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Abstract
This paper presents a modular and easily reusable Zynq System-on-Chip (SoC) based Embedded Real-
Time Simulator (ERTS) aimed for rapid prototyping of electric drives. The power hardware components
of the drive including the voltage source converters (VSC) is programmed in the field programmable gate 
array (FPGA) fabric of the SoC to achieve real-time emulation. The control algorithms of the electric 
motor drive are programmed in the on-chip processor which can be used to drive either the physical- or
emulated- hardware. The ERTS is scaled in the per-unit system to enhance reusability irrespective of 
the hardware ratings. The architectures and schematics of different partitions of the ERTS are illustrated. 
The simulator is demonstrated using a position—sensorless, interior permanent magnet synchronous 
machine (IPMSM) drive and compared against offline simulation for performance.

1 Introduction
In the process of developing electric motor drive 
systems, the personal computer (PC) based offline 
simulation-methods are extensively used, in 
which, the common practice is to run the control 
system in discrete- and the power components in
continuous- mode to emulate a physical motor
drive as close as possible. The type of the solver 
and the size of the simulation time step (h) of these 
simulation environments determine the stability 
and the precision of the simulation. When the 
switching frequency increases in the kilohertz 
scale, h needs to be shrunk below microsecond-
level in order to precisely capture the switching 
transients [1]. One of the main challenges with 
smaller h in the PC-based simulations is that the 
execution time becomes excessively elongated
particularly when simulating computationally 
intensive systems. In [2], it is reported that the 
offline simulation can consume beyond 20000 
more time than a real-time simulator when power 
electronic applications are concerned.
The digital real-time simulation (DRTS) 
technologies [3] that can solve the model 
equations taking a time-step which is equal to the 
real-world clock, are able to yield real-time results 
emulating the physical systems. SoC-based 
emulation, which falls into the ERTS-category, is 
one such method that exploits the inherent 
parallelism in its FPGA fabric in computing the 

dynamic mathematical models. Implementation of 
all or parts of the components of the motor drive in
the SoC-platform makes hardware-in-the-loop
(HIL) scenarios possible in order to evaluate all or 
certain components of the physical system
nondestructively and cost-effectively. In the same 
time, owing to the on-chip processor(s) in the SoC 
that can execute the actual control software, the 
software-in-the-loop (SIL) also becomes possible 
to validate control software while not having 
access to the actual hardware or experimental 
setup. In this manner, ERTS can dramatically 
reduce the time-to-market and the development 
costs of electric drives. Having both FPGA and 
processors in the same package along with other 
hardware resources makes SoCs an easily 
customizable yet, compact tool with high data-
fidelity [4]. The cost of a modern SoC is just a 
fraction of the commercially available DRTS 
technologies and the space requirement, too, is 
negligible compared to its counterparts, which 
allow a MW-scale motor drive system be emulated 
in a pocket-size digital electronic card.
Consequently, ERTS is emerging to be an
essential tool in the electric drive development
process, although their implementation details are
not prevalent. An approach to realize the electric 
drives in the FPGA, including the control system, 
are elaborated in [5] and [6]. Authors in [7], and [8]
employ an SoC to implement a doubly-fed 
induction generator and its control either fully 
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hardware or fully software and evaluate the pros 
and cons. In [9], an ERTS is developed for modular 
multilevel converter and control in which, the plant 
is emulated in the processor. Zynq SoC has been 
employed only to implement the motor drive 
control algorithm in [10] in which the FPGA is used 
for Pulse-Width Modulation (PWM) and interrupt 
generation. A comprehensive ERTS investigation 
is available in [1], although its application is not 
focusing electric drives. An IPMSM drive is 
simulated in [11], where two discrete FPGA and 
DSP chips have been employed instead of a SoC.  

This paper aims to present a design method 
of a modularized, scalable, reconfigurable, and
easily programmable ERTS for electric drives
using a state-of-the-art SoC. The proposed 
simulator effectively exploits the processor system 
and FPGA of the SoC to emulate a range of 
industrial electric drives. The ERTS is 
demonstrated by implementing a sensorless 
IPMSM drive. In addition to the ERTS-architecture 
and implementation, the real-time results are 
compared with offline simulations for the numerical 
precision and execution time.

2 Application: Sensorless IPMSM 
Drive System

2.1 IPMSM Dynamic Model
The voltage model and current model of the 
electrical machine is in stator co-ordinates, when 
given in the per-unit (pu) system: 

s
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s s s s sss
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u r i i

dt
x         (1)

Here, ωn is the nominal rotational frequency. The 
superscript and subscript denote the reference 
frame and the location of the quantity (s-stator, r-
rotor, m-magnet) respectively.  When the currents 
are chosen as the state variables, (1) becomes as 
follows in the rotor coordinates:
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Here ϑ is the electrical angle of the mechanical 
position p*ϑmech , where p is the number of pole 
pairs. Electrical speed is denoted by n. The rotor-
oriented inductance matrix becomes:
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2.2 Position and Speed Estimation Model
The position estimation adopts the Active Flux 
Observer presented in [12]. Accordingly, a quantity 
called ‘active flux’ ( T) is defined as follows.

,
ˆ ˆˆ ˆ ˆ ( )   =  - s s s s s s s

n s q qs s s scompT s u
u r i u dt x i x i (4)

In this active flux observer structure, the current 
model and voltage model are employed as the 
reference and adaptive model respectively. Thus, 
the reference model is given as follows:
                     

,
ˆ

rr rr
s ss i m
ix                 (5)

The adaptive model is given as follows:

Fig. 1: Overview of the proposed Embedded Real-time Simulator
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From which, the error, εs,o is calculated and 
attempted to eliminate with the aid of a 
proportional-integral (PI) compensator.  
                                                                     (7)     
Subsequently, by using (8), the estimated -rotor 
position and -speed can be calculated. 
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2.3 Drive Control System 
The maximum torque per ampere (MTPA) strategy 
is applied in the drive control system. The general 
control block diagram of the IPMSM drive is given 
in the Fig. 2. The measured voltages and currents 
are fed into transformation blocks that use the 
estimated rotor position in their operations. The 
reference-currents are calculated based on (9). 
The output voltage can be either directly measured 
from the output of the drive or estimated from the 
measured dc-link voltage. 

 
           (9)  

 

 
 
       

 
 
3 ERTS Overview and Architecture  
3.1 Hardware 
PicoZed7030 from Avnet is used as the System-
on-Module (SoM) that contains the Zynq 7030 
SoC. This SoC houses two units of ARM Cortex -

A9 processors and an FPGA-section. An 
application specific carrier-board is used access 
the communication physical layers and 
input/output of the SoM. The carrier-board also 
contains a high-speed analog to digital converter 
(ADC) and digital to analog converter (DAC) -
chips. See Fig. 10 for overview of the hardware. 

3.2 ERTS Architecture 
The proposed ERTS, illustrated in the Fig. 1., 
contains three main components; 1) Application 
software program 2) Generic Intellectual Property-
(IP) Cores (GIPC) 3) the Hardware Emulator, 
(HWE). This three-part ERTS allows individual 
development of each part and test with use of 
already validated remaining parts. Also, such 
partitioning maximizes the reusability of the 
common components, ensures uniformity across 
simulations, minimizes design and simulation 
failures, and help diagnose the faults or design 
errors rapidly. Also, by retaining much of the ERTS 
modularized, the proposed simulator can rapidly 
be modified to emulate different motor-types and 
designs, converters, or mechanical loads.  
The proposed simulator is also designed using the 
per-unit system which makes its main components 
common across machines, loads and converters 
irrespective of their ratings. 

3.3 Application Software 
This part contains the per-unit scaling, reference 
frame transformations, MTPA and flux-weakening 
strategies, field-oriented control algorithms,
reference voltage-vector calculations, the motor 
flux models, and active flux observer algorithms 
given in the (1) through (8), among other. These 
are programmed in the processor of the SoC, with 
the aim of achieving iterative programmability, 
ease of expandability and performance tuning with 
the help of a high-level programming language.
Application software program is modularized into 4 
different layers as given in the Fig. 3, where states 
and references are cascaded only between the 
neighboring layers. To ensure modularity, and 
structure, C++ programming language is chosen 
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Fig. 3: Modularized architecture of the ERTS 
Application Software 

Fig. 2: Block diagram of position-sensorless, field 
oriented controlled IPMSM Drive 

PCIM Europe digital days 2021, 3 – 7 May 2021

ISBN 978-3-8007-5515-8 © VDE VERLAG GMBH · Berlin · Offenbach1624



aiming to exploit its object-oriented programming 
capabilities.

3.4 Generic IP Cores (GIPC)
This part of the ERTS contains a set of building 
blocks programmed on the FPGA fabric of the SoC 
and applicable for a wide range of electric drives 
and other power electronic applications. These 
include PWM and interrupt generation IP core, 
ADC-receiver, DAC, digital filters, and the fastest
protection schemes. These IP cores are
accessible to both the physical power hardware as 
well as the hardware emulation.

3.5 Hardware Emulator IP Core
This is the entity in the FPGA fabric that contains 
the digital replication of the power hardware of the
electric drive. The emulator encompasses two
units of 2-level VSCs to facilitate multiphase 
machines or separately excited machines, the
rotating machine model, the mechanical load
model, and the digital replication of the analog front 
end, known as the scaling block in this context.
The emulator is designed in the per-unit system 
and it is parameterizable from the application 
software, thus this IP Core can remain unchanged
when simulating different electric drives. The 
scaling block ensures that the generic IP cores will 
not see a difference between the physical 
hardware and the emulator when exchange of 
variables.

3.5.1 Programming Language
The Simulink library, Xilinx System Generator 
(XSG), a vendor specific schematic approach is 
chosen to program the hardware emulator in the
FPGA fabric, which will eventually convert the 
schematics to a preferred hardware descriptive 
language and also generate drivers for the IP 
cores. The basic combinatory and sequential 
building blocks offered by the System Generator 
library within the Matlab/Simulink environment
ease the FPGA programming of rather complex 
models [6]. Also, since the FPGA program is 
already in the Matlab environment with XSG, the 
program can be fairly quickly ported to other digital 
real-time simulators as such as OPAL-RT.

3.5.2 Numerical Representation
The AXI-interface in the SoC is 32-bit, therefore 
the ERTS word-length is kept at 32-bits for the
convenience of data exchange with the on-chip
processor. When real-time simulation is 
concerned, the 32-bit fixed-point representation 
guarantees higher numerical precision and 

demand less internal resources over the 32-bit
floating point representation [6], [8], [13].
The per-unit scaling of the emulator further 
enhances the numerical precision such that its 
rated voltages and currents become 1 unit, thus 
the range is minimized to maximize the number of 
precision bits of the 32-bit fixed-point format.
Applied precision is 32.28 which means, 28 bits 
are retained for precision having a resolution of 
3.725 x 10-9. While leaving the most significant bit 
to represent the sign, the chosen precision offers 
a range between +7.99 to -8 which is sufficient 
when per-unit system is concerned.

3.6 ERTS Clock Settings
Three different clock cycles, as tabulated in the 
Table 1, are utilized to represent the physical 
motor drive system as close as possible in the 
ERTS. The subcomponents that require fastest 
processing speeds like the GIPC and converter 
block in the emulator take advantage of the FPGA
clock. The processor-interrupt that is twice the 
speed of the PWM sets the processor interrupt
cycle, which is sufficient for the application
software. Solver-clock is used in the solver of the 
discretized rotating machine and mechanical load
models in the hardware emulation. The ratio 
between the Tstep to the mechanical time constant 
determines the stability of the discrete system, 
which is preferred to be as small as possible. Tstep
will also determine the integration intervals, thus 
the shorter integration intervals will yield more 
precise results. Instead of applying the fast FPGA-
clock, a much slower solver clock is used to slow 
down the processing speed of the rotating 
machine- and the mechanical load- realizations in 
the FPGA fabric with the aim of emulating their
real-world sluggishness in the digital hardware.
Such processing speed reduction without 
compromising the numerical precision and the 
stability will help reduce the power consumption 
and heat generation from the FPGA of the SoC.

Table 1: Clock settings in the proposed ERTS

Clock Frequency Time step
FPGA Clock 100 MHz TFPGA = 10 ns

Processor interrupt cycle         8 kHz Tsamp = 125 μs

Solver clock         1 MHz Tstep = 1 μs

3.7 Discretization
In codifying the emulation models in the FPGA 
fabric, Euler method (10) is applied as this method 
is sufficient in the precision.
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When control compensation schemes are 
concerned, it is mainly the proportional-integral 
(PI) compensation is applied, and they are 
implemented in the processor software using the 
trapezoidal method as given below, due to the 
ease of implementation and reasonable 
performance. 
 
                                                                        (11) 
 
4 Hardware Emulator Development 
4.1 Overview
The overview of the Hardware Emulator IP core is 
as illustrated in Fig. 4. Apart from the motor model, 
its remaining subcomponents can be ported 
across different AC- or DC- motor types. The 
different colors of the arrows interpret where the 
respective data is carried to/from:  black arrows 
to/from the processor; gray arrows within the same 
IP Core; purple to/from the other IP cores. The blue 
arrowed data can be viewed from an oscilloscope 
using the DAC. The development of main 
subcomponents is unveiled subsequently where 
some of the subcircuits are omitted to simplify the 
illustration. Pre/post -transformation blocks in the 
Fig. 4 are the digital implementation of Park- and 
Clarke- transformations which are not illustrated 
due to space restrictions. 

4.2 Converter Implementation  
The voltage source converters are modelled using 
the switching function model [14] and its schematic 
is presented in the Fig. 5. Accordingly, the gate 
signals are supplied from the modulator IP core 
which resides outside the hardware emulator IP 
core, yet inside the FPGA fabric. 

The converter logic is as follows: during the 
deadtime, if the current is positive, choose the 
ground DC-rail. In the same instance, if the current 
is negative, choose the positive DC-rail. During the 
other times, choose the gate signal command. 

4.3 IPMSM Implementation 
The schematic is found in the Fig. 6 in which the 
motor model assumes sinusoidal flux distribution 
in the stator, no cross-coupling between the d- and 
q- axes, thus no secondary saliencies apart from 
the rotor-geometric saliency. 
IPMSM model, when discretized, becomes: 

 
(12) 
 
 
 
 
 
 
 
 

The electrical parameters and constants are 
passed from the application software program 
during the initialization of simulator. In principle, 
any of the intermediate- or boundary- digital 
signals can be passed to the processor or DAC to 
be monitored using an oscilloscope.  

4.4 Mechanical Load Implementation 

Fig. 5: Schematic of voltage source converter 
implementation within the hardware emulator IP core 
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Fig. 4: Overview of the Hardware Emulation IP 
Core 
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The mechanical load is modelled as follows and it 
is illustrated in the Fig. 7 

                  
(13)  

 
 

4.5 Scaling Block 
The scaling block as in the Fig. 8 ensures the 
currents and voltages from the emulator passed to 
the GIPC (for digital filtering and multiplexing) 
contain the identical volts-per-bit and amperes-
per-bit resolution of those obtained from the 
physical hardware. Owing to this identicality, 
neither the GIPC nor the application software will 
notice a difference between the hardware emulator 
and physical hardware. 
With respect to the gains of each blocks given in 
the Fig. 8, one can find the gains for the scaling 
block using (14) which is common for both voltages 
and currents. Since the emulator is designed in 
per-unit scale, but the GIPC is scaled for SI values, 

the variablepu i.e. u(t), i(t) must be multiplied by the 
base values  (Kbase) in addition as seen in the 
formula. 

_ _ AFE base
pu

trans RAW

K K
variable per bit variable

K K
        (14) 

4.6 Development Procedure 
The Matlab development environment can be 
exploited not only to design the hardware 
emulation models, but also to identify the 
satisfactory fixed-point precisions, ranges and test 
the closed-loop performance using the floating-
point drive controller. As shown in the Fig. 9, both 
the Xilinx System Generator model as well as the 
Simulink models can be run in parallel to identify 
the numerical errors, thus finetune the fixed-point 
precisions. Once the models are ready for 
synthesis, they can be exported to the Vivado 
integrated development environment where the 
final synthesis and bitstream generation is 
performed. Table 2 presents the internal FPGA-
resources utilized by the hardware emulator. The 
bitstream is then linked to the Xilinx Software 
Development Kit (SDK) for target-oriented
application software and firmware development.
Table 2: Resource utilization of implemented emulator

Resource Used % of the Total 
Slice Look-Up Tables 4937 6.3% 

Slice registers 5634 3.6% 

Block RAMs 0 0% (total 265)

Block DSPs 0 0% (total 400) 

 
5 Real-Time Simulation 
The proposed ERTS is experimented against the 
offline simulation (Matlab/Simulink R2019a) model 
for the IPMSM drive with use of simulation data 
tabulated in the Table 3. The offline simulation 
model utilizes the built-in ode23tb solver with 
variable time step. The current controllers have 
been tuned with use of the same control 
parameters in both the simulators.  
 

Fig. 6: Schematic of the IPMSM per-unit model 
implementation within the hardware emulator  IP core 

Fig. 7: Schematic of mechanical load model 
implementation within the hardware emulator  IP 

Fig. 8. Scaling block within the emulator IP Core 
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Table 3. Electric drive data for simulations

 
Fig. 10 presents the experimentation setup of the 
ERTS. The PC is used for 
programming/debugging while the oscilloscope is 
used to monitor high bandwidth real-time 
variables. In general, the variables of the ERTS 
can be exported to plot in the Matlab environment 
as it is seen in the next section. 

5.1 ERTS Performance 
The ERTS performance is analyzed with respect 
to the execution time of a given simulation run and 
the numerical precision. For a 1-second simulation 
run of the IPMSM drive, the ERTS consumed just 

the run-time of 1 second while, the offline method 
took ~550 seconds which means a remarkable 
time saving with the ERTS. The numerical 
precision of the ERTS is evaluated using the root-
mean-square (rms) error with reference to the 
offline simulation variable (with double precision 
floating-point). Fig. 11 presents the motor d- and q- 
axes currents processed through a moving 
average filter in both simulators, when the 
reference torque receives a step command from 0 
to 0.8 pu. The corresponding transient errors are 
plotted in the Fig. 12. For the same scenario, the 
steady-state rms errors for d- and q- axes currents 
were calculated to be 7.16x10-4 and 3.67x10-4  
respectively in per-unit. Fig. 13 presents the 
corresponding torque-step and response. Fig. 14 
illustrates the rotor position from the sensorless 
algorithm and the motor model in the hardware 
emulation, using the DAC-features of the ERTS. 

5.2 ERTS Limitations 
Some of the notable limitations of the proposed 
ERTS with respect to a physical electric drive: the 
VSC is modeled using the switching function 
model in the hardware emulator, which may not 
accurately represent the converter during the 
regenerative modes [5]. The emulated motor 
model, too, does   not     entail         the secondary  
  

 Value Unit 

Nominal voltage, UN 220 V 

Nominal current, IN 51 A 

Rated frequency, fN 35 Hz 

Pole pairs, p 1 - 

Nominal speed, N 2100 rpm 
Motor parameter vector 
[

m d
x

q
x

s
r ]T [0.66 0.4 1 0.009] T pu 

Switching frequency, fsw 4 kHz 

Fig. 10: Embedded Real-Time Simulator Test Setup 

Fig. 11: d- and q- axes currents of the motor and their 
respective references in using the two simulators 

Fig. 13: Actual torque -response from the ERTS and 
the offline simulator for a step reference change 

Fig. 12: Transient current -errors of the real-time 
simulator with respect to the offline simulator

Fig. 9: IPMSM drive co-simulation: Simulink floating 
point double precision model (gray blocks) in parallel 
with XSG fixed-point, 32.28-precision model (white 
blocks) using common floating-point control logic. 
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saliencies nor the saturation effects which limits its 
performance precision in certain operating ranges. 
 
6 Conclusion 
An inexpensive, modular, portable, and rapidly 
reusable Embedded Real-Time Simulator targeted 
for electric motor drives has been presented in this 
paper. Both the software and hardware 
architectures of the simulator and the detailed 
design method of the hardware emulation have 
been discussed. The internal resource utilization of 
the FPGA is kept at a minimum in designing the 
real-time emulation. The overall simulation is 
significantly accelerated in the given sensorless 
control application at the expense of negligible 
numerical error. The simulator sets the basis to 
expand its model-behavior as close as possible to 
the real-world systems and to include diagnosis 
and prognosis of faults in the drives to develop 
towards a real-time digital twin. 
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