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Abstract
A methodology for automatic simulation-based testing of control systems for autonomous vessels is proposed. The
work is motivated by the need for increased test coverage and formalism in the verification efforts. It aims to achieve
this by formulating requirements in the formal logic Signal Temporal Logic (STL). This enables automatic evaluation
of simulations against requirements using the STL robustness metric, resulting in a robustness score for requirements
satisfaction. Furthermore, the proposed method uses a Gaussian Process (GP) model for estimating robustness scores
including levels of uncertainty for untested cases. The GP model is updated by running simulations and observing the
resulting robustness, and its estimates are used to automatically guide the test case selection towards cases with low
robustness or high uncertainty. The main scientific contribution is the development of an automatic testing method which
incrementally runs new simulations until the entire parameter space of the case is covered to the desired confidence
level, or until a case which falsifies the requirement is identified. The methodology is demonstrated through a case
study, where the test object is a Collision Avoidance (CA) system for a small high-speed vessel. STL requirements for
safety distance, mission compliance and COLREG compliance are developed. The proposed method shows promise,
by both achieving verification in feasible time and identifying falsifying behaviours which would be difficult to detect
manually or using brute-force methods. An additional contribution of this work is a formalization of COLREG using
temporal logic, which appears to be an interesting direction for future work.
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Introduction
With the rapid advances in the field of information and
communication technology (ICT) in the recent years, the
tasks that are automated gradually become more complex.
Space and underwater operations with limited means of
communication, as well as autonomous transportation
solutions have been driving forces for this development.
The autonomy trend has also reached the maritime sector,
where several commercial and academic projects aiming
towards autonomous maritime vessels have been announced
recently1.

Building a compelling argument for the safety of
autonomous systems has proven to be a challenge2. In
the maritime domain, extensive use of simulation-based
testing has been proposed as a possible approach3.
Simulation-based testing refers to creating a simulation
model, often termed a digital twin, of a system together
with its operative environment and performing testing on the
digital twin instead of the actual system in the real world.
Simulation-based testing is attractive due to its scalability,
that is, it is possible to assess system level behaviours for
highly complex systems. Autonomous vessel concepts are
characterized by high levels of complexity in their hardware
and software systems, as well as in their interaction with
the operative environment. Combined with the intrinsic
challenges related to verification of autonomous functions,

such as the use of machine learning components and hard-to-
predict emergent behaviours, simulation-based testing stands
out as a promising and key way forward. Simulation-based
testing, in particular Hardware-in-the-Loop (HiL) testing,
has strong traditions in the maritime industry already4–7.

While simulation-based testing offers a great platform for
verification, it is paramount that it is used in combination
with valid processes for test case selection, evaluation of
results and test coverage assessment. Traditionally, the
selection of test cases has been a manual process based
on risk analyses and experience with incidents and typical
pitfalls in development and implementation. For emerging
technologies, such as autonomous vessels, this approach
is challenging, as the necessary experience, regulations,
class notations and best-practices are not yet available.
Moreover, the operative environment for autonomous
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systems is characterized as highly dynamic, unstructured
and uncertain, which gives a wide span of possible situations
and failure combinations8. This necessitates a large number
of simulations to obtain sufficient test coverage, which calls
for automation of the test case selection and corresponding
evaluation of the results. Also, since simulation-based
testing, in contrast to more formal methods, is almost
never able to test all possible scenarios due to practical
computation time constraints, the notion of confidence level
in the verification becomes important. By confidence level,
we refer to the probablilty that a verified system actually
contains no requirement violations. Since autonomous ships
are safety-critical, it is crucial to have methods to assess the
confidence level in the verification efforts to build sufficient
trust.

The main scientific contribution of our work is the
development of a methodology for simulation-based testing
which attempts to address the needs specified above. We
propose to formulate the requirements to test against in
the formal logic STL. This enables automatic quantitative
evaluation of simulations against the given requirements.
Furthermore, we define parametric test cases, where a
more general parametric case is defined manually, and we
verify that all concrete subcases meet the requirements.
We use a Gaussian Process (GP) model to predict the
performance and uncertainty level over the entire parameter
space. The GP model is updated by running simulations and
observing the resulting performance, and its estimates used
to adaptively guide the test case selection towards cases
with low performance or high uncertainty. The proposed
testing method incrementally runs new simulations until
the entire parameter space of the test case is covered to the
desired confidence level, or until a case which falsifies the
requirement is identified.

The proposed method has several advantages. We
get an assessment of the coverage and quantification
of the confidence in the verification effort. Due to the
adaptive test case selection, it is expected to reduce the
number of simulations required to obtain a sufficient test
coverage compared to a regular grid search. Efficient
falsification is also achieved if the system does not meet the
requirements. After an initial setup, the testing is completely
automatic which enables the execution of a large number of
simulations. This also integrates well with agile development
and continuous deployment, where nightly builds can run
automated simulation-based testing along with the standard
unit and integration software tests. We also highlight that the
proposed approach is not limited to using STL requirements
and STL robustness evaluations. Any quantitative evaluation
of simulations may be used instead. The core methodology
is also by no means restricted to the testing of autonomous
vessels, although that is the focus of this paper.

There exist several previous works on the topic of
using STL and STL robustness in simulation-based testing.
Prominent frameworks are Breach9, Taliro10 and RRT-
REX11. The Taliro framework is used in Tuncali et al.
(2020)12 to do simulation-based falsification for autonomous
driving. To our knowledge, no previous work exists which

uses STL in combination with a GP model for verification.
However, the methods have previously been combined to
achieve data-driven synthesis of requirements13.

There also exist previous works in automatic evaluation of
maritime Collision Avoidance (CA) systems for autonomous
ships, including Woerner et al. (2016)14, which uses tailored
penalty functions. This approach is further developed
by Pedersen et al. (2020)3. Stankiewicz et al. (2019)15

propose a different approach by running a large number
of simulations and mapping decision boundaries using
clustering methods. Lee et al. (2020)16 present a falsification
method called Adaptive Stress Testing for aircraft collision
avoidance, which uses an adversary reinforcement learning
based agent for the environment to identify falsifying
interactions. The use of formal methods for specification
and verification of autonomous systems has seen some
adoption in the sectors of aerospace, automotive and mobile
robotics17. During the last year, the maritime sector has
also seen some use of formal methods for autonomous
vessels. Shokri-Manninen et al. (2020)18 have created a
formal automata-based model of single-vessel encounters
and synthesized a correct-by-construction navigation
strategy in the tool UPPAAL STRATEGO, which uses a
combination of model checking and machine learning. Park
and Kim (2020)19 has synthesized a correct-by-construction
controller for automatic docking of marine vessels based on
reachability analysis. Finally, Foster et al. (2020)20 present
a controller for autonomous marine vessels in the form of
a hybrid dynamical system and use the Isabelle theorem
prover to verify some invariant propoerties.

This paper is organized as follows. First, the background
and mathematical preliminaries are presented. This includes
an overview of state-of-the-art in verification of cyber-
physical systems (CPSs) and an introduction to temporal
logic and GPs. Next, the main contribution, a methodology
for automatic testing, is developed, and an implementation is
presented in algorithmic form in Algorithm 1. A case study
which demonstrates the use of the proposed methodology
for a CA system is conducted thereafter. A discussion on
methodical issues with the proposed approach follows next
before concluding remarks are given.

Preliminaries and Background

Terminology and definitions
In this section we define the main terminology and
definitions used in the paper. A list of symbols that are used
extensively throughout the paper is given in Table 1. Bold
symbols are used for vectors or matrices.

Suppose that we have a simulator of the system under
test together with its operational environment. The result of
a particular simulation depends on a number of parameters
describing for instance the initial conditions, input signals
and configurations. For a simulator with n parameters, each
parameter pi, where i ∈ [1, 2, ..., n] is an index, has an
associated parameter set Pi which specifies the values that
the parameter can take. The set P , defined by the cartesian
product P = P1 × P2 × ...× Pn contains all possible
combinations for the simulator. It is usually not feasible nor
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useful to test all simulations in P . Instead, we select some
subsets where most of the parameters are fixed but some are
allowed to vary within a set. We formalize this idea with
the notion of a case. A case Σ is defined by a collection of
k parameters p1, p2, ..., pk with corresponding parameter
sets P1,P2, ...Pk. The parameter set of a case Σ is defined
as the cartesian product of the parameter sets of all of the
parameters in the case, PΣ = P1 × P2 × ...× Pk. Cases
are arranged hierarchically according to their parameter
sets. We say that case Σ1 is a sub-case of Σ2 if PΣ1

⊂ PΣ2
.

Similarly, Σ2 is a super-case of Σ1 if PΣ1
⊂ PΣ2

.

Each point p ∈ P represents a list of parameter
values. This defines the input to a simulation. For
a particular simulator, we define a simulation as
a function sim : P 7→W, which maps a vector of
parameter values, p ∈ P to a time stamped output signal
w = (y0, t0), (y1, t1), ..., (yN , tN ). The output signal
vector y has m components and its domain is the set
Y = Y1 × Y2 × ...× Ym.

We demonstrate these definitions in the following
example.

Example 1. Consider a simulator describing an autonomous
marine vessel at open sea. Such a simulator will likely have
a large number of configurable parameters. Suppose that
we want to verify that the autonomous vessel can handle
all situations where another is on direct collision course at
different speeds. This can be described by a case Σ1 with two
parameters, the course of the other vessel, θ ∈ [−180, 180]◦

and the speed of the other vessel, U ∈ [0, 20]m/s, and all
other parameters remain fixed. The parameter set of Σ1,
PΣ1

= [−180, 180]× [0, 20] is a two-dimensional section of
P . Next, suppose that we want to examine head-on situations
with high speed more closely. This can be described by a
sub-case Σ2 ⊂ Σ1, where the course is fixed at θ = 180◦

and U ∈ [10, 20]m/s. This is illustrated in Figure 1, which
shows PΣ1

as a two-dimensional subset of P , and PΣ2
as a

one-dimensional subset of PΣ1 .

Verification methods for Cyber-Physical
Systems
Cyber-Physical Systems (CPSs) are comprised of physical,
digital and networking components, Typically a physical
plant is controlled by digital computers. Autonomous
vessels are clearly an example of this. Since the invention
of the micro processor, CPSs have become ubiquitous. The
dual nature of these systems, including both hardware and
software, introduces challenges in the verification of them,
and this has been an active area of research and development.
Here, we give a brief overview of existing methods and
their merits and shortcomings to build a context around the
proposed method of this paper.

In Figure 2, a classification of the different verification
methods is shown. The methods are ranked informally
according to their scalability, that is, how large or complex
systems they can verify, and the exhaustiveness, which is
an indication of how thoroughly the possible behaviours of

180

-180

20

[deg]

U [m/s]

Figure 1. Illustration of the parameters sets in Example 1. P is
the full parameter set for the simulator, here projected in 2D for
visualization. PΣ1 is the 2D subset of P corresponding to the
case Σ1, and PΣ2 is the 1D subset of PΣ1 corresponding to the
case Σ2.

Figure 2. Spectrum of verification methods for CPSs. The
horizontal axis indicates the level of exhaustiveness/formality.
The vertical axis indicates the scalability of the method, that is,
how large or complex systems it can verify. Inspired by Kapinski
et al. (2016) 21.

a system are assessed. Figure 3 shows the corresponding
system models used in the verification. The models are
ranked according to how closely they can resemble the real
system that is verified. The methods can be classified into
three distinct classes; formal, analytical and simulation-
based.
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Table 1. Explanation of symbols that are used extensively throughout the paper.

p List of parameter values which defines a simulation
w Output signal from a simulation
ϕ STL formula

JϕK(w, t) STL robustness of signal w at time t with respect to formula ϕ
fρ The function which maps a list of parameters to an STL robustness score
P List of test points for the GP
ρ List of random variables for the STL robustness at the test points

Pobs List of observed points for the GP
ρobs List of random variables for the STL robustness at the observed points
ρ̄(p) GP mean estimate of the STL robustness score at point p

var(ρ(p)) GP variance estimate of the STL robustness score at point p

Figure 3. Spectrum of models used in the verification process,
ranked according to how close the models can come to the
actual implementation of the CPS.

Formal methods are characterized by a high level of
formality and exhaustiveness. They are usually based on a
finite transition system model, which is a discrete model
containing a finite number of states and a finite number of
transitions between states. Formal methods are usually used
in combination with a formal specification language or logic,
such as temporal logic, to specify the desired behaviour.
Model checking is the most common formal method, which
does an exhaustive search of all of the possible executions of
a finite transition system to verify that it satisfies a temporal
property22. Reachability analysis approximates the set of
behaviours that a system can exhibit, and can for instance
be used to verify that a set of unsafe behaviours is never
visited23. Theorem provers are computer tools which aid
the user in building mathematical proofs that a model meets
a property24. There exist both interactive theorem provers,
which require input from the user for each step of the proof,
and fully automatic theorem provers.

Model checkers and reachability tools have seen limited
scalability as they have been limited by the so-called
state-space explosion problem. This refers to the fact that
the set of states grows exponentially as the number of
variables increases. However, with the huge increase in
computational power and advances in the model checking
algorithms, modern model checkers can solve highly

complex verification problems.

Most formal methods are based on some form of finite-
transition system, which also needs to be limited in size
due to the state-space explosion problem17. Therefore it is
sometimes required to create a separate verification model
suitable for formal verification, which is an abstraction
of the implementation. Since the model which is verified
is an abstraction of the implementation, this creates a
reality gap17, which may miss some implementation-level
errors. Building an implementation based on a formally
verified design has nevertheless proven to be a successful
strategy for uncovering fundamental errors in the system.
The reality gap is particularly evident for systems with
continuous dynamics, which need to be discretized into a
finite-transition model to facilitate model checking. Theorem
provers are often better able to verify properties of systems
with continuous dynamics. For software systems, there
exist formal verification tools which can work directly on
implementation-level code. There is clearly a wide spectrum
of modelling power at play here. However, compared to e.g.
simulation-based methods, the models suitable for formal
verification generally have stronger limitations with respect
to the type and complexity of systems that they can model,
and therefore score lower on similarity to implementation21.

Formal methods have also proven to offer great
advantages in the development process, by enabling the
development of correct-by-construction designs built on
formal specifications. Taking on a formal approach early in
the development process can also improve the verification
process later, by eliminating many classes of errors and by
having a formal specification to verify against25. For an in-
depth survey of this topic the reader is referred to Luckuck et
al. (2019)17.

Analytical methods perform manual mathematical analysis
on a set of symbolic equations. For continuous systems,
the models are Differential Algebraic Equations (DAEs),
whereas systems which exhibit both continuous and discrete
behaviors are modelled as hybrid dynamical systems. These
models rank quite low on similarity to implementation
due to the sheer difficulty in creating analytical models of
complex CPSs. Stability proofs refer to using mathematical
analysis, such as Lyapunov methods to prove e.g. stability
or invariance of a set for continuous systems26. Linear
Analysis is similar, but here the system is first linearized
about an operational point. This is quite trivial to do even
for complex models however, the results are only local and
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thus not very exhaustive27. Linear analysis is also possible
to do numerically for some simulation models. Hybrid
system analysis refers to a set of mathematics studying
the properties of hybrid dynamical systems, and is able to
handle more complex systems than pure DAEs, since it
supports discrete dynamics28. The mathematical theorems
mostly resemble those of DAEs. However, the results which
can be proved for hybrid dynamical systems are often not
as strong as those of DAEs because they are more complex
mathematically, and their theoretical foundation is still
relatively immature.

Simulation-based methods use numerical simulation mod-
els which can be stepped forward in time using numerical
solvers. We have divided simulation models for CPSs into
three classes. In a Model-in-the-Loop (MiL) simulation, both
the controller and plant are simulation models. In a Software-
in-the-Loop (SiL) simulation, the plant is controlled by the
real control software, and in HiL simulation the control
system runs on the real hardware platform and communicates
with the simulated plant through a HiL interface. It is possi-
ble to create detailed simulation models of large and complex
CPSs, even entire ships or aircraft, which together with
the HiL and SiL opportunities make it both highly scalable
and close to the real implementation21. The reality gap is
present also for simulation-based methods, as they operate
on models of reality. In particular, complex environments
can be hard to model accurately. Nevertheless, due to the
strong modelling power and flexibility of simulation-models,
this is less pronounced than for other analytical and formal
methods.

Simulation is inherently a testing approach, as a single
simulation only assesses behaviour for a single test case.
Manual simulation-based testing therefore scores low on
exhaustiveness. The other simulation-based methods in
Figure 2 represent different approaches to improve on
this by systematically managing the test case selection
and evaluation of the results in various ways. Test vector
generation is an automated process for selecting the test
cases such that certain coverage criteria are met. Concolic
testing combines simulations of the plant with a formal
analysis of the decision branching of the controller software.
Falsification methods use a parametrization of test cases and
take an optimization approach to search for cases with low
performance. Multiple-shooting approaches also attempt to
achieve falsification by running many partial simulations
and splicing together the results to identify a falsifying case.
Finally, simulation-gudied Lyapunov analysis refers to a
method for searching for a Lyapunov function using the
results of simulations. From a Lyapunov function, stability,
invariant sets and performance bounds can be derived. For
a more detailed description of these methods, the reader is
referred to Kapinski et al. (2016)21.

The method proposed in this paper falls into the class
of simulation-based methods which aim to increase the
exhaustiveness and formality. It may be used with any of the
simulation models in Figure 3.

Temporal Logic
Temporal logics are extensions of propositional logic which
also capture temporal aspects. A temporal logic formula
specifies a behaviour, and there exists effective algorithms
to evaluate a signal against a temporal logic formula to see
if it satisfies the specified behaviour. Linear Temporal Logic
(LTL), was introduced in Pnueli (1977)29. LTL operates on
boolean signals in discrete time. An extension of LTL is
Metric Temporal Logic (MTL) which operates on boolean
signals in continuous time30. Signal Temporal Logic (STL)
was proposed as a syntactic addition to MTL, where the
formulas operate on real-valued signals31.

During the last decade, many have realized the power
and possibilities when specifying behaviours in STL, see
Kapinski et al. (2016)21 and the references therein. In
addition to formal specification and verification, it can be
used as a runtime monitor32, where the online behaviour
is continuously evaluated against an STL requirement.
Applications of this include encoding traffic rules as STL
and using this to monitor road safety online33. Moreover, it
has also seen several applications as a design methodology
in planning34 and control synthesis35.

The basic building block of STL formulas are predicates.
A predicate π is a function which maps a signal y to a
boolean. In STL, the predicates take the form

π ::= f(y) ≤ c, (1)

where f(y) is a scalar, real-valued function which maps the
input y signal to a real-valued scalar, and c is a real-valued
scalar. The signals which satisfy a predicate, π, represent a
subset in the space Y . In the following, we represent the set
that corresponds to the predicate π using the notation O(π).
We note that STL predicates are only defined for non-strict
inequalities. However, since we will evaluate the formulas
using the quantitative STL robustness semantics, there is no
difference between strict and non-strict inequalities.

STL formulas are built by combining predicates with the
operators of propositional logic and temporal operators. An
informal description of the various operators is given before
the formal syntax and semantics of STL are presented.

• Conjunction: ϕ1 ∧ ϕ2 is true if both ϕ1 and ϕ2 are
true.

• Disjunction: ϕ1 ∨ ϕ2 is true if either ϕ1 or ϕ2 are true.
• Negation: ¬ϕ is true if ϕ is false.
• Implication: ϕ1 → ϕ2 is true if ϕ2 follows from ϕ1,

i.e. ϕ1 → ϕ2 is false if and only if ϕ1 is true and ϕ2 is
false.

• Eventually: 3ϕ is true if ϕ is true at some time.
• Always: �ϕ is true if ϕ is true at all times.
• Next: ©ϕ is true if ϕ is true at the next discrete time

step.
• Until: ϕ1Uϕ2 is true if ϕ1 is true until ϕ2 first becomes

true.
• Release: ϕ1Rϕ2 is true if ϕ2 is true until ϕ1 first

becomes true.

Definition 1. STL Syntax31:
Let Π be the set of predicates and I be any non-empty
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connected interval of R≥0. The set of well-formed STL
formulas is defined by the grammar

ϕ ::= > | π | ¬ϕ | ϕ1 ∨ ϕ2 | © ϕ | ϕ1UIϕ2, (2)

where ϕ, ϕ1 and ϕ2 are STL formulas,> is the True constant
and π ∈ Π is an STL predicate.

Note that all the logical and temporal operators can be
derived from these basic operators:

ϕ1 ∧ ϕ2 ≡ ¬(¬ϕ1 ∨ ¬ϕ2) (3)
ϕ1 → ϕ2 ≡ ¬ϕ1 ∨ ϕ2 (4)

3Iϕ ≡ >UIϕ (5)
�Iϕ ≡ ¬3I¬ϕ (6)

ϕ1RIϕ2 ≡ ¬(¬ϕ1UI¬ϕ2) (7)

Example 2. An example of a simple STL formula, which
will be used extensively in this paper, is the requirement for
a vessel to always keep a safe distance from other vessels. In
STL this can be expressed as

ϕsafety = �¬ (d(t) ≤ dmin) (8)

where d(t) is the distance to another vessel at time t and
dmin is a constant specifying the minimum required safety
distance.

STL robustness metric
Much of the popularity of STL is due to the STL robustness
metric, introduced by Fainekos et al. (2009)36. In contrast to
the normal Boolean semantics, which only give a true/false
evaluation of whether a signal satisfies a formula, the STL
robustness metric defines the semantics for quantitative
evaluation of how robustly a signal satisfies an STL formula.
This has proven to be a powerful combination, as STL both
provides a language to describe behaviours and a metric to
measure conformance to these behaviours.37.

Let JϕK(w, t) denote the STL robustness of a signal
w against the formula ϕ at a discrete time t. The
STL robustness metric has the soundness property that
JϕK(w, t) ≥ 0 if w satisfies ϕ at time t and JϕK(w, t) < 0
otherwise. Informally, the magnitude of the robustness
metric indicates how much the signal can change without
violating the requirement.

Before we formally define the STL robustness metric we
must first define metrics and the signed distance.

Definition 2. Metric36:
A metric on a set S is a positive function d : S × S → R≥0

such that
1) ∀s, s′ ∈ S, d (s, s′) = 0⇔ s = s′

2) ∀s, s′ ∈ S, d (s, s′) = d (s′, s)
3) ∀s, s′, s′′ ∈ S, d (s, s′′) ≤ d (s, s′) + d (s′, s′′)

In this paper the Euclidean metric d (s, s′) = ‖s− s′‖ ;
has been used.

Next, we define the signed distance to a set. Intuitively,
this captures how robustly a point belongs to a set. If the

point is in the set, the signed distance is positive. If the point
is on the boundary then it is zero and if the point its outside
the set it is negative. The magnitude represents how far away
the point is from the boundary. A formal definition follows.

Definition 3. Signed distance36:
Consider a point s ∈ S a set A ⊆ S and a metric d on S. The
signed distance from s to A is defined as

Distd(s,A) :=

{
− inf {d (s, s′) |s′ ∈ A} if s /∈ A
inf {d (s, s′) |s′ /∈ A} if s ∈ A

(9)

With the definitions of metrics and the signed distance, a
formal definition of the STL robustness semantics is stated
next.

Definition 4. STL robustness semantics36:
For a metric d and a signal w =
(y0, t0), (y1, t1), ..., (yN , tN ), the STL robustness
JϕKd(w, t) of w w.r.t ϕ at time instance t ∈ [0, 1, . . . , N ] is
defined as:

J>Kd(w, t) := +∞ (10a)
JπKd(w, t) := Distd (yt,O(π)) (10b)
J¬ϕKd(w, t) := −JϕKd(w, t) (10c)
Jϕ1 ∨ ϕ2Kd(w, t) := (10d)
max (Jϕ1Kd(w, t), Jϕ2Kd(w, t))
J©ϕKd(w, t) := (10e){

JϕKd(w, t+ 1) if t+ 1 ∈ N
−∞ otherwise

Jϕ1UIϕ2Kd(w, t) := max
j s.t. (tj−tt)∈I

(10f)(
min

(
Jϕ2Kd(w, j), min

t≤k<j
Jϕ1Kd(w, j)

))
,

where π ∈ Π is a predicate, and O(π) is the corresponding
set in Y . For short, JϕK(w) refers to the robustness at time
t = 0 using the Euclidean norm as the metric.

Example 3. As an example, we illustrate the use of the
STL robustness metric for the safety distance requirement of
(8), as shown in Figure 4. A sample signal for the distance
between two vessels d(t) has been generated by a random
Wiener process. In the top plot, d(t) is plotted together with
the minimum safety distance limit dmin = 50m. This is
the input signal to an STL monitor, whose output is shown
in the lower plot. To build an intuitive understanding of
the resulting STL robustness score, we split the evaluation
of the signal into two steps. First, we look at the inner
subformula, ϕ = ¬ (d(t) ≤ dmin). This STL formula is
time-independent, that is, the value of JϕK(d(t), t) only
depends on the value of d(t) at time t. This robustness value,
shown in yellow, intuitively represents how far the distance
to the other vessel is from violating the requirement. This
means that when d(t) = 50m, JϕK(d(t), t) = 0m. When
d(t) > 50m, JϕK(d(t), t) > 0 and when d(t) < 50m,
JϕK(d(t), t) < 0.

When adding an operator on this subformula, the
robustness score of the subformula becomes the input signal
for this operator. Since � is a temporal operator, the
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Figure 4. STL robustness evaluation against safety distance
requirement. The upper plot shows a sample distance signal,
d(t) together with the required minimum distance dmin, plotted
against time. The lower plot shows the corresponding STL
robustness score for the subformula ϕ = ¬ (d(t) ≤ dmin) and
the full formula ϕsafety = �¬ (d(t) ≤ dmin).

robustness score at any time depends on the entire time
series from that time to the end. In the case of the always
operator, it can be shown that the output robustness score is
the minimum of the input signal over time. The robustness
score for the full formula is shown in violet in the lower plot
of Figure 4. This demonstrates that the value of the violet
curve at time t corresponds to the minimum of the yellow
curve from t to the end.

Gaussian Processes
Consider an unknown function, y = f(x), which we want
to estimate by making observations (xi, yi). The standard
regression approach is to assume a model for f(x), and
try to find the parameters of this model such that it fits the
observations well. GPs take a different approach to this. A
GP models the function values yi = f(xi) at points xi as
random variables which are jointly Gaussian distributed38.
The covariance between function values at points xp and xq

is denoted

cov (f (xp) , f (xq)) = k (xp,xq) , (11)

where k (xp,xq) is a covariance function of choice, also
known as a kernel function. A common choice of covariance
function is the squared exponential

k (xp,xq) = σ2 exp

(
− 1

2l2
‖xp − xq‖2

)
, (12)

which is built on the assumption that points that are close to
each other are more strongly correlated than points which are
far apart. This function has two parameters: the variance σ2,
and the length scale l. Note that for xp = xq the covariance
reduces to σ2 which is the variance of the function value at
this point. Informally, l describes how much ‖x‖ needs to
change in order to significantly change the value of f(x).

Further, assume that we can make uncertain observations
of f(x) by the measurement equation

yobs = f(x) + ε, (13)

where the measurement noise ε is normally distributed with
zero mean and variance σ2

ε , and is independent from the
noise of other observations.

Suppose that we have made observations of f at nobs
points, given by the random variables yobs ∈ Rnobs and
wish to predict the value of f at n test points, given by the
random variables y ∈ Rn. It can be shown that the random
variables

[
yobs

>,y>
]>

are jointly Gaussian distributed38.
Their probability distribution is

N
(

0,

[
K(Xobs,Xobs) + σ2

ε I K (Xobs,X)
K (X,Xobs) K (X, X)

])
, (14)

where I is the identity matrix. K (Xobs,X) denotes the
nobs × n matrix of the covariances evaluated at all pairs
of observations and test points, and similarly for the other
entries K(Xobs,Xobs),K (X,X) and K (X,Xobs).

To make predictions at the test points we take a bayesian
inference approach, and calculate the conditional probability
distribution of y|yobs. It can be shown38 that this results in
another Gaussian distribution with mean

y = K (X,Xobs)
[
K(Xobs,Xobs) + σ2

ε I
]−1

yobs, (15)

and covariance matrix

COV (y) = K (X,X)− (16)

K (X,Xobs)
[
K(Xobs,Xobs) + σ2

ε I
]−1

K (Xobs,X) .

Hence, for each test point we have now obtained a Gaussian
distribution with an associated mean and covariance. The
mean value is used as the predicted values of the unknown
function f at the test points. The diagonal elements of the
covariance matrix represent the variance of the estimates,
and can be used to establish confidence intervals on the
predictions. This is illustrated in Figure 5.

Automatic testing using Gaussian
Processes and Temporal Logic
In this section, we develop the main scientific result of the
paper, a new method for automatic and adaptive simulation-
based testing of autonomous vessels. An overview of how
the simulator, STL monitor and GP model interact in our
proposed method is given in Figure 6.

Problem statement and scope
Consider a case Σ with parameters in PΣ, and a requirement
in the form of an STL formula. Recall that a simulation
satisfies ϕ if and only if the STL robustness score is greater
than 0. We define the confidence level of a verification as the
probability that the STL robustness score is greater than zero
for all points p ∈ PΣ. The objective of the proposed method
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Figure 5. An example of a GP with 10 observations of
y = f(x). The GP mean estimates at the test points are shown
by the green curve together with their 95% confidence intervals.
The figure shows how the GP fit is tighter for small values of x,
where the observations are denser. For large values of x,
observations are sparser. This gives a less accurate fit, which is
reflected by the increased uncertainty bounds.

is to produce evidence that ϕ is satisfied with a probability
greater than the desired confidence level pconf for all points
p ∈ PΣ.

For simplicity, we restrict the parameter set PΣ to be a
range set in Rk. This can trivially be extended to cover
simply connected sets, while the non-connected case can be
handled by treating each connected subset separately.

Proposed approach
For a particular STL requirement, ϕwe propose to model the
variations in the STL robustness for different choices of case
parameters as a GP. Hence, we consider fρ : PΣ 7→ R as an
unknown function which maps a parameter vector p ∈ PΣ to
a robustness value ρ ∈ R. In reality, fρ is a known function
defined by

fρ(p) := JϕK(sim(p)). (17)

However, since evaluating this function requires running a
simulation, it is often computationally intractable to evaluate
it for all points p ∈ PΣ, which makes GP estimation an
attractive option. We estimate fρ at n test points in PΣ.
These points are collected in the matrix P ∈ Rk×n, such
that each column in P is a parameter vector p, that is, a
point in PΣ. The choice of points in P is typically a uniform
grid over PΣ with the desired resolution. To each test point
we assign a random variable representing the unknown STL
robustness value at this point. These are collected in the
vector ρ ∈ Rn. We model our prior beliefs in the unknown
function fρ(p) by a joint Gaussian probability distribution
with zero mean and covariance matrix K ∈ Rn×n. The
(i, j)th entry in K is given by some covariance (kernel)
function k(pi,pj).

Next, we wish to observe values of the STL robustness
by running simulations and evaluating the resulting output

signals against ϕ using the semantics of (10). We assume
that a simulation gives us an uncertain observation of the
robustness, given by (13). In reality, the outcome of a
simulation is completely deterministic, however, adding a
small uncertainty has some technical advantages. This is
discussed more closely in the discussion section.

Taking a bayesian inference approach, the posterior
predictions of the robustness values at the points P are
updated based on observed robustness values. Suppose that
nobs observations have been made at points Pobs ∈ Rk×nobs .
The observed robustness values are collected in the vector
ρobs ∈ Rnobs . Given the assumptions made this far, the
robustness values at the points P and the observed points
at Pobs are jointly Gaussian with distribution

[
ρobs
ρ

]
∼ N

(
0,

[
Kobs + σ2

ε I Kcross

K>cross K

])
, (18)

where Kobs ∈ Rnobs×nobs is the covariance matrix for
the observation points and Kcross ∈ Rn×nobs is the cross
covariance between points in P and Pobs.

Using bayesian inference, the conditional probability
distribution of ρ given ρobs is given by

ρ|ρobs ∼ N (Kcross[Kobs + σ2
ε I]−1ρobs, (19)

K−Kcross[Kobs + σ2
ε I]−1K>cross)

Hence, at each point in P we now have an associated
expected value and uncertainty. In the following, let the
operators ρ̄(p) and var(ρ(p)) refer to the expected value
and variance of the STL robustness at the point p.

The main loop of our proposed method consists of
iteratively running new simulations and updating the GP.
This is repeated until a desired confidence level is achieved.
The criterion for a sufficient confidence level is that the
minimum of the pconf probability confidence interval of fρ
is greater than 0. That is, we terminate the search in a Verified
state when

minp∈P ρ̄(p)− nconf
√
var(ρ(p)) > 0. (20)

Here, nconf is the number of standard deviations associated
with the confidence level pconf .

Achieving this, we have shown that the probability, with
which the system satisfies the requirement ϕ, is greater
than pconf , given the assumptions above. If the search
process finds a case with robustness lower than 0, the search
will terminate prematurely in a Falsified state, with an
associated counterexample that can be used for debugging
and improving the system.

Since observing the robustness at a point involves running
a simulation, it is usually a time consuming operation. Thus,
it is paramount that sample points are well chosen as to only
explore interesting regions ofPΣ and thereby minimizing the
number of simulation runs. We propose to choose the next
sampling point based on two criteria:

Prepared using sagej.cls



Torben et al. 9

Figure 6. An overview of the main components of the proposed testing methodology and how they interact. The input to the
method is a parametric test case definition and an STL requirement to test against. The test management selects a concrete test
case from the test space and sends its parameter setting to the simulator. The resulting simulation timeseries is given as input to the
STL monitor which calculates the STL robustness score. The GP model, which estimates the STL robustness score as a function of
the test case parameters, is updated using the observed STL robustness score. The expected STL robustness and its uncertainty
are used for smart selection of the next test case to simulate, and to determine if the test coverage is sufficient to terminate.

• Explore points with low expected robustness.
• Explore points with large uncertainty.

This can be combined in the following selection process

pnext = argminp∈P ρ̄(p)− κ
√
var(ρ(p)), (21)

where κ ∈ R≥0 is a parameter deciding the trade-off
between visiting areas with low predicted robustness and
visiting areas where there is large uncertainty. This is
commonly referred to as the exploration vs. exploitation
trade-off.

Before starting the search, we first draw nseed seed points
from P, run simulations and build an initial GP from these
observations. This serves to build an initial model of the
robustness landscape before starting the adaptive search
using (21). To obtain the maximum amount of information
about fρ from nseed samples, a design of experiments
approach is taken, using latin hypercube sampling (LHS)39.
In essence, LHS divides each parameter into nseed slots,
and thereby creates a grid of hypercubes over PΣ. Along
each dimension, LHS chooses samples such that no two
samples occupy a hypercube in the same row, column, height
and so forth. Within each hypercube, the sampling is random.

This concludes the development of the proposed testing
approach. The method is stated more concisely in Algorithm
1. For a MATLAB/Simulink implementation, the reader is
referred to the open-source online repository40.

Validation of Gaussian Process Model
One of the most attractive properties of the proposed
methodology is that it gives a quantification of the
confidence level in the verification. This comes in the form
of a probability of exceeding a determined robustness limit.

However, this probability is based on a statistical model
with several assumptions and parameters. It is paramount
that these are justified or validated in order to trust the
resulting probabilities. The most notable assumption is that
the robustness values are jointly Gaussian distributed with
covariance given by the selected kernel function. This is hard
to justify à priori, since little is known about the robustness
function in advance. It is therefore necessary to validate this
assumption after running the algorithm. For cases with only
one parameter, this can to a large extent be done by visual
inspection of the predicted robustness function. However,
for higher-dimensional cases, such visual intuition is more
difficult. We therefore need quantitative metrics to validate
the GP model. A common choice for this is the marginal
likelihood p(ρobs|P obs). This represents the likelihood of
observing the robustness values ρobs for the points P obs

under the given GP model, giving an indication of the
goodness of the model fit.

The marginal likelihood is calculated by marginalizing
over all values for ρ

p(ρobs|P obs) =

∫
p(ρobs|ρ,P obs)p(ρ|P obs)dρ (22)

As all probability distributions in (22) are Gaussian, this
integral has an analytical solution given by the log marginal
likelihood

log p(ρobs|P obs) = −1

2
ρobs

>(Kobs + σ2
εI)−1ρobs (23)

− 1

2
log |Kobs + σ2

εI| −
nobs

2
log 2π

Next, we propose a more complete validation method for
the GP model. After achieving a verification, the normalized
error en for each observation (p, fρ(p)) can be calculated as
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Algorithm 1: Automatic simulation-based testing
input: Test case Σ, Requirement ϕ, Kernel function

k(p1,p2) and Hyperparameters nconf , κ, σε
Select n points uniformly from PΣ, store in P ;
Calculate covariance matrix K for points in P ;
// Find robustness for seed points
Sample nseed seed points from P using Latin

Hypercube Sampling;
for i = 1 to nseed do

Run simulation wi = sim(pi);
Calculate robustness JϕK(wi);
Append (pi, JϕK(wi)) to list of observed points
(Pobs,ρobs);

end
// Main loop
for i = (nseed + 1) to maxNumberOfSimulations do

Calculate covariance matricesKobs andKcross;
Calculate expected value for each point in P :
ρ̄ = Kcross[Kobs + σ2

ε I]−1ρobs;
Calculate variance for each point in P :
var(ρ) = K −Kcross[Kobs + σ2

εI]−1K>cross;
if minp∈P ρ̄(p)− nconf

√
var(ρ(p)) > 0 then

return Verified;
end
Select next sample point:
pi = argminp∈P ρ̄(p)− κ

√
var(ρ(p));

Run simulation wi = sim(pi);
Calculate robustness JϕK(wi);
if ρ(ϕ,wi) < 0 then

return Falsified with counterexample pi;
end
Append (pi, JϕK(wi) to list of observed points
(Pobs,ρobs);

end
// Max number of simulations reached
return Inconclusive;

en(p) =
fρ(p)− ρ̄(p)√
var(ρ(p))

(24)

It can be shown that if the assumptions of the GP hold,
then en ∼ N (0, 1). We propose to validate the method by
calculating a reference robustness function by simulating a
large number of cases covering the parameter space. Then,
the automatic testing algorithm is run, and we calculate the
resulting mean and variance for each point on the reference
function. This enables the calculation of a large number of
normalized errors. The distribution of the normalized errors
can then be compared to its theoretical distribution N (0, 1).
The normality assumption can be assessed using a normal
probability plot.

The method above is useful for validating the method
for this paper. However, it is also important for users of the
method to validate their verification results. In this case,
the validation scheme defeats the whole purpose of the
method, as it requires a large number of simulations when
creating the reference surface. However, it may be used in
a cross-validation setting. Observations can be split into n
folds, and the GP can then be trained on n− 1 of the folds

East

North

Ownship

Obstacle i

Figure 7. Definition of the symbols and notation used in the
case study. The figure shows the position vector p, heading ψ,
relative position of obstacle i, ri and relative bearing to
obstacle i, βr,i.

and the normalized error can be calculated for the remaining
fold. This process can be repeated such that each fold is left
out of training, and we therefore obtain a normalized error
for each observation. For cases with two or more parameters,
this should give enough simulations to enable a statistical
study of the normalized errors. Two important indicators are
the mean and the standard deviation of normalized errors.
If the mean is significantly less than zero, it indicates that
the GP is over-estimating the robustness. If the standard
deviation is greater than one, it indicates that the GP is overly
confident in its predictions. If such problems appear, this
can give input to adjust the hyper parameters and rerun the
automatic testing algorithm. Since most of the observations
have already been made, this adds little extra time as the
time for the GP inference is usually negligible compared to
running the simulations.

Case study: Open-sea Collision Avoidance
To demonstrate the use of the proposed method a case study
has been conducted for CA in open sea. This section first
presents the setup for the case study and the definition and
evaluation of requirements. The results from applying the
automatic testing method and STL evaluation to two test
cases are presented and a statistical validation is performed.

Setup
The test object of the case study is the Branching Course
Model Predictive Control (BC-MPC) algorithm. The system
is implemented on a small high-speed vessel, details of the
algorithm and the vessel are given in Eriksen et al. (2019)41.
For the sake of simplicity, perfect situational awareness
is assumed, that is, the CA system has perfect tracks on
obstacles.

To evaluate simulations, certain signals are calculated
based on position, heading and speed of the vessels. The
symbols and notation used in the case study are shown in
Figure 7. It is assumed that the heading and course are
identical, that is, no side-slipping or cross currents. The
distance at closest point of approach (dCPA) is defined as
the smallest separation between two vessels if they continue
with the current speed and course. The time to closest point
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Table 2. Parameters in the STL formulas and the normalization
factors for the requirements. The subscript in the normalization
factor corresponds to the signal that it normalizes.

Parameter Value Unit

tCPA.turn 15 s
dCPA.min 50 m
dmin 50 m
emax 400 m
νtCPA 10 s
νdCPA 100 m
νβr 10 deg
νd 100 m
νe 400 m

Table 3. Requirements and subformulas in the case study.

ϕsafety = �¬ (di ≤ dmin)
ϕmission = � (e ≤ emax)
ϕcolreg = � (HO → ϕHO ∧GW → ϕGW ∧OT → ϕOT )
ϕHO = tCPA ≤ tCPA,turn → βr ∈ [−170◦,−10◦]
ϕGW = tCPA ≤ tCPA,turn → dCPA ≥ dCPA,min
ϕOT = tCPA ≤ tCPA,turn → dCPA ≥ dCPA,min
ϕCOT = ϕCOV = ϕCGW = ϕCSO = ϕCHO = tCPA ≤ 0
ϕCNC = dCPA ≤ dCPA,min ∧ tCPA ≤ tCPA,min

of approach (tCPA) is defined as the time until dCPA occurs.

The STL robustness values for the requirements are
saturated and normalized. This rationale for saturation is
that very large robustness values are not interesting, but they
make it harder to fit a GP to them. Normalization aims to ease
the process of hyper parameter selection in the GP by having
all requirements operate on the same scale, such that a set
of hyper parameters are likely to work for a broad range of
requirements. The normalization and saturation are defined
by one extra parameter for each predicate, a normalization
factor ν. The robustness of this predicate is calculated by
first saturating the robustness to [−ν, ν] and then dividing by
ν such that all robustness values are mapped to the interval
[−1, 1].

Requirements
Automatic quantitative evaluation of simulations are
achieved by testing against three STL requirements:
COLREG, safety distance and mission compliance. These
are detailed in the following. All parameters used in the
requirements are given in Table 2. We also emphasize
that the automatic testing method scales well for testing
against multiple requirements, as the GP for a particular
requirement can be initialized with the observed simulations
from previous runs against other requirements. It is also
possible to test against all requirements in a single run,
by testing against a conjunction of all requirements. The
robustness for the individual requirements can be easily
decomposed during post processing. For simplicity and
clarity these optimizations are not utilized in this case study.
The STL formulas for all requirements are summarized in
Table 3.

COLREG requirement: COLREG are the international
regulations for preventing collisions at sea42. Automatic
evaluation of COLREG compliance is a challenging topic

due to the complexity and wide span of the possible
scenarios combined with the inherent reliance on human
judgement of the current COLREG. This section presents a
new take on this problem, by using a formal language (STL)
to express COLREG. Using a formal language enables
systematic construction of modular requirements which can
be subject to mathematical analysis such as consistency
checking and formal verification. While this is by no means
a complete system for COLREG evaluation, this aims to
illustrate and motivate a new possible direction for automatic
COLREG evaluation.

We propose to formulate the STL COLREG as a
conjunction of reactive subformulas. In each subformula,
the antecedent is a boolean variable expressing a COLREG
situation, and the consequent is a set of required
behaviours which must be satisfied in the corresponding
COLREG situation. Five COLREG situations are defined,
corresponding to COLREG Rules 13-17: overtaking (OT),
overtaken (OV), give way (GW), stand on (SO) and head-on
(HO). Here, only the situations which require explicit action
by ownship are included in the requirement, given in (25).

ϕcolreg = � (HO → ϕHO ∧GW → ϕGW ∧OT → ϕOT )
(25)

In a head-on situation, COLREG require a port-to-port
passing. This is enforced by requiring that the relative
bearing βr is between −170◦ and −10◦ when tCPA is lower
than the threshold value tCPA,turn:

ϕHO = tCPA ≤ tCPA,turn → βr ∈ [−170◦,−10◦] (26)

For give way and overtaking situations, COLREG do not
specify a required maneuver, but require that ownship makes
early and substantial action to avoid a collision. We enforce
this by requiring that dCPA is larger than the threshold
dCPA,min when the tCPA is lower than the threshold
tCPA,turn:

ϕGW = ϕOT = tCPA ≤ tCPA,turn → dCPA ≥ dCPA,min
(27)

The COLREG requirements of (25) use boolean signals
which specify the type of COLREG situation. We adopt the
COLREG situation selection of Tam & Bucknall (2016)43,
which classifies the situations based on sectors for relative
heading and bearing. One key difference in our approach
is that we distinguish between two different classes of
overtaking situations. In an overtaking situation, ownship is
overtaking an obstacle, which is deemed to exist when the
obstacle is ahead of ownship. In an overtaken situation, an
obstacle overtakes ownship, which is deemed to exist when
the obstacle is aft of ownship. This separation is necessary
when designing reactive requirements, because the two
situations have different required behaviours by COLREG.

When selecting the COLREG situation, it is of great
importance to have persistence throughout an encounter.
For instance, using the rules of Tam & Bucknall alone, a
head-on situation could change into a give way situation
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Figure 8. Finite-state Machine for persistent selection of
COLREG situation. Transitions are defined by complementary
STL formulas. The formulas can be divided into trigger
conditions (superscript T) and cease conditions (superscript C).

due to the course change of the avoidance maneuver. We
propose to avoid this problem by using a finite-state machine
(FSM), as shown in Figure 8. The FSM has seven states,
and the transitions between them are determined by the
satisfaction of complementary STL formulas. Five of the
states correspond to the five COLREG situations described
above. The FSM starts in a no conflict state. It exits this
state if an obstacle is on collision course, and the collision
is sufficiently close in time. This is represented by the STL
formula

ϕCNC = dCPA ≤ dCPA,min ∧ tCPA ≤ tCPA,min (28)

After exiting the no conflict state, the FSM enters an
intermediate inbound state. From here the type of the
encounter is determined, where it will transition to one of
the five COLREG situations or back to the no conflict state.
Each COLREG situation has a trigger condition (superscript
T) which corresponds to the sectors for relative heading and
bearing outlined above, and a cease condition (superscript
C). The FSM will remain in the same state until the cease
condition is satisfied and thus achieves persistent selection of
the COLREG situation throughout an encounter. The cease
condition is equal for all situations, and is represented by the
tCPA being negative:

ϕCOT = ϕCOV = ϕCGW = ϕCSO = ϕCHO = tCPA ≤ 0 (29)

The interpretation of this is that a negative tCPA means
that the closest point of approach is in the past, and hence the
ships have passed each other. The FSM will then transition
to a No Conflict state.

Safety distance requirement: The safety distance require-
ment is perhaps the most important requirement. There exist
different approaches to define the safe distance, depending
on, for instance, the speed, relative bearing and size of
the vessels involved41,44. For simplicity, the safety distance
requirement only specifies a limit on the minimum separation
between vessels in this case study. The separation is the
Euclidean norm of the relative position vector d = ‖ri‖. The
STL formula for the safety distance requirement is

ϕsafety = �¬ (di ≤ dmin) (30)

Mission requirement: It is also important to verify that
the system completes the task it was set out to do. This
can, for instance, uncover deadlocks where the system is
safe and COLREG compliant but useless. Lack of mission
compliance can also create dangerous situations by bringing
the system outside its operational design domain (ODD).
For this case study, a simple mission requirement is used,
which states that the vessel should not deviate significantly
from its pre-planned path. The deviation from the path is
captured from the cross-track error. A piece wise linear path
is assumed, which gives the following expression for the
cross-track error45

e(t) = −[N(t)−Nk
wp] sin(αk) + [E(t)− Ekwp] cos(αk)

(31)
where Nk

wp and Ekwp are the north and east position of
waypoint k, and αk = atan2(Ek+1

wp − Ekwp, Nk+1
wp − Ekwp)

is the angle between path segment k and the north axis.

The STL mission requirement states that the cross-track
error should always be lower than the threshhold emax,
which enforces the vessel not to deviate too far from the
preplanned path.

ϕmission = � (|e| ≤ emax) (32)

where |e| denotes the absolute value of e.

Case 1: Obstacle on direct collision course with
varying course
The first test case is a situation where ownship is travelling
in a straight line, and encounters an obstacle on a direct
collision course. This case has only one parameter,
θ, describing the relative course of the obstacle. This
is illustrated in Figure 9. The range for θ is set to
[−160◦, 160◦]. Courses in [−180◦,−160◦] ∪ [160◦, 180◦]
are not included as they would cause the obstacle to start
unreasonably close to ownship. The hyper parameters used
in the automatic testing method are given in Table 4.

Figure 10 shows the results from running the automatic
testing method on Case 1 against the safety distance
requirement. To validate the method, 321 tightly spaced
simulations were also run to get a ground truth robustness
curve for comparison. The results show that this case is
verified in 27 simulations with a minimum robustness of
0.6. The estimated robustness curve from the GP predicts
the ground truth robustness well, and is almost always on
the conservative side when there is a deviation. This is as
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Ownship

Obstacle

North

East

Figure 9. Definition and parametrization of Case 1. The figure
depicts an obstacle on direct collision course with varying
course given by the parameter θ ∈ [−160◦, 160◦].

Table 4. Hyper parameters used in the case study.

Parameter Case 1 Case 2

nconf 3 3
κ 2 2
σε 0.02 0.02
σ 0.5 0.5
l 10◦ [6◦, 2m/s]

Figure 10. Robustness of the safety distance requirement in
Case 1. The figure shows that the requirement is verified as the
lower uncertainty bound is above zero for the entire parameter
space.

expected, as the GP estimate will be pulled towards the
prior assumption of zero robustness in regions with sparse
observation. A sharp jump can be observed at θ = 75◦.
The jump corresponds to a decision boundary where the
CA system transitions from maneuvering aft of the obstacle
to maneuvering in front of the obstacle, which results in
a sudden increase in the safety margins. Such decision
boundaries are common in autonomous navigation systems
and it is therefore important that the GP is able to react
properly to them.

Figure 11. Robustness of the mission requirement in Case 1.
The figure shows that the requirement is falsified after 10
simulations as a parameter setting with robustness less than
zero is observed at θ = 130◦.
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Figure 12. Falsifying behaviour for the mission requirement in
Case 1. The figure shows that the autonomous navigation
system on ownship enters a deadlocked state, where it is
intercepted by the obstacle and is not able to return to its
planned trajectory

Figure 11 shows the results for the mission requirement.
This run resulted in a falsification after 10 simulations, as
a case with robustness less than zero was observed at θ =
130◦. By going back and rerunning the simulation with the
falsified parameter setting, the falsifying behaviour can be
uncovered. The falsifying behaviour is visualized in Figure
12. This clearly shows that the autonomous navigation
system on ownship enters a deadlocked state, where it is
intercepted by the obstacle and is not able to return to
its planned trajectory. This highlights the importance of
completeness in the requirements. Although this case passed
the safety distance requirement, it still had unwanted and
potentially dangerous behaviours.

Finally, Figure 13 shows the results from running the
automatic testing method against the COLREG requirement.
This resulted in a verification after 27 simulations. The
results show good robustness over the entire parameter space.
There is a step down in robustness in the interval θ =
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Figure 13. Robustness of the COLREG requirement in Case 1.
The figure shows that the requirement is verified after 27
simulations.

Ownship Obstacle

Figure 14. Illustration of Case 2. This case has two
parameters, the angle of the avoidance maneuver,
θ ∈ [−60◦, 60◦] and the speed of the obstacle U ∈ [0, 20]m/s.

[22.5◦, 75◦]. The step at 22.5◦ is due to a change in COLREG
evaluation from Head-on to Give way and the step at 75◦

is again due to a decision boundary of the CA system,
where it transitions from maneuvering aft of the obstacle to
maneuvering in front of the obstacle.

Case 2: Head-on encounter with avoidance
maneuver by obstacle
The second case is a head-on situation where the obstacle
performs a predefined avoidance maneuver. This aims
to test the CA systems ability to handle dynamic
maneuvers by the obstacle. The case has two parameters,
as illustrated in Figure 14. They are the angle of the
maneuver, θ ∈ [−60◦, 60◦] and the speed of the obstacle
U ∈ [0, 20]m/s. As the parameter space is now two-
dimensional, there will be a robustness surface instead of a
robustness curve as in Case 1.

We begin again by testing against the safety distance
requirement. The results are shown in Figure 15. The
automatic testing method resulted in a falsification after 273
simulations, as a case with robustness of −0.38 is observed
at U = 18m/s and θ = −24◦. We also note that Figure 15
illustrates the adaptivity in the test case selection well, as the

Figure 15. Inferred robustness surface and observations from
running the automatic testing method against the safety
distance requirement. The results show a falsification after 273
simulations.

simulations are much denser in areas of low robustness.

The identified safety violation appears to lie on a very
sharp spike of low robustness. To verify this, and assess
the overall prediction of the GP, a reference robustness
surface was generated by running 2501 simulations in a
61x41 grid over the parameter space. This corresponds to
steps of θ = 2◦ and U = 0.5m/s. The reference robustness
surface is shown in Figure 16. The reference surface shows
a good overall match with the predicted surface by the GP
and shows that indeed there is a very narrow spike of low
robustness. In fact, of the 2501 simulations, only five resulted
in a safety violation. This is clearly a very difficult or time
consuming safety violation to detect by manual or brute force
approaches. Furthermore, it illustrates that even for such a
simple case with only one obstacle in open water and perfect
situational awareness, safety violations that are difficult to
anticipate and detect can emerge.

To examine the robustness landcape around the safety
violation, 2911 simulations were ran in a dense 71x41 grid
in the range θ = [−26◦,−22◦] and U = [13, 20]m/s, the
resulting robustness surface is shown in Figure 17. This
shows a sharp and narrow cleft. The vertical walls of the
cleft indicate that the safety violation occurs in a region
between two decision boundaries. In these boundaries, the
CA system goes from full robustness to a safety violation in
an arbitrarily small change in the case parameters. This type
of falsification is particularly challenging to detect, because
there is no gradient information in the robustness surface to
guide the adaptive search towards the safety violation.

As before, we replay the simulation with the falsifying
behaviour to examine the cause of the safety violation. This
can be very useful input for debugging and fixing the control
software. The course of events is illustrated by the time-lapse
in Figure 18. Ownship (blue trace) first turns starboard to do
a port-port passing in accordance with COLREG Rule 14 for
head-on situations. As the obstacle breaks COLREGS and
turns port, ownship turns more steeply starboard to avoid
a collision while still being COLREG compliant. Finally,
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Figure 16. Ground truth robustness surface for the safety
distance requirement, obtained by running 2501 simulations on
a 61x41 grid over the parameter space. The surface shows a
very narrow spike with low robustness.

Figure 17. A closer look at the narrow spike with a safety
violation, obtained by running 2911 simulations on a 71x41 grid
in the range θ = [−26◦,−22◦] and U = [13, 20]m/s.

ownship determines that a collision can not be avoided by
a port-port passing and decides to break Rule 14 and turn
steeply port. At the same time, the obstacle turns starboard
and a collision occurs.

To better understand the safety violation and see what
the decision boundaries represent, simulations from both
sides of the cleft were also replayed. The selected cases
all had U = 16m/s and θ = [−26◦,−25◦,−24◦]. This
corresponds to points on the right, in the middle and to the
left of the cleft in Figure 17. The simulations showed that
for θ = −24◦, the CA system decided to be compliant to
Rule 14 throughout the encounter. For θ = −26◦, on the
other hand, it decided early to break Rule 14 and turn port.
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Figure 18. Time-lapse which shows the falsifying behaviour
identified by the automatic testing method. Ownship is shown
with a blue trace, and the obstacle with an orange trace. The
online STL robustness is plotted against time in the right
column, which shows that both the safety distance requirement
and the COLREG requirement are violated at the end of the
simulation.

Both of these decisions resulted in large safety margins.
However, in the very narrow region in between, the CA
system is indecisive and switches from the first strategy to
the second at the critical moment, which results in a collision.

For brevity, the results when testing against the COLREG
and mission requirements are not presented in detail, but the
code and data needed to generate these results are available in
an open-source online repository40. The key results are that
testing against the mission requirement led to a verification
in 267 simulations with a minumum observed robustness
of 0.29. Not surprisingly, testing against the COLREG
requirement resulted in a falsification after 5 simulations.
This is not necessarily a problem, as there exists situations
where it is necessary to break the explicit COLREG rules in
order to navigate safely. It may nevertheless be instructive
to calculate a robustness surface to get an overview of
which situations the CA system decides not to be COLREG
compliant and to map possible decision boundaries.

Statistical Validation
Next, we apply the proposed validation method to the
results from the case study. Since we are only interested
in validating runs which resulted in a verification, the
safety distance requirement from Case 1 and the mission
requirement from Case 2 are chosen.

The reference robustness function for the safety distance
requirement in Case 1, shown in Figure 10 contains 321
observations, hence we have a sample of 321 normalized
errors. The distribution and normal probability plot for the
normalized errors are given in Figure 19. The mean on
the normalized errors is −0.036, which shows that the
distribution is close to centered about zero. The standard
deviation is 0.59, which is less than the theoretical value
of 1. This indicates that the GP is conservative in its
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Figure 19. Statistical validation of the safety verification in
Case 1. The left plot shows the histogram of the observed
normalized errors together with the fitted and theoretical normal
distributions. To the right, a normal probability plot is shown for
the fitted distribution.

confidence measure. The normal probability plot shows an
S-shape, which is characteristic for distributions with light
tails. This means that many of the observations are centered
around zero, but there are more extreme observations than
what would be expected from a normal distribution. This is
backed by the histogram of the normalized errors. Further
investigations showed that these extreme observations are
around the discontinuity at θ = 75◦, which is expected as the
robustness function clearly disagrees with the smoothness
property of the covariance function.

The reference robustness function for the mission
verification in Case 2 contains 2501 observations, giving
2501 samples of the normalized error. The distribution
and normal probability plot for the normalized errors are
given in Figure 20. The mean on the normalized errors is
−0.032, which again shows that the distribution is close to
centered about zero. The standard deviation is 0.71, again
less than the theoretical value of 1. The characteristics of the
observed distribution are close to those of the radial case,
where again the extreme values reside around discontinuities
in the robustness surface. The results from this validation
indicate the GP model for the most part fits well with the
observations. The extreme values indicate discontinuities
which may require further investigation by the verifier.

Discussion
The results from the case study indicate that the proposed
methodology has promise as a tool in the verification process
for autonomous ships. Some aspects regarding its use in
practice and the interpretation of the results are discussed
next.

Measurement uncertainty in the Gaussian
Process
As shown in (13), the uncertainty when making observations
can be modelled as independent Gaussian random variables.
In our case, the observations are deterministic simulations
which have no uncertainty associated with them. It has,

Figure 20. Statistical validation of the mission verification in
Case 2. The left plot shows the histogram of the observed
normalized errors together with the fitted and theoretical normal
distributions. To the right, a normal probability plot is shown for
the fitted distribution.

however, shown to be useful to add a small observation
uncertainty to relax the model fit. As shown in (19),
the inference step involves the inversion of the matrix[
K(X,X) + σ2

ε I
]
. If the distance between two observations

is small, compared to the length scale of the covariance
function, K(X,X) will have two rows which are very
similar, and it will therefore be close to singular. Adding
some measurement noise adds a positive number to the
diagonal and therefore increases the condition number of
the matrix to be inverted. This also makes intuitive sense, as
the measurement noise implies that the GP mean does not
need to exactly match each observation. The low condition
number of

[
K(X,X) + σ2

ε I
]

manifests itself as oscillations
in the GP mean surrounding sharp changes in the robustness.
Some tendencies for this can be seen at the discontinuity in
Figure 10 and at the falsifying downward spike in Figure
15. This has been greatly mitigated by adding an artificial
measurement uncertainty.

There also exist other possible approaches to make it
easier to fit a GP to the robustness surface, which instead
of relaxing the GP fit by adding artificial uncertainty in the
measurement, try to regularize the robustness surface. One
approach is to use a smooth robustness operator46 to obtain
a smoother surface. Another approach is to use interface
aware STL47, which distinguishes between input and output
signals, and only calculates robustness on the output signals.
This can remove some discontinuous jumps in the robustness
surface. Both of these directions stand out as interesting
candidates for future work.

Choice of hyper parameters
The choice of hyper parameters is an important part of using
the proposed testing method. Since there are several of them,
this gives large flexibility to tweak the verification results to
the needs of the user. Therefore, it is important to have good
a process for objectively selecting them. We share some
experiences and insight for this next.
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The hyper parameters are listed in Table 4. nconf can be
freely chosen up front by the user, depending on the desired
confidence level. This can for instance be based on a risk
analysis which determines the consequence of breaking a
certain requirement for this test case. κ determines the trade-
off between exploration and exploitation when selecting the
next simulation to run. This does not have a large effect
on the final prediction of the robustness surface, but it
may affect how many simulations are needed to obtain it.
Generally, small values are favourable for fast falsification,
as the search is guided toward areas with low robustness,
whereas large values are favourable for fast verification, as
the search is guided towards unexplored areas with high
uncertainty. We found that κ = 2 offered a good trade-off in
all runs. This corresponds to selecting the point which has
the lowest 95% confidence interval. As discussed above, the
measurement noise, σε, should be close to zero, but a small
positive number is preferable to stabilize the inference. We
found that σε = 0.02 gave a stable inference without having
a noteworthy effect on the uncertainty level.

Finally comes the choice of kernel function and its
parameters. We used the ARD Matèrn 5/2 Kernel48, which
is a generalization of the simple Sqauared Exponential
introduced in (12), with separate length scales for each
case parameter. This kernel offered better handling of sharp
edges, where the Squared Exponential tended to introduce
oscillations in the robustness surface. The Matèrn kernel
has the same parameters as the Squared Exponential, the
variance σ, and the length scales l for each case parameter.

The σ hyper parameter is a scaling factor which
determines the scale of the assumed variations in the
robustness. We chose it to give a reasonable prior distribution
based on the fact that all robustness values are in the interval
[−1, 1]. The prior distribution is zero-mean with variance of
σ2 over the entire parameter space. By choosing σ = 0.5 we
get a prior which assumes that 95% of the robustness values
are in the interval [−1, 1]. This choice gave good results for
all runs.

The length scales l describes how smooth the robustness
function is. Our experience is that this is the hyper parameter
which has the greatest effect on the verification result
and which requires the most attention when creating the
GP model. This parameter determines how quickly the
uncertainty increases away from observations, and therefore
it essentially determines how many simulations are needed
to cover the parameter space with the desired uncertainty. If
the length scales are chosen too large, the verification can
miss sharp spikes, such as the one in Figure 15. A practical
approach to this is to first select the length scales based
on how many simulations are feasible to run. We found
that using a ratio between the width of the parameter range
and the length scale of around 20 offered a good starting
point, resulting in about 30 simulations for the 1-parameter
runs and 300 simulations for the 2-parameter runs. Then,
the results can be validated using the proposed method
described above. If the length scales are chosen too large,
this should be reflected in the distribution of the normalized
errors by a standard deviation greater than 1 and possibly

a non-zero mean. The length scales should then be decreased.

Usage in the approval process for autonomous
vessels
Finally, we discuss the context in which this method can be
used in the approval process for autonomous vessels. Both
the classification society DNV49 and Norwegian Maritime
Directorate50 have proposed approval processes which by
large contain the same main steps. Starting with establishing
the Concept of Operations (CONOPS) which gives input to
a Preliminary Hazard Analysis (PHA/HAZID) at an early
stage, and later a detailed risk analysis. The output of the risk
analysis will be a set of identified risks. To get an approval,
evidence needs to be produced that all of the identified
risks are adequately mitigated. This evidence can come
in many forms, such as documentation, expert judgement,
analytical results and physical tests. For autonomous vessels
it has, however, become evident that the complexity makes it
necessary to do extensive simulation-based testing to verify
some claims. The testing method proposed in this paper
can produce evidence for some the safety claims that are
difficult to prove otherwise. This can for instance be done as
shown in this case study, where some traffic situations which
are considered important or critical are selected and tested
against a predefined set of requirements.

Another possible use is to link it more directly to the
risk analysis. Systems Theoretic Process Analysis (STPA)
has been proposed as a risk analysis tool for autonomous
vessels51. An outcome of an STPA analysis is a set of
loss scenarios with corresponding safety constraints for
preventing such losses. The safety constraints could be
expressed as STL requirements and the loss scenarios could
be parametrized as is done in this paper, enabling automatic
verification by the proposed testing methodology. How to
build trust in autonomous vessels is a challenging topic and
an active area of research. How to integrate the proposed
methodology in an approval process and in a design process
is an important area of future research.

Conclusions

We have developed a methodology for automatic simulation-
based testing of control systems for autonomous vessels.
The work was motivated by the need for increased test
coverage and formality in the verification efforts for
autonomous vessels. It aimed to achieve this by formulating
requirements in the formal logic STL, which enabled
automatic evaluation of simulations against requirements
using the STL robustness metric. Furthermore, the work
used a GP model to estimate the robustness score and
uncertainty level for untested cases. The GP model was used
to automatically guide the case selection towards cases with
low robustness or high uncertainty. The main contribution
of our work was an automatic testing method which
incrementally runs new simulations until the entire parameter
space of the case is covered to the desired uncertainty level,
or until a case which falsifies the requirement is identified.
The methodology was demonstrated through a case study,
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where the test object was a CA system for a small high-
speed vessel. Requirements for safety distance, mission
compliance and COLREG compliance were developed. The
results showed promise, by both achieving verification in
feasible time and identifying falsifying behaviours which
would be difficult to detect manually or using brute-force
methods. An additional contribution of this work was a
formalization of COLREG using temporal logic, which
appears to be an interesting direction for future work.
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