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Abstract

The article is dedicated to computer modeling of a viscoelastic based plate flutter in design of
aeronautical structures in sustainable mechanical engineering. The mathematical model of the
flutter problem for viscoelastic plates with viscoelastic base is presented. Using the Bubnov-
Galerkin method, discrete models of the flutter problem for viscoelastic plates streamlined by
the supersonic gas jet are deduced. A numerical method is developed for solving nonlinear
integro-differential equations for the viscoelasticity hereditary theory problem with weakly
singular kernels. According to the above numerical method with respect to unknowns, a system
of algebraic equations is obtained. To solve the system of algebraic equations, the Gauss method
is used. An application program package has been developed to enable modeling and studying
of the nonlinear dynamic problems for the hereditary viscoelasticity theory with weakly
singular kernels. Based on the proposed model, numerical method and algorithm, nonlinear
problems for the viscoelastic plates flutter with a viscoelastic base are investigated. The critical
flutter velocity of the viscoelastic plates is determined for solving the stability problem in design
of aircraft structures.
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1. Introduction numerous research papers in recent years which
demonstrate the latest achievements of the
viscoelasticity theory. The growing interest in this
theory is explained by computer technology
development which makes it possible to reliably
compare a computational experiment, obtained on
the basis of mathematical models, with a full-scale
experiment.

The study basis of the composite materials
deformation  processes is the  heredity
viscoelasticity theory whose specific application
depends on the material parameters, product
shape and the changes range of environmental
conditions. At the same time, significant

Currently,  composite = materials  with
pronounced viscoelastic properties are widely
used in aviation and many other branches to
increase the sustainability of mechanical
engineering. These branches have obtained light,
elegant and efficient thin-walled structures. The
importance of stability calculations and strength
design of the general cycle for such structures has
dramatically increased. In this regard, the heredity
viscoelasticity theory is attracting more and more
attention of researchers. This is evidenced by
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difficulties, while creating the appropriate
models, arise in connection with regard of the
viscoelasticity properties and nonlinear effects. It
should be noted that the use of traditional
materials in aeronautical structures made it
possible to apply mathematical models that can
already be called simplified ones. It means, they
do NOT fully take into account the viscoelasticity
properties and other effects. These effects are
most pronounced under conditions of supersonic
air or liquid flows, i.e. at high velocities which
lead to the flutter effect.

Therefore, the previously deduced scientific
results in the field of modeling the processes of
aircraft elements’ behavior at high velocities can’t
be directly applied in the considered problems. It
emphasizes the problem relevance of obtaining
adequate mathematical models for dynamics of
aircrafts elements built of materials with explicit
substantially  viscoelastic and  non-linear
properties and operating in flutter modes.

The mentioned properties of structure
materials and the above factors increase research
complexity and lead to the need of developing
computational methods for studying the
viscoelastic elements sustainability of thin-walled
structures. Therefore, the development of
effective computational algorithms for solving
nonlinear integro-differential equations for the
viscoelastic elements’ dynamic problems of the
thin-walled structures elements with weakly
singular heredity kernels is urgent.

2. Study of the viscoelastic based
plate flutter nonlinear problem

The flutter of plates and flat shells with regard
to elastic and viscoelastic base has been studied
by a number of authors [1 - 6]. Pouresmaeeli et al.
[6] investigated the natural frequency of
orthotropic viscoelastic nanoplates lying on an
elastic foundation employing the nonlocal
classical plate theory. In [1], an infinite plate was
investigated. The plate was lying on an elastic
base and streamlined by gas flow. Despite a
significant amount of researches, relatively few
researches have been done on the nonlinear flutter
of viscoelastic plates and panels on elastic base.

In this regard, this research paper presents the
theoretical study of the viscoelastic plates non-
linear flutter. Based on the Bubnov-Galerkin
method with the use of quadrature formulas and
the exclusion method of the weakly singular
operators, an effective computational algorithm
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has been developed that enables studying of the
problem on the viscoelastic plates nonlinear
flutter streamlined by supersonic gas flow.

Let’s consider the nonlinear problem of the
plate flutter taking into account the viscoelastic
bases. Let’s assume that the plate with sides a and
b and thickness h is hinged along the entire
contour and streamlined from one side by
supersonic gas flow, as shown in Figure 1.

—

Figure 1: Viscoelastic based plates

Under the assumption made in [1, 7, 8] and
taking into account the bases, the vibrations
equation of a viscoelastic plate has the following
form,;
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material density; 4 is plate thickness; £ is modulus
of elasticity; p is Poison's ratio; w is plate
deflection; ¥V is flow velocity; R" is integral
operator with relaxation kernel R(7) with weakly
singular property of Abel type; L is differential
operator:
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where ¥ is polytrophic exponent for gas; P,V
are sound pressure and sound
respectively in the unperturbed flow.

Let us search the system (1) solutions in the
form of

w(x, y,t) = ZZ nm(t)sm—sm mZy

n=l m=1

velocity

()

DO(x, y,t) = ZZ(DW (¢)sin —s1n mZy
n=1 m=1

After performing the Bubnov—Galerkin
procedure, we deduce the system of integro-
differential equations (IDE) for w,,(f) and @,,(?).
Let’s exclude @,,(f) from this system and write
down the following nonlinear IDE with respect to
the desired function w,(¢):
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3. A method for numerical solution
of the deduced integro-differential
equations for modeling nonlinear
flutter of viscoelastic based plate

The systems of the nonlinear IDE (3) are
solved numerically using the method proposed in
[9-17]. For this purpose, let us write this system in
integral form and, using a rational transformation,
exclude the weakly singular properties of the
integral operator R*. After having assumed that
t=t,, t=iAt, i=1,2,... (At is constant) and after
having replaced the integrals with some
quadrature formulas for calculating wy, = Wum(?),
we deduce the following recurrence relation:
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where A4;, B, are the numerical factors applied to
trapezium quadrature formulas.

Due to the proposed approach, in the algorithm
for the numerical solution of the problem in
formula (4) the factor at j = i takes zero(0) value,
i.e. the last summand of the sum is equal to
zero(0). Therefore, the summation is carried out
from zero to i -1 ( j=0,i—1). Thus, according to
the numerical method with respect to unknowns,
we obtain the system of linear algebraic equations.

The calculation results are stated in the table
and reflected in the graphs shown in Fig. 2-3 at
N=5, L=2. Based on the formula (4), the critical
flutter velocity of viscoelastic plates is
determined. As a criterion determining the critical
velocity V.- we assume that at this velocity the
vibratory movement with rapidly increasing
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amplitudes occurs, which can lead to structure
destruction. In the case V' < V., the flow velocity
is less than the critical one, the amplitude of the
viscoelastic plate vibrations damps [1, 11-13].

For V=V, the numbers Vi and V, are
considered located in the interval (¥o,/1) in such
way that Vo <Vi<V><V,. By comparison of the
variation low w at V=V and V=), we can come
the following conclusions:

a) if V<V, the function variation law w is close
to the harmonic, it means that ¥}, can’t be located
on the interval (V,V)) , i.g. Ver is located on the
interval (V; V3,);

b) ifat V>V there is rapid function (w) growth
(temporally), then it means that V}, is located on
the interval (Vo, V7).

The processes a) and b), i.e. the exclusion
process of the intervals that don’t give adverse

Table 1

events, is repeated for (Vo, V1), or (V1, Va), etc. The
search ends when the remaining subinterval is
reduced to a sufficiently small value.

4. Investigation of the influence of
the plate material viscoelastic
proper-ties on the critical values of
the flutter velocity

As a result of applying the given math model
the critical values of the flutter velocity depending
on the physical, mechanical and geometric
parameters of the plate were obtained as shown in
the following Table 1.

Dependences of the critical flutter velocity of a viscoelastic based plate on the physical, mechanical

and geometric parameters

A (X B Ao ao Bo )\. }\41 k Vcr
0 1620
0,001 1595
601 0,25 0,05 0,02 0,3 0,01 25 250 00001 i)
0,1 1170
01 865
0,1 0,4 0,05 0,02 0,3 0,01 2,5 250  0,0001 1325
0,7 1479
0,01 1186
0,1 0,25 o 0,02 0,3 0,01 2,5 250 00001 117
0 1219
0,1 0,25 0,05 0,05 0,3 0,01 25 250 00001 138
03 1137
01 1162
0,1 0,25 0,05 0,02 0,5 0,01 2,5 250 0,0001 1211
0.9 1230
0,1 1165
0,1 0,25 0,05 0,02 0,3 05 2,5 250 00001 .
5 718
0,1 0,25 0,05 0,02 03 0,01 2.2 250 0,0001 887
27 1467
220 1740
280 846
0,1 0,25 0,05 0,02 0,3 0,01 2,5 00 00001 674
350 412
0 107
0,0002 1244
0,1 0,25 0,05 0,02 0,3 0,01 2,5 250 o004 1322

0,0006 1439
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Thus, the influence of the plate viscoelastic
properties on the critical values of the flutter
velocity was studied.

The calculation results presented in the table
show that the solutions of elastic (4 = 0) and
viscoelastic (4> 0) problems differ significantly
from each other.

For example, as parameter A increases from
zero to 0.1, the critical flutter velocity decreases
by 27.7%.

Further, the influence of the singularity
parameter oo on the critical flutter velocity was
studied. With increasing of o this velocity
becomes bigger. For example, the difference
between the critical velocity values at a=0,1 and
a=0,4 1s 53%.

The above table shows that influence of the
heredity kernel damping parameter [ on the plate
flutter velocity is low comparing to influence of
viscosity 4 and singularity o.

This once again confirms that the exponential
relaxation kernel is unable for fully description
the hereditary properties of the construction
material.

The influence of the relative plate thickness
parameter A; on the critical flutter velocity V- is
studied.

The calculations were made at A;= 220, 280,
300 and 350. The obtained results show that with
decrease of the plate thickness (growth of the
parameter Ai) the critical flutter velocity of the
viscoelastic declines.

The influence of the plate elongation
parameter A on the critical flutter velocity was
investigated.

With increase of A the critical flutter velocity
v become higher, which is explained by the fact
that growth of A (at constant ;) leads to the plate
size reduction perpendicular to the flow direction
and, therefore, the relative rigidity of the system
increases.

The tables demonstrate that taking into
account the viscoelastic base, the critical flutter
velocity increases in comparison to the velocity
without taking into account the viscoelastic base.
Especially in case of large K-factors (modulus of
subgrade reaction), the flutter velocity increases
markedly.

The influence of the viscoelastic material
properties on the plate vibration amplitudes is
shown in Figure 2, where 4=0 (1); 4=0,005 (2);
A=0,1 (3); k=0,0001; a=0,25; p=0,05; A=2,5;
Ao=0,1; 00=0,25; Bo=0,02; A =250; N=5;

Figure 2: Viscoelastic material properties’ influence on the plate vibration amplitudes

As you can see from the Figure 2, with
increasing parameter A the oscillations amplitude
and frequency decrease.

Figure 3 demonstrates plots of the
dimensionless deflection changes depending on
the time ¢ for different values of the relative
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thickness parameter A, where A,=200 (curve 1);
A=310 (curve 2); A=0,1; a=0,25; p=0,05;
k=0,0001; A=2,5; A¢=0,11; 0,6=0,2; Bo=0,02; N=5;

L =2; V=875 m/s. With increasing of Ai=a/h
(thickness reduction) the flutter velocity reduces.

Figure 3: Dimensionless deflection changes depending on time

As you can see from the Figure 2, with
increasing parameter A the oscillations amplitude
and frequency decrease.

Figure 3 demonstrates plots of the
dimensionless deflection changes depending on
the time ¢ for different values of the relative
thickness parameter A, where A;=200 (curve 1);
A=310 (curve 2); A=0,1; a=0,25; p=0,05;
k=0,0001; A=2,5; A¢=0,11; oo=0,2; P0o=0,02;
N=5; L =2; V=875 m/c. With increasing of
M=a/h (thickness reduction) the flutter velocity
reduces.

5. Conclusions

Therefore, we can conclude that the singularity
parameter o influences not only viscoelastic
systems vibrations; it has impact on the critical
flutter velocity.

Consequently, regard of such an influence in
design of aeronautical structures is of great
importance since the smaller the singularity
parameter of the structure material is the more
intense the dissipative processes in these
structures occur.

It should be noted that at a flow velocity lower
than V.. the viscoelastic material property de-
creases the oscillations amplitude and frequency.
If the flow velocity is higher than V.. then the
material viscoelastic property has a destabilizing
effect.

Based on the obtained results, it can be
concluded that regard of the plate material
viscoelastic properties leads to decrease of the
critical flutter velocity V. where the flutter
process begins.

With increasing parameter 4 the oscillations
amplitude and frequency decrease. With
increasing of parameter A; (thickness reduction)
the flutter velocity reduces.

It significantly increases efficiency and
stability of the designed and developed
aeronautical structures and is a substantial
contribution to sustainable manufacturing and
mechanical engineering.
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Abstract

Methods of spectral-spatial analysis are promising for the identification of technological
stresses. The most common solution for interpreting the causes of stress is the use of machine
learning technologies, namely neural networks. As at technological stresses in particular at
chemical poisoning of crops, there can be various options of the coloring of the affected plants
the possibility of providing a sufficient amount of initial data for training of neural networks is
doubtful. An alternative is graph analysis of the distribution of stress areas on the field map.
Given the urgency of the problem for promising technologies of precision agriculture, the work
aimed to develop a spectral-spatial method of monitoring technological stresses, namely the
algorithm and software for its.

Experimental studies of the manifestation of technological stresses on winter crops on the
example of wheat and rapeseed were conducted during 2018-2020 in production fields using
universal cameras in the visible range and special multispectral Slantrange systems.

For remote monitor, the state of winter crops, an algorithm for identifying technological stresses
was developed, which is implemented in the developed software in Python for spectral-spatial
analysis of stress index maps. It has been experimentally confirmed in the production fields that
the use of the developed software allows identifying the contours of areas of plants with stresses

of technological nature based on stress index distribution maps.

Keywords

UAVs, winter crops, vegetation indices, stresses, herbicides

1. Introduction

The prospects for agricultural production
management based on objective remote
monitoring data were obvious both at the state
level and for agricultural enterprises.
Accordingly, research was carried out to develop
various theories and methods for obtaining
information about vegetation. Under uncertainty,
M. Lotfi et al. (2009) in [1] proposed computer
data processing systems for satellite data filtering
and machine learning technology for object
recognition. That is, in the spectral-spatial
analysis, the field of the field as a whole was not
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considered as the object of research. This
approach is used in particular in aviation for the
implementation of orientation in the use of
electronic warfare as shown in the work of S.
Shvorov and others (2018) in [2]. Regarding
agricultural production, Xianlong Zhang and
others (2019) in [3] proposed the division of
spectral-spatial monitoring methods into 2
conditional categories. The first category uses the
spectral characteristics of terrestrial objects and
then obtains vegetation information by comparing
the difference with the results of spectral
monitoring. An example of such monitoring is the
identification of trees in densely populated cities

324



