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Abstract— In skiing sport, snow friction is a crucial
factor in determining the ski roughness that can
produce high speed and quick finishing time for a
skier. However, snow friction is influenced by many
factors associated with weather and snow conditions
which affect the choice of the optimal ski’s roughness.
This paper proposes an ensemble learning system
that can accurately recommend the best ski roughness
under different weather conditions. The data used in
this study is a unique data set that has been collected
from field tests and competitions. Though this data
set recorded information about ski treatment and
weather conditions over a 10-years period, it is af-
fected by noise and outliers, and it has an imbalanced
distribution in the ski roughness classes. This work
addresses these challenges in the data by applying pre-
processing techniques and class balancing strategies.
Furthermore, correlation and clustering approaches
are employed to identify redundancies in the data
and to recognise the subsets of weather conditions
that have the highest influence on the selection of
the ski roughness. Using the resultant clusters, an
ensemble system is introduced to recommend the
most suitable skis roughness for a given weather
condition. This system can be used as a guiding tool
in skiing competitions to aid technicians in choosing
the skis roughness. The results showed that air and
snow temperatures as well as snow humidity have the
highest impact on the choice of the ski roughness.

I. INTRODUCTION

In winter sports, most snow friction studies are
conducted in a well-controlled lab environment
and the results are then employed in real world
competitions [1], [2], [3]. Typically, these studies
focus on ice friction, because ice surfaces can be
reproduced to a pre-defined specification relatively
easily compared to the more complex structure
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of snow [1]. The results obtained from the ice
surface experiments are then generalized to snow.
This generalization often causes a gap between the
theoretical findings and the actual performance [4].
This study aims to bridge this gap using a large
data set that has been collected from professional
ski technicians preparing skis for real world com-
petitions over a period of 10 years.

Machine learning approaches have been utilized
in snow and ice friction studies. In particular, those
related to road friction and safety driving, such
as: the use of deep Convolutional Neural Network
(CNN) to classify road surfaces into different cat-
egories to estimate the friction [5] and the use
of support vector machine to classify winter road
surface conditions images obtained from low cost
cameras [6].

In winter sports, machine learning has been ap-
plied to identify skiing strategies, such as predicting
cross-country skiing techniques [7], and identifying
alpine skier posture [8]. However, there have been
few studies that examine the effect of snow and
weather conditions on the ski-snow friction using
real field test data sets. One example for these
studies is presented in [4] where 175 field tests
were recorded and analyzed using correlation and
regression methods.

In this paper, we use a unique large data set col-
lected from real world field tests and competitions.
This data set was provided by Olympiatoppen [9].
Using this data, we demonstrate the influence of
different snow types and weather conditions on the
snow friction through the choice of the roughness
of the skis. Furthermore, this paper examines the
relation between snow and weather conditions to
identify the similarities and differences between
them using correlation and clustering approaches.
This work introduces an ensemble model that can
accurately predict the ski roughness required to



minimize the snow friction and increase the skier
speed. Furthermore, we identify the most important
weather features in winter sport that control the
choice of the best ski roughness.

The remainder of this paper is organised as fol-
lows: Section II provides an overview of the main
challenges associated with the skiing data set and
describes the data features and classes. Section III
discusses the data preparation and examines the
dependencies among the weather conditions using
correlation and clustering approaches. Section IV
introduces the methodology of the experimental
work and explains the ensemble model used to
predict the ski roughness. The results and discus-
sion are presented in Section V. Finally, Section VI
draws the main conclusions and outlines the possi-
ble directions of the future work.

II. DESCRIPTION OF THE DATA SET

The data set used in this study was provided by
Olympiatoppen [9], which is part of the Norwegian
Olympic and Paralympic committee. It contains a
series of field tests carried out between 2009 and
2019, and it has 10074 data instances with 64
features. The data set features describe the perfor-
mance of different ski roughness profiles under a
variety of snow and weather conditions.

Up to the author’s knowledge, this is the first data
set that presents a large amount of field tests that
spans such a long period of time and covers a wide
range of weather conditions and ski treatments. As
mentioned before, most studies found in literature
focus on data obtained from a series of controlled-
lab tests. Thus, using the data set presented in this
study has the potential to bridge the gap between
laboratory findings and actual performance in real
world competitions. Furthermore, the results ob-
tained using this data can be extended to other
fields, where such detailed information for snow
friction is not available. For example, in road safety
where the friction coefficient is often estimated
using simple road classification into bare, snow, or
icy road conditions [5] [10] [6].

There are several challenges associated with this
data set. First, it has an unbalanced class distri-
bution in terms of the tested roughness profiles

(i.e. the grind classes). In addition, it suffers from
inconsistency, as many parameters were added and
removed over time. Another challenge is noise in
the recorded values for some parameters, which is
mainly caused by the methods and tools used to
record them, as well as the human error factor.

This study focuses on the main nine features that
describe the weather and snow conditions when the
skiing tests were performed, and their effect on the
choice of the ski roughness. These features are:

• Air temperature and snow temperature: mea-
sured in degrees Celsius.

• Relative air humidity and snow humidity: mea-
sures the water content in the air and in the
snow as a percentage in the ranges 0%−100%.

• Snow hardness: measures 7 levels of snow
hardness ranging from: very low, low, middle,
middle-high, high, very high and ice.

• Snow grain size: measures the diameter of the
snow grains in mm.

• Precipitation. This feature has five possible
values: no rain, light rain, rain, light snow, and
snow.

• Natural and artificial snow: these two features
refer to the type of snow, and can have the
following values: fallen, new, old, converted,
mixed and salted.

We investigate 10 classes of grinds ranging from
fine grinds to coarse grinds. The roughness profile
(measured in micrometers (µm)) is classified into
the following three categories: fine grind (< 3µm;
classes 3, 9, 10), middle grind (between 3 and 5µm;
classes 1, 4, 6, 8) and coarse grind (larger than
5µm; classes 2, 5, 7).

The following section discusses the techniques
used to prepare the data and examines the de-
pendencies among the weather conditions using
correlation and clustering approaches

III. DATA PREPARATION AND CLUSTERING

In order to address the challenges in the ski
data, data preparation and pre-processing steps are
carried out. First, all categorical values of the
features are mapped into numerical values, using an
appropriate scale defined for the individual features.
Then all features are normalised to have zero mean



and unit standard deviation. The data is then filtered
to focus on ten distinguished grind classes that
exhibit different roughness profiles.

The imbalanced class distribution in the data is
dealt with using oversampling. New data instances
are artificially generated by taking the minimum
and maximum values of four out of the nine fea-
tures and producing random values within these
limits. The four features used are snow temperature,
air temperature, snow humidity, and air humidity.
The reason for choosing these four features is
that, if a certain grind is used within an upper
and lower temperature or humidity limits, then
it can be assumed that this grind is used for
all the values within these limits. For example,
a grind that is used in a minimum temperature
of −15◦C and a maximum temperature of −5◦C,
can be used in the temperature values within the
range (−15◦C,−5◦C). The same rule applies for
humidity values. Meanwhile, the values for the
snow type, hardness, grain size and precipitation are
kept unchanged, since they define the snow surface
conditions.

A. Correlation between features

To study the possible dependencies among the
features and to detect any redundancies, we com-
pute the correlation coefficients among the nine
features. These are shown in Table I.

Three trends in the features correlation coeffi-
cients can be seen in Table I, namely:

• There is a high correlation between the air
and snow temperatures (0.82). Furthermore,
compared to the remaining features, snow hu-
midity has the highest correlation with these
two features, of 0.47 and 0.36 respectively.

• The correlation between features that describe
snow conditions, including snow hardness,
snow grain size, artificial and natural snow
types, is moderate, ranging from 0.41 to 0.24.
Meanwhile, these features have lower correla-
tion with the other features.

• There is a subset of the features that have low
correlation coefficients with the remaining fea-
tures. These include air humidity and precipi-
tation. It should be noted that the precipitation

feature in this data set has the most missing
values among the other features.

These three trends are reflected in the feature clus-
tering discussed in the next subsection.

B. Clustering

Clustering is an important tool in recognising
structures and patterns in the data and in extracting
useful information from large data sets [11]. The
aim of cluster analysis is to divide N data samples
into C homogeneous clusters, such that similar data
are grouped into the same cluster.

This work uses agglomerative hierarchical clus-
tering to identify the similarities and differences
among the nine features for the weather and snow
conditions. Fig. 1 shows the resulting tree. Using a
reasonable cut off point, three clusters can be dis-
tinguished. The first cluster includes air and snow
temperatures as well as snow humidity. Meanwhile,
the second cluster includes features that describe
the snow conditions (snow grain size, snow hard-
ness and the type of artificial or natural snow).
The last cluster groups together precipitation and
air humidity. These results show similar patterns as
the correlation coefficients discussed above.

The results of the agglomerative hierarchical
clustering will be used in Section V to explore how
these clusters influence the accuracy of choosing
the ski roughness.

IV. METHODOLOGY

The methodology used in this work is illustrated
in Fig.2. In this study, the data is pre-processed
using the steps discussed in Section III. These steps
are: a) changing the categorical values into numer-
ical values, b) normalisation, and c) balancing the
class distribution.

After preparing the data, two approaches are
implemented to train the ensemble learning model
to predict the ski grind as well as to test which
features contribute the most to the accuracy of
the prediction. Both the overall accuracy of the
prediction and the individual class accuracies are
measured using a confusion matrix. The first ap-
proach uses all the nine available features to train
the ensemble learner model. Meanwhile, the second



Fig. 1: The hierarchical, binary cluster tree for the nine weather conditions using agglomerative hierarchical
clustering method, where the y-axis is the Euclidean distance and the x-axis is the feature number ranging
from 1-9.

Approach 2

Approach 1

Pre-processing 
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Numerical Values

Data 
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CV Ens. 3Cluster 3 Conf. 3

Fig. 2: An illustrative figure for the methodology followed in the two approaches presented in this paper.
Here Ens. refers to Ensemble learning, Conf. to confusion matrix and CV to cross validation.



TABLE I: Correlation among the weather features., where AT is Air Temperature, AH is Air Humidity,
ST is Snow Temperature, SH is Snow Humidity, SHa is Snow Hardness, SGS is Snow Grain Size, P is
Precipitations, AS is Artificial Snow and NS is Natural Snow.

AT AH ST SH SHa SGS P AS NS
AT 1 −0.18 0.82 0.47 −0.19 0.15 −0.09 −0.03 0.09
AH −0.18 1 0.02 0.11 0.07 0.23 0.16 0.14 0.07
ST 0.82 0.20 1 0.37 −0.27 0.08 −0.09 −0.07 −0.02
SH 0.47 0.11 0.37 1 −0.03 0.30 −0.02 0.12 0.22
SHa −0.19 0.07 −0.27 −0.03 1 0.33 0.11 0.42 0.24
SGS 0.15 0.23 0.09 0.30 0.33 1 0.05 0.42 0.32

P −0.09 0.16 −0.09 −0.02 0.11 0.05 1 0.21 −0.04
AS −0.03 0.12 −0.07 0.12 0.41 0.41 0.210 1 0.29
NS 0.09 0.08 −0.022 0.22 0.24 0.32 −0.04 0.29 1

approach uses the three clusters features described
in section III to train the ensemble learner. This
approach tests which subset of features has the
highest contribution to improving the accuracy of
the prediction.

A. Pool of competing ensemble learners

Ensembles are predictive systems that combine
multiple weak learners to provide the final pre-
diction. Generally, there are two conditions for an
ensemble learner to perform better than a single
learner. First, the weak learners should be diverse
(their error correlation is reduced) and they should
have an accuracy better than random guessing [12].
In order to encourage diversity among the ensemble
weak learners, they are trained either on randomly
selected subsets of the data or on local regions.
Data locality can be measured using similarity
metrics, such as pairwise squared correlation [13]
and conditional mutual information [14].

A pool of competing ensemble learners is used
to predict the grind class in the two approaches
presented in Fig. 2. Ensembles in this pool are
trained to minimise a five-fold cross validation loss
function over multiple iterations. The ensemble that
has the minimum estimated cross validation error is
chosen. The parameters of the system are optimised
using Bayesian optimisation. The problem inves-
tigated in this study is a multi-class classification
problem. Thus, the pool of competing ensembles
includes the following multi-class classification en-
sembles: Bagging [15], AdaBoostM2 [16], LPBoost
[17], TotalBoost [17], RUSBoost [18] and Subspace

[19]. The weak learners used in the ensembles are
random forest decision trees.

V. RESULTS AND DISCUSSION

In this section we present the results obtained
from applying the two approaches discussed in the
previous section. Furthermore, we compare their
performance to identify the most important features
that control the selection of the best grind class. As
mentioned in Section II, the data set used in this
work has nine features and ten grind classes. The
features describe the weather and snow conditions,
and the grind classes describe the roughness of the
ski surface. The grind classes vary from fine to
coarse grinds.

A. The first approach: using all features

In the first approach, all nine features that de-
scribe the snow and weather conditions are used
to train the ensemble model. A four-fold cross
validation is applied to resample the data set, where
each time a different fold is used for testing and
the remaining three folds are used for training. The
cross validation accuracy of the test set, as well
as the individual test accuracies of the ten grind
classes are illustrated in the confusion matrix shown
in Fig. 3a.

Applying this approach resulted in an averaged
cross validation error for the training set equals
(6.83%) and for the testing set equals (12.99%).
The increase in the testing error suggests a slight
overfitting. This overfitting can be explained when



observing the individual grind classes test accu-
racies. The results in Fig. 3a shows that both
class 1 and class 9 have the lowest test accuracies
of (65.2%) and (76%), respectively. The training
accuracies for these two classes are (84.9%) and
(87.2%), respectively. This drop in accuracy is due
to the fact that they have been widely used in
the data across different weather conditions. This
made it difficult to identify a distinctive pattern
under which these grinds are used. Meanwhile, the
remaining grind classes have a small difference
between their individual training and testing errors.

B. The second approach: using features clustering

In this approach, the features are clustered using
the agglomerative hierarchical clustering method
discussed in Section III, resulting in three clusters.
The data is resampled using a four-fold cross vali-
dation and the ensemble model is trained and tested
using one of the three clusters.

Cluster 1 includes snow temperature and humid-
ity as well as air temperature. Training the ensemble
model using these features resulted in an averaged
training cross validation error of (6.94%) and a
testing cross validation error of (12.70%). The
individual test accuracies for the ten grinds classes
are shown in the confusion matrix in Fig. 3b.

The overall accuracy for the ensemble model
trained using this cluster is comparable to the
results of the first approach, where all the features
are used to train the system. This indicates that
the air and snow temperatures along with the snow
humidity are the most relevant parameters in deter-
mining the grind among the nine snow and weather
features investigated in this study. Furthermore, the
ensemble model in this case has a higher accuracy
in identifying class 1 grind, which is (77.2%)
compared to (65.2%) in the first approach.

Cluster 2 includes features that describe the
snow conditions, namely: snow hardness, snow
grain size, artificial and natural snow types. In this
case, training the ensemble model resulted in an
averaged training cross validation error of (42.26%)
and a testing cross validation error of (44.22%).
The test accuracies of the grind classes are given
in the confusion matrix shown in Fig. 3c. While

the performance of this cluster is poor compared
to the first cluster, the ensemble model does not
suffer from overfitting as the training and testing
errors for the individual grind classes are similar. In
addition, this model has the lowest test accuracy for
identifying class 1 grind with accuracy of (17.7%).

Cluster 3 includes two features: the air humidity
and the precipitation. Training the ensemble model
based on these two features resulted in an aver-
aged cross validation error for the training set of
(32.24%) and for the testing set of (67.88%). The
results show poor performance and overfitting asso-
ciated with this cluster. This is due to the fact that
there are many missing values in the precipitation
feature. The testing accuracies for the individual
classes are illustrated in the confusion matrix shown
in Fig. 3d. It can be noted that, although the
testing accuracies for the individual classes are
generally low, this ensemble model can recognise
class 1 grind with an accuracy of (71.3%). This is
because this grind class is associated with high air
humidity values and it has few missing values for
the precipitation feature.

In summary, comparing the results from the two
approaches shows that, generally, the first approach
resulted in good training and testing accuracies.
Furthermore, it has better performance than the sec-
ond approach, except when training the ensemble
model using cluster 1. The features in cluster 1
can be used to train the ensemble model to predict
ski grind classes with a comparable accuracy to
the first approach. This shows that air and snow
temperatures as well as snow humidity are the
key factors in determining the grind classes. In
addition, although the ensemble model trained on
snow conditions in cluster 2 has a lower overall
accuracy, it does not overfit the data. This model
has the smallest difference between the training and
the testing accuracies. Finally, the features in cluster
3 contain high levels of noise which have increased
the chances of overfitting the data. However, train-
ing the ensemble model on this cluster can identify
grind classes that can be hard to predict based
on other features. These classes have distinctive
patterns, such as class 1, which is associated with
high air humidity.
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VI. CONCLUSION AND FUTURE WORK

This work aimed to develop a better understand-
ing of the friction between snow and skis us-
ing machine learning approaches. It had presented
an ensemble model that can recommend the best
ski grind under different weather conditions. This
model can be used as a guiding tool in skiing
competitions to aid technicians in choosing skis
roughness. Furthermore, this study had analysed the
relations among the main nine weather and snow
conditions that affect the choice of the ski grind
using correlation and clustering approaches. This
helped in identifying the features which control the
grind selection process. These features were: snow
temperature, air temperature, and snow humidity.
This is consistent with our understanding that snow
friction is related to a thin layer of water acting as
a lubricant, resulting from frictional melting [20].

In the future, this work can be expanded to
include a wider range of grind classes. Furthermore,
though the grind is a property of ski that is chosen
carefully to reduce the friction between the snow
surface and skis, there are additional more tempo-
rary ski treatments that can reduce the friction, for
example, the application of different types of wax
and the use of rilling tools which cause temporary
imprints on the ski base. Future work will focus on
the interactions of these treatments with the grind
and how they affect the friction between snow and
skis.
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