
Autonomous Cave Exploration using Aerial Robots

Mihir Dharmadhikari1, Huan Nguyen2, Frank Mascarich1, Nikhil Khedekar1, and Kostas Alexis2

Abstract— In this paper we present the complete system
design for an aerial robot capable of autonomous exploration
inside natural cave environments. Cave networks involve diverse
and complicated topologies, complex geometries and degraded
conditions rendering the process of robotic mapping a partic-
ularly daunting adventure. In response to these challenges, we
outline the core algorithmic modules relating to localization
and mapping, exploration path planning and control, alongside
the developed perception and computing solutions onboard an
aerial robot tailored to undertake such complex tasks given
no prior information for the cave environments in which it
is deployed. A set of extensive results is presented including
both simulation studies in multi-branching and maze-like cave
environments, as well as field experiments inside the Moaning
Caverns natural cave environment in California, US.

I. INTRODUCTION

Autonomous exploration of cave environments has re-
cently attracted the interest of the scientific community.
Pioneering studies test and field robotic systems in cave
settings thus pushing the frontier of autonomy and resilience
across the domains of mapping, path planning and broadly
autonomy [1–3]. Accelerated by the kick-off of the DARPA
Subterranean Challenge, research efforts around the world in-
vestigate the particular challenges for long-term underground
autonomy. Caves, in particular, correspond to an ultimate test
for robotic systems as they present diverse, complex, often
extremely large-scale and at the same time, at instances par-
ticularly narrow geometries, while also imposing conditions
of visual degradation. However, the extreme potential of a)
scientific exploration both in Earth caves but also in off-
worlds such as in Martian and Lunar lava tubes, alongside
b) the benefits of possible robotic subterranean search and
rescue call for the necessary contributions in the domain.

However, autonomous exploration of cave rooms and
networks is a daunting adventure. In such missions, robots
can be asked to enter complex underground environments
without any prior information, localize in these degraded
and sensor-deprived subterranean settings, search and map
them in detail, detect objects and broadly entities of interest,
while communications can be nearly impossible to estab-
lish and thus resilient autonomy is required. Responding
to these challenges, this work presents a complete system
for autonomous aerial robotic exploration of caverns and
cave networks including a) the robotic platform depicted in
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Fig. 1. Instance of autonomous exploration inside the Moaning Caverns.
The presented aerial robotic scout is deployed to autonomously explore this
large cavern room given no prior map. It localizes and maps the environment
and builds a volumetric representation which in turn is exploited for the
purposes of path autonomous path planning. A video recording from this
result can be found at https://youtu.be/0U0-PxMuGdk

Figure 1, b) its onboard perception and computing solution,
c) the localization and mapping algorithm that facilitates
autonomy, and d) the path planning module that allows for
efficient exploration given no prior map of the environment.
The system relies on the multi-modal fusion of diverse sensor
data including LiDAR, visible-light and thermal camera
vision, alongside inertial sensing. Furthermore, its autonomy-
enabling planning module reflects key observations with
respect to the topologies encountered in cave networks and
ensures both efficient local behaviors and ability to negotiate
large-scale maps.

To evaluate the overall system solution, a set of studies
were conducted both in simulation and experimentally. In
terms of simulations, the path planning module is tested in
particular with a model of the aerial robotic system tested
in two sets of complex cave multi-branching and maze-like
networks and over multiple times to derive statistical insights.
Subsequently, a field experiment study is presented involving
the autonomous exploration of a large room of the Moaning
Caverns subterranean cave network.

The remainder of this paper is organized as follows.
Section II outlines related work, followed by the system
description in Section III. The autonomy-enabling modules
for localization and mapping, as well as path planning are
described in Section IV. Evaluation studies are detailed in
Section V, followed by conclusions drawn in Section VI.



II. RELATED WORK
A set of research works has considered the problem of au-

tonomous robotic exploration of cave environments [1, 2, 4]
with a significant subset of those focusing on extra-terrestrial
cave configurations such as Lunar and Martian lava tubes [3,
5, 6]. In relation to the latter, NASA and other organizations
have a set of activities to approach the potential of off-world
robotic lava tube exploration [7, 8]. From a broader perspec-
tive, the research community has recently focused on the
problem of autonomous subterranean exploration. With the
kick-off of the DARPA Subterranean Challenge in Septem-
ber 2018, the domain of underground robotic autonomy
has seen rapid growth. The contributions in [9, 10] present
strategies for robust multi-sensor subterranean localization
and mapping. The works in [11–14] present novel legged
systems - including quadrupeds and hexapods - deployed
in subterranean settings. Considering the potential of multi-
robot collaboration, the authors in [15–18] present strategies
for multi-agent exploration, map sharing and networked
communications in the underground domain. These recent
contributions build on years of research in the niche space of
subterranean autonomy with a set of publications addressing
challenges in exploration planning [19–22], localization [23],
specialized robotic system development [24–27], navigation
systems [28, 29] and more.

III. SYSTEM OVERVIEW
Autonomous exploration of cave environments presents

unique features involving areas with both very wide ge-
ometry and also settings with narrow passages, while the
underlying terrain and perceptual conditions can be ex-
tremely challenging. Aerial robots offer unique advantages to
negotiate and autonomously explore such settings due to their
elevated perspective and the fact that they are not bound to
any terrain limitations. Despite their limited endurance, aerial
robots can use their speed and flexible navigation to cover
more area in short times. Furthermore, for certain large cave
rooms or complex vertical geometries, they may correspond
to the only option.

System Design: The developed robotic explorer for cave
environments build on the DJI Matrice 100 quadrotor air-
frame. The system integrates an INTEL NUC Core-i7 Sin-
gle Board Computer (NUC7i7BNH) onboard to enable the
computing power towards localization and mapping, and
path planning. The robot specifically integrates an OUSTER
OS-1 LiDAR, a FLIR Blackfly S visual camera, a FLIR
Tau2 thermal camera, and a VectorNav VN-100 Inertial
Measurement Unit (IMU). The combined fusion of these
sensing modalities enables the robust localization and map-
ping in the challenging, dark cave environments and facili-
tates autonomous operation. To better support the need for
high quality visual observations in low-light environments,
the system integrates four high-power Cree LEDs, which
are synchronized with the visible light camera’s shutter
producing a power-efficient flashing behavior. Finally, the
robot communicates with its base station primarily (but not
only) through its onboard 5.8GHz WiFi radio. As reliable

high-bandwidth communications are often not possible to
be established underground, the system operates in fully
autonomous mode, attempting to transmit its data to the base
station in real time but not relying on it for any human input.
If communications are denied during sections of the mission,
the derived data are transmitted once a communication link
is re-established (e.g., when the robot returns to the take-
off location). The developed aerial robotic scout for cave
exploration, called “Charlie”, is depicted in Figure 2.

Fig. 2. The developed Charlie Aerial Scout.

Software Architecture: The software architecture and key
functionalities onboard the Charlie aerial robot are presented
in Figure 3. The system uses the exploration path planning
algorithm briefly summarized in Section IV, alongside a
multi-modal localization and mapping solution for GPS-
denied and perceptually-degraded operation. The planned
paths are tracked given the estimates of onboard odometry
through a linear model predictive controller [30] and the
calculated low-level commands are tracked by the autopilot
electronics of the system.
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Fig. 3. Schematic system overview of the core functional modules of
the Charlie aerial robot. All the components inside the gray shaded area
are executed onboard the robot. Localization and mapping, planning and
position control run on its INTEL NUC board.

Additional Sensing Payload: The presented robotic sys-
tem fuses a set of sensor streams to facilitate its localization
and mapping capabilities. As described above, this includes
the integration of an OUSTER OS1 3D LiDAR with 64
Channels, a FLIR Blackfly visual camera, a FLIR Tau2
thermal camera and its IMU. At the same time, the robot
integrates an additional sensing payload that may reflect
further mission needs. For example, the robot integrates a
Sensirion SCD30 CO2 and temperature sensor and has a
remaining capacity of 100g for a carefully selected additional
sensing payload (e.g., a multispectral camera to characterize
rock formations).



Subterranean Communications: To facilitate wireless
communications underground - to the extent that this is
functionally possible - the system integrates two types of
antennas. First, it integrates WiFi at 5.8GHz which is com-
municating to the ground station either to share maps or
receive high-level guidance commands. For that purpose,
the ground station integrates a 4.9 − 5.8GHz 19dBi Dual
Polarized Flat Panel Antenna high-gain panel. In addition,
the system integrates LoRa communications based on the
Semtech SX1262 radio module. The latter is used as an
alternative channel for telemetry feedback and crucial com-
mands (e.g., return-to-home or immediate landing). The two
channels operate in a complementary fashion and generally it
is not observed that the LoRa module has persistently longer
range than the utilized WiFi solution. However, there are
environment configurations that one performs better than the
other thus their complementary integration is adopted.

IV. EXPLORATION AUTONOMY

This section details the core path planning and perception
solutions enabling autonomous exploration of cave environ-
ments onboard the presented aerial robotic scout.

A. Exploration Path Planning

Cave environments often involve both very wide rooms
and networks of narrow passages with multiple branching
points. In fact, the geometrical diversity of cave environments
around the world is vast. For example, the Hang Son Doong
cave - located in Central Vietnam - has a total volume of
3.84×107m3 and is considered the largest cave in the world
(in terms of volume). The Mammoth Cave in Kentucky,
US involves extremely wide cave rooms (e.g., the Rotunda
Room) combined with a very wide and complex network
of cave passages located under Flint Ridge. The Mammoth-
Flint Ridge Cave System involves the longest known cave
system in the world with more than 640km of surveyed
passageways. These are just indicative examples as Earth
involves a massive amount of different cave environments
that pose unique complexities and diverse challenges.

Reflecting the diversity of cave environments, the work
in [31] studied the topologies and morphologies of Karst
systems. Karst is a topography formed from the dissolution
of soluble rocks (e.g., limestone dolomite, and gypsum)
and is characterized by underground drainage systems with
sinkholes and caves. As a geologic environment, a Karst
contains interconnected conduits which tend to develop so
as to allow fluid flow. At the same time, the permeability
structure evolved as a consequence of carbonate dissolution.
Studying cave patterns and configurations based on geomet-
ric (vertical index, turtuosity, curvature, width-height ratio)
and topological (ramification index, meshedness, network
density) the authors of [31] propose a classification based
on four types of patterns, namely a) branchwork cave, b)
elongated branchwork, c) anastomatic maze, and d) angular
maze. Furthermore they propose the morphological organiza-
tion based on four categories, namely a) vadose branchwork
(VB), b) water-table cave (WTC), c) looping cave (LC), and

d) angular maze (AM). The proposed patterns are presented
in Figure 4.

As shown in this analysis, cave environments can present a
diverse level of complexity. Since both tree-like and more in-
terconnected graph topologies are possible, we are motivated
to utilize graphs as the data structure to facilitate efficient and
resourceful path planning inside cave configurations. This
is best understood by observing Figure 4 which presents
2D cave patterns as defined by the authors in [31] and
via the associated Figure 5 presenting the application of
vertex coloring in two such 2D cave patterns illustrating
that well-established graph operations can help to assess the
complexity of such topological configurations.

Fig. 4. 2D drawings of idealized cross-sections for cave karst systems
presenting the planview of the associated patterns. Caves can present diverse
topologies as discussed in [31]. It is highlighted that these visualizations do
not correspond to any actual cave data but only indicative drawings graph
topologies inspired by data presented in [31].

Angular Maze Angular Maze Vertex Coloring

Branchwork Cave Branchwork Cave Vertex Coloring

Fig. 5. Application of vertex graph coloring in simplified 2D planview cave
patterns. The chromatic number of a graph or graph subset allows to evaluate
the complexity of the multi-branching involved. More complex horizontal
or vertical multi-way intersections increase the chromatic number. Maze-
like caves involve components imposing the need to raise the chromatic
number (3) whereas the tree-like structure of a branchwork cave keeps the
chromatic number low (2). More complex and 3D cave topologies may
present a chromatic number equal to 4. Note that these visualizations do not
correspond to any actual cave data but only indicative of graph topologies.

In response to these facts, the developed Graph-Based
exploration path Planner (GBPlanner) - presented and de-
tailed in [14, 32] - corresponds to a methodology tailored
to subterranean settings and especially caves which allows
for efficient volumetric exploration despite the large-scale
and geometrically-diverse character of caves, while at the
same time offering a) safe return-to-home functionality, and
b) solution resourcefulness when the exploration process
reaches a dead-end (e.g. a mine heading). The exploration
planning problem is defined as follows:



Problem 1 (Exploration Problem): Given an occupancy
map M, find a collision-free path σ∗ = {ξi} (ξi =
[xi, yi, zi, ψi]

T being the flat rigid body configuration) to
guide the robot towards unmapped areas and ensure the
exploration of the perceivable volume VE within the total
and initially unknown volume V . Under the assumption of
a depth sensor S with maximum effective range dmax and
perception that stops at surfaces, the perceivable volume is
defined as VE = V \Vres, where Vres is the residual volume
for which no robot configuration exists to map it.

The implemented method, GBPlanner, is based on the
architecture outlined in Figure 6. As cave environments can
be particularly large and at the same time involve - at sections
- narrow geometries, the method is organized based on a
bifurcation between a local and a global stage. The first is
responsible for efficient exploration in the region where the
robot currently is, while the second stage handles the tasks
of auto-homing and re-positioning towards frontiers of the
exploration space when the local exploration is exhausted.

The cave environments involve various vertical passages
and incline slopes. This requires dedicated perception sensors
and modifications in the planning strategy. In order to tackle
this, we utilise a vertical exploration mode within the local
planner that biases the sampler to sample more densely along
the vertical axis. This assumes that a depth sensor unveiling
the space above and below the robot is available. Different
sensor configurations involving a combination of depth cam-
eras and LiDARs were tested in simulation. Usage of a 3D
LiDAR with large vertical Field of View (FOV) (e.g., 90deg)
was found to greatly support vertical passages exploration,
while more widely used LiDARs with more narrow vertial
FOV (e.g., 30deg) perform well in long corridors but may
lead to slower vertical mapping.

Fig. 6. Key steps of the proposed planner. The local planner operates within
a window around the current robot location, samples a graph and identifies
the path that maximizes the exploration gain. The global planner offers two
functionalities, namely a) re-position to the frontier of the exploration space
when a “dead-end” is reached, and b) return-to-home. For both tasks, the
global planner utilizes a graph incrementally built during the robot operation
thus saving the time that it would take to sample a new graph from scratch.

B. Local Planner

The local planning stage of GBPlanner runs within a local
map ML ⊂ M that is centered around the current robot
configuration ξ0. The selection of ML is such that it is both
sufficiently large to allow to progress in the exploration task

and also small enough to ensure computational efficiency.
This local method first samples an undirected random graph
GL starting from ξ0. Using Dijkstra’s algorithm, it then
identifies the shortest paths from the current robot location
to all the sampled vertices {σi}. Each of these paths σi, i =
1...n is then evaluated with respect to the exploration gain
G it accrues based on the score:

G(σi) = e−γSS(σi,σexp)
mi∑
j=1

VolumeGain(νij)e
−γDD(νi1,ν

i
j) (1)

where VolumeGain represents the new volume to be
explored at every vertex νij along this path, mi is the number
of vertices in σi, S(σi, σexp), D(νi1, νij) are weight functions
with tunable factors γS , γD > 0. D(νi1, νij) is the cumulative
Euclidean distance from a vertex νij to the root νi1 along σi.
Furthermore, S(σi, σexp) is the similarity distance metric
between σi and a pseudo-straight path σexp of identical
length along the current exploring direction, that penalizes
the paths having larger deviation from the current exploring
direction that appear locally beneficial but may hinder the
long-term exploration rate. This is essential when the system
has to negotiate branchwork- and maze-caves with multiple
branching points. Given the dominant exploring direction
φexp, the pseudo-straight path σexp is generated along φexp
having length equal to that of σi. Subsequently, using the
Dynamic Time Warping method [33] we derive the similarity
distance metric. Finally, the path σL,best maximizing the ex-
ploration gain is selected, improved for safety by modifying
vertices to be further away from obstacles and provided as
a reference to the robot. The whole process is repeated in
an iterative fashion. As the local planner finds solutions only
within the local map subset ML it is possible to be unable to
derive a solution with sufficient gain, while such a solution
can in principle be available in the overall map. Thus, when
the local planner reports that all its solutions have a gain
below a threshold gε > 0, then the global planner is engaged.

C. Global Planner

When the robot enters a new cave room of significant
size, it will be the local planning stage that runs several
iterations until most of it is explored and mapped. However,
when this is achieved or if the robot battery approaches its
limits, the the global planning stage undertakes two important
responsibilities. The first is to deliver autonomous homing,
and the second is the detection of frontiers of the exploration
space and guide the robot towards them when the battery is
sufficient and the local exploration potential is exhausted. To
deliver this functionality, the method incrementally builds a
global graph GG. At every iteration, this graph is used to
derive a return-to-home path σRH after a re-sampling step
has taken place to locally enrich the graph. Furthermore,
the same graph is used to detect vertices of it that provide
maximum anticipated exploration gain and thus can stand as
frontiers of the explored space towards directions that are not
exploited so far by the local planner. Given these two capa-
bilities, the method either uses GG to derive σRH as per the



battery limitations, or to derive a path σRE that re-positions
the robot towards the best possible frontier of the explored
space such that the anticipation for future exploration is
maximized and the system maintains battery to also return
to its home location. Details on the frontier selection process
can be found in [14]. When the system reaches the selected
frontier, the local planner is re-triggered. The global planner
is critical in caves due to their multi-branched geometry. In
a Branchwork cave, the robot will explore using the local
planner till it reaches a dead end. The global planner will then
guide the robot near the closest branching point and the local
planner will be re-engaged until another dead end is reached.
This will be repeated resulting in an efficient exploration
of the entire cave. Maze-like caves are more complicated.
The current frontier selection methodology may lead to less
efficient behavior when multiple cycles are present in the
graph. Hence, in future work we consider the addition of
complexity metrics, in relation to the number of branching
directions and other properties, possibly through vertex/edge
coloring. This is highlighted in the presented results.

D. Multi-Modal Localization and Mapping

To facilitate autonomous operation inside the challenging
underground cave environments, a resilient localization and
mapping solution is required. Responding to this need, our
team has developed a Complementary multi-modal Simul-
taneous Localization And Mapping solution as presented
in [10]. The method - called CompSLAM - fuses data
from LiDAR, visual and thermal cameras, alongside IMU
cues as presented in Figure 7. As depicted, camera frames
from both (or either) visible-light and thermal vision sensors
are combined with IMU data and fused to derive a first
high-rate (e.g., 20Hz) estimate of the robot’s motion. The
deployed multi-camera/IMU estimation solution is based on
ROVIO, the Robust Visual-Inertial Odometry framework
detailed in [34]. ROVIO was extended to allow for the
utilization of the full radiometric information of LongWave
InfraRed (LWIR) thermal cameras as detailed in [35, 36].
A key element of its functionality relates to the fact that the
data association front-end over camera data considers the full
16bit data format of radiometric information coming from
the thermal sensor, as opposed to the majority of literature
on thermal vision-based odometry estimation where the
radiometric data are rescaled to conventional 8bit images. In
subterranean environments and especially in caves, thermal
differences are often minimal thus exploitation of the full
sensor information is essential.

This Visual-Thermal-Inertial Odometry system provides
its high update rate estimate for the robot trajectory and
tracked landmarks, alongside the associated covariance. As
the covariance matrix represents the level of confidence to
the mean estimate, we associate the health of this multi-
camera/inertial system via the D-optimality metric [37] ap-
plied over the pose covariance. If this estimate is evalu-
ated as healthy then it is subsequently provided as a prior
to the LiDAR Odometry and LiDAR Mapping modules
of the multi-modal CompSLAM architecture. The LiDAR

Fig. 7. Architectural overview of the complementary multi-modal local-
ization and mapping solution running onboard the Charlie aerial robot.

Odometry module is used to identify the odometry estimate
using the LiDAR data via scan-to-scan alignment. This is
performed by minimizing point-to-line and point-to-plane
distances between extracted line and plane features in a
manner similar to the work in [38]. Importantly, we can
use the eigenvalues of the underlying optimization matrix
to detect possible ill-conditioning across certain dimensions.
Ill-conditioning of the LiDAR scan-to-scan alignment is pos-
sible due to geometric self-similarities in the environment.
When this condition is detected, the respective estimates are
replaced by those derived by the visual/thermal-inertial esti-
mation system as long as its health metric has indicated that
those estimates are associated with low D-optimality values.
The LiDAR Odometry step takes place at 10Hz. Beyond this
step, CompSLAM also performs LiDAR Mapping - at a 2Hz
rate - with the goal to reduce errors accumulated due to
odometry estimation drift. In the LiDAR Mapping step, a
scan-to-submap alignment takes place which is likely to be
less prone to fitting errors. The health of this step is evaluated
again via the eigenvalues of the involved optimization matrix.
The overall architecture of CompSLAM provides resilient
pose estimates and mapping in GPS-denied and degraded
conditions, as long as either the visible/thermal-inertial or
LiDAR-based modules remain informative at any given time.
As the conditions of degradation for visual cameras, thermal
vision and LiDAR are generally different to each other,
the system maintains its ability for robust performance in
a very large variety of environments. In terms of practical
experience, in our field tests in cave environments so far, we
have identified that LiDAR and visual camera data (given
sufficient onboard illumination) are the two most commonly
reliable exteroceptive data onboard the aerial robot. Thermal
vision is often challenged inside natural caves as the envi-
ronment thermal gradients are often not significant. However
in certain cases, for example when water is involved or when
openings to the ground are available, thermal vision provides
particularly valuable information that is not affected by other
conditions of degredation (e.g., dust). At the same time, as
the sensitivity of low-cost thermal cameras increases so will
do their utility and usefulness in cave environments.



Fig. 8. Simulation missions inside two cave environments. Cave Environment #1 presents a branchwork cave with incline slopes towards the right and
vertical passage towards the top as shown in 1b. Cave Environment #2 is a maze like cave with several incline slopes. Sub-figures 1a, 1c and 2a, 2c show
the explored environment and the global graph whereas sub-figures 1b, 1d and 2b, 2d show the robot’s path in Cave Environment #1 and #2 respectively.
The bottom half of the figure shows few local and global planning instances from one of the missions in Cave Environment #1. The presented instances
demonstrate the planner’s capability to plan in vertical passages, inclined slopes, intersections.

V. EVALUATION STUDIES

A set of evaluation studies, involving both simulations and
field experiments, were performed to assess the capacity of
the proposed robotic cave exploration.

A. Simulation Studies

Simulation studies were conducted in two cave environ-
ments to test the Exploration Path Planner. The simulated
environments were hundreds of meters in scale and involved
large open spaces, vertical passages, inclined slopes and
complex networks. The RotorS simulator [39] was used for
the simulations with a quadrotor MAV model integrating
a 3D LiDAR with FOV [FH , FV ] = [360, 90]◦ (analo-
gous to an OUSTER OS0 sensor) and maximum range
dmax = 50m. The large vertical FOV FV (now available in
off-the-shelf sensors) is particularly important for efficient
mapping and path planning inside the cave environments
having varying height conditions and vertical passages. The
bounds of the local map ML for the local planner were
set to length×width×height = 30 × 30 × 8m. Five fixed-
time missions were conducted in each cave environment.
The robot was started from the same location in every
mission. The average speed of the robot for was set to
2m/s. Initially, the local planner was triggered and when
local exploration was exhausted the robot was re-positioned

to an exploration frontier based on the global planning
functionality. The first cave environment is a Branchwork
cave whereas the second is a maze. The second environment
due to its topology requires longer exploration time for the
same amount of volume and can result in sub-optimal global
behavior. Figure 8 shows the explored map in both the caves
with the path followed by the robot and the global graph
spanned by the Global Planner. The bottom half of the
figure shows indicative instances of local and global planning
steps in the first cave environment. The performance of the
planner in terms of explored volume over time can be seen
in Figure 9. The constant volume parts in the plot correspond
to the global re-positioning instances.

Fig. 9. Exploration rate (mean value and bounds over 5 executions) for
each of the two cave simulation environments.



Fig. 10. Autonomous exploration mission inside a room of the Moaning Caverns national park complex subterranean cave settings. The first row presents
volumetric data as used in planning, alongside the full robot path, an instance of planning (pink path) and the return-to-home path (green). The second row
presents point cloud data as the map gets built incrementally, alongside an instance of the local planner vertices (green for admissible vertices and yellow
for vertices outside of the mapped area), as well as an instance of planning path. Finally, the last row presents visual and thermal camera data from the
two vision sensors onboard the robot. A video recording of the experiment is available at https://youtu.be/0U0-PxMuGdk

B. Field Experiment in the Moaning Caverns

The presented aerial robotic cave exploration system was
fielded in the Moaning Caverns in California, US. In par-
ticular, the robot was tested inside a large room of the
underground voids of the Moaning Caverns with the goal to
reconstruct a complete 3D map and simultaneously acquire
visual and thermal camera observations. The Charlie Aerial
Scout as shown in Figure 2 was used in this mission. The
bounds of the local map ML for local planner were set
to length×width×height = 7 × 4 × 6m. Figure 10 presents
detailed instances from this field deployment and highlights
key steps of the path planning and mapping process. During
most of the mission, the system employs paths that allow
it to incrementally explore this tall cave room based on its
OUSTER OS1 LiDAR sensor onboard. As shown, the sys-
tem is able to autonomously explore the cave environment,
reconstruct its map and collect associated informative visual
and thermal camera observations. Throughout this whole
mission (after take-off) there was no human teleoperation or
other interaction with the robot. This highlights the autonomy
capabilities of the presented robotic system.

VI. CONCLUSIONS

In this work, the complete design of an aerial robot capable
of autonomous exploration of cave networks is presented.
The system relies on two core functionalities for multi-
modal localization and mapping, as well as path planning for
enabling resilient autonomy in such diverse and challenging

environments. In particular, the system fuses LiDAR, visible-
light and thermal cameras and inertial sensing for robust
and resourceful perception in the GPS-denied, dark, often
obscurants-filled and geoemetrically complex cave settings.
Building on top of its perception capabilities, the system
implements a graph-based exploration path planning algo-
rithm tailored to the topological patterns observed in caves.
To evaluate the proposed solution, a set of simulation studies
and field experiments were conducted and presented in detail.
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