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Abstract— This paper deals with robotic lever control using
Explainable Deep Reinforcement Learning. First, we train
a policy by using the Deep Deterministic Policy Gradient
algorithm and the Hindsight Experience Replay technique,
where the goal is to control a robotic manipulator to manipulate
a lever. This enables us both to use continuous states and actions
and to learn with sparse rewards. Being able to learn from
sparse rewards is especially desirable for Deep Reinforcement
Learning because designing a reward function for complex
tasks such as this is challenging. We first train in the PyBullet
simulator, which accelerates the training procedure, but is not
accurate on this task compared to the real-world environment.
After completing the training in PyBullet, we further train in
the Gazebo simulator, which runs more slowly than PyBullet,
but is more accurate on this task. We then transfer the policy
to the real-world environment, where it achieves comparable
performance to the simulated environments for most episodes.
To explain the decisions of the policy we use the SHAP method
to create an explanation model based on the episodes done in the
real-world environment. This gives us some results that agree
with intuition, and some that do not. We also question whether
the independence assumption made when approximating the
SHAP values influences the accuracy of these values for a
system such as this, where there are some correlations between
the states.

Index Terms— Deep Reinforcement Learning, Hindsight Ex-
perience Replay, Robotics, Explainable Artificial Intelligence,
SHapley Additive Explanations

I. INTRODUCTION

Deep Reinforcement Learning (DRL), which is the fusion
of traditional Reinforcement Learning (RL) and Artificial
Neural Networks (ANNs), has since the early 2010s been
used to solve a variety of difficult problems. The first
successful application of DRL was done in [1], where the
authors made a DRL algorithm, called Deep Q-network
(DQN), that could learn how to play Atari 2600 video games
directly from high-dimensional screen pixel input. After that,
DRL has shown promise in various fields: DRL was used
to create AlphaZero, which beat world-champion computer
programs at Chess, Shogi, and Go [2]; Agent57 was created
in 2020, the first DRL agent that learned to play all 57
Atari 2600 games in the OpenAI gym with super-human
performance [3]; DRL has also made great strides in the
field of robotics [4]–[8].
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One commonly used DRL algorithm is Proximal Policy
Optimization (PPO), which was presented in [9]. PPO has
been used in various tasks such as: quadrotor control [10],
electrical vehicle charging with uncertain wind power [11],
and for developing a step climbing method for a crawler
type rescue robot [12]. A problem with PPO is that it has
a poor sample efficiency. This is because it is an on-policy
algorithm, which means that it cannot reuse past experiences,
and needs to collect new samples every time it optimizes its
parameters [5]. The algorithm used in this paper is the Deep
Deterministic Policy Gradient (DDPG) algorithm, presented
in [4], which unlike PPO, is an off-policy algorithm. This
means that it can reuse past experiences. DDPG has been
used in tasks such as: traffic signal control [13], control of
unmanned surface vehicles [14], and flight control [15]. A
disadvantage with DDPG is that it is sensitive with regards to
hyperparameters, which can require significant effort when
tuning the algorithm [5]. PPO and DDPG use a stochastic
and deterministic policy respectively. Stochastic policies are
appropriate for an agent that needs to adapt to stochasticity
in the environment, but for this paper, deterministic policies
are more suitable. This is because a deterministic policy’s
decisions arguably will be easier to explain.

Even though DRL shows great promise, and has been used
to solve remarkably different problems, there are still many
drawbacks with DRL: it is hard to do intelligent exploration,
instead of just random exploration; training a policy can take
a significant amount of time; safety guarantees during safety-
critical operations are still lacking; it can be difficult and
time-consuming to design a good reward function that does
not have any unwanted side-effects; and it can be difficult
to understand how a DRL policy makes its decision, which
ties into whether or not the policy can be trusted. The last
drawback mentioned here is mainly because of the black-box
nature of ANNs.

Based on the recent advances in Machine Learning (ML),
researchers are now looking at how to explain the decisions
made by ML agents. Many of the most prominent applica-
tions of ML are now done using models that have a black-box
nature. This makes it especially demanding to understand
how the agents make their decisions. The field that handles
these types of explanation problems is collectively called
eXplainable Artificial Intelligence (XAI) and has garnered
increasing interest these last years [16], [17]. Local Inter-
pretable Model-agnostic Explanations (LIME) is one of the
more popular XAI methods, which learns an interpretable
model locally around the prediction of the ML model [18].
Another XAI method is the Integrated Gradients method,



which integrates the gradients of an ANN on a straight-line
path from a baseline x′ to an input x to explain how the
inputs to an ANN affect its prediction [19]. The XAI method
used in this paper is called SHapley Additive exPlanations
(SHAP) [20]. Similar to LIME, SHAP is an additive feature
attribution method. SHAP has some desirable properties that
LIME does not have, but LIME can generally generate
explanations faster. SHAP has also been shown empirically
to give explanations that better agree with human intuition
[20].

In this paper, we examine how to alleviate the last two of
the drawbacks mentioned above by using the RL technique
Hindsight Experience Replay (HER) [6] and SHAP, where
the objective is to manipulate a lever using a robotic manipu-
lator. HER enables the usage of a simple reward function for
a complex system such as a robotic manipulator, and SHAP
provides an approximation of the contribution of each state to
each action. The results of this paper are an extension of the
first author’s Master’s thesis [21]. We do these experiments
in a platform that involves lever control with a robotic
manipulator, more specifically the contributions of this paper
are:

• The design of an experimental setup including the
OpenMANIPULATOR-X by ROBOTIS, which involves
lever angle control and can correspond to many prob-
lems in the physical world. In addition to the real-world
experimental setup, corresponding simulated environ-
ments including a model of the lever was created. We
trained the policy in two simulated environments. After
training, the policy was implemented on the physical
manipulator.

• We customize the sparse reward function to the lever
manipulation problem and train the simulated system
using DDPG and HER.

• We implement SHAP to understand how the actions are
selected by the policy. In this way, we provide insight
and can figure out if the system has learned behavior
that conforms to human intuition.

A related approach can be seen in [22], where the authors
also apply SHAP to a DRL problem and then investigate
how different background data influence the explanations.
However, this is done on a much less complicated system
than our system, which only has four states and one action,
where we have 20 states and four actions. Another related
approach is shown in [23], where they use ML to predict
failure modes in robot grasping, and compare how these fail-
ures can be explained using both inherently interpretable ML
models and black-box ML models. Unlike our work, they do
this solely in a simulated environment, where we use a real-
world environment in addition to simulated environments.

The remaining sections in this paper are organized as
follows: the Preliminaries, where we discuss some of the
necessary background theory; the Methodology, where we
discuss the task and experimental setup; the Results and
Discussion, where we show and discuss the results from the
lever-manipulation task performed in this paper; and finally

the Conclusion, where we give a brief overview of the main
points from this paper.

II. PRELIMINARIES

This section briefly examines and explains the necessary
theory for the rest of the paper. Firstly, we give the fun-
damental concepts in RL and DRL. Secondly, the HER
technique is motivated and explained. Lastly, the theory and
properties of SHAP are examined.

A. Reinforcement learning

In RL, we assume that we can model the environment
as a Markov Decision Process (MDP). An MDP is defined
as a tuple < S,A, T,R >, where S is a state-space, A
is an action-space, T is a Markovian transition model, and
R is a reward function. A Markovian transition model is a
proper probability distribution over the next possible states
given the current state and the action taken in the current
state. A Markovian transition model satisfies the Markov
property, which means that only the current state and action
are relevant for the distribution of the next state [24, p.11].
The reward function returns a scalar number, the reward,
based on the transition R(st, at, st+1) = rt.

The goal for an RL agent is to find the optimal policy π∗,
which is the policy that maximizes the long-term expected
reward, here defined by the discounted infinite horizon
model:

E[

∞∑
t=0

γtrt], (1)

where γ ∈ [0, 1] is a hyperparameter called the discount
factor [24, pp.13-15].

The DDPG algorithm used in this paper is an off-policy
actor-critic algorithm that can tackle problems with contin-
uous state- and action-spaces. As briefly mentioned in the
introduction, off-policy method can use samples generated
any time during training for optimization [25]. Being actor-
critic, DDPG trains two ANNs. The first is the actor-network,
which serves the role of the policy, that is, it takes in the
state of the environment and outputs what the action should
be (equivalent to a controller). The second is the critic-
network, which is used to approximate the value of taking
a certain action in a certain state (called a Q-value). The
critic’s role is to evaluate the performance of the actor. This
evaluation is subsequently used for optimizing the actor’s
parameters. There were two crucial components for DRL
that were introduced in [1] and [26] in the context of
DQN. Both of these components are also used in DDPG.
The first component is the experience replay, which ensures
that training samples are independent, a requirement when
training ANNs. This requirement is crucial to avoid over-
fitting because of the strong correlation between sequential
samples [1]. Since most optimization algorithms assume that
samples are independent of each other, the training might
be unsuccessful if samples are used for optimization in just
the order they appear. Experience replay is used as a buffer
that all transitions {st, at, rt, st+1} are stored in and recalled



randomly from during ANN training. This means that the
transitions are independent of each other, and that previous
transitions are not forgotten and can be used multiple times.
Experience replay buffers can only be used by off-policy
algorithms [1]. The second component introduced in [1] and
[26] is the target network, which are copies of the original
networks that are, for instance, gradually changed towards
the parameters of the original networks (Polyak averaging),
or copied from the original networks at a certain interval.
Having a target that is changing fast becomes similar to
trying to catch up to a moving target, so by using target
networks the correlation with the target is decreased, which
improves the training stability [4], [26].

We would like to note that there exist improvements over
the DDPG algorithm such as the state-of-the-art Twin De-
layed Deep Deterministic Policy Gradient (TD3) algorithm
presented in [27]. However, in RL, there are no guarantees
that any algorithm will work, and DDPG has worked well
for this system from the start. This choice should also not
affect the later focus on explainability.

We could also have included comparisons with other
learning-based control methods for robotic manipulators.
However, in the context of this paper, it is not in the scope
to do this. This paper aims to study the sequence from the
simulator to the real-world to explainability.

B. Hindsight experience replay

Arguably, one of the hardest parts of implementing RL
and DRL concerns how to engineer a good reward function.
Give the reward too sparsely, and the agent will learn slowly,
or not at all; give the reward too frequently, and the behavior
of the agent may already be specified by the reward function.

A novel technique that can enable RL agents to learn
from sparse rewards was presented in [6]. The approach is
called Hindsight Experience Replay (HER), where the idea
is to substitute the actual goals with virtual goals, which
represent the goal-state that was actually achieved by the
agent [28]. Consider an agent that has achieved a trajectory
of s1, . . . , sT , but the goal state is not in this trajectory. In
this case, with sparse rewards and ordinary DRL, the agent
would receive the same reward for each step of the trajectory,
and would not have any useful feedback for optimization.
Even though the agent has not discovered how to reach the
goal state, from another point of view, it has discovered how
it can reach every other state in the trajectory. When using
HER, any of the states within the trajectory can then be used
as substituted goals, where the agent gets the same reward
as it would if it achieved the real goal. In this way, the
agent will get feedback which it can then use to optimize its
parameters.

In this paper, the strategy that is used for selecting which
state that should eligible for being substituted goals is called
”future”. For every transition stored in the experience replay,
k new versions of the transition are also stored, where the
goal states are substituted with randomly selected achieved
goal states that came from the same episode, but were
observed after the transition.

When using HER, it is useful to consider the state-space
as consisting of two parts. The first part is the observation
of the environment, the second part is the goal states. This
way, when substituting goals, only the part of the state that
contains the goal states needs to be substituted with the actual
achieved goals.

C. Shapley Additive Explanations

SHAP is a method developed in [20], followed by a
library in python1 that can help to identify which inputs are
most important for a function’s output. SHAP is a model-
agnostic and post-hoc XAI method, which means that it
can work with any type of model or function, and it can
explain decisions based on already generated data. It does
this by approximating the Shapley values [29] for the input
compared to the output. The Shapley values explain how
each input contributes to the magnitude of the output. SHAP
is an additive feature attribution method, which means that
it is a linear function of binary variables, of the form:

g(z′) = φ0 +

M∑
i=1

φiz
′
i, (2)

”where z′ ∈ {0, 1}, M is the number of simplified input
features, and φi ∈ R” [20]. It can be shown that additive
feature attribution methods have a single unique solution
which has three desired properties [20]:
• Local accuracy

– When using an explanation model to approximate
another model for a specific input x, the explana-
tion model’s output will match the other model’s
output for the simplified input x′ which corre-
sponds to the input x.

• Missingness
– Requires features missing from the original input
x to have no impact:

x′i = 0→ φi = 0.

• Consistency
– If a model changes so that a simplified input’s

contribution increases or stays the same, then that
input’s impact should not decrease.

As stated above, there is only one solution to the explana-
tion model (2) that satisfies the three properties just stated.
This solution corresponds to the Shapley values [20]:

φi(f, x)=
∑
z′⊆x′

|z′|!(M − |z′| − 1)!

M !
[fx(z

′)−fx(z′\i)], (3)

where |z′| is the number of non-zero entries in z′, z′ ⊆ x′
represents all z′ vectors where the non-zero entries are a
subset of the non-zero entries of the simplified inputs x′,
fx(z

′) = f(hx(z
′)), f is the original prediction model, and

hx is a mapping function that maps simplified inputs to the

1https://github.com/slundberg/shap

https://github.com/slundberg/shap


original inputs [20]. Equation (3) is a difficult equation to
solve, as it relies on fx(z

′\i), which is the model that is
going to be explained, without feature i present. This is
not straight-forward to achieve, for instance, for an ANN,
because we would have to train several new models without
the feature(s) present. The SHAP library provides several
methods to address these challenges and approximate these
values. Some of these methods take advantage of a model’s
structure to more efficiently approximate the Shapley values.
The SHAP method that is used in this paper is called Deep
SHAP and is specific for ANNs.

III. METHODOLOGY

For the experiments done in this paper, we used
both a physical and two simulated versions of the
OpenMANIPULATOR-X robotic manipulator by ROBO-
TIS2. Two simulators were used, Gazebo and PyBullet. The
manipulator has 5 degrees-of-freedom (DOFs), four for the
joints of the manipulator, and one for the gripper. The
physical robot and its Gazebo counterpart were controlled
using the Robot Operating System (ROS), with packages
developed by ROBOTIS3. Also, we developed an environ-
ment in the PyBullet simulator to accelerate training, as will
be explained in Section III-D. The OpenAI Gym framework
was used to create the RL environments. The DDPG+HER
implementation used the PyTorch deep learning framework
and was adapted from a GitHub repository created by A.
Imran4.

A. Lever manipulation task

The goal for each episode in this task is to move the lever
to a randomly selected goal angle. The starting position and
goal position of the lever are randomly selected according to

θstart, θgoal ∈ R : θstart, θgoal ∈ [−1.0 rad, 1.0 rad],

with the additional constraint that |θstart−θgoal| > 0.4 rad.
All policies in this paper are trained using HER and

because of this, the reward function can be designed to
only give sparse rewards on this task. The reward is given
according to

r =

{
−1, if |θlever − θgoal| ≥ 0.025 rad

0, if |θlever − θgoal| < 0.025 rad
,

where 0.025 rad is approximately 1.43◦, which we
deemed to be a sufficient accuracy for a task such as this.

B. Experimental design

The lever that is shown in Figure 1a was used for the
experiments. The angle of the lever was measured using a
potentiometer and an Arduino Uno. Using the open-source
3D graphics software Blender, a mesh for this lever was
also created and is shown in Gazebo in Figure 1b, and

2https://emanual.robotis.com/docs/en/platform/
openmanipulator_x/overview/

3https://github.com/ROBOTIS-GIT/open_manipulator
4https://github.com/alishbaimran/

Robotics-DDPG-HER

(a) (b)

Fig. 1: (a): Real lever with potentiometer and Arduino.
(b): Lever model in Gazebo.

(a) (b)

Fig. 2: (a): Real-world manipulator.
(b): Manipulator in Gazebo.

a Unified Robot Description Format (URDF) model was
created with the mesh as a base. The URDF-model requires
various properties, such as the specification of the links and
joints of a model, visual and collision meshes, dynamics,
and friction. These properties were approximated by trial-
and-error using the real-world environment and the simulated
environment. Both PyBullet and Gazebo can use models of
the URDF format.

The OpenMANIPULATOR-X can be seen in the real-
world environment in Figure 2a, and the simulated manipula-
tor can be seen in Gazebo in Figure 2b (the PyBullet version
looks similar, and has therefore not been included).

C. State and Action

The state-space of this task is of dimension 20. The
first 19 entries in the state-space are the observation of the
environment. This observation consists of the angles and
velocities of the manipulator’s joints, the Cartesian position
of the lever’s base relative to the manipulator’s base, the
relative distance between the end-effector and the lever’s
base, and the current angle of the lever. The remaining entry
in the state-space is the goal state, and in this task, the goal
state is the desired lever angle. When substituting goals with
HER, the desired lever angle is then substituted with the
achieved lever angle.

The agent is given a restriction in that it cannot move the
manipulator’s first joint. This is the joint that rotates around
the base of the manipulator. This was done to make training
faster, and also because it is trivial to solve for the angle
of this joint given the Cartesian x- and y-coordinates of the
lever’s base:

θ1 = arctan2(ylever, xlever).

https://emanual.robotis.com/docs/en/platform/openmanipulator_x/overview/
https://emanual.robotis.com/docs/en/platform/openmanipulator_x/overview/
https://github.com/ROBOTIS-GIT/open_manipulator
https://github.com/alishbaimran/Robotics-DDPG-HER
https://github.com/alishbaimran/Robotics-DDPG-HER


Hyperparameter Value

Learning rate actor (PyBullet), αa 0.001
Learning rate critic (PyBullet), αc 0.001
Learning rate actor (Gazebo), αa 0.0008
Learning rate critic (Gazebo), αc 0.0008
Discount factor, γ 0.98
l2 regularization, λ 1
noise eps, εn 0.2
random eps, εr 0.18
HER ratio to be replaced, k 4
HER replay strategy future
Mini-batch size 256
Neurons in input layer, actor 20
Neurons in input layer, critic 24
Hidden layers, actor and critic 3
Neurons in hidden layers, actor and critic 256
Neurons in output layer, actor 4
Neurons in output layer, critic 1
Activation functions hidden layers ReLU
Activation functions input layer, actor Tanh
Activation functions input layer, critic Linear
as 0.1

TABLE I: DDPG hyperparameters

Since the agent is not able to move the first joint, the
action-space is of dimension four. The first three entries
correspond to the desired relative angles of joints 2-4, and
the fourth entry corresponds to whether the gripper should
open or close:

a4 ≥ 0,→ Gripper should open
a4 < 0,→ Gripper should close

D. Training Procedure

The training procedure for this task involves to first train
the policy in a simulated environment, then transfer the pol-
icy to the real environment. The first training takes place in
PyBullet, which runs faster on this task compared to Gazebo.
PyBullet also has more suitable functionality for DRL, for
instance, a dedicated step function that steps the simulator
one time-step forward. The policy was trained in PyBullet
for 50 epochs with 30 training episodes in each epoch. The
policy was then more finely tuned by transfer learning in
Gazebo for additional 300 episodes. Gazebo is more accurate
concerning the real-world environment on this task. Except
for the learning rate, the remaining hyperparameters were
the same for Gazebo and PyBullet. The hyperparameters
can be seen in Table I. The action selected by the actor is
scaled by a factor of as before the action is applied to the
manipulator. After transfer learning in Gazebo, experiments
using the physical manipulator were conducted.

For this paper, exploration is done using both ε-greedy
exploration and by adding exploration noise to the action.
By ε-greedy exploration, with probability (1 − εr), the
agent performs the greedy action, i.e. the best available
action according to the actor’s knowledge at that time. With
probability εr, the agent performs a random action, hence
allowing the agent to explore, with εr ∈ [0, 1]. For the
exploration noise, when the greedy action is selected by the
ε-greedy exploration, Gaussian noise with mean µ = 0 and
standard deviation σ = εn is added to the greedy action.

During training, the manipulator is randomly selected to
start in a grasping position on the lever for half of the
episodes. This is done to make the training faster and was
inspired by how the authors in [6] did the pick-and-place
task.

As previously mentioned, the goal and start angle of the
lever was randomized between episodes. In addition to this,
the position of the lever’s base relative to the manipulator’s
base was also randomized between episodes when training in
the simulators. In the real-world environment, the lever was
attached to a wooden plate together with the manipulator,
and could not be moved between episodes. To give the agent
the information it needs to calculate the position of the lever
when doing the real-world experiments, the distance between
the manipulator’s base and the lever’s base was measured by
hand and given as a constant in the state returned from the
environment.

After the training is completed, we run five test episodes
in both the simulated environments and the physical envi-
ronment, the results of this will be shown in Section IV.
In these plots, the error measured by the difference in the
achieved and the goal lever angle is plotted on the y-axis
over the episodes. A video of the real-world experiments is
also available5.

E. Explaining the agent’s decisions with SHAP

The SHAP method was used in an attempt to get a
better understanding of the agent’s decisions. From the
five test episodes, four episodes were used to generate the
explanation model, and the remaining episode was explained.
The data for the explanations were generated using the real-
world manipulator. The SHAP values over the entire first
episode are plotted using a force plot for each of the four
actions. Features that push the prediction higher or lower
are respectively shown in red or blue. The height of each
feature contribution shows the magnitude of each feature’s
contribution.

IV. RESULTS AND DISCUSSION

In this section, we first discuss and compare the perfor-
mance of the agent on the three different platforms. We
discuss reasons why the agent performed more poorly when
transferred to the real manipulator. Lastly, we try to get an
insight into how the agent makes its decisions by looking at
how SHAP assigns importance to the input features for the
actions selected.

A. Lever manipulation

The results from the lever manipulation experiments can
be seen in figures 3a to 3c, where the results were achieved
by randomly selecting five different start and goal conditions,
and running these over five episodes for both the simulated
and physical platforms. First we will discuss the results from
the simulated environments in Figure 3a and Figure 3b.
These results are quite good and show smooth trajectories

5https://youtu.be/eyPmYoAZqNA

https://youtu.be/eyPmYoAZqNA 


Fig. 3: Lever angle errors for all episodes and platforms
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(b) Error, Gazebo after transfer learning
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Fig. 4: Task space trajectories for the real-world manipu-
lator, with indications for changes in gripper state. The y-
coordinate is constant since the first joint is not moved.

Episode |θstart − θgoal| Initial distance from end-effector to lever

1 1.21719255 rad 0.2674m
2 1.56957698 rad 0.1763m
3 1.03069065 rad 0.1742m
4 0.44181838 rad 0.1833m
5 1.14932491 rad 0.2508m

TABLE II: Initial situations for the experiments

for all episodes. Some episodes take more time to complete
than others, for instance, Episode 1 and Episode 5. From
Table II we can see that these two episodes are when
the lever initiates furthest away from the manipulator, and
the initial lever angle error is also among the largest, so
naturally, these episodes are the most time-consuming. The
performance in both simulated environments is also quite
similar, with Gazebo being somewhat slower for all episodes.
The operation in Gazebo could be faster if more episodes of
transfer learning were done.

We will now discuss the differences between the physical
environment and simulated environments. From the plots of
Episode 2 and Episode 3 in Figure 3c, which show the
performance in the physical environment, it is noticeable
that the performance is not as good as in the simulated
environments. This can also be seen in Figure 4, especially
in Episode 2, where the trajectory in the bottom right
corner seems chaotic. This discrepancy in the real-world
results likely stems from modeling errors in the simulated
environments compared to the real-world environment. This
phenomenon is described in [30] as under-modeling. This
under-modeling is especially noticeable in Episode 2, where
the manipulator first moves the lever too far, and then when
it tries to correct this, it first tries to grasp too low on the
lever and instead grasps the base of the lever. In Episode 3
and Episode 4, the manipulator also first moves the lever too
far. This could indicate that both the dimensions of the lever
and the friction of the lever could be under-modeled in the
simulators. If more effort was made to more accurately model
the friction and dimensions of the lever, these problems could
have been avoided. However, friction is notoriously hard to
model, and it is also possible that the effort to make the
simulated lever more similar to the real lever, would fail.
It is important to note that the agent was not trained at
all on the real manipulator. If safe training on the physical
manipulator could be implemented, this would likely increase
the performance by enabling the agent to learn how to act



Fig. 5: SHAP values for action a1 in Episode 1

Fig. 6: SHAP values for action a2 in Episode 1

Fig. 7: SHAP values for action a3 in Episode 1

Fig. 8: SHAP values for action a4 in Episode 1

according to the real environment, and not according to the
simulation.

A possible way to improve the results from the real-
world experiments could be to use Dynamics randomization.
This technique was proposed in [8] and involves using a
Recurrent Neural Network (RNN) to enable the agent to
approximate the dynamics of the system while randomizing
the dynamics of the simulated system between episodes. This
technique could, for instance, be applied so that the agent can
approximate the dynamics of the real-world lever.

As can be seen in the literature, the advantages and
disadvantages of DRL compared to more traditional robotic
control methods are many. However, the main disadvantage
of robotic DRL is arguably the lack of explanation in the
agent’s decisions and the general trustworthiness of the
agent. This disadvantage was attempted to be remedied by
using SHAP in this paper.

B. SHAP explanations

The SHAP values plotted over the operation in Episode
1 can be seen in figures 5 to 8. In the plots, the x-axis
corresponds to the step numbers on the x-axis of the plot
in Figure 3c. According to these SHAP values, the most
important states for the agent to make its decisions are
the current lever angle and the desired lever angle. This
conforms with intuition since, without these two states, it
would be virtually impossible for the agent to move the lever
to the desired lever angle. Other important states according to
SHAP are the relative distance on the x- and z-axis between
the end-effector and the lever’s base. This also makes sense,
since these two states, combined with the current lever angle,
can be used to calculate where the end-effector is relative to
the lever. However, it is surprising that the manipulator’s
joint angles contribute so little to the actions. Intuitively, the
angles of the manipulator’s joints should be important for
knowing which action to execute, considering that actions 1-
3 correspond to how these joints should be moved. It is also
possible that the validity of these SHAP values might be put
into question. SHAP assumes that all states are independent,
which they might not be in most robotics applications [31].

Other than which states are important for the decisions of
the agent, it is difficult to interpret these plots in a way that
either increases or decreases the trust in the agent’s decisions.
An interesting point was made by [31] regarding whether
SHAP contributes to understanding whether or not a decision
is correct. They state that humans often explain by using
contrastive statements (e.g. why A rather than B). It might
be difficult to use a feature attribution method for this since
they only describe why and not why not. It might be that for
such complex problems as robotic manipulation, it is not that
helpful to use a single tool to explain all problems. Instead,
it might be beneficial to attempt to tailor the explanation
mechanism to the use-case [31]. The creators of LIME say
in [18], that for an explanation to be easy to understand,
the features themselves should be easy to understand. They
also say that the features used by the ML model and inputs
used by the explanation model need not necessarily be the
same if this can make the explanations more understandable.
It is possible that the quality of the explanations could be
increased if the features were transformed into an input that
is more easily understood (e.g. by going from joint space to
task space).

DRL research often seems to have the goal to either
increase the performance of the agents or to make algo-
rithms that can solve even more complex environments.
Better performance is arguably important, but as long as
the decisions of the agents cannot be explained, DRL will
likely remain a tool for solving toy problems, and will not
be used in safety-critical applications. This is why increasing
the understanding of the agents, for instance, through XAI
methods might be necessary. The implementations in this
paper aim at demonstrating how well a state-of-the-art XAI
method works on a robotic manipulator, and for identifying
the right questions to come up with improved methods that



will help make DRL safer in such applications.

V. CONCLUSION

In this paper, we have shown how a Deep Reinforcement
Learning policy can be implemented on a real-world robotic
manipulator using ROS and used to manipulate objects, in
this case, a lever. Hindsight Experience Replay simplifies
the process of designing a reward function and is useful
for a complex system such as a robotic manipulator. The
agent performs very well when controlling the simulated
manipulator, and performs comparably for most episodes
when controlling the real-world manipulator. As stated in
the discussion, the differences between the performance in
the simulated and real environments likely stems from under-
modeling of the lever in the simulations.

To explain the agent’s decisions, we implemented the Ex-
plainable Artificial Intelligence method SHAP, which gives
results that mostly agree with human intuition. The two
most important states, according to SHAP, are the current
lever angle and the goal lever angle, which is reasonable.
However, it is unexpected that some states that seem like
should be important, such as the joint variables, are not very
important according to SHAP. This divergence from human
intuition may stem from correlations between the states in the
system, which may make the Shapley value approximation
less accurate.
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