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Abstract 11 

This paper describes the development of a fault detection and diagnosis method to automatically identify 12 

different fault conditions of a hydraulic blade pitch system in a spar-type floating wind turbine. For fault 13 

detection, a Kalman filter is employed to estimate the blade pitch angle and valve spool position of the 14 

blade pitch system. The fault diagnosis scheme is based on an artificial neural network method with 15 

supervised learning that is capable of diagnosing a predetermined fault type. The neural network 16 

algorithm produces a predictive model with training, validation and test procedures after the final 17 

performance evaluation. The validation and test procedures of the artificial neural network model are 18 

conducted with the training model to prove the model performance. The proposed method is 19 

demonstrated in case studies of a spar floating wind turbine with stochastic wind and wave conditions 20 

and with consideration of six different types of faults, such as biases and fixed outputs in pitch sensors 21 

and excessive friction, slit-lock, wrong voltage, and circuit shortage in actuators. The fault diagnosis 22 

results from the final performance evaluation show that the proposed methods work effectively with 23 

good performance. 24 
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TFDG    time of fault diagnosis  1 

VEF    excessive friction in the valve 2 

VSL    slit-lock in the valve 3 

VWV    wrong voltage applied in the valve 4 
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1. Introduction 7 

Interest in fault detection and diagnosis (FDD) has increased due to the focus on the need for high 8 

reliability and availability for offshore wind turbine maintenance and operation. Unexpected faults 9 

might influence system interruption in the system components, actuators, and sensors. Faults and failures 10 

change the power production efficiency, operational safety, and system behavior of wind turbines, which 11 

cause huge economic losses. Because maintenance costs account for 25-30 % of the life cycle cost for 12 

offshore wind farms [1], the reliability of an offshore wind turbine is important. 13 

In many possible faults of the wind turbine components, the blade pitch system contributes to the failure 14 

rate and downtime of a wind turbine according to references [2-4]. The relevant faults immediately 15 

change the aerodynamic load on the blade and power production. They also affect the response of the 16 

support structures and tower. Fault diagnosis of a blade pitch system at the early stage is critical for 17 

protecting the turbine from an unexpected operational condition [5]. This approach can provide 18 

equipment failure warning in time to prevent the occurrence, escalation of the accident and effectively 19 

improve the operation and maintenance qualities [6]. Additionally, it allows for fast accommodation 20 

against faults to avoid long-term damage and provide reliable technical guarantees for the development 21 

of the wind power industry. Therefore, there are particular interests of fault monitoring, diagnosis, and 22 

fault-tolerant control in the blade pitch system [7-15]. Cho et al. [7, 8] and Noshirvani et al. [9] show a 23 

model-based fault detection and isolation for the blade pitch system based on the diagnostic observers. 24 

Especially, a condition monitoring (CM) approach of pitch systems [10-12] using a supervisory control 25 

and data acquisition (SCADA) in wind turbines has been emphasized to monitor blade pitch 26 

performance.  27 

Generally, fault detection and diagnosis methods can determine the fault type, magnitude, location and 28 

time of detection. Fault detection techniques include two types of methods: model-based and signal-29 

based methods [6]. A model-based method uses a system’s input and output signals that are based on 30 

the mathematical or knowledge models. Based on input from the control system and measured output 31 

signals from the actual system, this method generates a residual formed as the differences in the 32 

measured system output and estimated values from the model used as a fault indicator. Qiu et al. [13] 33 

suggest a model-based approach to estimate gear fatigue life for drivetrain gearbox using SCADA data. 34 

Chen et al. [14] and Wei et al. [15] proposed a fault detection and isolation schemes using a diagnostic 35 

observer for the pitch system and drivetrain faults. A signal-based method is based on analyses of 36 

features from the measured output signals, such as sensor values. Suitable features from the 37 

measurements represent the operating conditions whether it is a normal or fault condition. Hamadache 38 

and Lee [16] propose a signal-based frequency domain approach investigating the main shaft-bearing 39 

fault detection based on absolute value principal-component analysis technique. Nejad et al. [17] show 40 

a signal-based prognostic methods for fault detection in gears and bearings in wind turbine drivetrains. 41 

In the diagnosis procedure with data acquisition and interpretation, the diagnosis system analyzes and 42 

recognizes the fault patterns. Classification methods [6] provide a convenient approach to solve the fault 43 

diagnosis problem to classify the data into different categories by a particular pattern such as the pattern 44 
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recognition, statistical classification, approximation method, density-based method, and artificial 1 

intelligence method. Among many different methods, machine learning in the area of the artificial 2 

intelligence is a statistical method that allows a computer system to automatically perform a task without 3 

any explicit instructions and build a mathematical model of training data to make predictions or 4 

decisions. In recent years, deep learning which is one of the machine learning algorithms has lately 5 

emerged in artificial intelligence to learn convoluted structures in large, real-world data sets collected 6 

by sensors continuously online in many applications: speech recognition, object classification, computer 7 

vision, natural language processing and robotics [18]. 8 

Machine learning algorithms can also be applied to learn how to diagnose faults by a set of measurement 9 

data for training on mechanical components of wind turbines. Diagnosis methods based on machine 10 

learning can detect changes in trends and include wavelet analysis, Bayesian network, support vector 11 

machine and neural networks [19]. Recently, support vector machine [20 - 22] and fuzzy clustering 12 

methods [23, 24] have been utilized to detect and isolate faults on sensor such as force sensor, 13 

accelerometer, speed sensor located on the blade root, tower top and generator in wind turbine control 14 

system. Santos et al. [20] describes a multi-sensory system validated on a test-bed that simulates with 15 

misalignment and imbalance faults. Zeng et al. [21] and Laouti et al. [22] suggests the SVM approaches 16 

with radius basis function used as kernels for detecting and identifying actuators,  sensors  and  process  17 

faults. Badihi et al. [23] and Simani et al. [24] present the Takagi-Sugeno fuzzy model identified from 18 

input-output measurements for fault detections and isolations. 19 

Specifically, many researchers employ theories of an artificial neural network with multi-layer 20 

perceptron (MLP) [25-28], convolution neural network (CNN) [29, 30], recurrent neural network (RNN) 21 

[31] and auto-encoder (AE) [32, 33] to develop a reliable fault diagnosis scheme for wind turbine 22 

components, such as main bearing, gearbox, generator, and rotor blade. Kusiak et al. [25, 28] investigate 23 

a prediction methodology of turbine faults using information of SCADA systems. Wang et al. [26] and 24 

Zaher et al. [27] describe a set of anomaly-detection techniques to analyze SCADA data acquired from 25 

a wind farm and automate operators’ analysis task. Bach-Andersen et al. [29][30] exploit a data-driven 26 

deep-learning system for  drivetrain monitoring applications using CNN processing on complex 27 

vibration signal inputs on both rotor bearing, planetary and helical stage gear box bearings. Tautz-28 

Weinert and Watson [31] develop a RNN-based wear process detection scheme in drivetrains with 29 

information from installed sensors. Dervilis et al. [32] and Jiang et al. [33] proposes a fault detector with 30 

deep autoencoder (DAE) to capture the nonlinear correlations from data of multiple sensor variables 31 

against noise and input fluctuation. 32 

To conduct effective fault diagnosis for the blade pitch system of wind turbines, a hybrid fault diagnosis 33 

algorithm was developed in this paper based on a Kalman filter and artificial neural. One of the main 34 

parts of the proposed algorithm is estimation of the parameters of blade pitch systems, and these 35 

parameters indicate a healthy or faulty system using the Kalman filter with system input and output 36 

variables. Then faults were classified and identified based on the estimated parameters using an artificial 37 

neural network method and input/output variables of the system in real-time. The hybrid approach has 38 

many advantages because the Kalman filter involves less computational costs in the detection and the 39 

artificial neural network has high accuracy in the diagnosis procedure. 40 

In this paper, Section 2 shows the floating wind turbine model, baseline controller, and hydraulic blade 41 

pitch system (including the modeling of faults). Section 3 introduces fault detection and diagnosis for 42 

the blade pitch system and test results for the FDD scheme. Section 4 provides the conclusions. 43 

 44 
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2. Case study model and methodology 1 

2.1. Floating wind turbine model and fully coupled numerical simulation method 2 

A floating turbine consists of a rotor, nacelle, tower, supporting structure, and mooring system. The case 3 

study model is based on an NREL 5 MW wind turbine model [34] supported by a spar buoy floater 4 

(OC3-Hywind) [35] and three catenary mooring lines as shown in Figure 1. A mooring system was used 5 

at the fairlead positions to increase the yaw stiffness. The NREL 5 MW wind turbine specifications are 6 

listed in Table 1. In addition, the OC3-Hywind floater properties are provided in Table 2. 7 

 8 

Figure 1. Schematic view of the floating wind turbine. 9 

 10 

Table 1. Properties for the NREL 5 MW wind turbine [34]. 

Rated Power (MW) 5  

Rotor orientation, Configuration Upwind, 3 blades, horizontal axis 

Rotor diameter (m) 126 

Hub height from the mean water level (m) 90 

Cut-in, rated, cut-out wind speed (m/s) 3, 11.4, 25 

Cut-in, rated rotor speed (deg/s) 41.4, 72.6 

Max pitch rate (deg/s) 8 

Gearbox ratio 97 
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Table 2. Properties for the OC3-Hywind floater [35]. 

Water depth (m) 320 

Draft (m) 120 

Diameter above taper (m) 6.5 

Diameter below taper (m) 9.4 

Center of mass (m) (0, 0, -89.9115) 

Mass, including ballast (kg) 7.466 × 106 

Mass moment of inertia, Ixx and Iyy (kg·m2) 4.229 × 109 

Mass moment of inertia, Izz (kg·m2) 1.642 × 108 
 1 

The dynamic responses of the wind turbine model are conducted by using fully coupled nonlinear time-2 

domain numerical simulations of offshore wind turbines using Simo-Riflex (SR) [36, 37], which is an 3 

aero-hydro-servo-elastic code. The hull of the spar structure is considered a rigid body with 6 degrees 4 

of freedom (heave, surge, sway, pitch, roll and yaw).  Wave loads on the rigid hull, are determined based 5 

on linear potential flow theory and Morison’s  term for viscous (drag) as implemented in Simo [36]. 6 

Added mass, radiation damping, and first-order wave forces were obtained based on a potential flow 7 

model. Morison’s drag term was used to model viscous forces. In this manner, viscous damping was 8 

included. The slender structural components, such as the blades, shaft, tower, and mooring system are 9 

modelled by beam the finite elements, accounting for geometrical nonlinear effects in Riflex [37]. The 10 

tower from the OC3-Hywind platform was modeled with 10 axisymmetric beam elements, while the 11 

blades were each modeled with 17 elements with two symmetry axes. The blade model accounted for 12 

geometric stiffening but assumed that the center of gravity, shear center, and elastic center was 13 

coincident. Moreover, the aerodynamic forces and moments on  airfoil sections along the wind turbine 14 

blades based on the blade element momentum (BEM) method including tower shadow, dynamic stall, 15 

and skewed inflow correction, are accounted for [37]. Hydrodynamics, aerodynamics, structural 16 

dynamics and mooring line dynamics are considered simultaneously with a baseline control system for 17 

a pitch and torque controller and a blade pitch system under various operational conditions. Figure 2 18 

shows the data transmission of the fully coupled model and controller [5]. Application of the fully 19 

coupled nonlinear time-domain numerical model of spar wind turbine facility is documented by 20 

references [8, 38-39]  to obtain responses such as  platform motions, blade-root bending moments, and 21 

tower base bending moments. 22 

2.2 Hydraulic blade pitch actuator 23 

The hydraulic blade pitch actuator system consists of a hydraulic pump, accumulators, directional 24 

control valves, a fluid tank and hydraulic cylinders. Each blade is equipped with an independent pitch 25 

system. The oil flow going in and out from the cylinders is controlled by a control valve. The hydraulic 26 

force in the cylinder is supplied by a hydraulic power unit placed in the nacelle. 27 

The system controller makes a command voltage signal to control the valve spool position based on the 28 

difference between the measured blade pitch angle and the pitch angle command. A schematic diagram 29 

of a hydraulic actuator, as shown in Figure 3, consists of a pressure pump, an accumulator, a reservoir, 30 

a directional control valve and a hydraulic cylinder, as modeled in Cho et al. [5]. In this paper, a hydraulic 31 

pitch actuator is modeled and interacts with the baseline controller with modified proportional and 32 

integral gain values [35].  33 
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 1 

Figure 2. Data transmission between the fully coupled model and controller [5]. 2 

 3 

 4 

Figure 3. The hydraulic pitch system: (a) schematic diagram with sensor distributions, (b) hydraulic 5 

actuator, and (c) hydraulic power unit. 6 

 7 

2.3. Baseline controller for operational wind turbines 8 

The baseline control system has two controllers: the blade pitch and generator torque controllers. Below 9 

the rated wind speed, the maximum power is captured by controlling the generator torque to maintain 10 

the optimal tip speed ratio [34]. Above the rated wind speed, the blade pitch angle is controlled by the 11 

blade pitch actuator to produce a constant rated power output and to reduce aerodynamic thrust. A 12 

constant generator torque method in the baseline controller is used to improve the dynamic responses of 13 
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the system and reduce the floater motions [40]. Figure 4 shows the block diagram of the modified 1 

baseline controller, where Ωr is the rotor speed, Ωg is the generator speed, Ωg,m is the measured generator 2 

speed, Ωg,rated is the rated generator speed, Qg is the generator torque, Qa is the aerodynamic torque, and 3 

βm is the measured blade pitch angle, and Vwind is the wind speed. 4 

 5 

 6 

 7 

Figure 4. Block diagram of the baseline controller. 8 

 9 

2.4. Environmental conditions 10 

Six load cases with different wind and wave conditions were selected for simulating the dynamic 11 

responses of the floating wind turbine, as given in Table 3. In terms of the wind and wave cases, the 12 

turbulent wind field represented by the normal wind profile and the normal turbulence model is modeled 13 

by using Turbsim [41] according to the Kaimal turbulence model based on the International 14 

Electrotechnical Commission (IEC) 61400‐1 [42] and 3 [43]. In the vertical plane, 32 × 32 points were 15 

used over an area of 160 × 160 m. The wind shear was modeled according to the power law with 16 

exponent 0.14. For irregular waves, the Joint North Sea Wave Project (JONSWAP) [44] wave spectrum 17 

was used. The peak period (Tp) and significant wave height (Hs) were decided based on their correlation 18 

with wind speed for the Statfjord site in the North Sea [45]. The range of the mean wind speed is in a 19 

range larger than the rated wind speed (11.2 – 24 m/s) correlated with wave conditions. 20 

Table 3. Load cases based on winds and waves. 

Load case Uw (m/s) 
Turbulence 

model 
Hs (m) Tp (s) 

1 14 

IEC Class C 

3.58 10.27 

2 16 3.97 10.44 

3 17 4.17 10.53 

4 19 4.58 10.72 

5 20 4.8 10.82 

6 22 5.23 11.02 

 21 



8 

 

3. Fault detection and diagnosis 1 

Fault detection and diagnosis methods are described in this section. Figure 5 shows the basic structure 2 

of FDD schemes in the blade pitch system. Based on the system input command u(k) from controllers 3 

and measured data y(k) from sensors, Kalman filters estimate the states and the outputs of the blade 4 

pitch system with no fault, as shown in Eq. (5). By comparing the residual r(k) of the measured and the 5 

estimated outputs with a predefined threshold, the state and measure changes are identified. If the actual 6 

system has no fault, the residual will be close to zero. After a successful fault detection by the Kalman 7 

filter, an ANN model built from learning data diagnoses the fault type. 8 

 9 
Figure 5. Overall procedure for a FDD scheme in the blade pitch systems. 10 

3.1. Blade pitch and valve systems 11 

The hydraulic pitch actuator with the hydraulic power unit was modeled as described in Section 2.3 12 

from Cho et al. [5]. To estimate pitch angles and valve positions, models inserted in the Kalman filter 13 

are built as 2nd order differential equations of motion based on the equations from the hydraulic actuator 14 

[8]. The blade pitch system describes a blade pitch command from the pitch controller and the pitch 15 

angle measurement as follows: 16 

2 2

,2i bp bp i bp i bp C i          , i = 1, 2 and 3 (the blade number),                                               (1) 17 

where ζbp is the damping ratio, ωbp is the natural frequency of the pitch actuator, and (˙) represents the 18 

time derivatives. Additionally, βi is the ith blade pitch angle, and βC,i is the blade pitch angle command. 19 

The parameters are ζbp = 0.6 and ωbp = 11.11 rad/s [46]. 20 

The directional control valve uses an electromagnetic field via a solenoid coil to move an internal 21 

armature assembly. As the blade pitch angle command from the pitch controller varies, the control input 22 

voltage for controlling spool position eventually adjusts the hydraulic flow into the cylinder, as 23 

described in Cho et al. [5]. The valve spool position xvs is calculated from the voltage uvs defined by 24 

2 2

, , , ,2vs i vs vs v i vs vs i vs u vs ix x x k u      , i = 1, 2 and 3 (the blade number),                                       (2) 25 

where ζvs is the damping ratio, ωvs is the natural frequency of the valve system, and ku is the valve gain. 26 

The parameters are ζbp = 0.74, ωbp = 141 rad/s, and ku = 0.002m/V [5, 47]. 27 
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Figure 3 (a) shows a schematic diagram of the blade pitch system with the sensor distribution. To 1 

measure the blade pitch angle, incremental rotary encoders installed on the blade roots can be used. 2 

Linear variable displacement transducers (LVDTs) are used to measure the position of the valve spool. 3 

Process and measurement noises in a state-space representation of the blade pitch and valve system 4 

described by Eq. (3) are zero-mean Gaussian white noises. 5 
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, i = 1, 2 and 3    (3c) 10 
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, i = 1, 2 and 3    (3d) 12 

where the state vector is x(t), input vector is u(t) and measurement vector is y(t) for the blade pitch angle 13 

(bp) and valve position (vs). There are system matrices representing the state transition matrix A, input 14 

matrix B and measurement matrix C. Uncertain disturbances including the process noise vector w(t) and 15 

measurement noise vector v(t) are given. 16 

3.2. Fault description 17 

The faults in the blade pitch system can be categorized into sensor and actuator faults. Pitch sensor faults 18 

occur by dust on the encoder disc, miss-adjustment of the blade pitch bearing, operating beyond the 19 

acceptable range of temperature and humidity or improper calibration. Incorrect pitch alignment due to 20 

sensor and actuator faults leads to unbalanced rotation in the rotor causing asymmetrical forces on the 21 

blades.  In the case of the pitch actuator faults, the high failure rate that is related to oil, valve and sludge 22 

issues accounts for a large portion (37.3 %) of the total failure rate for hydraulic pitch systems as shown 23 

in Carroll et. al. [3]. In addition, valve faults in the pitch actuator can change the system characteristics 24 

[48]. These faults affect the blade pitch angle and response delay. They could also affect the dynamic 25 

response of wind turbines in transient and steady-state conditions [5]. 26 

In this paper, six fault types are considered in the pitch sensor and actuator of the blade pitch system, 27 

which are described in Cho et al. [5, 8]. Table 4 describes the fault types. 28 
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Table 4. Fault description. 

Fault number Fault name Fault occurrence location 

1 Bias value (PSB) 
Pitch sensor 

2 Fixed output (PSF) 

3 Excessive friction (VEF) 

Directional control valve 
4 Slit lock on spool (VSL) 

5 Wrong voltage (VWV) 

6 Circuit shortage (VCS) 

 1 

3.3. Fault detection with a Kalman filter 2 

Model-based methods detect faults by comparing the generated residual with the threshold. In this paper, 3 

Kalman filters, which is often used in fault detection, satellite navigation devices, computer vision, and 4 

computer games [49], are used. Using the input command u(k) and measured data y(k), the Kalman filter 5 

estimates the states and outputs of the blade pitch system with no faults. 6 

3.3.1 Kalman filter design for the system with no fault based on the discrete time-space model 7 

The state-space model [8] of the blade pitch system in the discrete-time system in the pitch actuator and 8 

sensor with disturbances and faults can be transferred from the proposed system (3a) and (3b), where 9 

the Euler discretization approach is applied. 10 

)()()()(

)()()()()1(

kkkk

kkkkk

jjdjSjfjjj

jjdjAjfjjjjj

vΞfΞxHy

wΓfΓuΨxΦx





,  j =bp, vs                                                  (4) 11 

where Φj = Ij + AjT, Ψj = BjT and Hj = Cj (sampling time T). Here, Φ, Ψ, H, Γd, Γf, Ξd, and Ξf are known 12 

constant matrices in a discretized system. Additionally, the actuator fA(k) and sensor fault vectors fS(k) 13 

are described in Cho et al. [8]. 14 

For a healthy case, the Kalman filter is designed as follows:  15 

)(ˆ)(ˆ
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                                                                      (5) 16 

where ˆ ( )j kx is the estimated state vector, ˆ ( )j ky  is the estimated output vector and Kj is the Kalman 17 

gain matrix. 18 

3.3.2 Residual generation and evaluation 19 

A residual r(k) is described as follows: 20 

)(ˆ)()( kykykr                                                                                                                            (6) 21 

A residual energy J(k) defined by the L2 norm is described as follows: 22 

1/2

2,
( ) ( ) ( ) ( )
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i k k

J k r k r r dk 


 

 
   

 
                                                                                           (7) 23 
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The residual energy determines the fault condition by applying fault detection logic with threshold Jth. 1 

fault,)(

freefault,)(

th

th

JkJ

JkJ




                                                                                                                         (8) 2 

If the residual energy is less than this threshold, it indicates a fault-free state. Otherwise, it indicates a 3 

fault condition. 4 

3.4. Fault diagnosis with the artificial neural network 5 

3.4.1. Training, validation, and test procedures using the artificial neural network 6 

An artificial neural network (ANN) is employed in the fault diagnosis procedure in this paper. The ANN 7 

is a framework of machine learning algorithms that automatically identify the system’s characteristics 8 

from the training data. An ANN uses connected nodes called artificial neurons, which are inspired by a 9 

biological brain. In ANN implementations, artificial neurons receive input signals and process them with 10 

hidden layers that are computed by some nonlinear function for calculating the output results.  Figure 6 11 

illustrates a simple ANN. The ANN used in this paper has 100 neurons with 2 hidden layers considering 12 

time and performance of the learning procedure. 13 

 14 

Figure 6. A simple illustration of an artificial neural network (ANN). 15 

In this paper, an ANN determines the fault among six fault types, which are described in Table 3. In fault 16 

diagnosis using an ANN, training, validation and test procedures are essential for building the fault 17 

diagnosis model. The ANN algorithm makes the predictive model using training and validation data. 18 

Then, the final performance evaluation in terms of the accuracy of the model is conducted with test data 19 

and test label for the predictive model. Figure 7 shows the flowchart of the training, validation, and test 20 

procedures. After the learning process including training and validation procedures, the ANN library 21 

builds a predictive model that that learns certain properties from a training dataset to make those 22 

predictions. In this paper, the predictive model can be used for the fault diagnosis. 23 

During the training procedure at each hidden layer, the rectified linear unit (ReLU) function is used as 24 

the activation function. The activation function with ReLU prevents overfitting and the gradient 25 

vanishing problem. Additionally, it reduces the computational cost. This function was found to greatly 26 

accelerate (Krizhevsky et al. [50]) the convergence of stochastic gradient descent compared to the 27 

sigmoid or tanh functions. This function returns the input value without any modification if the value is 28 

greater than 0; otherwise, it returns 0. Eq. (9) defines the function, where hi is the i-th hidden layer value. 29 



12 

 

Relu( ) max(0, )i ih h                                                                                                                             (9) 1 

 2 

Figure 7. Flowchart of the general training, validation and test procedure. 3 

In the output layer, the Softmax function S(yi) is used for normalizing the values between 0 and 1, where 4 

the sum of the values is 1. Eq. (10) describes the function, where yNN,i is the value in the neural network 5 

(NN)’s output layer. 6 
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The training uses the cross-entropy loss function LCE(S, yd), which is defined in Eq. (11), where n is the 8 

number of fault types, Si is the i-th value in the output of the Softmax function, and yd,i is the i-th desired 9 

value in the labeled data. 10 
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Figure 8 describes the convergence of the loss. The black and gray lines represent the training and 12 

validation losses, respectively. During the training process, the algorithm compute the validation loss 13 

for 1,000 iterations and the ANN was kept if the validation loss was lower than the known minimum 14 

value. 15 

Supervised learning with labeled training data is used for building an ANN model with an input vector 16 

and a desired output value, which is called the supervisory signal in this paper. To obtain learning data 17 

for training and validation samples for fault diagnosis, we performed 1080 dynamic simulation cases 18 

(180 for each fault case) using Simo-Riflex [36, 37] with different combinations of 6 fault types, 18 19 

wind & wave conditions, and 10 fault occurrence times. The terminologies are defined to avoid any 20 

confusion throughout this section. 21 

 22 
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 Fault type: considered faults described in Table 4 1 

 Fault occurrence time: pre-selected time instants 2 

 Load case: wind and wave conditions described in Table 3 3 

 Simulation case: time-domain analyses for each load case and a given fault type at a given 4 

occurrence time 5 

 Sample: a collection of time series of different response parameters with a given duration from 6 

simulation cases. Each sample corresponds to one data point of inputs in the ANN model for 7 

fault diagnosis. 8 

 9 

Figure 8. Convergence of the training and validation losses during the training of the ANN (black line: 10 

training loss, grey line: validation loss). 11 

The runtime for each simulation case is 400 s which is long enough to obtain the correct response 12 

statistics and the simulation time interval is 0.1 s. The fault occurrence time is predetermined from 75 13 

to 300 s with a 25 s interval for the training procedure. In each simulation case during the 400s, only 14 

one fault case is considered. For the test procedure, 144 new simulation cases are conducted and different 15 

independent wind and wave conditions are used compared to those of the simulations for training and 16 

validation.  17 

The data sampling algorithm picks up multiple inputs for the ANN model in one simulation case. The 18 

starting point of the data sampling is randomly selected in the region of fault conditions after the fault 19 

occurrence time (TF) until the end of the simulation including the time interval of fault development. In 20 

the training procedure, every possible fault data should be trained by the algorithm after TF and for a 21 

sufficient time to escalate faults. Figure 9 shows the fault data sampling in a possible pick-up range. 22 

Once the algorithm picks up the starting point, the data can be observed during the sampling duration. 23 

For instance, from a starting point at 200 s after TF that is randomly selected, the sampling is conducted 24 

during the sampling duration. Additionally, the algorithm gathers the fault data to try not to totally 25 

duplicate the data which means that the starting point is not duplicated with each starting point. Based 26 

on this algorithm, training, validation, and test data were selected for machine learning and final 27 

performance evaluation. In Figure 9, the pattern of the sampling duration highlighted in blue is totally 28 

different from the pattern of multiple sampling in red in one simulation case. Figure 10 shows the 29 

extracted features from the sampling data based on the blade pitch sensor values, blade pitch commands, 30 

valve spool positions, and control input voltages. 31 
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A sample comprises a pair of datasets and labels. The dataset contains the pitch sensor, pitch command, 1 

valve position, and valve voltage values also used in each time interval Δti = 0.1. The dataset values are 2 

normalized between 0 and 1 using the minimum and maximum values of each observation element 3 

described in Eq. (12). The label indicates the fault type, which is represented by the one-hot encoding 4 

scheme [51]. This represents the i-th fault type using a vector of six binary values, in which only i-th 5 

value has 1 and the others have 0. Table 5 illustrates a learning data samples with 40000 samplings and 6 

20 s sampling duration.  In Table 5, for instance, the vector [1 0 0 0 0 0] in row 1 of the label indicates 7 

that the dataset is made when the wind turbine has fault type 1. 8 

)min()max(

)min(
,

ii

ii
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xx

xx
x




                                                                                                     (12)  9 

 10 

Figure 9. Fault data sampling in a possible pick-up range in the data from fault 2 (TF = 175 s): (a) 11 

blade pitch sensor value, (b) blade pitch command value, (c) valve spool position, and (d) control input 12 

voltage. 13 

Table 5. Illustration of learning data samples with 40000 samplings and 20 s sampling duration. 

# of 

Sample 

Dataset 
Label 

Time step 1 Time step 2  Time step 200 

1 β1,1  βC1,1  xv1,1  uv1,1 β1,2  βC1,2  xv1,2  uv1,2  β1,200  βC1,200  xv1,200  uv1,200 1 0 0 0 0 0 

2 β2,1  βC2,1  xv2,1  uv2,1 β2,2  βC2,2  xv2,2  uv2,2  β2,200  βC2,200  xv2,200  uv2,200 0 0 1 0 0 0 

            

n βn,1  βCn,1  xvn,1  uvn,1 βn,2  βCn,2  xvn,2  uvn,2  βn,200  βCn,200  xvn,200  uvn,200 0 0 0 0 1 0 

 14 

 15 
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To select the size of the dataset, the number of samples and duration of sampling should be determined. 1 

We train the ANN by increasing the number of samples from 40,000 to 100,000 of sampling size within 2 

theoretically 639,000 maximum sampling size in sampling duration from 10 to 20 s for 1080 simulation 3 

cases. The 20000 samples are used for validation. Table 6 describes the variables for the training, 4 

validation and test procedures from numerical simulations. 5 

Table 6. The variables for training, validation and test. 

 Training  /  Validation Test 

The number of simulation cases 1080 144 

The number of samples 40,000 – 100,000 / 20,000 15,000 

Distribution of input data Uniform Uniform 

Min. criterion for model selection (%) -  98 

 6 

 7 

Figure 10. Extracted features from sampling data based on the physical values and faults. 8 

Figure 11 shows the mesh surface and contour used to decide the number of samples and the duration 9 

of sampling in the validation procedure. This mesh surface is made by the data from an average value 10 

of the accuracy calculation in the training procedure which was conducted 10 times for each number of 11 

samples and sampling duration in Figure 9 (a). The target is above 98 % accuracy and two optimal points 12 

are selected as shown in Figure 9 (b). 13 
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From the results of Figure 11, five predictive models are selected based on the number of samples and 1 

sampling duration. To verify the performance of the models, the test procedure is essential to select the 2 

representative predictive model via 15000 test samples for the fault diagnosis scheme. The selected five 3 

predictive models have good performances in the test procedures above 98 % success rates and relatively 4 

small performance variations. The predictive model (P. Model) 2, which has a sampling duration of 20 5 

s and a sample size of 90000 is chosen based on the best performance from the highest test success rate 6 

of 98.593 % among five predictive models. 7 

Table 7. Test results. 

 P. Model 1 P. Model 2 P. Model 3 P. Model 4 P. Model 5 

No. samples 100000 90000 80000 90000 90000 

Sampling duration (s) 20 20 20 19 17 

Test success rate (%) 98.46 % 98.593 % 98. 153 % 98.433 % 98.24 % 

 8 

 9 

Figure 11. Success rate based on the number of samples and the duration of sampling in the validation 10 

procedure: (a) 3D surface and (b) contour. 11 

3.4.2 Fault detection and diagnosis results 12 

Basically, the fault diagnosis scheme was trained, validated, and tested with an ANN library based on 13 

TensorFlow [52] coded in Python. Then, the FDD scheme in Java code imports the optimized predictive 14 

model (predictive model 2) based on the test results from Table 7 exported from the ANN library. By 15 

optimizing the ANN model imported in Java code, fault diagnosis can be conducted in combination with 16 

Simo-Riflex with the same structure described in Figure 5 after successful fault detection. Figure 12 17 

shows the data transmission between the ANN library and FDD scheme in Java for the optimized 18 

predictive model. 19 

For fault detection and diagnosis, 60 simulation cases of each fault type simulated from the Simo-Riflex 20 

simulator were performed with a new wind profile generated by Turbsim and different fault occurrence 21 

times. Note that the fault diagnosis algorithm can be activated after the fault detection signal occurs. 22 

Figure 13 shows fault detection and diagnosis in real-time. In Figure 13 (a), Fault 1 (PSB) occurs after 23 

150 s (time of fault, TF) corresponding to a -3° sensor bias on blade 3. Concurrently, the fault detection 24 

algorithm detects the fault at 153 s (time of fault detection, TFD), and the fault alarm is set to 1. Then 25 

the fault diagnosis algorithm is activated after the fault alarm occurs and diagnoses fault 1 at 170 s (time 26 
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of fault diagnosis, TFDI). Fault 3 (VEF) and Fault 5 (VWV) are detected and diagnosed with the same 1 

pattern in Figures 13 (b) and (c), respectively. After the time of fault diagnosis (TFDG), the operator can 2 

react and carry out shutdown or fault-tolerant control defending on the fault type. In pitch sensor faults 3 

(faults 1 and 2), fault-tolerant control using a virtual sensor [15] could be used to operate wind turbines 4 

without the faulty sensor [8]. Otherwise, the wind turbine should be shut down by a controller or operator 5 

under valve faults (faults 3 - 6) to avoid fault escalation. 6 

 7 

Figure 12. Data transmission among SR, Java code and the neural network model. 8 

 9 

Figure 13. Fault detection and diagnosis in the faulty blade (blade 3) in real time: (a) fault 1 (PSB),  10 

(b) fault 3 (VEF), and (c) fault 5 (VWV). 11 

Table 8 presents the fault diagnosis results obtained by the ANN scheme for a different set of examples 12 

corresponding to the blade pitch angle and valve spool position under different fault conditions. In this 13 

fault diagnosis procedure, one fault occur during one trial (simulation case). The fault occurrence time 14 
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is randomly selected in the above-rated region. In each fault type, the ANN is tested using 60 trials (10 1 

trials for one load case described in Table 3) where the range of the rated wind speed (11.2 – 24 m/s) is 2 

correlated with wave conditions. The results indicate that the fault diagnosis model using the ANN 3 

scheme has a good performance of approximately 97.5% for the overall accuracy. Even though, the 4 

ANN scheme shows high accuracy, the scheme wrongly diagnoses faults at a rate of 2.5 % which is 5 

critical for the system. 6 

Table 8. Fault diagnosis results. 

 Fault 1 Fault 2 Fault 3 Fault 4 Fault 5 Fault 6 

No. total trials 60 60 60 60 60 60 

No. failures 2 1 0 3 1 2 

No. successes 58 59 60 57 59 58 

Rate (%) 96.667 98.333 100 95 98.333 96.667 

Overall accuracy (%) 97.5 

 7 

Therefore, we built a system to correct the fault cases that were incorrectly diagnosed from the FDD 8 

scheme in more detail. In Figure 14, the number indicates the fault status, for instance, 0 for a fault-free 9 

state, 2 for fault 2 (PSF), and 6 for fault 6 (VCS). The red lines indicate the true status of the blade pitch 10 

system, and the blue lines indicate the diagnosis decisions made by the ANN. If the scheme makes a 11 

fault decision with little difference in the score in a vector in the ANN’s output layer after the Softmax 12 

function procedure described in Eq. (10), the scheme automatically diagnoses twice more. Then the 13 

diagnosis scheme makes a final decision with the results of the three fault diagnosis tests. One interesting 14 

observation is that the ANN can make right decisions eventually, even if its initial decision is not correct. 15 

Another observation is that the pattern of the faults is similar. Based on these results, it should be noted 16 

that the proposed ANN-based fault diagnosis method presented here is capable of diagnosing faults 17 

properly in the operation of the monitored component. In addition, this approach was trained, validated 18 

and tested by numerical simulation for the simplest cases in the fault diagnosis. Once this algorithm 19 

builds an optimized model for fault diagnosis, this model can be applied to practical situations of wind 20 

turbine operation with real measurements from sensors. 21 

 22 

Figure 14. Fault diagnosis correction in the incorrect decision procedure (red line: true status, blue 23 

line: diagnosis decision): (a) fault 2 (PSF), (b) fault 4 (VSL), and (c) fault 6 (VCS). 24 

 25 
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4. Concluding remarks 1 

This paper describes in detail a possible fault detection and diagnosis (FDD) approach for the blade 2 

pitch system in a spar-type floating wind turbine. The approach utilizes as a hybrid form based on a 3 

Kalman filter for fault detection and an artificial neural network for fault diagnosis. The Kalman filter 4 

estimates the blade pitch angle and valve spool position with measurements from appropriate sensors 5 

by considering the residuals and threshold. The pre-trained neural network models are used for fault 6 

diagnosis after successful fault detection. An artificial neural network learning algorithm use learning 7 

dataset from numerical simulation results to build the fault diagnosis scheme in the training, validation, 8 

and test procedures. The diagnostic performance of the optimized predictive model experimentally 9 

verified with the validation and test procedures shows 97.5 % of overall accuracy for each fault type. 10 

This proposed method is built for fault diagnosis of simple fault cases. The purpose of this work is to 11 

build the ANN-based fault diagnosis scheme which can be extended to other applications. In future work, 12 

this FDD scheme will be modified to diagnose multiple fault cases among 6 fault types or other unknown 13 

faults in the blade pitch system in the wind turbine by simple changes of the model. Further studies will 14 

consider the application of the proposed solutions for practical models by data acquired from 15 

measurements on real installations. In addition, the method can offer a new general framework for a 16 

FDD application that can be applicable to other components, such as the drivetrain, generator, or yaw 17 

system in a wind turbine. 18 
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