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ORIGINALQ13 ARTICLE

MRI-based automatic segmentation of rectal cancer using 2D U-Net on two
independent cohorts

Q12 Franziska Knutha� , Ingvild Askim Addea�, Bao Ngoc Huynhb , Aurora Rosvoll Grøndahlb ,
Ren�e Mario Wintera , Anne Negårdc,d, Stein Harald Holmedalc, Sebastian Meltzere , Anne Hansen Reed,e ,
Kjersti Flatmarkd,f , Svein Duelandg , Knut Håkon Holed,h , Therese Seierstadh ,
Kathrine Røe Redalena and Cecilia Marie FutsaetherbQ1
aDepartment of Physics, Norwegian University of Science and Technology, Trondheim, Norway; bFaculty of Science and Technology,
Norwegian University of Life Sciences, Ås, Norway; cDepartment of Radiology, Akershus University Hospital, Lørenskog, Norway; dInstitute of
Clinical Medicine, University of Oslo, Oslo, Norway; eDepartment of Oncology, Akershus University Hospital, Lørenskog, Norway;
fDepartment of Gastroenterological Surgery, Oslo University Hospital, Oslo, Norway; gDepartment of Oncology, Oslo University Hospital,
Oslo, Norway; hDivision of Radiology and Nuclear Medicine, Oslo University Hospital, Oslo, Norway

ABSTRACT
Background: Tumor delineation is time- and labor-intensive and prone to inter- and intraobserver var-
iations. Magnetic resonance imaging (MRI) provides good soft tissue contrast, and functional MRI cap-
tures tissue properties that may be valuable for tumor delineation. We explored MRI-based automatic
segmentation of rectal cancer using a deep learning (DL) approach. We first investigated potential
improvements when including both anatomical T2-weighted (T2w) MRI and diffusion-weighted MR
images (DWI). Secondly, we investigated generalizability by including a second, independent cohort.
Material and methods: Two cohorts of rectal cancer patients (C1 and C2) from different hospitals
with 109 and 83 patients, respectively, were subject to 1.5 T MRI at baseline. T2w images were
acquired for both cohorts and DWI (b-value of 500 s/mm2) for patients in C1. Tumors were manually
delineated by three radiologists (two in C1, one in C2). A 2D U-Net was trained on T2w and
T2wþDWI. Optimal parameters for image pre-processing and training were identified on C1 using
five-fold cross-validation and patient Dice similarity coefficient (DSCp) as performance measure. The
optimized models were evaluated on a C1 hold-out test set and the generalizability was investigated
using C2.
Results: For cohort C1, the T2w model resulted in a median DSCp of 0.77 on the test set. Inclusion of
DWI did not further improve the performance (DSCp 0.76). The T2w-based model trained on C1 and
applied to C2 achieved a DSCp of 0.59.
Conclusion: T2w MR-based DL models demonstrated high performance for automatic tumor segmen-
tation, at the same level as published data on interobserver variation. DWI did not improve results fur-
ther. Using DL models on unseen cohorts requires caution, and one cannot expect the same
performance.
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Background

Defining the tumor volume is an important step in many
areas of cancer therapy. The volume is not only needed for
radiotherapy and surgical treatment planning but can also
be used for treatment response monitoring or extraction of
imaging biomarkers. Manual tumor delineation, the current
gold standard, is a time and labor-intensive process. In add-
ition, in rectal cancer, high interobserver variations in manual
delineations have been reported [1–3].

Magnetic resonance imaging (MRI) is today integral in the
diagnostic work-up and staging of rectal cancer, whereas
computed tomography (CT) is the basis for radiotherapy
treatment planning and regular follow-up after completed
treatment. Compared to CT, anatomical T2-weighted (T2w)

MRI images have superior soft tissue contrast with the
potential for more accurate tumor delineation in the pelvic
cavity. Another benefit of MRI is the ability to acquire images
depicting functional tissue information, such as diffusion
weighted imaging (DWI) that can visualize diffusion restric-
tions of water molecules in tissues [4]. The use of DWI in
combination with T2w images is recommended for rectal
cancer diagnostics [5] and may also be valuable for tumor
delineation.

Artificial intelligence strategies, in particular deep learning,
are increasingly utilized for the purpose of automatic tumor
segmentation based on medical images. These strategies
have the potential to not only save time, but also decrease
the interobserver variations. Several studies on rectal cancer
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segmentation focus on deep neural networks with MR
images as basis [1,6–9]. For example, Wang et al. [9] trained
a modified, pretrained Resnet50 on T2w images of 461 rectal
cancer patients and showed good performance on a hold-
out test set from the same cohort as well as on three other
external test sets. Trebeschi et al. [1] used a convolutional
neural network (CNN) with T2w and DWI to segment locally
advanced rectal cancer and evaluated the performance
against two independent sets of manual contours. For colo-
rectal cancer, Jian et al. [7] used a CNN for tumor segmenta-
tion based on T2w images from 612 patients. However, a
common weakness of previous studies is the lack of evalu-
ation on independent datasets.

The aim of this study was to investigate the performance
of an MRI-based 2D U-Net deep learning algorithm for auto-
matic segmentation of rectal cancer. First, training and pre-
processing parameters were evaluated and optimized before
potential improvements of including both anatomical T2w
and DWI were assessed. Last, we investigated generalizability
by evaluating the optimized U-Net model on an independent
dataset.

Materials and methods

Patients

The patient data in this study was from two clinical studies.
The OxyTarget study (NCT01816607) was a prospective
observational study that enrolled a total of 192 patients
between October 2013 and December 2017. Secondly, the
LARC-RRP study (NCT00278694) was a prospective phase II
study with intensified neoadjuvant treatment [10] that
enrolled a total of 109 patients between October 2005 and
March 2010. The current analysis included 109 patients from
the former study and 83 patients from the latter study, for
which the required images and manual delineations

described in the next section were available. The two cohorts
are referred to as C1 and C2, respectively. All patients had
histologically confirmed rectal adenocarcinoma and success-
ful MRI acquisition with adequate image quality without arti-
facts and other distortions. Patient and tumor characteristics
are summarized in Table 1. For all patients, written informed
consent was obtained and the study was performed in
accordance with the Helsinki Declaration. Approval was
obtained from the Institutional Review Board and the
Regional Committee for Medical and Health Research Ethics.

Magnetic resonance imaging

For cohort C1, T2w and DW images with a b-value of 500 s/
mm2 were acquired using a Philips Achieva 1.5T system
(Philips Healthcare, Best, The Netherlands). A radiologist R1
with 14 years of experience with pelvic MRI delineated the
tumor region of interest on the T2w images with the DW
images as guidance. For a subset of 74 patients, a second
delineation by a radiologist R2 with 7 years of experience
was collected. For cohort C2, T2w images were acquired for
all patients and the tumor was delineated by an expert R3
with 12 years of experience in pelvic MRI. Within this cohort
either a 1.5T GE SignaVR LS scanner (GE Healthcare,
Milwaukee, WI, USA) or a 1.5T Siemens Espree scanner
(Siemens, Erlangen, Germany) was used, due to a scanner
upgrade during the enrollment period. Table 1 lists the imag-
ing parameters for both cohorts. Additional details about the
MR sequences can be found in [11,12] for C1 and [10,13]
for C2.

Image pre-processing

All images were cropped to a matrix size of 352� 352 per
slice. This matrix size was the minimal size that still covered
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Table 1. Overview of patient and tumor characteristics, and imaging parameters.

Characteristic Cohort C1 Cohort C2

Patients
Patients (n) 109 83
Sex (male/female; n) 73/36 49/34
T-stage (T2/T3/T4; n) 20/53/36 5/48/30�
N-stage (NX/N0/N1/N2; n) 0/48/37/24 1/12/8/62†

TNM staging edition 7 5
Tumor volume (cm3; median (range)) 22.6 (1.8� 233.5) 16.5 (1.1� 293.4)
MRI scanner Phillips Achieva 1.5 T GE Signa LS 1.5 T (49/83 cases)

Siemens Espree 1.5 T (34/83 cases)
Delineations
Delineated by Radiologist (R; years of experience) R1 (14) R3 (12)

R2 (7); for 74/109 cases‡

T2w-MRI
Repetition time (ms) 2820-3040 3000–4000
Echo time (ms) 80 81–84
In plane image resolution (mm2) 0.35� 0.35 0.38� 0.38� 0.39� 0.39
Slice thickness (mm) 2.5 4.0

DWI
Repetition time (ms) 3000
Echo time (ms) 75
In plane image resolution (mm2) 1.25� 1.25
Slice thickness (mm) 4

�p¼ 0.61 for the two-sided t-test between T-stage in C1 and C2; †p¼ 0.72 for the two-sided t-test between N-stage in C1 and C2; ‡patient
statistics for this subset of C1 and result of the two-sided t-test between C1 and the C1 subset for T and N-stage: sex (male/female): 51/23;
T-stage (T2/T3/T4): 12/38/24 (p¼ 0.39); N-stage (N0/N1/N2): 31/25/18 (p¼ 0.84); Tumor volume (cm3, median (range)): 22.6 (2.0-233.5).
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the whole tumor for all patients. For patients in C1, the DW
images were rigidly registered and resampled toward the
T2w image grid before cropping. Details regarding the regis-
tration are given in Supplementary S1. Image slices not con-
taining tumor according to the delineation by R1 in C1 and
R3 in C2 were discarded, to focus on segmentation rather
than detection. Within C1, image slices where the DW image
did not fully cover the tumor were also removed. This
resulted in 1 826 slices in C1 and 863 slices in C2.

In order to normalize for potential variation in image
intensities between scanners, two normalization methods
were explored. The first was calculation of the z-score (ZS),
and the second was the ZS combined with histogram match-
ing (HM). Both were performed per patient and image type.

For cohort C1, a 15% hold-out test set was created, while
the remaining patients were split into five folds used for
cross-validation during training. All splits were stratified by
sex and T-stage.

Image pre-processing was performed in Python 3.7 [14]
using scikit-image 0.18 [15], scikit-learn 0.24 [16] and
SimpleITK 2.0 [17].

U-Net architecture and training parameters

A 2D U-Net [18] was used in this study. The learning rate
was varied between 1e-4 and 1e-5. Two options for the loss
function were explored, namely the Dice loss function (DL)
[19] and a modified Dice loss function (mDL) defined as:

DL ¼ 1� 2RN
i pigi

RN
i p

2
i þ RN

i g
2
i

mDL ¼ 1� 2RN
i pigi

RN
i pi þ RN

i gi

Here, p and g denote the prediction probability and
ground truth, respectively, and the summation runs over all
pixels. The modified denominator in mDL compared to DL
results in a less penalizing loss function. Details regarding
the network architecture and other fixed parameters are
listed in Supplementary S2 and the relevant code is available
at [20]. Training and model evaluation were performed using
deoxys 0.0.8 [21], a framework for running deep-learning
experiments with emphasis on tumor auto segmentation.
Experiments were run on the Orion computing cluster based
at the Norwegian University of Life Sciences.

Experimental procedure

Figure 1 presents a general overview of the experimental
procedure. In the first step, a five-fold cross-validation on the
C1 cross-validation set was used to optimize the training
parameters (learning rate: 1e-4 vs 1e-5; loss function: DL vs
mDL) as well as the normalization of the input images (ZS vs
ZSþHM). Using this approach, one model was trained using
T2w images and another was trained using both T2w and
DW images. Manual delineations made by R1 were used as
ground truth. The Sørensen Dice similarity coefficient (DSC)
[22] was used as performance measure, defined as

DSC ¼ 2 P \ Gj j
Pj j þ jGj

Here, P denotes the binary prediction (pi > 0:5) and G the
ground truth segmentation.
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Figure 1. Illustration of the experimental procedure. For both cohorts C1 and C2, T2-weighted (T2w) images were available, whereas diffusion weighted images
(DWI) were available for C1 only. Manual delineations were made by radiologist 1 (R1) in C1 and radiologist 3 (R3) in C2. For a subset of C1, delineations by radiolo-
gist 2 (R2) were also available. The splits of cohort C1 into 5 cross-validation (CV) folds and a hold-out test set (test) were stratified by T-stage and sex. For those
patients where both T2w images and DWI were available a model on both T2wþDWI was evaluated in parallel to the T2w model. The per patient Sørensen Dice
similarity coefficient (DSCp) was used to quantify performance when evaluating the predicted segmentations (P).
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Differences in the per patient DSC (DSCp) under variation
of training and normalization parameters were evaluated
using the Friedman test for repeated measurement [23]. If the
test was significant, the Nemenyi post hoc test [24] was used
for a pairwise comparison of the individual parameter combi-
nations. The parameter combination resulting in the best
model, defined as having the highest rank sum, was chosen
for the subsequent analysis. The selected T2w and T2wþDWI
models were evaluated on the test sets, where majority vot-
ing was used to combine the models from each of the five
individual cross-validation folds. The potential benefit of
including DWI in addition to T2w images was tested using a
two-sided Wilcoxon signed rank test on the DSCp scores of
the predicted segmentations for patients in C1.

Next, the generalization capability of the best T2w-based
model was evaluated using the independent cohort C2. As
for the C1 hold-out test set, automatic segmentations were
generated for patients in C2 using the best model based on
T2w images (majority voting) and the performance was
quantified by the the DSCp. The C2 cohort was selected as it
had T2w images with delineations available and followed
comparable national guidelines.

Lastly, for C1 the predicted segmentations made by the
best T2w and T2wþDWI-based models were evaluated
against the delineation by R2 using the DSCp and tested for
statistical significance. This was done to investigate the utility
of the model when used by a new user, who was not
involved in the training process.

Throughout the statistical analysis, a significance level of
0.05 was used. The statistical analysis was performed using
Python 3.7 [14] with SciPy 1.6 [25] and scikit-posthocs 0.6
[26]. Matplotlib 3.4 [27] was used for visualization.

Results

Figure 2(A) summarizes the resulting DSCp of the five-fold
cross-validation on C1, where learning rate, loss function and
input normalization were varied. The Friedman test detected
an effect of training parameter variation (p< 0.0001) for
models based on T2w or T2wþDW images. Thus, a post hoc
Nemenyi test was used, and the results are shown in
Figure 2(B).

For both image inputs, the models using ZS normalization
and 1e-4 as learning rate achieved the best results, defined
as highest rank sum of DSCp. The optimal choice of loss
function varied. For T2w images, the DL function was opti-
mal, which resulted in median (interquartile range) DSCp of
0.76 (0.16). The combination of T2w and DW images
achieved the highest performance when the mDL function
was used, giving a DSCp of 0.77 (0.14). However, the differ-
ence in performance between models using either mDL or
DL was not significant.

Figure 3(A) shows the C1 cross-validation and test set
DSCp for the best two models based on T2w and T2wþDW
images. Test set model performance was similar with DSCp
of 0.77 (0.21) for T2w and 0.76 (0.18) for T2wþDWI as input.
Figure 3(B) shows the DSCp of all patients in C1 for the two
models. The two-sided Wilcoxon signed rank test showed no

significant difference in performance after the inclusion of
DWI. Resulting segmentations for individual image slices in
the test set can be found in Figure 4(A).

Figure 3(C) shows the performance of the best model
based on T2w images when applied on the independent
cohort C2. Compared to the C1 test set results, the perform-
ance on C2 was lower giving a DSCp of 0.59 (0.28).

Variations in DSCp when the predictions were evaluated
against manual delineations (R2) not included as the ground
truth are shown in Figure 3(D). These DSCp’s were similar to
those obtained between model predictions and the R1
ground truth delineations. The two-sided Wilcoxon signed
rank test showed no significant difference (DSCp for T2w
inputs: 0.77 (0.15) for R1 and 0.74 (0.11) for R2; DSCp for
T2wþDWI inputs: 0.78 (0.14) for R1 and 0.76 (0.13) for R2).
For comparison, the DSCp comparing the manual delinea-
tions from R1 and R2 was 0.81 (0.07) for the same set
of patients.

Discussion

In this study, a 2D U-Net deep learning algorithm was used
for automatic segmentation of rectal cancer in MRI images.
In the first cohort of 109 patients, the potential benefit of
combining T2w and DWI was studied, where our analysis
found no significantly improved performance compared to a
model based only on T2w images as input. This suggests
that T2w images alone contain sufficient information for
adequate segmentation, which is beneficial in the context
of the clinical workflow and eliminates the need for co-regis-
tration. Both models were also evaluated using manual delin-
eations by a second expert on the same cohort and the
T2w-based model was evaluated on a second, independent
cohort. Our results suggest that a trained model is useful for
a new user, whereas applying the model to a new cohort
requires more caution.

Using T2w and DWI as basis, Trebeschi et al. [1] used a
CNN to segment rectal cancer. They achieved a mean DSC of
0.68 and 0.70 when evaluating their predicted segmentation
against two independent readers, respectively. The T2w-
based model presented in our study achieved a median
(interquartile range) per patient DSCp of 0.78 (0.14) and 0.76
(0.13) for the two readers. As they [1] calculated DSC on a
per slice basis while our DSC was calculated on a per patient
basis, the numbers are not directly comparable. Using the
per patient DSCp may give a larger influence to smaller
tumors, since they contribute relatively more to the dataset
than in a per slice DSC approach where larger tumors dom-
inate the resulting score as they extent over many slices.
Another difference is that Trebeschi et al. designed their net-
work for both detection and segmentation, while we focused
on segmentation only.

For the analysis presented in this work, we restricted the
dataset to only include slices containing tumor defined by
the manual delineations by R1 and R3. This was done to sep-
arate the tasks of detection and accurate segmentation.
These are both highly relevant clinical applications, but have
vastly different requirements for their performance metric

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

4 F. KNUTH ET AL.



 

[28]. Another benefit of restricting the analysis to tumor-
containing image slices, is that the classes (tumor versus nor-
mal tissue) in the dataset were more balanced. This also
made the two cohorts, C1 and C2, more comparable. While
C1 initially had 71% image slices containing tumor, it was
only 29% for C2. In a clinical setting, such a preprocessing
step could be performed by a user that selects the slices
with visible tumor. Compared to the task of manual delinea-
tion, this would still have a large impact on expenditure of
time. Another possibility would be to train an independent
network that filters the image slices to those containing
tumor before these slices are used as input to the segmenta-
tion algorithm.

The interobserver variation for cohort C1 with a DSCp of
0.81 is in line with previously published results [3]. As the
network uses the manual delineations as ground truth, the
interobserver variation can be interpreted as an upper limit
to the performance of an automated algorithm. Thus, if the
performance of a trained model is within the range of the
inter-observer variation, the model is useful for the user. The

use of consensus delineations as ground truth has the poten-
tial to make the model more robust and eliminate the influ-
ence of a single observer on the trained model. Based on
the similar model performance observed when using R1 and
R2 for evaluation (cf. Figure 3(D)), we would also expect a
similar result if consensus delineations of R1 and R2 would
have been used during training.

Often, the automatic segmentations tended to be
smoother than the manual ones. Examples of this can be
found in Figure 4, especially in the first and second case in
Figure 4(A). If we recognize the delineation as a part of a
multistep process, these differences might potentially have
little effect on the final result. For example, in the case of
radiotherapy planning, the small variation in contour
smoothness might have little effect on the final planned
dose distribution. In addition, other commonly used meas-
ures of tumor size and volume, such as the longest diameter,
are largely unaffected by a smoother contour.

The performance achieved on the external test set (C2)
was lower compared to the C1 test set, with a DSCp of
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Figure 2. (A) Results of five-fold cross-validation for models trained on T2-weighed (T2w) images alone and in combination with diffusion-weighted imaging (DWI)
(T2wþDWI) in cohort C1. Image normalization (Norm) was done by either using the z-score (ZS) or the z-score with histogram matching (ZSþHM). Training par-
ameter options for loss function (DL: dice loss; mDL: modified dice loss) and learning rate (LR) were explored. Median (M) and inter-quartile-range (IQR) of the per
patient Sørensen Dice similarity coefficient (DSCp) are listed. The combined box and violin plot shows the DSCp for the combined five folds, with outliers shown as
dots. The x marks the median DSCp for the individual folds. The combinations with the highest rank sum are marked with R. (B) Result of post hoc Nemenyi pair-
wise comparison for the results presented in A. Values above the diagonal (orange) state results for models based on T2w images. Values below the diagonal
(blue) give the results for models using T2wþDW images as input.
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0.59 compared to 0.77. A potential reason for this could be
that while C1 was quite homogeneous and acquired at the
same scanner, C2 contained images from two different
scanners with potentially larger variation in the imaging
sequence parameters, such as slice thickness. Furthermore,
a systematic difference between R3 versus R1 and R2 can-
not be ruled out. It can also be noted, that C1 included
both early-stage and locally advanced rectal cancer, while
C2 included only locally advanced rectal cancer, which is
potentially more complex to delineate. In the context of
our study, the work of Wang et al. [9] is relevant to men-
tion. They used a ResNet50-based model to segment rectal
cancer and evaluated their model on multiple test sets.
These test sets were acquired using MR scanners from mul-
tiple vendors. They did not observe a similar drop in per-
formance as we found when using their proposed model to
predict an external test set. One potential explanation for
this could be that the training dataset used was much

larger with data from 461 patients, and that the training
images contained more variations in imaging sequence
parameters. Thus, there was a larger overlap in the data
domain for the independent test sets to the train-
ing dataset.

In our study, only parameters such as the loss function,
learning rate and image normalization were optimized. In a
follow-up study, it would be interesting to further optimize
the architecture of the U-Net or to test other architectures
such as a ResNet [29] or DenseNet [30]. Moreover, the inclu-
sion of other cohorts would be beneficial for a more thor-
ough test of the model. In addition, training the model on a
multicenter cohort could more easily generate a robust
model covering a larger data domain which increases the
generalizability of the model.

Automatic segmentation could be implemented in the
clinic in several ways. One option is to use the automatic
contours for radiotherapy treatment planning. For this
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Figure 3. (A) Comparison of the per patient Sørensen Dice similarity coefficient (DSCp) for the five-fold cross-validation (CV) (n¼ 92) and test set evaluation (major-
ity voting, n¼ 17) of cohort C1. Median (M) and interquartile range (IQR) are stated. Results are shown for the superior models based on T2-weighted (T2w) and
both T2w and diffusion weighted imaging (DWI). For each input set, the model with the highest sum rank in the previous analysis was chosen (T2w: Z-score nor-
malization, Dice loss function, 1e-4 learning rate; T2wþDWI: Z-score normalization, modified Dice loss function, 1e-4 learning rate). (B) Comparison of the DSCp of
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purpose, not only the DSC or other contour-based metrics
are important, but also the resulting changes in dose distri-
bution. Another option is to use a fast automatic segmenta-
tion to monitor treatment response. Such a volumetric
evaluation has the potential to be more accurate than
the current standard for treatment monitoring, based on

the RECIST system [31]. Compared to using CT, monitoring
treatment effects using MRI has the added benefit of no
exposure to ionizing radiation and no injection of contrast
agent. Furthermore, adequate automatic segmentation
could ease the implementation of image biomarker-based
decision support systems into the clinical workflow.
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Figure 4. Illustration of predicted contours made by the best models and corresponding DSC value. (A) For three patients in C1, the T2-weighted (T2w) image and
the diffusion weighted imaging (DWI) (b¼ 500s/mm2) are shown. Manual delineations by radiologist R1 are shown as contour. Predictions made by the best T2w
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In summary, we show high performance of a T2w MR-
based deep learning model for automatic tumor segmenta-
tion, at the same level as published data on interobserver
variation. The addition of DW MR images did not improve
results further compared to using T2w MR images alone.
Using the model on unseen cohorts requires caution, and
one cannot expect the same performance level.
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