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ABSTRACT

Digital twins have attracted significant attention across dif-
ferent domains for decades. In the maritime and the energy in-
dustries, digital twins have been mainly used for system condi-
tion monitoring, project visualization, crew training, real-time
decision making/support, and predictive maintenance based on
onsite measurement data from onboard sensors. Such a digital
twin normally presumes the vessel’s operational condition by as-
sistance from sensors and engineering judgement. However, a
vessel’s operational condition and loading state may shift quite
often due to the frequently changing operational scenarios, tasks,
and environmental conditions. In addition, the true vessel state
(e.g., inertia distribution) may deviate from the intended one ac-
cording to planning due to possible engineering errors. Even
though there are sensors helping to monitor vessel condition such
as draft monitoring systems and ballast systems, several impor-
tant vessel parameters are difficult to measure directly, e.g., mo-
ment of inertia, center of gravity, and nonlinear hydrodynamic
damping. This paper proposes a framework for monitoring ves-
sel condition and providing decision support based on quanti-
tative risk assessment, through a vessel state observer which is
able to self-tune the important but uncertain vessel parameters
by utilizing the available prior knowledge, vessel measurements,
and information about the associated sea states. The tuned ves-
sel parameters improve the information about the real-time ves-
sel condition and consequently assist to improve the prediction
accuracy of vessel seakeeping performance in the near future for
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the emerging wave conditions. Furthermore, the tuned results
and the response prediction can then be applied to a decision
support system, quantitatively evaluating potential risk and pro-
viding suggestions. The framework consists of 5 modules, i.e.,
wave data acquisition and processing, vessel data acquisition
and processing, vessel seakeeping model tuning, real-time ves-
sel motion and critical structural response prediction, and risk
awareness and avoidance. Details of each module are described
in the paper. The proposed framework can also assist in the de-
velopment of autonomous ships.

Nomenclature

B33 Additional heave damping coefficient
Paa Additional roll damping coefficient
Bwp  The prevailing wave direction for short-crested waves

Pw Wave direction w.r.t. vessel coordinate system

¢ The random variable vector representing uncertain
VCRPs

¢, The 7" point of the discrete distribution of @, r € [1,R]

(7] The random variable vector representing uncertain wave

data

o The s point of the discrete distribution of 0, s € [1, 5]
Iof The standard deviation of the filtered signal £;(r)

£j(t)  The filtered time series for sensor signal x; ()

w Wave frequency

W.,-,S Likelihood function of 6; being the truth with respect
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to the measuring quantity j, across all the considered ¢,
forr=1,2,...,R

Likelihood function for the measuring quantity j, across
all the considered ¢, for r =1,2,....R and O, for s =
,2,...,8

The m'" VCRP variable in the vector ¢

The standard deviation of S;. ; s(®)

The n'” variable in the vector 0

Significant wave height

The RAO based on VCRPs ¢, corresponding to the
measuring quantity index j

The total number of measuring vessel motion quantities
for one sea state

Index of measuring vessel motion quantity

The sea state number

The number of considered variables for tuning

The number of considered variables in 0

Spreading parameter for short-crested waves

Number of time steps for the sensor signals

Number of discrete frequencies for each 1D spectrum
Power parameter

The total number of discrete points over the joint distri-
bution of uncertain VCRPs

The total number of discrete points over the joint distri-
bution of uncertain wave data

Wave spectrum based on wave information 6

The possible response spectrum based on VCRPs @, and
wave information O, corresponding to the measuring
quantity index j

Wave spectral peak period

Likelihood of the considered ¢, and 8 being the truth
with respect to the measuring quantity j

The original signal for the j* sensor measurement for a
certain sea state

Center of gravity

Degree of freedom

Free surface correction to the transverse metacentric
height

Global positioning system

Motion reference unit

Onboard decision support system

Probability density function

Probability mass function

Response amplitude operator

Module of real-time vessel motion and critical structural
response prediction

Module of risk awareness and avoidance

Sensor screening ratio, i.e., ¢

Module of vessel seakeeping model tuning

Vessel data acquisition and processing

Vessel attitude related parameter
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VCRP Vessel condition related parameter

WAP  Wave data acquisition and processing
XCG Longitudinal coordinate of vessel COG
ZCG  Vertical coordinate of vessel COG

1 INTRODUCTION

With the increasing interest for exploring sustainable energy,
aquaculture, and many other sources towards harsher, deeper,
and colder ocean environments, safety and cost-efficiency of ma-
rine operations can play a crucial role for some emerging indus-
tries, such as offshore wind energy. Heavier, larger, and more
complex structures and systems are designed and installed oft-
shore. Marine operations such as transportation, installation, and
underwater inspection and maintenance usually involve cooper-
ation and interaction among many systems, subject to compli-
cated environmental loads. In addition, the offshore environ-
ments such as winds, waves, and currents are well known to be
associated with high uncertainties and random nature. Consid-
ering the complexities and uncertainties, it is therefore critical
to design marine operation onshore before the execution so that
operational limits with respect to environmental conditions are
clearly given to operators. In addition, conservative assumptions
are usually involved in order to reduce the dimension of the re-
ported operational limit diagrams, and to improve the readability.
Therefore, a reliable, safe, but also cost-efficient marine opera-
tion should put efforts on 1) reducing and even quantifying the
uncertainties of the influential structural and environmental pa-
rameters and 2) reducing the aforementioned conservatism by
increasing the reporting dimension of the operational limit dia-
grams and adaptively visualizing the limit without compromising
the readability.

Floating structures are heavily involved in various marine
operations. The floater dynamics when exposed to environmental
loads may dominate the operational limit, where wave-induced
floater motions in wave frequency region are the most difficult
to control. Therefore, only waves and the wave-induced motions
within the wave frequency domain for vessels are considered in
the present research. Knowledge about the waves is one of the
three most important parts for a reliable vessel motion predic-
tion. The other two are the knowledge about the vessel condition
and the theoretical modelling about vessel hydrodynamics in re-
sponse to the waves. In practice, a floater may be considered as
a rigid body and its dynamics may be well represented by lin-
earized transfer functions [1] for moderate seas, primarily based
on the linear potential theory. The linear transfer functions typi-
cally describe the relation between wave elevation and rigid body
motions in 6 degrees of freedom (DOFs), which are also known
as the response amplitude operators (RAOs), and are widely ap-
plied in the design of marine operations [1].

Uncertainty reduction of information about waves, vessel
conditions, and the vessel dynamics are therefore of great aca-
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demic and engineering interest for safe and cost-efficient ma-
rine operations, as well as for developing reliable and robust
autonomous ships. So far, most researches have been focused
on reducing the uncertainties of wave predictions [2—4], and hy-
drodynamic system modelling [S]. Through the authors’ many
years of industrial and engineering working experience, almost
every project involves discussions arguing that the applied RAOs
are conservative due to some assumptions. And sometimes such
arguments about conservatism can be skeptical. On the other
hand, the introduced conservatism will reduce the operational
limit based on the current engineering practices. There are so
many possibilities making the applied vessel RAOs wrongly de-
termined and used, e.g., due to mutual misunderstanding, misin-
terpretation of engineering results from different disciplines, en-
gineering errors, some unplanned arrangements, and the fact that
the operation may just be different from the planned simply due
to some emergent or urgent issues. Reducing the uncertainties
of onsite vessel conditions has been a challenge even though the
significance has been well recognized [6]. Tuning or updating
vessel condition related parameters (VCRPs) based on onboard
vessel data and wave data is challenging because this is a multi-
modal, multi-dimensional, and nonlinear problem [7].

Han et al. [7] recently proposed a tuning algorithm which
can tune the expectation and the variance of VCRPs based on
available onboard data. This paper further develops the con-
ceptual tuning algorithm, including the wave data uncertainties.
Then such a tuning system, functioning as a vessel state observer,
can monitor the vessel conditions especially for the important
vessel parameters that are difficult to measure directly, such as
moment of inertia, center of gravity, and nonlinear hydrodynamic
damping. In addition, an embedded risk-based onboard decision
support system (ODSS) can be implemented, providing warn-
ings of potential risks and suggesting actions for risk avoidance,
by performing real-time simulations based on the monitored ves-
sel conditions and forecasted sea states. Such ODSS can be fur-
ther applied to operation optimisation by giving suggestions on
operational actions to adjust some critical parameters (e.g., ves-
sel speed u, vessel heading By, and the vessel’s loading condi-
tion). Suggestions may be achieved by quickly exploring the
influences on the critical structural responses from possible sys-
tem parameters, identifying the sensitive parameters, and then
searching for the optimal solution in balance with risk reduction
and additional cost. All the involved calculations from tuning of
uncertain parameters, vessel motion prediction, to quantitative
risk assessment and operation optimization, must be carried out
in real time. By “real time” we here mean that the assessment
must be completed and the consequent decision support infor-
mation must be provided within a short enough time frame so
that the users can take the suggested relevant actions. Thus, an
adaptive vessel state observer can help to improve the safety and
cost efficiency of marine operations through a risk-based ODSS.

The paper is organized as follows. Section 2 provides an
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overview of the proposed framework involving a vessel state ob-
server. Following the overview, Sections 3 to 7 explain each of
the five modules of the framework, respectively. Finally, Sec-
tion 8 summarizes the current work and suggests some important
future work.

2 FRAMEWORK OVERVIEW

The framework overview is illustrated in Figure 1, which in-
dicates the relations between modules and shows how the model
tuning can assist on vessel condition monitoring and decision
support through the vessel state observer. The framework mainly
consists of 5 interactive modules. The main inputs and outputs
of the 5 modules are summarized in Table 1.

Two data streaming modules are required, namely wave in-
formation acquisition and processing (WAP), and vessel data ac-
quisition and processing (VAP). These two modules mainly ac-
quire and process the necessary input data for the next three mod-
ules. The state observer is aimed at making full use of avail-
able environmental data and onboard vessel data. Therefore, the
quality and amount of available data can be critical. However,
data are subject to measurement errors, while the true values are
also normally unknown. When combining data from different
sources, data synchronization and fusion are typically challeng-
ing [8]. In reality, data streaming has to consider signal filter-
ing, fault detection, sensor fusion, synchronization, and prefer-
ably assess the data quality along the data streaming pipeline.
DNV GL [9] proposed a framework on data quality assessment
in order to ensure sufficient data quality. In practice, different
data sources are subject to different uncertainties. Therefore,
uncertainty quantification is of huge interest and can assist the
data streaming process including data acquisition and process-
ing. Based on the valuable data from WAP and VAP modules,
VCRPs can then be tuned in the next module of vessel seakeep-
ing model tuning. The tuning results will in return benefit the
vessel condition monitoring in VAP. Furthermore, prediction of
vessel motions and critical structural responses can be performed
based on wave forecast data in WAP and vessel data in VAP.
Lastly, quantitative risk assessment can be conducted in the mod-
ule of risk awareness and avoidance, aiming at quantifying the
probability of occurrence for the pre-identified events and pro-
viding suggestions through ODSS by searching for optimal solu-
tions. The critical response limit is considered as being the input
to the module RESP which predicts the vessel motion and criti-
cal response, while the permissible probability of occurrence for
the event is considered as being the required input to the mod-
ule RISK which quantifies the associated exceedance probability
of the critical response and takes care of the risk awareness and
avoidance. Details are provided in the following sections.
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FIGURE 1. OVERVIEW OF THE PROPOSED ADAPTIVE VESSEL STATE OBSERVER FOR VESSEL CONDITION MONITORING AND

DECISION SUPPORT.

3 WAVE DATA ACQUISITION AND PROCESSING

This section describes the WAP module. Wave data can be
categorized into historical and forecast data, as shown in Fig-
ures 1 and 2. The historical wave data are normally subject to less
uncertainty than forecast, and therefore are preferred to apply to
seakeeping model parameter tuning process. Whereas, real-time
vessel motion and critical structural response predictions have to
consider the forecasts corresponding to the predicting timeline.

As illustrated in Figure 2, historical wave data can be ob-
tained from instrumental measurements, wave model analysis
(i.e., hindcast), or their combination. Wave data measured by
instruments such as waverider buoys, shipborne wave recorders,
satellite altimeters, and wave radars may be considered to have
less uncertainties than from visual observations or wave model
analyses. Onboard wave measuring instruments are preferred
for vessel condition monitoring and decision support, in order to
avoid potential remote communicating challenges. Researches
on ODSSs in the last two decades mostly focused on develop-
ing and applying onboard wave measuring systems to ensure
timely and sufficiently accurate wave forecast for real-time ves-
sel and structural response predictions. For examples, waves
can be measured on board by 1) coherent Doppler marine radar
systems [10, 11]; 2) non-coherent nautical radar systems, e.g.,

1 Radars
o ;\ WAP

T T —‘I
1 Cameras —— Forecast Historical
\ I e R (. —
/ N Satellite
________ —_ \
i WAM analysis |
1 )
! Hindcast
h (WAM)

FIGURE 2. WAVE DATA SOURCES.

WaMoS II system [3, 12]; 3) special cameras based on light de-
tection and ranging (LIDAR) technology [13,14]; 4) using vessel
responses and applying “ship as a wave buoy” analogy [4, 15];
and 5) deploying wave buoys near the operating location and
connecting to the floater directly. The WAP module should also
be able to acquire historical wave data from other instruments or
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TABLE 1. INPUTS AND OUTPUTS OF THE FRAMEWORK MODULES.

Module Input Output

WAP 2 1) Measured historical waves (time records); Cleaned and quality-controlled:
2) Historical waves by wave model analysis 1) 6 and P(0) for historical waves;
(S¢e (o, Bw) or 0); 2) 0 and P(0) for forecasted waves;
3) Measured forecasted waves (time records); 3) SCC (o, Pw) for forecasted waves.
4) Wave forecast by wave model analysis
(S¢g(@, Bw) or 0);
5) The measuring or analysis uncertainties.

VAP 1) Time records of measurements from onboard Cleaned and quality-controlled:
systems (GPS, INS, etc.); 1) VARPs ¥;
2) Information on VCRPs (technical reports, 2) VCRPs ¢ and P(¢).
previously tuned VCRPs).

TUN © 1) @ and P(0) for historical waves from WAP; 1) Tuned VCRPs ¢ and P(¢9)
2) VARPs ¥ from VAP; back to VAP module;
3) VCRPs ¢ and P(¢) from VAP as prior; 2) Report the tuned PMF (@),
4) RAO database for x;(r), j=1,2,...,J and or E(¢) and CoV(¢).
¢.,.r=12,.. R

RESP ¢ 1) Wave forecast S¢¢ (@, Bw) (or 8, P(8)) from WAP; 1) Predicted response spectrum;
2) The critical vessel / structural response and its 2) Predicted extreme response.
limiting criteria;
3) VARPs 7y and VCRPs ¢ and P(¢) from VAP;
4) RAOs between wave elevations and the critical
response based on ¥ and ¢.

RISK © 1) Wave forecast S¢¢ (@, Bw) (or 6, P(8)) from WAP; 1) Probability of event occurrence;

2) Identified failure event and its criteria;
3) VARPs y and VCRPs ¢ and P(¢) from VAP;

2) Warning if necessary;
3) Optimal suggestion on risk avoidance.

4) RAOs between wave elevations and the critical

response based on ¥ and ¢.

3 WAP: module of wave data acquisition and processing
5 VAP: module of vessel data acquisition and processing
9 TUN: module of vessel seakeeping model tuning

9 RESP: module of real-time vessel motion and critical structural response prediction

©) RISK: module of risk awareness and avoidance

hindcast when remote communication allows so.

The uncertainties of measured wave data depend on the type
and the installation of instruments, the sensor quality, the sam-
pling, temporal and spatial variability, etc. [16, 17]. The uncer-
tainties from some types of instruments are more stable across
mild to harsh seas, while some other types may outperform with
much less measuring errors for a specific range of wave pow-
ers [18]. The World Meteorological Organization (WMQO) pub-
lished general requirements with respect to the instrumental per-
formance [19], as shown in Table 2.

Nowadays, the third-generation wave models (e.g., WAM
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[20] and WaveWatch III [21]) are widely applied for wave fore-
cast and hindcast. WAM estimate wind generated waves and
their propagation based on information about winds, geograph-
ics, etc. Wave reanalyses [22] have been continuously carried out
to improve the historical wave data quality by using the continu-
ously developed methodologies, increased computational capac-
ity and resolutions. The uncertainties of the hindcast wave data
may be represented by the ensemble spreading [23]. However,
such ensemble spreading may underestimate the analysis uncer-
tainties because it only considers the random errors but not the
systematic ones. Wave data accuracy can be further improved
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TABLE 2. TYPICAL WAVE MEASUREMENT UNCERTAINTIES
(20) [19]

Variable H T, Bw

WMO required 0.5m for H, <5m; 0.5s 10°

10% for Hy > 5m

Typical moored buoy 0.2m or 10% 1.0s 10°

H;: significant wave height
T,: wave spectral peak period
Bw: wave direction

by combining multiple measuring sources and analyzed wave re-
sults.

Wave forecast data are usually from the wave model analy-
sis (e.g., WAM) considering nonlinear interactions between wave
components. The uncertainties of the forecast data depend on the
location, season, resolution, the forecasting time, etc. It is there-
fore important to take such uncertainties into account in marine
operations, e.g., by reducing the operational window based on
the suggested alpha factor [1]. Typically, prediction of 7}, is sub-
ject to much higher uncertainty than prediction of Hy [24]. Ma-
rine radars and LIDAR systems measure the wave field before
waves approaching to vessel. Therefore, they can also be used as
wave forecast information in a very short time ahead (e.g., up to
few minutes) for real-time vessel and structural response predic-
tion [25].

A sea state may be represented by its characteristics. For
example, wave characteristics @ may include Hs, T,, Bw, and
spreading parameter ns for each independent wave source such
as wind sea and swells in one sea state. For example, a sea state
with a short-crested wind sea and a short-crested swell, @ may
be written as:

0 = [H; Ty, Bw.i nsi Hsp Ipp Bw 2 ”872]T

1

=6 6 ... 6 ov]' W
where 6, represents one wave characteristic, n € {1,2,...,N},
and N is the number of wave characteristics in 8. Those param-
eters are also subject to uncertainties, described by discrete joint
probability distribution P(6).

The output of WAP module should contain 1) the wave char-
acteristics 0 and their uncertainties P(0) for historical sea states,
which will be used for the module of vessel seakeeping model
tuning; and 2) the forecasted wave characteristics @ and their
uncertainties P(0), which will be used for the modules of real-
time critical response prediction (RESP) and risk awareness and
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avoidance (RISK). WAP can also provides the wave forecast in
form of wave spectrum S¢¢ (@, Bw) for RESP module.

4 VESSEL DATA ACQUISITION AND PROCESSING

A VAP module with high quality, monitoring the vessel at-
titudes and conditions with uncertainty quantification is also vi-
tal for the vessel state observer and the whole framework. The
vessel attitude related parameters (VARPs) include vessel speed,
heading, draft, trim, heel, and the rigid body motions, while the
vessel condition related parameters (VCRPs) include damping
terms and inertia distribution related terms such as mass, radii of
gyration (i.e., r44, ss, I'es), center of gravity (COG), and trans-
verse metacentric height (GMT). The VARPs mostly can be mea-
sured directly on board or easily deduced from measurements,
e.g., by Speed and Distance Log Device, Global Positioning Sys-
tem (GPS), Motion Reference Unit (MRU), etc. However, the
VCRPs may not be easily measured or deduced from measure-
ments. Even though marine operations should be designed cau-
tiously before execution, vessel conditions should be presumed
in the design phase. However, the real vessel condition in op-
eration may deviate significantly from the designed one due to
simplifications, conservatism, and even mistakes made in the de-
sign and execution phases. Therefore, it is important to be able
to monitor and update the VCRPs and quantify their uncertain-
ties for the risk-based onboard decision support [6]. The pro-
posed framework focuses on the vessel 6-DOF rigid body mo-
tions and resulting critical response of onboard structures in wave
frequency region.

The VARPs are normally given in the form of time records,
containing noises and errors. Signal processing including fault
detection, synchronization, band-pass filtering should be applied
to ensure reliable vessel motion data only in the wave frequency
ranges. The vessel condition monitoring system is aimed to im-
prove the accuracy of the relevant vessel parameters and quantify
the associated uncertainties, to ensure the quality of the real-time
vessel motion and critical structural response prediction (Sec-
tion 6) and the quantitative risk assessment (Section 7). There-
fore, the module of vessel seakeeping model tuning is the core of
such a monitoring system.

5 VESSEL SEAKEEPING MODEL TUNING

Benefiting from WAP and VAP modules, quality-controlled
wave and vessel data are available for tuning of VCRPs. The
proposed model tuning algorithm is based on the assumption
that the vessel motions can be well estimated by the linearized
transfer functions between wave elevations and vessel motions,
at least for the moderate seas. First of all, it is essential for a
successful tuning to take all the important but uncertain VCRPs
into account [7,26]. Han et al. [26] and Radhakrishnan et al. [27]
quantitatively investigated the sensitivities of VCRPs on the ves-
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sel seakeeping responses in operation, while Gutsch et al. [28]
investigated such effects with respect to ship design.
VCRPs are formed as a random vector (denoted by @), e.g.,

¢ =[mass ry rss XCG ZCG P33 Pu
=0 ¢ .. O ... ¢M]T

GMT...]"
(2)

where XCG and ZCG represent the COG coordinate along lon-
gitudinal and vertical directions. f33 and P44 are the linearized
“additional” dampings for heave and roll DOFs, in addition to
the damping terms calculated based on the linear potential the-
ory. Normally, stochastic linearization is applied to linearize
such nonlinear terms [29]. ¢, is a random variable, represent-
ing a VCRP, m € {1,2,...,M}, where M is the total number of
uncertain VCRPs considered in the tuning process. In the frame-
work, the vessel condition monitoring system can provide and
obtain the probabilistic information about the uncertain VCRPs
in discrete forms. In addition to VCRPs, any VARPs that can
significantly influence the vessel motion RAOs within their con-
sidered uncertainty ranges should be included in the vector ¢,
e.g., vessel draft and trim. Due to the well developed sensor
and filtering technologies, normally VARPs subject to much less
uncertainties than VCRPs. In the proposed framework, all the
processed data and signals for VARPs are considered determin-
istically.

The vessel condition monitoring system requires manually
initializing the uncertain VCRPs by giving the expected value
and variance for each ¢,,. The initiated values and variances can
be based on the available engineering knowledge from design
of the operation, and the variance may be based on engineering
confidence and expert opinion. The variance may preferably be
initiated larger than the actual value, to ensure the sufficient un-
certainty ranges and the corresponding RAO database, according
to [7]. Then the joint probability distribution can be established,
e.g., by assuming a multivariate Gaussian distribution and inde-
pendence between VCRPs. Any other joint probability distribu-
tion model can replace the multivariate Gaussian one if this is
found to be relevant e.g., based on engineering judgement. For
a convergent tuning, the resulting joint probability distribution is
normally less affected by the applied initial joint distribution.

Figure 3 illustrates the process of tuning VCRPs based on
wave and vessel data which are also subject to uncertainties. The
algorithm, based on the previous work by Han et al. [7], is further
developed here to account for the uncertainties of the wave data.

The proposed tuning algorithm discretizes the random vari-
ables, and consequently, discrete joint probability distribution
P(@) is actually achieved through the process. At each discrete
point @, the corresponding probability mass function is denoted
by PMF(¢,) for r € {1,2,...,R}, where R is the total number
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of considered discrete combinations of random VCRPs. Cor-
respondingly, a RAO database H,.j(®.Bw) (r=1,2,...,R, j=
1,2,...,J) at each @, for each quantity measured by the iner-
tial navigation system (INS) is established. @ is the response
frequency in rad/s. The INS-measured quantity can be e.g., dis-
placement, velocity and acceleration of heave, roll, and pitch.

Wave characteristics @ should be acquired from WAP
module, according to the vessel heading and location in-
formation from the VAP module.  The probability dis-
tribution of @ are discretized into S points O, for s =
1,2,...,8.  The probability mass function of 6, is de-
noted by PMF(0,). Accordingly, for a wave vector 8, =
[Hei Tpn Bwa nsi ...Hs; Tp; Pw; ngi ...]0, the
wave spectrum can be estimated based on presumed spectral
type (e.g., Pierson-Moskowitz spectrum) and spreading function

D(Bw) [30], considering a multi-peak spectrum:

Sees(@. Bw) Zscq Bw) (3a)
(1 4ng,/2 -
(ﬁw) \/—r§(1/2n+ /q )/2) cos Stt(ﬁw _ﬁWP,i> (3b)
5 5
Sgcl@) = gH 0} 0 T30 G0

where I is the Gamma function, Bwy ; is the prevailing wave di-
rection for each independent wave source and |Bw — Bwp.i| < 5
ns,; is the spreading parameter, 2 < ng; < 4 for wind seas, and
ns; > 7 for swells [30]. @,; = 27r/Tp,,< is the sea state peak fre-
quency. The subscript 7 represents one of the independent wave
sources in the multi-peak spectrum.

Then the corresponding possible response spectrum S, j ()
and the response standard deviation O}, ; can be calculated with
respect to vessel condition @, for the motion measuring quantity

J:

Srjs(@) =Y |Hyj(0,Bw)*Sce (0, Bw)ABw  (4a)
Bw

Orjs = 1| X Sris(@n)-Aw, (4b)

where ABw is the wave direction interval, A @, is the frequency
interval which may be different for different discrete frequency
,, and whereN, is the number of discrete frequencies.

The vessel motion signals x;() are processed (e.g., for fault
detection and band-pass filtering) in the VAP module, before be-
ing used in the seakeeping model tuning module. The processed
signal for quantity j is denoted by £;(). Its standard deviation
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FIGURE 3. TUNING OF VCRPS FOR SEAKEEPING, BASED ON WAVE AND VESSEL DATA.
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6; can thus be calculated by:

N (o -2
8= Lo (&) —%)) 50)
(N —1)

Eii & (1)
== 5b
Xj N, (5b)
where M, is the total number of time steps of the signal, and x; is
the mean value of the filtered signal.

Then the closeness between &; and o ., represents the like-
lihood of the considered 8 and @, being the vectors holding the
actual state values with respect to the vessel motion quantity ;.
Such likelihood is formulated based on inverse distance weight-
ing [31]:

B 1
' |Gr’j’s—6jp

(6)

where p € R™ is called the power parameter. The value of p can
be selected based on e.g., 1) the confidence of the vessel mo-
tion measurements, 2) how well the RAOs can actually represent
the true relation to the wave elevations, 3) number of considered
uncertain VCRP, and 4) their sensitivity and uncertainty ranges.
However, application of Equation (6) may cause unrealistic like-
lihood estimation especially when o, ; ; — 6; approaches zero for
all r € [1,R]. Therefore, a screening process is required before
likelihood calculation. The less sensitive measuring quantity j
for the considered VCRPs @ at the possible sea state 8 should
be screened out. Sensor screening ratio (SSR) ¢ 5 is therefore
introduced as a criterion of the screening process, representing
the importance of x;(t):

Op ;i
O‘js :% (721)
J
* ZR: G.',S_ER. i, 2
O-R,j.S:\/ =il - Ja) (7b)
R
—10r7j
OR s =—Z'*‘R “ (7¢)

where G;’ is is the standard deviation of 0, , ,overr =1,2,...,R.
The screening criterion can for example be set to ap = 0.05 [7].
If s < o, the likelihood w, j s = }Q applies forallr=1,2,...,R,
for the sea state 0, indicating the equal likelihood over the whole
¢ uncertainty space.

For valid measurements, the likelihood w,. ; ; is firstly calcu-

lated for all r = 1,2,...,R. Then a likelihood function w j.s can
be established. Normally the resolution of the discrete VCRPs ¢

V002T02A018-9

into R points is numerically insufficient for a smooth represen-
tation of the joint distribution P(¢). Therefore, interpolation is

required when building W ; ; for the Bayesian updating. Conse-
quently, the number of discrete points for modelling the discrete
joint probability distribution increases from R to V. Each discrete
point in the probability distribution model is denoted by ¢,,. Nor-

malization of W  is required such that the sum of the likelihood
function remains 1.0, ensuring a fair likelihood calculation (i.e.,
Equation (8)) over the uncertain wave space. The probabilistic
distribution of wave characteristics @ should be taken into ac-
count before the Bayesian updating, i.e.,

=

J

W, PMF(8,) @®)

e

1

where W is the likelihood function to be applied for the
Bayesian updating.

Finally, the joint probability distribution of VCRPs can be
updated by Bayesian updating at each discrete point @ :

PMFii1(9,) = N O(PMFi($,) O W) ©)

where the © operator means the element-wise multiplication of
the two matrices of the same dimension, i.e., a Hadamard prod-
uct [32]. To ensure that the sum of the joint probability mass
function remains 1.0, normalization .4 @( - ) is required. k € Z™
represents the tuning step index, which increases when j or sea
state changes.

The tuned VCRPs may be reported in terms of the discrete
joint probability distribution (i.e., PMF(¢)), or the expectation
and the covariance matrix (i.e., E(¢) and CoV(¢)). Correla-
tions between VCRPs can be captured automatically through the
tuning process. Due to the nonlinearity between ¢ and vessel
responses, the tuned distribution will no longer be multivariate
Gaussian.

6 REAL-TIME VESSEL MOTION AND CRITICAL

STRUCTURAL RESPONSE PREDICTION

With such a vessel seakeeping model tuning module, VCRPs
can be actively monitored with considerably improved confi-
dence, see examples in [7]. In addition, the change of vessel
conditions could also be detected automatically. As a result, ac-
curacy of vessel motion predictions can be improved and the pre-
diction uncertainties inherited from the uncertainties in WAP and
VAP modules can be assessed.

For the real-time vessel motion prediction, very high fidelity
prediction models e.g., by applying computational fluid dynam-
ics (CFD) [33] become unrealistic. Aligning with the engineer-
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ing practices [1], it is usually sufficient to predict the wave-
induced vessel motions and the critical structural responses based
on linear transfer functions deduced from the available VARPs
and VCRPs. Wave forecast should be used for the prediction.
For example, the vertical velocity 7 (xp,y,,z,) on the crane tip at
port side midship with coordinates (x,,y,,z,) could be interest-
ing and critical to monitor for lifting operations. Considering 2D
wave spectrum, such response can be quickly calculated in the
frequency domain by:

San (@[xp,yp,zp) =
Y Scc(o, Bw)|Hy (@, Bw|(xp.yp,25) E(9), E(Y))[*ABw

Bw
(10)

where E(@) and E(Y) are the expected values of VCRP and
VARP vectors. Hy (®. Bw|(xp,Yp.2p), E(@),E(Y)) represents the
corresponding RAO for the critical vessel motion 7(x,,y,,2)
based on E(¢) and E(y). Based on normal wave forecasts at
Met offices and Equation (10), critical response 7 (xp,yp,zp) can
be predicted sufficiently long time ahead, e.g., in terms of hours
or days. Thus, the prediction uncertainty depends on the qual-
ity, time ahead of the wave forecast, and how well the linearized
transfer function Hy (@, Bw|(xp,yp,2p).E(@),E(Y)) can repre-
sent the reality. In case of forecasting waves by onboard radar
systems, the encountered waves can be forecasted only in a very
short time ahead, e.g., in magnitude of seconds or minutes. Less
forecast uncertainty and richer wave information including rel-
ative phases of wave components can be obtained from such a
forecast method. However, due to the nonlinear nature of wave
propagation [34], it is challenging to estimate the arriving waves
at the vessel sufficiently ahead of time, based on the observed
wave field several hundred to thousand meters away from the
vessel. Thus, the consequent response predictions in terms of
time records based on linear wave propagation are normally less
reliable. Instead, extreme values of responses are of larger inter-
est and higher reliability.

The nonlinearity of vessel roll motion is well-known due to
the dominated nonlinear damping terms [35]. Therefore, it is
often challenging to get acceptable quality of roll motion pre-
diction when linear roll RAO is applied and the additional lin-
earized damping term cannot be sufficiently tuned based on the
full-scale measurements [10-12,25]. Better correlation between
the extreme responses from the prediction and the measurement
of roll motion has been normally observed. It is believed that
roll motion prediction can be significantly improved in term of
the extreme value by applying the re-calculated RAOs based on
the tuned VCRPs described in Section 5.

V002T02A018-10

7 RISK AWARENESS AND AVOIDANCE

The purposes of vessel condition monitoring, seakeeping
model tuning, and real-time critical response prediction are to
reduce uncertainties in the entire operation system, reduce con-
servatism, improve the accuracy of risk assessment, and po-
tentially reduce the costs and operational risks. Quantification
of the risk requires to quantify the probability of occurrence
P(Z") and the consequence C(Z") of pre-identified potential
events 2. Only quantification of P(Z") is discussed. Benefit-
ing from the quantified VCRPs uncertainties and the discretiza-
tion of variables and probability distributions, the probability of
occurrence for event 2" can be calculated. For example, lift-
ing operations may be restricted by the vertical velocity at crane
tip (.., Mmax(Xp,¥p,2p) < Tlo m/s) as a limiting criteria for
heave compensation systems. For easier expression, the quan-
tity 1 (xp,yp,2p) herein is written as 7, and its maximum value
is denoted by M4y 1 is a wide-banded Gaussian process, i.e.,
n ~ A4(0, sz]). The corresponding probability of failure is ex-
pressed as P(fmax > Mo)-

The example considers the uncertain VCRPs @ by its dis-
crete points @, and the corresponding probability mass function
PMF(¢,) for r =1,2,...,R. The uncertain wave data 0 is sim-
ilarly represented by the discrete points 8 and probability mass
function PMF(0y), fors = 1,2,...,S. At a specific combination
of ¢, and @, the corresponding response spectrum Sy, ,.((®) can
be calculated as:

Sirs(©) =S5 (0]9,,05) =Y [Hy (0, Bw)|*Se (@, Bw)APw
Bw
(11)

where Hj . (@,Bw) is the linear transfer function calculated
based on @, S¢¢ (@, Bw) is the wave spectrum based on ;.
The zeroth, second and fourth order spectral moments can then
be calculated by:

mo,rs = Y Siyrs(@)A® (12a)
[0]
Myps =Y 0° Sy 5(0)A® (12b)
[0]
(12¢)

Myys =Y 0*Sy . s(®)A®
[0)

Then the probability distribution of the response peaks
(maxima), i.e., Tmqx, can be considered as a Rice distribution,
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ie.,
2
Ers Vv
PDF; V)= : exp(—
nmax,r.s( ) \/WZ,;,S zgrz,smlr.s ) (13a)
2
Vv
/1 — €2 exp(— (G,
my s p( 2m2.r,s) ( A)
2
m
Ery= /1 — —2— (13b)
mo r,sM4. r.s
o 1 @
CD(Gr,s) = / Eexp(_T)dG/;s (13C)
1- 8r2,s
Grs=———"7= (13d)
' my rs

where PDF means the probability density function. Finally, the
probability distributions of ¢ and 0 are taken into account, and
the corresponding probability distribution of 7, is:

S
PDFT"M!LX v Z Danm rv PMF(¢ ) PMF(O-S) (14)

”M“’

and consequently the probability of occurrence for the event
Tlmax > Mo can be calculated by:

7
P(ﬁmax Z TlO) = l_/ OPDFﬁmax(v)dV (15)

If P(Timax > To) exceeds the allowable value, risk assess-
ment module will send a warning message to the operators
through ODSS, indicating the predicted potential risk. Conse-
quently, the possible measures will be automatically screened
in the risk assessment module. Typically, VARPs such as ves-
sel speed, heading, and draft can be screened first since they
can be controlled and adjusted quickly on board. For exam-
ple, risk avoidance module can evaluate P(Tjpqy > 1o|By) for
By € [0°,360°), where By is the vessel heading. Then the op-
timal heading B can be determined as the one leading to the
minimum probability of occurrence:

B\i = argﬁminp(f]max > 770|[3v)
{4

== {Pv[Vy € [0°,360°) : P(Thnax > T0ly) > P(Nmax > Mo|Bv)}

(16)

Such optimal value can then be suggested through ODSS.
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8 CONCLUSION AND FUTURE WORK

Knowledge about vessel conditions is important for the ves-
sel motions in the wave frequency region. However, some
VCRPs are difficult to measure directly and therefore real-time
onboard monitoring of such parameters can be challenging. This
paper describes a vessel state observer, which can actively mon-
itor and tune those VCRPs and quantify the uncertainties, fun-
damentally based on the previously proposed seakeeping model
tuning algorithm [7]. This algorithm applies the method of dis-
crete Bayesian inference and represents the likelihood function
based on inverse distance weighting. The tuning algorithm is
now further developed in this paper to include uncertainties from
wave data. Furthermore, the tuned VCRPs with quantified uncer-
tainties are considered as inputs to a proposed risk awareness and
avoidance module where the probability of occurrence for criti-
cal events can be quantified. Followed by the risk assessment,
suggestions can be given to the operator through the ODSS sys-
tem.

The vessel condition monitoring system and the onboard de-
cision support system can therefore benefit significantly from
the model tuning module and the whole vessel state observer.
However, this is at very early conceptual development stage. Fu-
ture work should be aimed to implement such a framework on-
board vessels for verification purposes. Towards such an ambi-
tion, several issues must be addressed with respect to the tun-
ing algorithm. Firstly, limitations of applying such an algorithm
should be identified through comprehensive model-scaled and
full-scaled tests. Due to the stochastic linearization of the non-
linear terms for the dynamic equations of vessel motions, some
VCRPs are linearized and therefore become sea state dependent.
For example, the linearized additional roll damping is highly sea
state dependent. For a sea state dependent parameter, the tuned
value is only valid for a particular sea state, and therefore be-
comes questionable to apply to future sea states. The illustrated
tuning algorithm has not considered tuning of sea state dependent
parameters together with the others. This has to be addressed be-
fore considering real applications, for example, as proposed by
Han et al. [36].

Discrete Bayesian inference can be challenging for real ap-
plications due to the “curse of dimensionality” [37] when the
number of uncertain parameters increases. Han et al. [38] there-
fore proposed a more efficient tuning algorithm by only consider-
ing the first two orders of the joint probability distribution prop-
erties. However, as a compromise, nonlinearity can not be fully
represented in the tuning results. In addition, issues on tuning
together with sea state dependent parameters has not been ad-
dressed in that algorithm.

Lastly, a risk-based ODSS requires real-time risk assess-
ment. However, the proposed algorithm in Section 7 might not
be that computationally efficient due to the discretizations. Al-
gorithm modifications should be expected as a result of future
research work.
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