
A Design Method of an Embedded Real-Time Simulator for Electric
Drives using Low-Cost System-on-Chip Platform

Aravinda Perera1, Roy Nilsen1, Thomas Haugan1, Kjell Ljøkelsøy2

1 Norwegian University of Science and Technology, Norway
2 SINTEF Energy Research, Norway

Corresponding author: Aravinda Perera, aravinda.perera@ntnu.no

Abstract
This paper presents a modular and easily reusable Zynq System-on-Chip (SoC) based Embedded Real-
Time Simulator (ERTS) aimed for rapid prototyping of electric drives. The power hardware components
of the drive including the voltage source converters (VSC) is programmed in the field programmable gate
array (FPGA) fabric of the SoC to achieve real-time emulation. The control algorithms of the electric
motor drive are programmed in the on-chip processor which can be used to drive either the physical- or
emulated- hardware. The ERTS is scaled in the per-unit system to enhance reusability irrespective of
the hardware ratings. The architectures and schematics of different partitions of the ERTS are illustrated.
The simulator is demonstrated using a position—sensorless, interior permanent magnet synchronous
machine (IPMSM) drive and compared against offline simulation for performance.

1 Introduction
In the process of developing electric motor drive
systems, the personal computer (PC) based offline
simulation-methods are extensively used, in
which, the common practice is to run the control
system in discrete- and the power components in
continuous- mode to emulate a physical motor
drive as close as possible. The type of the solver
and the size of the simulation time step (h) of these
simulation environments determine the stability
and the precision of the simulation. When the
switching frequency increases in the kilohertz
scale, h needs to be shrunk below microsecond-
level in order to precisely capture the switching
transients [1]. One of the main challenges with
smaller h in the PC-based simulations is that the
execution time becomes excessively elongated
particularly when simulating computationally
intensive systems. In [2], it is reported that the
offline simulation can consume beyond 20000
more time than a real-time simulator when power
electronic applications are concerned.
The digital real-time simulation (DRTS)
technologies [3] that can solve the model
equations taking a time-step which is equal to the
real-world clock, are able to yield real-time results
emulating the physical systems. SoC-based
emulation, which falls into the ERTS-category, is
one such method that exploits the inherent
parallelism in its FPGA fabric in computing the

dynamic mathematical models. Implementation of
all or parts of the components of the motor drive in
the SoC-platform makes hardware-in-the-loop
(HIL) scenarios possible in order to evaluate all or
certain components of the physical system
nondestructively and cost-effectively. In the same
time, owing to the on-chip processor(s) in the SoC
that can execute the actual control software, the
software-in-the-loop (SIL) also becomes possible
to validate control software while not having
access to the actual hardware or experimental
setup. In this manner, ERTS can dramatically
reduce the time-to-market and the development
costs of electric drives. Having both FPGA and
processors in the same package along with other
hardware resources makes SoCs an easily
customizable yet, compact tool with high data-
fidelity [4]. The cost of a modern SoC is just a
fraction of the commercially available DRTS
technologies and the space requirement, too, is
negligible compared to its counterparts, which
allow a MW-scale motor drive system be emulated
in a pocket-size digital electronic card.
Consequently, ERTS is emerging to be an
essential tool in the electric drive development
process, although their implementation details are
not prevalent. An approach to realize the electric
drives in the FPGA, including the control system,
are elaborated in [5] and [6]. Authors in [7], and [8]
employ an SoC to implement a doubly-fed
induction generator and its control either fully

PCIM Europe digital days 2021, 3 – 7 May 2021

ISBN 978-3-8007-5515-8 © VDE VERLAG GMBH · Berlin · Offenbach1622

hardware or fully software and evaluate the pros
and cons. In [9], an ERTS is developed for modular
multilevel converter and control in which, the plant
is emulated in the processor. Zynq SoC has been
employed only to implement the motor drive
control algorithm in [10] in which the FPGA is used
for Pulse-Width Modulation (PWM) and interrupt
generation. A comprehensive ERTS investigation
is available in [1], although its application is not
focusing electric drives. An IPMSM drive is
simulated in [11], where two discrete FPGA and
DSP chips have been employed instead of a SoC.

This paper aims to present a design method
of a modularized, scalable, reconfigurable, and
easily programmable ERTS for electric drives
using a state-of-the-art SoC. The proposed
simulator effectively exploits the processor system
and FPGA of the SoC to emulate a range of
industrial electric drives. The ERTS is
demonstrated by implementing a sensorless
IPMSM drive. In addition to the ERTS-architecture
and implementation, the real-time results are
compared with offline simulations for the numerical
precision and execution time.

2 Application: Sensorless IPMSM
Drive System

2.1 IPMSM Dynamic Model
The voltage model and current model of the
electrical machine is in stator co-ordinates, when
given in the per-unit (pu) system:

s
1 ;

s
s s s s sss

s ss s s m
n

d
u r i i

dt
x (1)

Here, ωn is the nominal rotational frequency. The
superscript and subscript denote the reference
frame and the location of the quantity (s-stator, r-
rotor, m-magnet) respectively. When the currents
are chosen as the state variables, (1) becomes as
follows in the rotor coordinates:

s
s

i i
rr

r r r rrs
s ss s m

n

du r i n n
dt

x j x j (2)

Here ϑ is the electrical angle of the mechanical
position p*ϑmech , where p is the number of pole
pairs. Electrical speed is denoted by n. The rotor-
oriented inductance matrix becomes:

0 0 1
, , [] , [0]

0 1 0
d r rr T T

s d q ms m
q

x
i i i

x
x j (3)

2.2 Position and Speed Estimation Model
The position estimation adopts the Active Flux
Observer presented in [12]. Accordingly, a quantity
called ‘active flux’ (T) is defined as follows.

,
ˆ ˆˆ ˆ ˆ () = - s s s s s s s

n s q qs s s scompT s u
u r i u dt x i x i (4)

In this active flux observer structure, the current
model and voltage model are employed as the
reference and adaptive model respectively. Thus,
the reference model is given as follows:

,
ˆ

rr rr
s ss i m
ix (5)

The adaptive model is given as follows:

Fig. 1: Overview of the proposed Embedded Real-time Simulator

PCIM Europe digital days 2021, 3 – 7 May 2021

ISBN 978-3-8007-5515-8 © VDE VERLAG GMBH · Berlin · Offenbach1623

,

ˆ ˆ()s s s s
n ss s comps u

u r i u dt (6)
From which, the error, εs,o is calculated and
attempted to eliminate with the aid of a
proportional-integral (PI) compensator.
 (7)
Subsequently, by using (8), the estimated -rotor
position and -speed can be calculated.

,

,

, , , ,
2 2

, ,

ˆ
atan 2

ˆ

ˆ ˆ ˆ ˆ1 1

ˆ ˆ()

s
T
s
T

s s s s
T T T T

s s
samp T T

k
k

k k k k
n

T k k

 (8)

2.3 Drive Control System
The maximum torque per ampere (MTPA) strategy
is applied in the drive control system. The general
control block diagram of the IPMSM drive is given
in the Fig. 2. The measured voltages and currents
are fed into transformation blocks that use the
estimated rotor position in their operations. The
reference-currents are calculated based on (9).
The output voltage can be either directly measured
from the output of the drive or estimated from the
measured dc-link voltage.

 (9)

3 ERTS Overview and Architecture
3.1 Hardware
PicoZed7030 from Avnet is used as the System-
on-Module (SoM) that contains the Zynq 7030
SoC. This SoC houses two units of ARM Cortex -

A9 processors and an FPGA-section. An
application specific carrier-board is used access
the communication physical layers and
input/output of the SoM. The carrier-board also
contains a high-speed analog to digital converter
(ADC) and digital to analog converter (DAC) -
chips. See Fig. 10 for overview of the hardware.

3.2 ERTS Architecture
The proposed ERTS, illustrated in the Fig. 1.,
contains three main components; 1) Application
software program 2) Generic Intellectual Property-
(IP) Cores (GIPC) 3) the Hardware Emulator,
(HWE). This three-part ERTS allows individual
development of each part and test with use of
already validated remaining parts. Also, such
partitioning maximizes the reusability of the
common components, ensures uniformity across
simulations, minimizes design and simulation
failures, and help diagnose the faults or design
errors rapidly. Also, by retaining much of the ERTS
modularized, the proposed simulator can rapidly
be modified to emulate different motor-types and
designs, converters, or mechanical loads.
The proposed simulator is also designed using the
per-unit system which makes its main components
common across machines, loads and converters
irrespective of their ratings.

3.3 Application Software
This part contains the per-unit scaling, reference
frame transformations, MTPA and flux-weakening
strategies, field-oriented control algorithms,
reference voltage-vector calculations, the motor
flux models, and active flux observer algorithms
given in the (1) through (8), among other. These
are programmed in the processor of the SoC, with
the aim of achieving iterative programmability,
ease of expandability and performance tuning with
the help of a high-level programming language.
Application software program is modularized into 4
different layers as given in the Fig. 3, where states
and references are cascaded only between the
neighboring layers. To ensure modularity, and
structure, C++ programming language is chosen

, , ,
ˆ ˆs s

s o s i s u

2 23
3

*

*

3 3 3
q d erefm m

m
d

q d

eref
q

m q d d

x x

i
x x

i
x x i

Fig. 3: Modularized architecture of the ERTS
Application Software

Fig. 2: Block diagram of position-sensorless, field
oriented controlled IPMSM Drive

PCIM Europe digital days 2021, 3 – 7 May 2021

ISBN 978-3-8007-5515-8 © VDE VERLAG GMBH · Berlin · Offenbach1624

aiming to exploit its object-oriented programming
capabilities.

3.4 Generic IP Cores (GIPC)
This part of the ERTS contains a set of building
blocks programmed on the FPGA fabric of the SoC
and applicable for a wide range of electric drives
and other power electronic applications. These
include PWM and interrupt generation IP core,
ADC-receiver, DAC, digital filters, and the fastest
protection schemes. These IP cores are
accessible to both the physical power hardware as
well as the hardware emulation.

3.5 Hardware Emulator IP Core
This is the entity in the FPGA fabric that contains
the digital replication of the power hardware of the
electric drive. The emulator encompasses two
units of 2-level VSCs to facilitate multiphase
machines or separately excited machines, the
rotating machine model, the mechanical load
model, and the digital replication of the analog front
end, known as the scaling block in this context.
The emulator is designed in the per-unit system
and it is parameterizable from the application
software, thus this IP Core can remain unchanged
when simulating different electric drives. The
scaling block ensures that the generic IP cores will
not see a difference between the physical
hardware and the emulator when exchange of
variables.

3.5.1 Programming Language
The Simulink library, Xilinx System Generator
(XSG), a vendor specific schematic approach is
chosen to program the hardware emulator in the
FPGA fabric, which will eventually convert the
schematics to a preferred hardware descriptive
language and also generate drivers for the IP
cores. The basic combinatory and sequential
building blocks offered by the System Generator
library within the Matlab/Simulink environment
ease the FPGA programming of rather complex
models [6]. Also, since the FPGA program is
already in the Matlab environment with XSG, the
program can be fairly quickly ported to other digital
real-time simulators as such as OPAL-RT.

3.5.2 Numerical Representation
The AXI-interface in the SoC is 32-bit, therefore
the ERTS word-length is kept at 32-bits for the
convenience of data exchange with the on-chip
processor. When real-time simulation is
concerned, the 32-bit fixed-point representation
guarantees higher numerical precision and

demand less internal resources over the 32-bit
floating point representation [6], [8], [13].
The per-unit scaling of the emulator further
enhances the numerical precision such that its
rated voltages and currents become 1 unit, thus
the range is minimized to maximize the number of
precision bits of the 32-bit fixed-point format.
Applied precision is 32.28 which means, 28 bits
are retained for precision having a resolution of
3.725 x 10-9. While leaving the most significant bit
to represent the sign, the chosen precision offers
a range between +7.99 to -8 which is sufficient
when per-unit system is concerned.

3.6 ERTS Clock Settings
Three different clock cycles, as tabulated in the
Table 1, are utilized to represent the physical
motor drive system as close as possible in the
ERTS. The subcomponents that require fastest
processing speeds like the GIPC and converter
block in the emulator take advantage of the FPGA
clock. The processor-interrupt that is twice the
speed of the PWM sets the processor interrupt
cycle, which is sufficient for the application
software. Solver-clock is used in the solver of the
discretized rotating machine and mechanical load
models in the hardware emulation. The ratio
between the Tstep to the mechanical time constant
determines the stability of the discrete system,
which is preferred to be as small as possible. Tstep
will also determine the integration intervals, thus
the shorter integration intervals will yield more
precise results. Instead of applying the fast FPGA-
clock, a much slower solver clock is used to slow
down the processing speed of the rotating
machine- and the mechanical load- realizations in
the FPGA fabric with the aim of emulating their
real-world sluggishness in the digital hardware.
Such processing speed reduction without
compromising the numerical precision and the
stability will help reduce the power consumption
and heat generation from the FPGA of the SoC.

Table 1: Clock settings in the proposed ERTS

Clock Frequency Time step
FPGA Clock 100 MHz TFPGA = 10 ns

Processor interrupt cycle 8 kHz Tsamp = 125 μs

Solver clock 1 MHz Tstep = 1 μs

3.7 Discretization
In codifying the emulation models in the FPGA
fabric, Euler method (10) is applied as this method
is sufficient in the precision.

PCIM Europe digital days 2021, 3 – 7 May 2021

ISBN 978-3-8007-5515-8 © VDE VERLAG GMBH · Berlin · Offenbach1625

1

1
2 1

1samp

zs
T z

 (10)

When control compensation schemes are
concerned, it is mainly the proportional-integral
(PI) compensation is applied, and they are
implemented in the processor software using the
trapezoidal method as given below, due to the
ease of implementation and reasonable
performance.

 (11)

4 Hardware Emulator Development
4.1 Overview
The overview of the Hardware Emulator IP core is
as illustrated in Fig. 4. Apart from the motor model,
its remaining subcomponents can be ported
across different AC- or DC- motor types. The
different colors of the arrows interpret where the
respective data is carried to/from: black arrows
to/from the processor; gray arrows within the same
IP Core; purple to/from the other IP cores. The blue
arrowed data can be viewed from an oscilloscope
using the DAC. The development of main
subcomponents is unveiled subsequently where
some of the subcircuits are omitted to simplify the
illustration. Pre/post -transformation blocks in the
Fig. 4 are the digital implementation of Park- and
Clarke- transformations which are not illustrated
due to space restrictions.

4.2 Converter Implementation
The voltage source converters are modelled using
the switching function model [14] and its schematic
is presented in the Fig. 5. Accordingly, the gate
signals are supplied from the modulator IP core
which resides outside the hardware emulator IP
core, yet inside the FPGA fabric.

The converter logic is as follows: during the
deadtime, if the current is positive, choose the
ground DC-rail. In the same instance, if the current
is negative, choose the positive DC-rail. During the
other times, choose the gate signal command.

4.3 IPMSM Implementation
The schematic is found in the Fig. 6 in which the
motor model assumes sinusoidal flux distribution
in the stator, no cross-coupling between the d- and
q- axes, thus no secondary saliencies apart from
the rotor-geometric saliency.
IPMSM model, when discretized, becomes:

(12)

The electrical parameters and constants are
passed from the application software program
during the initialization of simulator. In principle,
any of the intermediate- or boundary- digital
signals can be passed to the processor or DAC to
be monitored using an oscilloscope.

4.4 Mechanical Load Implementation

Fig. 5: Schematic of voltage source converter
implementation within the hardware emulator IP core

[1] [] 1

[] []

[1] [] 1

[] [] []

n s
d d step

d

n
step d q q

d

n s
q q step

q

n
step q d d m

q

r
i k i k T

x

T u k n k x i k
x

r
i k i k T

x

T u k n k x i k n k
x

1
step

zs
T

Fig. 4: Overview of the Hardware Emulation IP
Core

PCIM Europe digital days 2021, 3 – 7 May 2021

ISBN 978-3-8007-5515-8 © VDE VERLAG GMBH · Berlin · Offenbach1626

The mechanical load is modelled as follows and it
is illustrated in the Fig. 7

(13)

4.5 Scaling Block
The scaling block as in the Fig. 8 ensures the
currents and voltages from the emulator passed to
the GIPC (for digital filtering and multiplexing)
contain the identical volts-per-bit and amperes-
per-bit resolution of those obtained from the
physical hardware. Owing to this identicality,
neither the GIPC nor the application software will
notice a difference between the hardware emulator
and physical hardware.
With respect to the gains of each blocks given in
the Fig. 8, one can find the gains for the scaling
block using (14) which is common for both voltages
and currents. Since the emulator is designed in
per-unit scale, but the GIPC is scaled for SI values,

the variablepu i.e. u(t), i(t) must be multiplied by the
base values (Kbase) in addition as seen in the
formula.

_ _ AFE base
pu

trans RAW

K K
variable per bit variable

K K
 (14)

4.6 Development Procedure
The Matlab development environment can be
exploited not only to design the hardware
emulation models, but also to identify the
satisfactory fixed-point precisions, ranges and test
the closed-loop performance using the floating-
point drive controller. As shown in the Fig. 9, both
the Xilinx System Generator model as well as the
Simulink models can be run in parallel to identify
the numerical errors, thus finetune the fixed-point
precisions. Once the models are ready for
synthesis, they can be exported to the Vivado
integrated development environment where the
final synthesis and bitstream generation is
performed. Table 2 presents the internal FPGA-
resources utilized by the hardware emulator. The
bitstream is then linked to the Xilinx Software
Development Kit (SDK) for target-oriented
application software and firmware development.
Table 2: Resource utilization of implemented emulator

Resource Used % of the Total
Slice Look-Up Tables 4937 6.3%

Slice registers 5634 3.6%

Block RAMs 0 0% (total 265)

Block DSPs 0 0% (total 400)

5 Real-Time Simulation
The proposed ERTS is experimented against the
offline simulation (Matlab/Simulink R2019a) model
for the IPMSM drive with use of simulation data
tabulated in the Table 3. The offline simulation
model utilizes the built-in ode23tb solver with
variable time step. The current controllers have
been tuned with use of the same control
parameters in both the simulators.

Fig. 6: Schematic of the IPMSM per-unit model
implementation within the hardware emulator IP core

Fig. 7: Schematic of mechanical load model
implementation within the hardware emulator IP

Fig. 8. Scaling block within the emulator IP Core

2
2

,

[1] [] [] []

()

step
e L

m

L n L extern m
n

T
n k n k k k

T

Jk sign n n T
S

PCIM Europe digital days 2021, 3 – 7 May 2021

ISBN 978-3-8007-5515-8 © VDE VERLAG GMBH · Berlin · Offenbach1627

Table 3. Electric drive data for simulations

Fig. 10 presents the experimentation setup of the
ERTS. The PC is used for
programming/debugging while the oscilloscope is
used to monitor high bandwidth real-time
variables. In general, the variables of the ERTS
can be exported to plot in the Matlab environment
as it is seen in the next section.

5.1 ERTS Performance
The ERTS performance is analyzed with respect
to the execution time of a given simulation run and
the numerical precision. For a 1-second simulation
run of the IPMSM drive, the ERTS consumed just

the run-time of 1 second while, the offline method
took ~550 seconds which means a remarkable
time saving with the ERTS. The numerical
precision of the ERTS is evaluated using the root-
mean-square (rms) error with reference to the
offline simulation variable (with double precision
floating-point). Fig. 11 presents the motor d- and q-
axes currents processed through a moving
average filter in both simulators, when the
reference torque receives a step command from 0
to 0.8 pu. The corresponding transient errors are
plotted in the Fig. 12. For the same scenario, the
steady-state rms errors for d- and q- axes currents
were calculated to be 7.16x10-4 and 3.67x10-4
respectively in per-unit. Fig. 13 presents the
corresponding torque-step and response. Fig. 14
illustrates the rotor position from the sensorless
algorithm and the motor model in the hardware
emulation, using the DAC-features of the ERTS.

5.2 ERTS Limitations
Some of the notable limitations of the proposed
ERTS with respect to a physical electric drive: the
VSC is modeled using the switching function
model in the hardware emulator, which may not
accurately represent the converter during the
regenerative modes [5]. The emulated motor
model, too, does not entail the secondary

 Value Unit

Nominal voltage, UN 220 V

Nominal current, IN 51 A

Rated frequency, fN 35 Hz

Pole pairs, p 1 -

Nominal speed, N 2100 rpm
Motor parameter vector
[

m d
x

q
x

s
r]T [0.66 0.4 1 0.009] T pu

Switching frequency, fsw 4 kHz

Fig. 10: Embedded Real-Time Simulator Test Setup

Fig. 11: d- and q- axes currents of the motor and their
respective references in using the two simulators

Fig. 13: Actual torque -response from the ERTS and
the offline simulator for a step reference change

Fig. 12: Transient current -errors of the real-time
simulator with respect to the offline simulator

Fig. 9: IPMSM drive co-simulation: Simulink floating
point double precision model (gray blocks) in parallel
with XSG fixed-point, 32.28-precision model (white
blocks) using common floating-point control logic.

PCIM Europe digital days 2021, 3 – 7 May 2021

ISBN 978-3-8007-5515-8 © VDE VERLAG GMBH · Berlin · Offenbach1628

saliencies nor the saturation effects which limits its
performance precision in certain operating ranges.

6 Conclusion
An inexpensive, modular, portable, and rapidly
reusable Embedded Real-Time Simulator targeted
for electric motor drives has been presented in this
paper. Both the software and hardware
architectures of the simulator and the detailed
design method of the hardware emulation have
been discussed. The internal resource utilization of
the FPGA is kept at a minimum in designing the
real-time emulation. The overall simulation is
significantly accelerated in the given sensorless
control application at the expense of negligible
numerical error. The simulator sets the basis to
expand its model-behavior as close as possible to
the real-world systems and to include diagnosis
and prognosis of faults in the drives to develop
towards a real-time digital twin.

7 References:
[1] M. Dagbagi, A. Hemdani, L. Idkhajine, M. W.

Naouar, E. Monmasson, and I. Slama-Belkhodja,
“ADC-Based Embedded Real-Time Simulator of a
Power Converter Implemented in a Low-Cost
FPGA: Application to a Fault-Tolerant Control of a
Grid-Connected Voltage-Source Rectifier,” IEEE
Trans. Ind. Electron., vol. 63, no. 2, pp. 1179–1190,
2016.

[2] A. Sanchez, A. De Castro, and J. Garrido, “A
comparison of simulation and hardware-in-the-loop
alternatives for digital control of power converters,”
IEEE Trans. Ind. Informatics, vol. 8, no. 3, pp. 491–
500, 2012.

[3] M. D. Omar Faruque et al., “Real-Time Simulation
Technologies for Power Systems Design, Testing,
and Analysis,” IEEE Power Energy Technol. Syst.
J., vol. 2, no. 2, pp. 63–73, 2015.

[4] L. Crockett, R. Elliot, M. Enderwitz, and R. Stewart,

The Zynq Book, 1st ed. Glasgow: Strathclyde
Academic Media, 2014.

[5] G. G. Parma and V. Dinavahi, “Real-time digital
hardware simulation of power electronics and
drives,” IEEE Trans. Power Deliv., vol. 22, no. 2,
pp. 1235–1246, 2007.

[6] N. Roshandel Tavana and V. Dinavahi, “A General
Framework for FPGA-Based Real-Time Emulation
of Electrical Machines for HIL Applications,” IEEE
Trans. Ind. Electron., vol. 62, no. 4, pp. 2041–
2053, 2015.

[7] D. Tormo, L. Idkhajine, E. Monmasson, and R.
Blasco-Gimenez, “Evaluation of SoC-based
embedded Real-Time simulators for
electromechanical systems,” IECON Proc.
(Industrial Electron. Conf., pp. 4772–4777, 2016.

[8] D. Tormo, L. Idkhajine, E. Monmasson, V.-A.
Ricardo, and R. Blasco-Gimenez, “Embedded
real-time simulators for electromechanical and
power electronic systems using system-on-chip
devices,” Math. Comput. Simul., no. 158, pp. 326–
343, 2019.

[9] M. Ricco, M. Gheorghe, L. Mathe, and R.
Teodorescu, “System-on-Chip Implementation of
Embedded Real-Time Simulator for Modular
Multilevel Converters,” in ECCE 2017- IEEE
Energy Conversion Congress and Exposition,
Proceedings, 2017, pp. 1500–1505.

[10] D. Mohammadi, L. Daoud, N. Rafla, and S.
Ahmed-Zaid, “Zynq-based SoC implementation of
an induction machine control algorithm,” Midwest
Symp. Circuits Syst., vol. 0, no. October, pp. 16–
19, 2016.

[11] E. D. M. Fernandes, D. R. Huller, A. C. Oliveira,
and W. R. N. Santos, “Real-time simulator of
interior permanent-magnet synchronous motor
based on FPGA devices,” in Brazilian Power
Electronic Conference (COBEP), 2017, pp. 11–16.

[12] M. C. Paicu, I. Boldea, G.-D. Andreescu, and F.
Blaabjerg, “Very low speed performance of active
flux based sensorless control: interior permanent
magnet synchronous motor vector control versus
direct torque and flux control,” IET Electr. Power
Appl., vol. 3, no. 6, p. 551, 2009.

[13] A. Sanchez, E. Todorovich, and A. de Castro,
“Exploring the limits of floating-point resolution for
hardware-in-the-loop implemented with fpgas,”
Electron., vol. 7, no. 10, pp. 1–12, 2018.

[14] H. Jin, “Behavior-Mode Simulation of Power
Electronic Circuits,” IEEE Trans. POWER
Electron., vol. 12, no. 3, pp. 1149–1154, 1997.

Fig. 14: Rotor position from: the hardware emulation
(blue), the estimation using the observer (yellow)

PCIM Europe digital days 2021, 3 – 7 May 2021

ISBN 978-3-8007-5515-8 © VDE VERLAG GMBH · Berlin · Offenbach1629

