellare-Rogaway
model [8], adapted to the requirements of symmetric AKE with evolving
keys.

4 C. Boyd et al.

Table 1: Overview of our protocols and comparison to SAKE [4]. The number
in the protocol name indicates the total number of messages per protocol run,
“R only” means that only the responder authenticates its communication part-
ner. The third column considers the communication complexity, where C is the
number of counter values that are sent, M the number of MACs, and N the
number of nonces. Sync. Rob. indicates the achieved level of synchronization
robustness, Bd. Gap whether the gap between two parties is bounded (for non-
concurrent executions), CC whether concurrent correctness is achieved, and FS
whether full forward security is achieved.

Protocol | Auth.| (C, M, N) |Sync. Rob.|Bd. Gap|CC|FS
SAKE (5) [4] mutual|(0,4,2) 4+ ID X 4 X |V
SAKE-AM (4) [4]|mutual|(0,4,2) + ID x v X |v
LP3 mutual| (3,3,2) weak 4 X |V
LP2 mutual| (2,2,0) weak X X |V
LP1 Ronly| (1,1,0) weak X X |V
PP2 mutual| (1,2,0) full v v |V
PP1 Ronly| (1,1,0) full ol

Synchronization robustness. We formalize a new property called synchro-
nization robustness (SR), which is trivially achieved for traditional AKE
protocols with fixed long-term keys, but turns out to be a crucial feature for
key-evolving protocols such as forward-secure symmetric AKE. Essentially,
SR captures whether parties in a protocol can efficiently re-synchronize their
states in order to complete a successful protocol run. This should even hold
if an adversary controls the network and/or some of the parties.

We define two flavours. Both consider an active adversary that may execute
arbitrary protocol sessions to manipulate the state of parties, and whose goal
is to manipulate the state such that a subsequent protocol execution fails.
In weak SR the ‘target’ protocol session must then be executed without ad-
versarial interaction (similar to the corresponding requirement in Krawczyk’s
weak forward security [26]). “Full” SR allows the adversary arbitrary queries
between messages of the ‘target’ session, even to parties of the oracles in-
volved in the ‘target’ session.

Linear key evolving protocols. We define the notion of linear key evolution,
which makes the classical “derive-then-evolve” approach concrete. We argue
that protocols based on linear key evolution can only achieve weak SR and
cannot achieve concurrent correctness.

We construct three different protocols (LP1, LP2, LP3, cf. Table 1), all of
which achieve weak SR. Most interestingly, LP3 even achieves a “bounded
gap” property, which means that no active adversary in control of the net-
work is able to force the state of two parties to differ by more than one key

Symmetric KEX with Full Forward Security and Robust Synchronization 5

evolving step, so that a party is always able to catch up quickly, if necessary.
For all three protocols we show that in a setting where concurrent runs be-
tween two parties are allowed, this number of steps required to catch up is
bounded in the number of concurrent runs. To this end, we apply a new ap-
proach to precisely analyze the state machine of a protocol. Furthermore, we
also show two extremely lightweight protocols LP1 and LP2, which provide
one-sided and mutual authentication, respectively, and where the communi-
cation complexity is only one (resp. two) MAC and one (resp. two) counter
value.

Full SR and concurrent correctness. This leads to the question of whether

and how full synchronization robustness and concurrent correctness (CC)
can be achieved. We propose the use of puncturable pseudorandom functions
(PPRFSs) to apply a “non-linear” key evolving strategy, and we construct two
protocols PP1 and PP2,; which both achieve full SR and CC.
Since PPRFs can be efficiently instantiated from cryptographic hash func-
tions, both protocols are extremely lightweight. PP1 achieves one-sided au-
thentication with a single counter value and a single MAC, PP2 mutual au-
thentication with one counter and two MACs. Furthermore, while repeated
puncturing PPRFs may lead to large secret keys [3], we take advantage of
the stateful nature of symmetric AKE protocols to instantiate the PPRF
such that secret key size is at most logarithmic in the number of sessions.

Hence, we offer a versatile catalogue of lightweight and forward-secure sym-
metric AKE protocols with significantly stronger correctness and security prop-
erties. This includes the first protocols to achieve concurrent correctness and full
synchronization robustness, or weak SR with bounded gap. Which of these pro-
tocols is best for a particular application depends on the nature of the security
and functionality requirements. Further, in LP3 the parties exchange nonces: we
recognize that in some applications sufficient randomness will not be available
and so we prove the protocol secure for any nonce generation procedure, which
could be random selection or (stateful) use of a counter.

Related Work. Bellare and Yee [9] analyzed forward security for symmetric-key
primitives, specifically pseudo-random generation, message authentication codes
and symmetric encryption. They provide constructions using key evolution which
are similar to the linear key evolution that we employ, and their protocols use
some techniques from key-evolving schemes such as prior work on forward-secure
signatures [6]. Their work does not deal with key exchange.

Brier and Peyrin [14] gave a tree-based protocol for key establishment, with
the stated aim of improving the DUKPT scheme defined in ANSI X9.24 [2]. The
idea in DUKPT is that the client device (payment terminal) is highly constrained
in terms of memory, yet needs to derive a unique key per transaction from an
original pre-shared key, by applying a PRF (based on Triple-DES) to a counter
and the base derivation key. Their work involves formalizing the specific problem
faced in the payment terminal setting, and their scheme assumes an incorruptible
server: a far weaker security model than the one that we consider. A similar

6 C. Boyd et al.

security assumption was used by Le et al. [27], who presented a protocol for use
in the context of Radio Frequency Identification (RFID), where the server keeps
two values of the key derivation key to deal with potential synchronization loss.

Li et al. [28] analyzed the pre-shared key ciphersuites of TLS 1.2, using an
adaption of the ACCE model of Jager et al. [23]. In this setting, Li et al. presented
a formalization of the prior AKE-style models, but where parties could share
PSK material with other parties in addition to their long-term key pairs.

Dousti and Jalili [18] presented a key exchange protocol called FORSAKES,
which is based on synchronized time-based key evolution. Their protocol requires
3 messages and assumes perfect synchronicity of parties to achieve correctness,
and as we have already mentioned their approach can only obtain delayed forward
security. A discussion of delayed forward security and more generally the various
challenges involved in defining forward security was given Boyd and Gellert [12].

The concept of evolving symmetric keys is reminiscent of Signal’s double
ratchet [1], a well-known example of a symmetric protocol with evolving keys.
Signal employs a Diffie-Hellman-ratchet, which adds new key material at every
step through multiple Diffie-Hellman exchanges along the way. At every step of
this main ratchet a separate linear key evolving ratchet is ‘branched off’, which
is similar to how linear evolution works in our protocols — however, a critical
difference is that in our scenario we evolve the key shared across different sessions
as opposed to evolving a key within one session as happens in the Signal protocol.
It is this difference which leads to the complexity of managing synchronization
between sessions which run concurrently. In addition to this difference, which
anyway makes Signal unusable for our setting, use of Diffie-Hellman in the Signal
ratchet means that there is a vector for quantum attacks, while our protocol is
purely based on symmetric primitives.

Another primitive conceptually similar to PPRFs is puncturable encryption,
which was introduced by Green and Miers in 2015 [20], and has since led to
several follow-up constructions of puncturable encryption [16,17,21,30]. However,
all those constructions rely on expensive public-key techniques (such as bilinear
pairings) and are thus impractical in the context of this work.

Comparison with Avoine et al. [4]. In Table 1 above we have mentioned two
protocols named SAKE and SAKE-AM that were presented by Avoine et al. [4]
(henceforth ACF20). Their paper was the first to provide key exchange proto-
cols that attain forward security via linear evolution. Their system assumptions
are largely the same as ours, with the crucial difference that our models are
equipped to capture parallel executions. The security model of ACF20 explicitly
disallows concurrent sessions, which not only yields a weak security notion, but
also sidesteps the major difficulty of achieving even correctness in the presence
of concurrent sessions in key-evolving symmetric-key protocols. Indeed, the pro-
tocols from ACF20 completely break down when executed concurrently, allowing
an adversary to prevent the parties from computing any session keys in future
sessions. We consider this an unrealistic and impractical restriction for many
applications. Therefore we introduce the new notion of synchronization robust-

Symmetric KEX with Full Forward Security and Robust Synchronization 7

ness, which formally defines the ability of key-evolving protocols to deal with
concurrent executions, including in adversarial environments.

We embrace the use of (explicit) counters to acquire linear key evolving
protocols that are conceptually simpler and require fewer messages than those
provided by ACF20, in a way that additionally provides (weak) synchronization
robustness. In any protocol that uses PSK evolution to achieve forward security a
party must update the key state after a successful protocol run, and in embedded
devices this requires writing to persistent storage. Our protocols require the
updating (writing) of one key and one counter per session, while SAKE and
SAKE-AM require updating two keys. Since a sequentially evolving key can also
be seen as an implicit counter, conceptually the distinction between counters
and evolving keys seems to be minor. The storage overhead of our protocols
compared to ACF20’s protocols is the (usually 8-byte) counter, while the linear
key evolving protocols in our paper and ACF20 require storage of two keys
(usually 16 or 32 bytes).

We note that ACF20 remarked that the parties could use separate PSKs
for concurrent executions, however this solution requires an a priori bound on
the number of possible concurrent sessions that could occur and a correspond-
ing multiplication in key storage: none of our protocols require this. Further,
implementing their approach would require a modification of their protocols,
since parties need to know which PSK to use, and the security of these modified
protocols is not proven.

Preliminaries. We denote the security parameter as A. For any n € N let 1™
be the unary representation of n and let [n] = {1,...,n} be the set of numbers
between 1 and n. We write z <& S to indicate that we choose element z uniformly
at random from set S. For a probabilistic polynomial-time algorithm 4 we define
y < A(ay,...,a,) as the execution of A (with fresh random coins) on input
ai,...,a, and assigning the output to y. The function Next0dd(z) takes as
input an integer and ouputs the next odd integer greater than x, i.e. whichever
element of {x + 1,2 4+ 2} is odd. Our protocols require the use of counters,
and integer |CTR| is the largest possible counter value. Furthermore, we write

[n] x [n]\ (i*,5*) as a shorthand for {(4,5) € [n]?}\ {(5*,5*) with i < j}.

1.1 Message Authentication Codes

Throughout this paper we assume that all MACs are deterministic. This is to
reduce complexity in our proofs, however most MACs used in practice are de-
terministic [22,25].

Definition 1 (Message Authentication Codes). A message authentication
code consists of three probabilistic polynomial-time algorithms MAC = (KGen,
Mac, Vrfy) with key space Kmac and the following properties:

— KGen(1?) takes as input a security parameter X and outputs a symmetric key
KMAC € Cuacs

8 C. Boyd et al.

Guac 4 (A) OMmac(m) Ovity (m, o)

1: KMAC & KGen(1%) 7: o0+ Mac(®",m) 10: b+ Vrfy(m,o0)

2: 9V« 0 8: Q=0U{(m,o)} 11: ifb=1

31 AOMac():Ovm () (1) 9: return o 12 V:=VU{(m,o)}
a: if I(m,0) €V\ Q 13: return b

5: return 1

6: return0

Fig. 1: The SEUF-CMA-Q security experiment for message authentication code
MAC. A can make @ queries to Owy.

— Mac(KMAC m) takes as input a key KMAC € Kuac and a message m. Output
15 a tag o;

— Vrfy(KMAC m, o) takes as input a key KMAC € Kyac, a message m, and a tag
o. Output is a bit b € {0,1}.

We call a message authentication code correct if for all m, we have

MAC MAC
KMAC<i$Een(1%) [Vrfy (KM m, Mac(kMA% m)) = 1] = 1.

We define MAC security as strong existential unforgeability under chosen
message attack, where the adversary has access to a verification oracle. In the
more common version of this game, which we denote SEUF-CMA-1, the adversary
must stop running after it submits its first verification query: this is a subcase
of our more general definition. Bellare et al. [5] showed that in the strong un-
forgeability case these definitions are equivalent up to a loss factor Q.

Definition 2 (MAC Security). The advantage of an adversary A in the
SEUF-CMA-Q security experiment defined in Fig. 1 for message authentication
code MAC is

Adviad M2 (A) 1= Pr [Gad MO () = 1)

1.2 Pseudorandom Functions

Definition 3 (Pseudorandom Functions). A pseudrandom function is a de-
termanistic function y = PRF(k,x) that takes as input some key k € Kpre and
some element of a domain Dprg, and returns an element y € RpRrE.-

Definition 4 (PRF Security). The advantage of an adversary A in the
PRF-sec security experiment defined in Fig. 2 for pseudorandom function PRF
18

1

AVERE**<(A) = |Pr [GBRE™=(4) = 1] — 5.

Symmetric KEX with Full Forward Security and Robust Synchronization 9

Grrr "“(A) Oy(x)

1: b {0,1} g: ifb=1

2: kprr & Kere 9: Y f(k:pRF,x)
3: g & {]: : Dprr — RPRF} 10: else

40 bt E A0 1n: oy« g()

5: ifb"=b 12: returny

6: return 1

7: return 0

Fig. 2: The PRF-sec security experiment for pseudorandom function PRF. {F :
Dprr — Rprr} is the set of all functions from Dprr to Regrr.

2 Authenticated Key Exchange in the Symmetric Setting

In this section we describe our model for authenticated key exchange with for-
ward security in the symmetric setting. Our model follows the standard ap-
proach of AKE protocols based on the Bellare-Rogaway model [8], adapted to
the requirements of symmetric AKE with evolving keys. This includes defini-
tions for entity authentication (one-sided or mutual), key indistinguishability,
and forward security. Furthermore, we define the property of synchronization
robustness, which is a crucial feature for forward-secure symmetric key exchange
protocols. Parts of our formalization take inspiration from the models of Jager
et al. [23].

Differences to public-key AKFE models. The most notable difference in the sym-
metric key setting is that each pair of parties is initialized with shared key
material, which is specified before the actual protocol is run. This key material
typically includes MAC keys or key derivation keys that have been established in
an out-of-band communication (e.g., chosen during the manufacturing process
of devices). In order to achieve forward-security via “key evolving techniques” in
the symmetric key setting, we additionally have to provide (sessions of) parties
with the ability to modify the party’s key material. As a consequence, the shared
key material of two parties will not always be equal: While one party might evolve
their key before preparing the first protocol message, the responder can (at the
earliest) evolve after it has received that message.

2.1 Execution Environment

We consider a set of n parties {P,...,P,}, where each party is a potential
protocol participant. We refer to parties by P; or by their label 7 if context is
clear. Initially, each pair of parties (P;, P;) with i # j share a common secret
PSK; ;, which is the initial key material generated during protocol initialization

10 C. Boyd et al.

(e.g., MAC keys or key derivation keys). Note that this key material may evolve
over time and that PSK; ; and PSK; ; may not necessarily be equal at all times.

We model parallel executions of a protocol by equipping each party i with
q € N session oracles 7},...,7f. Each session oracle represents a process that
executes one single instance of the protocol. All oracles have access to the “global
key material” PSK (including the ability to modify the key material PSK). More-
over, each oracle maintains an internal state consisting of the following variables:

Variable|Description
« execution state € {uninitialized,negotiating, accept,reject}
pid |identity of the intended partner € {Py,..., P,}
p |role € {Initiator, Responder}
sk |session key € Ks U L for some session key space KCg
Kk |freshness of session key € {exposed, fresh}
sid |session identifier
b |security bit € {0,1}

Additionally, we assume that each oracle has an additional temporary state
variable, used to store ephemeral values or the transcript of messages. As initial
state of the oracle, we have & = uninitialized and k = fresh and b < {0, 1}.
Note that pid and p are set when the adversary interacts with the respective
oracles and that sid and sk are defined as the protocol/adversary progresses.

As usual, if an oracle derives a session key then it will enter the execution
state accept. If an oracle reaches the execution state reject, then it will no
longer accept any messages. Later on when we describe protocols, the event
Abort will identify points at which this action would be triggered.

To begin any of the experiments in this section, the challenger initializes n
parties {Py,..., P,}, with each pair of parties sharing symmetric key material
PSK as specified by the protocol.

An adversary interacts with session oracles 7§ by issuing the following queries.
Several of these queries add output to an oracle transcript (defined below) which
is available to the adversary.

— NewSessionl(7?, pid) initializes a new initiator session for party P; with in-
tended partner pid. Specifically, this query assigns pid, p = Initiator and
o« = negotiating to 7, creates the first protocol message and adds this to
transcript of 7.

— NewSessionR(77, pid, m) initializes a new responder session for party P; with
p = Responder and intended partner pid, and delivers a protocol message to
this oracle. Specifically, it assigns pid and p = Responder to 7 and processes
message m. The message m and consequent protocol messages (if any) are
added to its transcript, and the execution state is set to negotiating.

— Send(7?, m) delivers message m to oracle 7{. This input message, and con-
sequent protocol messages (if any), are added to this oracle’s transcript.

— RevealKey(7?) reveals session key ski and sets 7f.x to exposed.

— Corrupt(P;, P;) (issued to some oracle of P; or P;) returns PSK; ;. If the query

Corrupt(P;, P;) is the 7-th query issued by A, we say that all oracles m; with

Symmetric KEX with Full Forward Security and Robust Synchronization 11

pid = j are T-corrupted. (i.e., party P; becomes 7-corrupted with respect to

the other party P;). An uncorrupted oracle is considered as +oo-corrupted.
— Test (nf) chooses sko <= K, sets sky = mf.sk and returns sk,. This oracle

can only be queried once, and the query making this action is labelled 7.

The adversary must call NewSessionl or NewSessionR in order to specify a
role and intended partner identifier for each oracle it wishes to use. Afterwards,
the adversary can use the Send query to convey messages to these oracles.

2.2 AKE Security

To define entity authentication we use matching conversations [8] for oracle part-
nering, which requires a definition of an oracle’s transcript: T; is the sequence
of all messages sent and received by 7 in chronological order. The standard
definition of matching conversations, reflects that the party that sends the last
message cannot be sure that the responder received that protocol message. We
use this definition for entity authentication.

Note that an oracle 7] only has a transcript, T;, if 77.ac # uninitialized.
Transcript Tg is a prefiz of T} if T? contains at least one message and messages
in T} are identical to and in the same order as the first |T%| messages of T;.

Definition 5 (Partial-transcript Matching conversations [23, Def. 3]).
m; has a partial-transcript matching conversation to 7r§ if

— Té is a prefiv of TS and 7¢ has sent the last message(s), or
— T; =T and 7§ has sent the last message(s).

However, standard matching conversations are not strong enough to define
key indistinguishability in a symmetric setting and leave room for a trivial attack
(intuitively, this is due to the “asynchronous evolution” of the global key mate-
rial PSK). Consider an adversary that uses the above execution environment to
execute some protocol between two (sessions of two) parties. The adversary for-
wards all messages but the last one between both parties. At this point the party
that sent the last message must have reached the accept state and applied some
one-way procedure to its key material PSK in order to achieve forward security.
However, the other party still needs to receive the final message in order to derive
the session key and update its version of the key material. If the adversary were
now to use Test on the accepting party while using Corrupt on the other party,
this leads to a trivial distinguishing attack in standard key indistinguishability
games (e.g., in [23]). Hence, we need to introduce a slightly stronger notion of
matching conversations to precisely capture when Corrupt queries are allowed:
the conversation is only deemed to be matching if all messages were delivered.

Definition 6 (Guaranteed Delivery Matching conversations). 7} has a
guaranteed delivery matching conversation to 7r§ if T = T;-.

As usual, we say that the adversary breaks entity authentication if it forces
a fresh oracle to accept maliciously, and breaks key indistinguishability if it can
distinguish from random an established key that it cannot trivially access.

12 C. Boyd et al.

Definition 7 (Entity Authentication). Let IT be a protocol. Let GEt-Auth(4)
be the following game:

— The challenger initializes n parties and their keys;
— A may issue queries to oracles NewSessionl, NewSessionR, Send, RevealKey,
Corrupt and Test as defined above;
— Once A has concluded, the experiment outputs 1 if and only if there exists
an accepting oracle w; such that the following conditions hold:
1. both P; (w.r.t. P;) and intended partner P; (w.r.t. P;) were not corrupted
before query To;
2. there is no unique 7r§, with p; # pé, such that @5 has a partial-transcript
matching conversation to 7r§.

Define the advantage of an adversary A in the Ent-Auth security experiment
G]E_[nt-Auth(A) as

AdVEPEAuth (1) . py [GEM-Auth(4) — 1]

An oracle 7} accepting in the above sense ‘accepts maliciously’.

Later on we separate the analysis of an initiator oracle accepting maliciously
from a responder oracle accepting maliciously. Further, we will present protocols
that only provide one-sided authentication: this requires separation of the AKE
definition. To this end, we use the following notation:

AdVIEjnt_AUth (.A) _ AdV%nt-AUth_l(.A) + AdVJEYnt_AUth-R(.A).

Definition 8 (Key Indistinguishability). Let IT be a protocol. Let G5 ™" (A)
be the following game:

— The challenger initializes n parties and their keys;
— A may issue queries to oracles NewSessionl, NewSessionR, Send, RevealKey,
Corrupt and Test as defined above;
— Once A has output (i, s,V') to indicate its conclusion, the experiment outputs
1 if and only if there exists an oracle 7] such that the following holds:
1. 7} accepts, with a unique oracle 775, such that 77 has a partial-transcript
matching conversation to 7'(';», when A issues its To-th query;
2. A did not issue RevealKey to 7§ nor 7' (so ki = fresh) and p; # pf;
3. P; (w.r.t. P;) is 1i-corrupted and P; (w.r.t. P;) is Tj-corrupted, with
TiyTj > T0;
4. at the point of query 1;, oracle 7r§ had a guaranteed delivery matching
conversation to m;, and
5.0 =mib.

Define the advantage of an adversary A in the Key-Ind security experiment
GKey-Ind A
b1 (A) as
- - 1
Advie (1) = ’Pr [G*j;y Ind(4) = 1} - 2‘ :

Symmetric KEX with Full Forward Security and Robust Synchronization 13

We assume that all adversaries in the Key-Ind game are valid, meaning that
they terminate and provide an output in the correct format (i.e. (i,s,b') €
[n] % [g] x {0, 1}). Later on in our proofs we will follow the game-hopping strategy,
and in doing so we will often simplify exposition by additionally assuming adver-
saries that do not trigger a trivial win (in the Key-Ind game or any subsequent
modifications of this game).

We define AKE security in three flavors, distinguished by the level of entity
authentication that is achieved by the protocol. An adversary breaks the AKE
security of a protocol if it wins either the entity authentication game, or the key
indistinguishability game.

Definition 9 (Authenticated Key Exchange). Let IT be a protocol. The
advantage of an adversary A in terms of AKE-M (mutual entity authentication),
resp. AKE-| (initiator authenticates the responder), resp. AKE-R (responder au-
thenticates the initiator) is defined as follows:

AdvFEM(A) := AdviY ™™ (A) + AdvEEA (4)
AV (A) i= Advi M (A) + AdviA T (A).
AdVFER(A) = AdviY ™M (A) + AdvEEAR ().

+ Adv%"t_A”th_R(A).

We do not specify any protocols that provide AKE-I alone in this paper, however
it is defined here for completeness.

2.3 Concurrent Execution Synchronization Robustness

We now describe a novel property for key exchange protocols. The goal is to
capture, in a formal manner, how robust a protocol is in the event of adversarial
control of the network and/or some of the parties. We seek a definition that asks:
after an adversary has had control of the communication network (by executing
arbitrary Send and NewSessionl/NewSessionR queries), can an honest protocol
run be executed successfully? Specifically, if it is possible for the parties to lose
synchronization (due to dropped messages or adversarial control) such that the
parties cannot, in one protocol run, regain synchronization and compute the
same key, then the protocol does not meet this property.

Our formalization follows the execution environment of the Ent-Auth and
Key-Ind games described above, and allows an adversary to specify the protocol
run (that it is attempting to ‘interrupt’) at the end of its execution by specifying
two oracles. The challenger awards success if the two parties (specifically those
two oracles) did not accept with the same session key. We define two flavours: a
weaker version wSR in which the ‘target’ protocol run must be executed without
any other messages interleaved, and a stronger version SR which allows arbitrary
queries in between messages of the ‘target’ run, even to parties of the oracles
involved in the ‘target’ run (though of course not to the two oracles).

We define an honest protocol run (via adversarial queries) between two oracles
(with initial state uninitialized) as follows: a NewSessionl query was made that
produced a protocol message m1, a NewSessionR query was made to the other

14 C. Boyd et al.

oracle with input message my, and if this query produced a protocol message
mo then this value was given as a Send query to the other oracle, and so on,
until all protocol messages have been created and delivered, if possible. In the
event that any of these queries fails (returns 1) the honest protocol run aborts.
This honest protocol run can be thought of as a genuine attempt to execute a
protocol execution.

Definition 10 ((weak) Synchronization Robustness). Let IT be a proto-

,,,,,,,,,,,,,,,,,,,

following game:

— The challenger initializes n parties and their keys;
— A may issue queries NewSessionl, NewSessionR and Send as defined above;
— Once A has output (i,7,s,t) to indicate its conclusion, the experiment out-
puts 1 if and only if the following conditions hold:
1. m}.pid = P; and 7! .pid = P;;
i .sk # 7r§.sk: or both values are L;
an honest protocol run was executed between wf and wt;
no queries were made by A to interrupt the protocol execution between
m; and 7r§.

Bt do

4. mo protocol messages in the transcripts of @ and 7r§ were sent to any |

|
| other oracles before they were delivered in the honest run. |
|

Define the advantage of an adversary A in the XX security experiment G (A),
for XX € {wSR, SR}, as

AdVF(A) == Pr [GF(A) = 1] .

Notes on the definitions. Note 1: Condition (4.) in the SR experiment states
that for each genuine protocol message in the ‘target’ session, .4 must not have
provided this message to any other oracles before that message is delivered as
part of the ‘target’ run. This prevents a trivial attack where A delivers the final
protocol message to two oracles: first to some other oracle than the ‘target’ oracle
(but of the same party), then to the target oracle. When the (genuine) protocol
message is delivered to the party for the second time the target oracle would
abort. The parties have still created exactly one key for this genuine protocol
run, and so condition (4.) essentially fixes the allowable output oracles as the
ones that are processing protocol messages for the first time. (Replay attacks are
not an issue in the wSR setting, since the execution must be uninterrupted and
so any action made after that run has occurred has no impact on A’s chances of
winning.) Note 2: We do not allow Corrupt queries in this definition: in all of the
protocols in this paper we assume pairwise shared key material (and specifically,
no keys that are used by a party for communication with multiple other parties).
This means that the adversary is not allowed to corrupt the parties in the target
run with respect to each other, and that all other Corrupt queries will be of no
benefit to an attacker. A similar argument follows for RevealKey queries. This

Symmetric KEX with Full Forward Security and Robust Synchronization 15

simplifies the security experiment, while capturing the property that we wish
to assess. Note 3: In an alternative formulation of our definitions, the target
protocol run could be performed by the challenger as an Execute query as seen in
past literature [7]. We avoid this approach for two reasons. First, in the SR case,
in order to support interleaving, the adversary would have to call the challenger
to initiate each stage of the execution (i.e. k+ 1 times for a k-message protocol),
and this is notationally awkward. Secondly and perhaps more importantly, our
model allows the adversary to attempt to win its game in multiple protocol runs,
and output the oracles which provides the best chance of success. Thus to retain
the strength of the definition we would require multiple Execute queries, resulting
in a model that looks very similar to what we have presented here.

3 Linear Key Evolution

In this section we present a number of protocols that use linear key evolution
to derive session keys. All of these protocols achieve wSR. It is not hard to see
that full robustness (SR) is not achievable with linearly evolving protocols. To
win the SR game the adversary makes a new complete protocol run after the
target run has started and the session key is computed at one party, but before
the session key is computed at the second party. This means that when the
target session completes, the long-term key has already evolved and the key will
be computed with the wrong version of the long-term key at the second party.
Either the session will fail at the second party or the key will be different at the
two parties. (There is a third case when the key is independent of the long-term
key, but in that case the protocol fails to achieve key indistinguishability.)

The first linear key evolving protocol that we present, LP3, exchanges three
short messages and has the attractive property of bounding the gap between the
counters of the two parties. We present two further protocols which are even more
efficient at the cost of some restrictions. LP2 is a two-message protocol but in
order to maintain mutual authentication we insist that parties running LP2 have
fixed their role as either initiator or responder (not an unreasonable assumption
in many application scenarios). Our simplest protocol, LP1, has only a single
message but, in addition to requiring fixed roles, like any other one-message
protocol it can only achieve unilateral authentication. For all of our protocols
we provide theorems guaranteeing authentication, key indistinguishability and
weak synchronization robustness (wSR) security.

Syntax and Conventions. All protocols in this paper use message authenti-
cation codes to ensure that parties can only process messages that are meant
for them. This means that party A stores a key KMAC (static) for MAC and key
derivation key kG'® (evolving) to communicate with B, and KMAC and kKGR to
communicate with C, etc. We describe the key derivation process in more detail
in Sec. 3.1.

In LP2 and LP3, the party sending the protocol message includes its own

identity in the MAC computation: this stops redirection/reflection attacks of

16 C. Boyd et al.

kOAB"diEHSk%B GSE\EOI(A)
nagn 18 (i .A(lk); kO (i K:PRF; b (i {O7 1}
"der" for j € {0,...,¢} do

1 1
kap — skap

k't = PRF(K’, "ad")

agh _ _
sk? = PRF(k’, "der")

K S ok ifb=1
"ad" sk* = sk’
késsudiEHSkiB else
"adh sk™ < Rere
b & A(sK, ... sk sk KT
(a) Linear key evolution scheme. (b) The GKER'(A) security experiment.

Fig. 3: Linear key evolution and the corresponding experiment.

protocol messages to the sending party. For LP1 this is not necessary since the
sending party advances after sending its protocol message, meaning that its state
is ahead and therefore it is unable to process messages that it has already sent.

3.1 Key Derivation via Linear Evolution

Before looking at specific protocols, we define what we mean by linear key evo-
lution and present an abstract security definition for it. Party A holds a key
derivation key kKGR for use in communication with party B, where the value
CTR is an integer that defines the current key state, which is the number of
times the key has evolved since its creation. After a party has participated in a
key exchange run and computed a session key, it will apply a function Advnc to
this key derivation key in order to obtain the next key derivation key and update
the counter. This process is detailed in Fig. 3a. Looking ahead, forward security
will be obtained if the function that computes kG5 from kGIR is one-way: this
stipulation ensures that an adversary corrupting a party has no way to move
upwards in the figure.

The initial “key derivation key” (KDK) is kY 5. Subsequent KDKs are derived

using a pseudorandom function PRF with Cprrp = Rprr as
ki = PRF(K)y, "ad") (1)
and session keys are derived as
skiy g = PRF(k%y, "der")

where "ad"(“advance”) and "der"(“derive”) are constant labels used for domain
separation.

Furthermore, for convenience, we define a function Advnc which performs
multiple key derivations, if necessary. That is, Advnc(k’y 5,4, 2) takes an i-th key

Symmetric KEX with Full Forward Security and Robust Synchronization 17

derivation key for some counter ¢ and an integer z, and applies PRF iteratively z
times to obtain the (i 4+ z)-th KDK such that (1) is satisfied, and sets i := i + 2.
For example:

k"5, i+ z < Advnc(ky g, 4, 2).

Security. For the security proofs of our protocols it will be convenient to have an
abstract security definition for such a key derivation scheme, which we will show
to be implied by the security of the PRF. To this end, Fig. 3b represents a security
experiment for the linear key evolution scheme that we describe. The adversary
A outputs an integer 1° (in unary, to ensure that the number ¢ is polynomially
bounded for any efficient A), and the adversary’s task is to distinguish sk’
from random, when given all prior session keys sk, ...sk‘"1 and the ‘next’ key
derivation key k‘*1,

Definition 11. The advantage of A in in the KEvol security experiment defined
in Fig. 3b for pseudorandom function PRF is defined as

1
AR () = Prlo =] - 3.

In the full version [11] we give the straightforward proof of the following
theorem.

Theorem 12. Let PRF be a pseudorandom function. For any adversary A against
the KEvol security of PRF, there exists an adversary B against the PRF-sec of
PRF such that

Advpre” (A) < € - Advpre ***(B).

3.2 LP3: a Three-Message Protocol

Intuition. In Fig. 4 we present a three-message protocol called LP3, which puts
a bound on how far initiator and responder can be out of sync, allows either
party to initiate communications, and provides mutual authentication. After the
first message is sent by an initiator, the responding party advances to catch up
if they are behind. Then they respond, and the initiator does the same if they
are behind. A third message confirms that both parties are now in sync again,
and only after that a session key is established. We make use of state analysis
proofs to show that the gap between the two states will be bounded even if
messages are lost on the way (Lemma 13) and extend this proof to a scenario
where concurrent runs are allowed (Lemma 14). We then show that the number
of concurrent runs is a bound on the gap that can occur. We show in Theorem 15
that this also implies that the protocol achieves weak synchronization robustness
(wSR). The protocol uses MACs and nonces to achieve mutual authentication
(AKE-M). The functions Advnc and KDF, for PSK advancement and session key
derivation respectively, are implemented using a PRF as described in Fig. 3a
and Sec. 3.1.

18 C. Boyd et al.

Initiator Responder
(CTRap, kGE, KMA) (CTRpa, kG5, KMAC)
Na < GenN
o1+ Mac(®K™, A || N4 || CTRagB) Na,CTRap, 01
T i Vrfy(®™ A N4 || CTRag, 1) = 0
Abort
Z1 < CTRAB — CTRBA
if 21 >0
KER, CTRpA « Advnc(kE'R, CTRBA, 21)
Np <& GenN

6 Vo gMAC N CTRE4, 72 7y Mac(K™, B || Na || N3 || CTR)
if Vrfy(K"", B|[Na || N5 || CTRBA,02) =0

Abort
23 < CTRpa — CTRAB
if 20 >0
kSR, CTRAp « Advnc(kS, CTRAR, 22)

03 + Mac(K™"*“ A ||N4 || N || CTRAB

| "cont") CTRas, 03
skap = KDF(kGE, "der") T Gf Vry(®™ AN || N || CTRaB
KSR, CTRap < Advnc(kSR, CTRAz, 1) || "conf", o3) =0
Abort
23 < CTRap — CTRgA
if 23 #£0
Abort

skap < KDF(KE'R, "der)
kE'R, CTRpa < Advnc(kE'X, CTRpA, 1)

Fig.4: LP3, a three-message protocol.

State. The protocol uses nonces on both the initiating (N4) and responding
(Np) sides. Local session state keeps track of these, and so it is only necessary
to send N4 in the first protocol message and only Np in the second message.
The nonce generation procedure is denoted GenN, and this process could be,
for example, random selection of a bitstring of some fixed length, or a (per-
recipient) counter maintained by the party (note however that this counter is
distinct from CTR, which tracks the key derivation key’s evolution stage). This
choice depends on the application scenario, and this abstraction is for cleaner
proofs. In the absence of a hardware RNG, random nonces require memory to be
allocated for code of a software CSPRNG, while maintaining a counter requires
writing to persistent storage (though such writes must be made anyway in linear
key evolving protocols). The probability of a collision in random selection from

2
NS can be bounded by coll[gn, GenN] < %, and the collision probability of
a (per-recipient) counter of size |[N'S| that is called gy times is

0for 0 < gy < |NS| -1,
collfgn, GenN] = { 1 for qN_>q'|\l./\/_S||. |

Symmetric KEX with Full Forward Security and Robust Synchronization 19

We do not specify the additional counters required to make LP3 deterministic,
so it is specified here as a protocol with random nonces.

LP3 achieves AKE-M security (proof in the full version [11]). The security
bound is
AdVAKEM () < 2. (4Adv§AE,§’CF'CMA'Q(B) + 4coll[g, GenN] + ¢ - AdvKEX! (C)).

Bounded Gap: Non-Concurrent Setting. We will now prove that the “gap”
between the state of the two parties in LP3 is bounded in the non-concurrent
setting, that is:

Lemma 13. Let A and B be respectively the initiator and the responder of a
single — non-concurrent — LP3-run. Let §ap be the gap between A and B with
respect to the evolution of the master keys of both parties. Then d4p5 € {—1,0,1},
assuming MAC-security.

The messages in LP3 are counted in a natural way, as indicated in Fig. 5a.
For this non-concurrent setting the proof is similar to [4, Lemma 1] . Then the
notation “(CTRap, CTRp4)” means that, when the run ends, the last valid
message received by A has index CTR g, and the last valid message received
by B has index CTRp4. We call a (CTR4p,CTRp4)-run a run where the last
message received by A is message CTR 45, and the last message received by B
is message CTRp 4. By convention CTR4p = 0 means that no message has been
received by A. In Fig. 5b, we define the states to be the different values of d4 5.
The transitions are the possible messages. An example: if our protocol instance
isin state 45 = —1, and B responds to message 1 with message 2, i.e. transition
(2,1) in the state diagram, the initiator will advance twice and the state will be
0ap = 1. A then sends the third message: transition (2,3) takes place and we
end up in state d45 = 0 since this third message will cause the responder to
advance.

Proof. We prove Lemma 13. The protocol is initialized with 4 = 0 and the
first step is sending message 1: either the message never reaches the responder,
or the message is received correctly. In either case neither party advances, so
d04p = 0 — i.e. transition (0, 1) in Fig. 5b is fired. If the protocol now terminates
we end up in state 0, while sending and receiving message 2 would cause the
initiator to advance, or in terms of the state diagram, fire (2,1) and transition
to 45 = 1.

Because we restrict ourselves to non-concurrent executions, the only possible
option no matter the state is to advance with one message or terminate and start
from (0,1). Adding all possible transitions to the state diagram, we observe that
there are no reachable states other than 0 and 1. Since the protocol does not
have fixed roles we can reach a state —1 by changing roles after we reached
state 1. From there, there are two transitions that bring us back to states 0 and
1. Since we assume that MACs cannot be forged, these are the only reachable
states, thus dap € {—1,0,1} always holds.

20 C. Boyd et al.

Init. Resp.
a 1
B —
’ b < S
-
t?@ I
c 3
d (0,0),(0,1)
(a) Numbering of states for the proofs (b) Synchronization state for LP3 in
of Lemmas 13 (1,2, 3) and 14 (a, b, ¢, d). the non-concurrent setting.

Fig. 5: Different states for LP3, and transitions between them.

Bounded Gap: Concurrent Setting. We will now extend Lemma 13 to the
concurrent setting.

Lemma 14. Let A and B be respectively the initiator and the responder of C
concurrent LP3-runs. Let §op be the gap between A and B with respect to the
evolution of the master keys of both parties. Then —C' < §ap < 1+ C, assuming
MA C-security.

To illustrate the (in a sense) multidimensional effect of concurrent runs on
the protocol, we will now use a different message labelling convention. Fig. 5a
defines the different states the protocol execution can be in. The state diagram
in Fig. 6 now uses these four possible protocol states as diagram states — a
message between state a and b is thus necessarily message 1. The internal state
of the four ‘macro states’ in the diagram now represents the value of d45.

Observe that for the transitions from a to b and from b to c, i.e. the sending
of messages 1 and 2, respectively, the evolution of 45 depends on the actual
value of a. For all transitions caused by message 3, the change is systematic:

1. Any transition from c to d will decrease d4p by 1;
2. any transition from b to ¢ will increase d4p by at least 1.

Additionally there are two ‘resets’, since

3. any transition from a to b will set d4p to 0, if the gap is 1 or more;
4. any transition from b to ¢ will set d4p5 to 1, if the gap is 0 or less.

Proof. We prove Lemma 14. In Lemma 13, the normal range is shown to be
0ap € {—1,0,1}. Extensions beyond this range are possible when the condition
in 1. or 2. above occurs during a run, so each consecutive run can influence 4 p
with —1 or +1 at most. Since we assume MAC-security, the adversary cannot
influence the protocol with messages other than those authentically sent during
one of the runs. Inductively, we conclude —C < dsp <1+ C.

Symmetric KEX with Full Forward Security and Robust Synchronization 21

/
\ /

| 3
MBI ARERNIEY
=

el o | = H»:n

RRRIEEAR)

Fig. 6: Synchronization state for LP3 in the concurrent setting.

wSR of LP3. We now argue that LP3 obtains weak synchronization robustness
(WSR), the property that captures how well a protocol can recover from network
errors and interleaving of protocol runs. In the wSR game the adversary can
make arbitrary NewSessionl, NewSessionR and Send queries, and at its conclusion
it outputs the identifiers of two oracles: it is said to win the wSR game if these
oracles engaged in an uninterrupted protocol run but did not compute the same
session key. As such, a proof of wSR must argue that whatever values of party
state exist before the target protocol run occurs, neither of the parties will abort
and both will arrive at the same session key.

Our general approach for proving robustness of all of the protocols in this
paper is to separate adversaries that win the wSR game via forging a MAC value,
and those that do not produce a forgery during their execution. LP1 (Fig. 8) and
LP2 (Fig. 7) have fixed roles and as a result the initiator’s counter value must
always be at least the size of the responder’s counter value for the protocol to
have correctness. Thus a MAC forgery can force the responding party’s counter
value to be arbitrarily large, and the target protocol run will cause at least one
party to abort, and the adversary wins the wSR game. LP3, on the other hand,
is actually not vulnerable in the sense of synchronization robustness if a MAC
forgery does occur. This is due to LP3 being designed to have correctness for all
starting (integer) counter values, since in any session, both parties can catch up
from being arbitrarily far behind.

We formally prove this below, however to see this visually, consider Fig. 6
for the execution of a single protocol run, i.e. from a to d. For any initial state
difference a, the state c¢ after the second protocol message has been processed
is always 1 (the initiator computes a session key and advances once), leading
to state difference 0 after the responder processes the final protocol message
(deriving a session key and advancing once).

Theorem 15 (wSR of LP3). Let I be the three-message protocol in Fig. 4,
built using MAC = {KGen, Mac, Vrfy} and PRF with n parties. Then for any
adversary A against the wSR security of IT, Advi>R(A) = 0.

22 C. Boyd et al.

Proof. The only places where Abort occurs in the protocol description (Fig. 4)
are after MAC verification failures: in the target protocol session all messages are
honestly generated so this cannot occur (assuming perfect correctness of MAC).
As a result, the only route to victory in the wSR game for an adversary is to make
the parties compute different session keys. This occurs if the parties compute
session keys but have different counter values once all three protocol messages
have been delivered and processed: following the notation and arguments in
Lemma 14, this is the same as showing that § = 0 after a (2,3) session for
any starting delta value. More precisely, let A and B be the parties involved
in the target session where A sends the first protocol message, let 655 be the
gap between A and B with respect to the evolution of the master keys of both
parties and the point before the target session begins (i.e. before the adversary

calls NewSessionl for the target session), and let 8%’ be the gap after the target

session has occurred. Fig. 5b shows that 6% = 0 for 67% € {—1,0,—1}, so to
complete the proof we need to show that this also holds for arbitrary 6%5.

If %5 € {1,2,...,}, i.e. CTR4p is ahead of CTRp4 by 6% = 21 steps, then
the first protocol message processing by B results in B advancing its counter
CTRpa by 655 steps, leading to state difference 0. This means that A will not
advance on receiving the second protocol message and both parties will compute
a session key for state CTR4p and then advance once, and so 6% = 0.

If %% € {—1,-2,...,}, 1.e. CTRp4 is ahead of CTR4p by —0%5 = 2o steps,
B does not advance in processing the first message, however A does advance by
—6%% = 2o steps on receiving the second protocol message. Again this leads to
state difference 0 and here a session key is computed for state CTRp4 and then
both parties advance once, so 6% = 0.

This concludes the proof, since any initial state will lead to the target protocol

run computing the same session key for the involved parties.

3.3 LP2: A Two-Message Protocol with Fixed Roles

In Fig. 7 we present a two-message protocol, LP2, with linear key evolution.
The roles of initiator and responder are fixed, so the same party initiates every
session: this is enforced by CTR4p > CTRp4 (for A initiating).

Achieving weak synchronization robustness (wSR) is slightly more compli-
cated in LP2 than it was in LP3. If we were to adapt LP3 to a two-message
protocol by simply dropping the last message and having the responder accept
(thus, deriving a session key and advancing its state), we could end up in a situ-
ation where we break the requirement that the responder should never advance
past the state of the initiator. In this hypothetical protocol, the initiator will ini-
tiate the key exchange, but will not derive a session key until it has authenticated
the responder. The responder, however, will authenticate the initiator upon re-
ceiving the first protocol message (rather than waiting for a key confirmation
message as in LP3) and produce the second protocol message, after which it
will immediately derive a session key and advance its state. Thus, if this second
protocol message is not delivered, the responder will have advanced its state,
but the initiator has not, contradicting our requirement that CTR4p > CTRp4.

Symmetric KEX with Full Forward Security and Robust Synchronization 23

Initiator Responder

CTRas, kSR, KMAC CTRpa, kGR, KMAC

20 NeXtUdd(CTRAB) — CTRagB
KSR, CTRap = Advnc(kS, CTRAB, 20)

o1+ Mac(K™*°, A || CTRA) CTR4p, 01
T if Vrfy(®™, A || CTRaB,01) =0
Abort
Z1 < CTRAB — CTRBA
if z1 <0
Abort

k&R, CTRpa < Advne(kE'X, CTRpA, 21)

CTRpA, 02 5y « Mac(k™C, B || CTR5A)
D

if Vrfy(K™A€, B | CTRg 4, 02) =0 skap < KDF(KGX, "der")

Abort k&R, CTRpa < Advnc(k&X, CTRpa, 1)
29 4— CTRBA — CTRAB
if 2040

Abort

skap < KDF(KS, "der")

KSE, CTRap < Advnc(kS, CTRap, 1)

Fig.7: LP2, a two-message protocol with fixed roles.

In order to avoid this in LP2, the initiator A will always advance to the next
odd value of its counter at the beginning of each session. How many steps the
initiator advances depends on what has happened earlier. If a complete session
has been executed as A’s previous action, A starts by advancing once, so that
its state counter is ahead of B. If in the previous session A never processed
the second protocol message, A will advance twice at the beginning of the next
session, in order to catch up to B and move ahead. The reasoning behind this
is the separation of A’s counter set: if the counter is an even integer then A has
most recently received a message (and derived a key), whereas if it is an odd
integer then A most recently sent a (session opening) protocol message. In both
cases, advancing to Next0dd(CTR4p) will have the desired effect.

With this simpler protocol we are able to achieve most of the desired proper-
ties from SP3, but with a more lightweight protocol. Fixing the roles makes this
possible, and this demonstrates the fine balance between forward security and
(weak) synchronization robustness. In the event that the reduced communica-
tion complexity of LP2 compared to LP3 is desirable when choosing a protocol,
but if the application demands that either party can initiate, it is possible to run
LP2 in duplex mode. In duplex mode, both parties keep separate key derivation
keys and counters for initiating and responding such that both parties can have
both roles without violating the condition CTRsp5 > CTRp4.

24 C. Boyd et al.

LP2 provides AKE-M security, with security bound
AdVFEM(A) < n?. (4 AV EEMAQ(BY 4 g Adv§5;°'(0)). The proof [11]
proceeds similarly to the LP3 proofs, except here there are no nonces so no
coll[g, GenN] term is required. LP2 also provides wSR security. The proof of
this (in the full version [11]) slightly differs from LP3 because now we must
additionally argue that the only way the counters can be modified is via a MAC
forgery.

3.4 LP1: A One-Message Protocol with Fixed Roles

In Fig. 8 we present a one-message protocol, LP1, with linear key evolution. Like
in LP2, the roles of initiator and responder are fixed, so the same party initiates
every session: i.e. CTRap > CTRp4 (for A initiating). LP1 achieves one-sided
authentication (responder authenticates initiator). Achieving weak synchroniza-
tion robustness (wSR) is similar in LP1 and LP2, and is guaranteed by MAC
security. Theorems and proofs are in the full version [11]. Like with LP2, if both
parties need to be able to initiate then LP1 can be run in duplex mode.

Initiator Responder
(CTRap, kG, kM) (CTRpa, kX, KMAY)
o1 + Mac(®™, CTR4g) CTRaB, 01
skap < KDF(KGE, "der") if Vrfy (KM, CTRAp,01) =0
K%, CTRAp + Advnc(kS, CTRAz, 1) Abort
21 < CTRap — CTRpa
if 21 <0
Abort
kKGR, CTRp4 + Advnc(k§'X, CTRp4, 21)
skpa < KDF(kE'R, "der")
KGR, CTRp4 « Advnc(kSF, CTRpA, 1)

Fig.8: LP1, a one-message protocol with fixed roles.

4 Non-Linear Key Evolution

In the previous section, we have considered protocols that deploy a linear key
evolving mechanism. We have seen that the linearity of these mechanisms has
significant downsides when the protocol runs multiple times in parallel between
the same two parties. Especially interleaving of messages might cause all but one
protocol execution to abort, which is an undesirable behavior.

In this section, we present a protocol that uses puncturable pseudorandom
functions (PPRFs) as a “non-linear” key evolution mechanism. We show that

Symmetric KEX with Full Forward Security and Robust Synchronization 25

this protocol can establish many parallel sessions between two parties, while
only requiring some additional storage (logarithmic in the supported maximum
number sessions) and computations (in practice hash function evaluations loga-
rithmic in the supported maximum number of sessions).

4.1 Puncturable Pseudorandom Functions

We briefly recall the basic definition of puncturable pseudorandom functions
(PPRF). A PPRF is a special case of a pseudorandom function, where it is
possible to compute punctured keys, which do not allow evaluation on inputs that
have been punctured. We recall the definition of a PPRF and its security [29].

Definition 16 (PPRF). A puncturable pseudorandom function with key space
Kppre, domain Dpprr, and range Rppre consists of three probabilistic polynomial-
time algorithms PPRF = (Setup, Eval, Punct), which are described as follows:

— Setup(1*): This algorithm takes as input the security parameter X and out-
puts a description of a key k € Kppre-

— Eval(k,z): This algorithm takes as input a key k € Kppre and a value x €
Dppre, and outputs a value y € Rpprr, or a failure symbol 1.

— Punct(k,z): This algorithm takes as input a key k € Kpprr and a value
x € Dppgrr, and returns a punctured key k' € Kppgr.

Note that the puncturing procedure can also output an unmodified key
(i.e. ¥ = k). This is for example reasonable if the procedure is called on an
already-punctured value.

Definition 17 (PPRF Correctness). A PPRF is correct if for every subset
{.7,‘1, . ,xt} =S C Dpprr and all x € Dpprr \ S, it holds that

ko <& Setup(17);

: k; = Punct(k;_1, x;) fori € [t]; =1

Pr |Eval(ko, x) = Eval(k:, x)

The security experiment asks that an adversary cannot distinguish an eva-
lution of a real input (provided by the adversary) from a random output range
element, even if the adversary has access to an evaluation oracle and the key
that results from puncturing on the challenge input.

Definition 18 (PPRF Security). The advantage of an adversary A in the
rand security experiment Gapde(A) defined in Fig. 9 is

ran ran 1
AdVF?PgF(A) = |Pr [GF?PgF(-A) = 1] 5l

26 C. Boyd et al.

GES%F(-A) Okval()

k < Setup(1*) y < Eval(k, z)
b<{0,1}; Q=10 Q:=0Q0U{z}
a* & A%eal) (1) k < Punct(k, x)
Yo <& Repre; 1 < Eval(k, z™) return y

k < Punct(k,z")
b" & A(k, yb)
return 1 if b=0" and 2" ¢ Q

return 0

Fig.9: The rand security experiment for puncturable PRF PPRF.

4.2 PPRF-based Symmetric AKE

Intuition. The main idea of our PPRF-based protocol is to derive the session key
via an evaluation of the PPRF. That is, both parties share a PPRF evaluation
key k, which is used to derive session keys by computing Eval(k,N4) for some
value N4 (in our protocols this will be a counter). After derivation of a session
key, the PPRF key will also be punctured at the value N4 by computing k +
Punct(k,N4). Note that the new key k cannot recompute Eval(k,N4) as it has
been punctured for N 4. This will be our leverage to achieve forward security.

Additionally, the PPRF is an essential building block to achieve full syn-
chronization robustness in our protocols. Intuitively, the puncturing procedure
of a PPRF does not evolve its key “linearly” but rather enables fine-grained
removal of evaluation capabilities. This guarantees that every protocol run with
some fresh value N4 for Eval(k, N 4) will be completed successfully, even if other
protocol runs with some value N’, # N4 are executed in-between.

Our protocols. We present a one-message and a two-message protocol, based on
PPRFs. Both protocols have fixed roles, meaning the same party will always
initiate (and only this party is required to store the counter). The two-message
protocol implicitly authenticates both parties (and thus achieves mutual authen-
tication), while the one-message protocol inherently only achieves responder-only
authentication (responder authenticates initiator). Hence, we will only focus on
the two-message protocol shown in Fig. 10 and provide a description and security
analysis for the one-message protocol in the full version [11].

Another important aspect of our protocols is that they use counters to sys-
tematically “exhaust” the PPRF. We will later discuss that this approach assists
the efficiency of tree-based PPRF's as discussed in Aviram et al. [3]. The number
of session keys that can be derived is equal to the size of the counter space.

In the full version [11] we prove that protocol PP2 shown in Fig. 10 provides
key indistinguishability and mutual authentication. The reduction is standard,
and we require SEUF-CMA-Q of the MAC and rand security of the puncturable
PRF.

Symmetric KEX with Full Forward Security and Robust Synchronization 27

Initiator Responder
(kap, KM CTR) (kpa, KMC)
N4 < CTR
o1+ Mac(®™, A || N4) Na,o1
CTR «+ CTR+1 if Vrfy(KMA A || Na,01) =0
Abort
zp < Eval(kpa,Na)
ifzp=_1
Abort
o2 o2 < Mac(kK™*, B || N4)
if Vrfy(K™< B || Na,02) =0 skap + zB
Abort kpa < Punct(kpa,Na)
TA EvaI(kAB, NA)
if za=1
Abort
Sk‘AB —TA

kap < Punct(kag,Na)

Fig. 10: A symmetric AKE protocol PP2 that tolerates concurrent sessions, using
a puncturable PRF PPRF = (Setup, Eval, Punct).

4.3 Synchronization Robustness of PP2

In the full version [11] we prove that PP2 achieves full synchronization robustness
(SR) with security bound AdviR(A) < n? - AdviAEAEJCF'CMA'Q (B), and here we give
a high-level overview of the proof strategy. Intuitively we want to show that any
adversary, making arbitrary message delivery queries between any of the parties
(and their session oracles), cannot cause an adversarially chosen but honestly
executed target protocol run to break down.

The robustness proof essentially needs three arguments: 1) the adversary
cannot forge protocol messages without breaking the security of the MAC, 2)
replaying messages from the target protocol run to other oracles is not beneficial
to the adversary, and 3) the correctness of the PPRF ensures that interleaving
queries with nonce values different to the one used in the target session will not
influence the successful computation of a session key in the target session.

4.4 Instantiation

It remains to discuss how PP2 can be instantiated with a PPRF and what
impact the PPRF has on its efficiency. A promising candidate is the Goldreich—
Goldwasser—Micali PRF [19], which can be transformed to a PPRF [10,13,24].
We give an intuitive explanation of the construction and refer the reader to [3] for

28 C. Boyd et al.

a more detailed description and analysis. This construction is especially suitable,
as both the PPRF evaluation and puncturing are solely based on hash function
evaluations in practice.

Intuition. The tree-based PPRF uses two functions Hy and H; both mapping
from {0,1}* to {0,1}*. For every input z € {0,1}* of the PPRF, the binary
representation of = prescribes the sequence in which Hy and H; have to be
repeatedly applied to x. For example, Eval(01) = H;(Hp(z)). Note that the
evaluation of x corresponds to a path through a binary tree, where each bit in
x tells you whether to take a “left” or “right” path. The result of an evaluation
always corresponds to a leaf in the binary tree.

The initial PPRF key consists of the root node, which is initialized during
key generation as a randomly chosen string. To puncture values (i.e., to puncture
leaves of the tree), we precompute and store all nodes on the co-path between
the root and the leaf, before deleting all parent nodes (including the root node)
of the leaf. Note that this procedure can be repeated for any of the leaves and
note that it satisfies all puncturing-relevant properties (i.e., re-computation of
Eval(z) is not possible but the correctness of the PPRF remains intact).

Memory Consumption. We briefly discuss the memory consumed by the PPRF
during the lifetime of PP2 (and PP1). First, note that the PPRF-based proto-
cols deploy counters, which (if all messages are delivered in sequence) ensure a
systematic puncturing from the leftmost leaf to the rightmost leaf of the binary
tree. This yields the need to to store at most log(|CTR|) tree nodes (i.e., at most
one node per layer of the tree) at any point in time. For C' concurrent sessions,
this bound increases to a maximum of C - log(|CTR|) tree nodes.

The analysis gets slightly more difficult if an adversary actively drops pro-
tocols messages. Each dropped message will either cause the initiator or both
parties to not puncture at some position. One approach to tame the memory
consumption in this case, would be to always puncture on all values which are
smaller than CTR—C.? As we never expect more than C' sessions in parallel, this
reduces additional memory caused by lost messages. In this case, the memory
consumption is again upper-bounded by C - log(|CTR]) tree nodes.

Finally, note that in the one-message protocol PP1 [11] the initiator always
punctures strictly in order and thus has to store at most log(|CTR]) tree nodes.
This may be particularly useful in an application where many low-end devices
communicate with a central server.

References

1. Alwen, J., Coretti, S., Dodis, Y.: The double ratchet: Security notions, proofs, and
modularization for the Signal protocol. In: Ishai, Y., Rijmen, V. (eds.) EURO-

3 Interestingly, the tree-based PPRF can puncture multiple values in one go by “chop-
ping off” whole branches of the tree, instead of puncturing all values one after an-
other.

10.

11.

12.

13.

14.

15.

16.

Symmetric KEX with Full Forward Security and Robust Synchronization 29

CRYPT 2019, Part I. LNCS, vol. 11476, pp. 129-158. Springer, Heidelberg (May
2019).10.1007/978—3-030—17653—2_5

Retail Financial Services Symmetric Key Management Part 1: Using Symmetric
Techniques (ANSI x9.24). Standard, American National Standards Institute, New
York, USA (2009)

Aviram, N., Gellert, K., Jager, T.: Session resumption protocols and efficient
forward security for TLS 1.3 0-RTT. In: Ishai, Y., Rijmen, V. (eds.) EURO-
CRYPT 2019, Part II. LNCS, vol. 11477, pp. 117-150. Springer, Heidelberg (May
2019). 10.1007/978-3-030-17656-3_5

Avoine, G., Canard, S., Ferreira, L.: Symmetric-key authenticated key ex-
change (SAKE) with perfect forward secrecy. In: Jarecki, S. (ed.) CT-RSA 2020.
LNCS, vol. 12006, pp. 199-224. Springer, Heidelberg (Feb 2020). 10.1007/
978-3-030-40186-3_10

Bellare, M., Goldreich, O., Mityagin, A.: The power of verification queries in mes-
sage authentication and authenticated encryption. Cryptology ePrint Archive, Re-
port 2004/309 (2004), http://eprint.iacr.org/2004/309

Bellare, M., Miner, S.K.: A forward-secure digital signature scheme. In: Wiener,
M.J. (ed.) CRYPTO’99. LNCS, vol. 1666, pp. 431-448. Springer, Heidelberg (Aug
1999). 10.1007/3-540-48405-1_28

Bellare, M., Pointcheval, D., Rogaway, P.: Authenticated key exchange se-
cure against dictionary attacks. In: Preneel, B. (ed.) EUROCRYPT 2000.
LNCS, vol. 1807, pp. 139-155. Springer, Heidelberg (May 2000). 10.1007/
3-540-45539-6_11

Bellare, M., Rogaway, P.: Entity authentication and key distribution. In: Stinson,
D.R. (ed.) CRYPTO’93. LNCS, vol. 773, pp. 232-249. Springer, Heidelberg (Aug
1994).10.1007/3—540—48329—2_21

Bellare, M., Yee, B.S.: Forward-security in private-key cryptography. In: Joye, M.
(ed.) CT-RSA 2003. LNCS, vol. 2612, pp. 1-18. Springer, Heidelberg (Apr 2003).
10.1007/3-540-36563-X_1

Boneh, D., Waters, B.: Constrained pseudorandom functions and their applica-
tions. In: Sako, K., Sarkar, P. (eds.) ASTACRYPT 2013, Part II. LNCS, vol. 8270,
pp- 280-300. Springer, Heidelberg (Dec 2013). 10.1007/978-3-642-42045-0_15
Boyd, C., Davies, G.T., de Kock, B., Gellert, K., Jager, T., Millerjord, L.: Sym-
metric key exchange with full forward security and robust synchronization. IACR
Cryptol. ePrint Arch. p. 702 (2021), https://eprint.iacr.org/2021/702

Boyd, C., Gellert, K.: A Modern View on Forward Security. The Computer
Journal (08 2020). 10.1093/comjnl/bxaal04, https://doi.org/10.1093/comjnl/
bxaal04, https://doi.org/10.1093/comjnl/bxaal04

Boyle, E., Goldwasser, S., Ivan, I.: Functional signatures and pseudorandom func-
tions. In: Krawczyk, H. (ed.) PKC 2014. LNCS, vol. 8383, pp. 501-519. Springer,
Heidelberg (Mar 2014). 10.1007/978-3-642-54631-0_29

Brier, E., Peyrin, T.: A forward-secure symmetric-key derivation protocol - how to
improve classical DUKPT. In: Abe, M. (ed.) ASTACRYPT 2010. LNCS, vol. 6477,
pp. 250-267. Springer, Heidelberg (Dec 2010). 10.1007/978-3-642-17373-8_15
Canetti, R., Krawczyk, H.: Analysis of key-exchange protocols and their use
for building secure channels. In: Pfitzmann, B. (ed.) EUROCRYPT 2001.
LNCS, vol. 2045, pp. 453-474. Springer, Heidelberg (May 2001). 10.1007/
3-540-44987-6_28

Cini, V., Ramacher, S., Slamanig, D., Striecks, C.: CCA-secure (puncturable)
KEMs from encryption with non-negligible decryption errors. In: Moriai, S., Wang,

https://doi.org/10.1007/978-3-030-17653-2_5
10.1007/978-3-030-17653-2_5
https://doi.org/10.1007/978-3-030-17656-3_5
10.1007/978-3-030-17656-3_5
https://doi.org/10.1007/978-3-030-40186-3_10
10.1007/978-3-030-40186-3_10
https://doi.org/10.1007/978-3-030-40186-3_10
10.1007/978-3-030-40186-3_10
http://eprint.iacr.org/2004/309
https://doi.org/10.1007/3-540-48405-1_28
10.1007/3-540-48405-1_28
https://doi.org/10.1007/3-540-45539-6_11
10.1007/3-540-45539-6_11
https://doi.org/10.1007/3-540-45539-6_11
10.1007/3-540-45539-6_11
https://doi.org/10.1007/3-540-48329-2_21
10.1007/3-540-48329-2_21
https://doi.org/10.1007/3-540-36563-X_1
10.1007/3-540-36563-X_1
https://doi.org/10.1007/978-3-642-42045-0_15
10.1007/978-3-642-42045-0_15
https://eprint.iacr.org/2021/702
https://doi.org/10.1093/comjnl/bxaa104
10.1093/comjnl/bxaa104
https://doi.org/10.1093/comjnl/bxaa104
https://doi.org/10.1093/comjnl/bxaa104
https://doi.org/10.1093/comjnl/bxaa104
https://doi.org/10.1007/978-3-642-54631-0_29
10.1007/978-3-642-54631-0_29
https://doi.org/10.1007/978-3-642-17373-8_15
10.1007/978-3-642-17373-8_15
https://doi.org/10.1007/3-540-44987-6_28
10.1007/3-540-44987-6_28
https://doi.org/10.1007/3-540-44987-6_28
10.1007/3-540-44987-6_28

30

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

C. Boyd et al.

H. (eds.) ASTACRYPT 2020, Part I. LNCS, vol. 12491, pp. 159-190. Springer, Hei-
delberg (Dec 2020). 10.1007/978-3-030-64837-4_6

Derler, D., Jager, T., Slamanig, D., Striecks, C.: Bloom filter encryption and appli-
cations to efficient forward-secret O-RTT key exchange. In: Nielsen, J.B., Rijmen,
V. (eds.) EUROCRYPT 2018, Part III. LNCS, vol. 10822, pp. 425-455. Springer,
Heidelberg (Apr / May 2018). 10.1007/978-3-319-78372-7_14

Dousti, M.S., Jalili, R.: FORSAKES: A forward-secure authenticated key exchange
protocol based on symmetric key-evolving schemes. Adv. Math. Commun. 9(4),
471-514 (2015). 10.3934/amc.2015.9.471

Goldreich, O., Goldwasser, S., Micali, S.: How to construct random functions.
Journal of the ACM 33(4), 792-807 (Oct 1986)

Green, M.D., Miers, I.: Forward secure asynchronous messaging from puncturable
encryption. In: 2015 IEEE Symposium on Security and Privacy. pp. 305-320. IEEE
Computer Society Press (May 2015). 10.1109/SP.2015.26

Gilnther, F., Hale, B., Jager, T., Lauer, S.: 0-RTT key exchange with full for-
ward secrecy. In: Coron, J.S., Nielsen, J.B. (eds.) EUROCRYPT 2017, Part III.
LNCS, vol. 10212, pp. 519-548. Springer, Heidelberg (Apr / May 2017). 10.1007/
978-3-319-56617-7_18

FIPS 198-1. the Keyed-Hash Message Authentication Code (HMAC). Standard,
NIST (2008)

Jager, T., Kohlar, F., Schiage, S., Schwenk, J.: On the security of TLS-DHE
in the standard model. In: Safavi-Naini, R., Canetti, R. (eds.) CRYPTO 2012.
LNCS, vol. 7417, pp. 273-293. Springer, Heidelberg (Aug 2012). 10.1007/
978-3-642-32009-5_17

Kiayias, A., Papadopoulos, S., Triandopoulos, N., Zacharias, T.: Delegatable pseu-
dorandom functions and applications. In: Sadeghi, A.R., Gligor, V.D., Yung, M.
(eds.) ACM CCS 2013. pp. 669-684. ACM Press (Nov 2013). 10.1145/2508859.
2516668

(NIST SP)-800-185. SHA-3 derived functions: cSHAKE, KMAC, TupleHash and
ParallelHash. Special Publication. Standard, NIST (2016)

Krawczyk, H.: HMQV: A high-performance secure Diffie-Hellman protocol. In:
Shoup, V. (ed.) CRYPTO 2005. LNCS, vol. 3621, pp. 546-566. Springer, Heidelberg
(Aug 2005). 10.1007/11535218_33

Le, T.V., Burmester, M., de Medeiros, B.: Universally composable and forward-
secure RFID authentication and authenticated key exchange. In: Bao, F., Miller,
S. (eds.) ASIACCS 07. pp. 242-252. ACM Press (Mar 2007)

Li, Y., Schége, S., Yang, Z., Kohlar, F., Schwenk, J.: On the security of the pre-
shared key ciphersuites of TLS. In: Krawczyk, H. (ed.) PKC 2014. LNCS, vol. 8383,
pp. 669-684. Springer, Heidelberg (Mar 2014). 10.1007/978-3-642-54631-0_38
Sahai, A., Waters, B.: How to use indistinguishability obfuscation: deniable en-
cryption, and more. In: Shmoys, D.B. (ed.) 46th ACM STOC. pp. 475-484. ACM
Press (May / Jun 2014). 10.1145/2591796.2591825

Sun, S., Sakzad, A., Steinfeld, R., Liu, J.K., Gu, D.: Public-key puncturable encryp-
tion: Modular and compact constructions. In: Kiayias, A., Kohlweiss, M., Wallden,
P., Zikas, V. (eds.) PKC 2020, Part I. LNCS, vol. 12110, pp. 309-338. Springer,
Heidelberg (May 2020). 10.1007/978-3-030-45374-9_11

https://doi.org/10.1007/978-3-030-64837-4_6
10.1007/978-3-030-64837-4_6
https://doi.org/10.1007/978-3-319-78372-7_14
10.1007/978-3-319-78372-7_14
https://doi.org/10.3934/amc.2015.9.471
10.3934/amc.2015.9.471
https://doi.org/10.1109/SP.2015.26
10.1109/SP.2015.26
https://doi.org/10.1007/978-3-319-56617-7_18
10.1007/978-3-319-56617-7_18
https://doi.org/10.1007/978-3-319-56617-7_18
10.1007/978-3-319-56617-7_18
https://doi.org/10.1007/978-3-642-32009-5_17
10.1007/978-3-642-32009-5_17
https://doi.org/10.1007/978-3-642-32009-5_17
10.1007/978-3-642-32009-5_17
https://doi.org/10.1145/2508859.2516668
10.1145/2508859.2516668
https://doi.org/10.1145/2508859.2516668
10.1145/2508859.2516668
https://doi.org/10.1007/11535218_33
10.1007/11535218_33
https://doi.org/10.1007/978-3-642-54631-0_38
10.1007/978-3-642-54631-0_38
https://doi.org/10.1145/2591796.2591825
10.1145/2591796.2591825
https://doi.org/10.1007/978-3-030-45374-9_11
10.1007/978-3-030-45374-9_11

	Symmetric Key Exchange with Full Forward Security and Robust Synchronization

