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Abstract—Today’s power distribution system is changing to a
power-electronics-enabled distribution system, especially with the
increasing penetration of distributed energy resources (DERs). To
monitor and manage those electronic devices and DERs at the
grid edge, the advanced metering infrastructure (AMI) with two-
way communications presents great potentials. In the literature,
extensive research explores the upstream communication from
smart meters to electric utilities (e.g., meter reading) but few
examine the downstream communication from the utilities to
smart meters (e.g., meter pinging). This paper discussed the
AMI two-way communication and its recent industrial practice
in the U.S., especially the ones about applying the smart meter
pinging functionality to monitor grid-edge devices and DERs.
This paper then developed the two-way communication model
and the network calculus method to quantify the impact of the
two-way communication on the AMI network. In the end, the
proposed method is validated with ns-3 simulation using the
modified 13-node test feeder and real-world feeder systems.

Index Terms—advanced metering infrastructure (AMI), dis-
tributed energy resources (DERs), network calculus, smart in-
verter, smart meter, time delay, two-way communications

I. INTRODUCTION

TODAY’S electric power distribution system is developing
from a passive network to an active network, especially

with the increasing penetration of distributed energy resources
(DERs). The active distribution system brings lots of benefits
to electric utilities and end users, such as higher flexibility,
resiliency, and sustainability [1], [2]. On the other hand, the
distribution system is being involved with a large number
of inverter- and converter-based devices and DERs, such as
smart inverters and solar photovoltaic (PV), yielding a power-
electronics-enabled distribution system [3]–[5]. It is thus crit-
ical to developing efficient resolutions to monitor and manage
those devices and DERs at the grid edge [6].
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The mainstream measurement devices deployed at the dis-
tribution system are reviewed in the literature [7]–[9]. Among
the various measurement devices, smart meters are the only
measurement devices that are widely deployed between elec-
tric utilities and end users [10]–[12]. According to Energy
Information Administration (EIA) report, the U.S. electric
utilities had installed about 88 million smart meters at year-end
2018, covering nearly 70% of the U.S. households [13]. Smart
meters along with their communications networks and meter
data management systems (MDMS) constitute the advanced
metering infrastructure (AMI), enabling automated, two-way
communications between electric utilities and smart meters.
Smart meters’ wide deployment and two-way communication
features present great potentials to address the monitoring
and management issues of the grid edge devices and DERs.
However, there are challenges ahead.

First, smart meters originally are designed for time-based
rates, where many smart meters only record energy consump-
tion data in kW or kW/h, without other readings (e.g., reactive
power and voltage readings) [10]. The simple readings could
not support advanced applications such as smart inverter and
DER monitoring. Moreover, recently, several papers and re-
ports summarized the functions, applications, and technology
trends of smart meters [10]–[15]. They pointed out that it is
advantageous to report energy consumption, together with real
power, reactive power, and voltage measurements, such that
smart meter data can be used for not only “load” billing and
motioning, but also “grid edge” situational awareness; and
it is also beneficial to explore new applications that extend
the application scope from billing categories to monitoring
and management categories, enabling smart meters’ two-way
communication feature to be fully utilized.

Second, since the historically passive nature of power distri-
bution systems and the billing-based business model of AMI,
most utilities invested in the AMI communication network
with limited bandwidth and robustness. For example, in the
U.S., 58% of residential smart meters, 28% commercial smart
meters, and 10% of industrial smart meters reported meter
reading in 30-minute or 1-hour time intervals, instead of 15-
minute time intervals [10], [13]–[15], and many AMI systems
still reply on 3G networks [13]–[15]. Therefore, smart meters’
two-way communication feature has not been fully utilized. In
the literature, extensive research explores the downstream from
smart meters to electric utilities (e.g., smart meter reading),
but few examine the upstream from electric utilities to end-
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users (e.g., smart meter pinging) [10]–[15]. Moreover, there
are few studies specifying the impact of adding additional
data streams to smart meter datasets (e.g., voltage monitoring
[15]) or applying advanced applications over the AMI network
(e.g., DER and asset management [14]), especially in the
communication perspective [14]–[20].

Currently, many AMI networks adopt wireless mesh net-
works (WMNs) to connect smart meters and cell relays [13]–
[15]. In a WMN, some of smart meters need multiple hops
to reach a cell relay, yielding a multi-hop wireless network.
To study the quality of service (QoS), such as the end-to-end
delay and package loss over a multi-hop wireless network, we
need to consider many factors, including 1) the characteristics
of the link, 2) how a link is shared and scheduled by users,
3) how a head-of-line (HoL) packet loss is handled at the
medium access control (MAC) layer, and 4) the characteristics
of the traffic. Generally, the first factor implies the data rate
and loss rate on the link due to its characteristics. Depending
on the used wireless communication technologies/standards,
such as WiFi and WiMAX, the second factor can be highly dif-
ferent, which means different standards may deploy different
approaches in a combination of the first factor. The third factor
is determined by the standards. The fourth factor is mainly
due to the applications. On the other hand, deterministic net-
work calculus and stochastic network calculus are two major
methods for network performance analysis [21]–[24]. The
former is to compute and deduce a certain bound for service
performance and provide a QoS guarantee, while the latter is
based on the tail distribution of service capacity and provides
a probabilistic QoS guarantee. Since most traditional smart
meter applications are not time-critical, there is no research
that applies deterministic or stochastic network calculus for
AMI network performance analysis.

To this end, this work investigates the AMI network capa-
bility on monitoring and management of grid edge devices and
DERs, and their potential impact on the AMI communication
network. The major contributions are two-fold.

Theoretically, this work proposes the models of the AMI
two-way communication network, including the downstream
and the upstream. To identify the impact of adding smart
inverter/DER data steams on the AMI network, this paper
applies the network calculus method for the multi-hop mesh
network. The network calculus results can help electric utilities
quantify the impact of the new smart meter applications (e.g.,
smart inverter/DER monitoring) on the AMI network, with
the metrics of the end-to-end delay, package loss, bandwidth
usage, network congestion, etc.

Technically, this work is the first work that discusses smart
meter pinging, which is a new smart meter function currently
being deployed in engineering but seldom discussed in the
literature. Smart meter pinging not only enables the AMI two-
communication and closed-loop network to be fully utilized,
but also enhances the monitoring and management of the
power electronic devices and DERs at the grid edge. This study
helps extend the smart meter application scope from “load”
billing and motioning to “grid edge” situational awareness.

The remainder of this paper is organized as follows: Section
II discusses the AMI two-way communication and its recent

Fig. 1. A typical AMI.

industrial practice; Section III provides the AMI two-way com-
munication model; Section IV proposes the network calculus
method; Section V validates the proposed model and method
with case studies; Finally, a conclusion and future work are
drawn in Section VI.

II. AMI TWO-WAY COMMUNICATION AND ITS INDUSTRY
APPLICATIONS

Since the first federal policy on advanced metering (i.e.,
EPAct 2005) was enacted in the U.S. in 2005, AMI has
been rapidly developed and deployed throughout the country
[13]. Compared with automatic meter reading (AMR), the
breakthrough of AMI is the two-way communication [14]. In
this section, the AMI two-way communication and its recent
industrial practice are discussed, especially the ones about
applying smart meter pinging and reading functionalities to
monitor grid edge devices and DERs.

A. AMI Two-Way Communication

AMI is defined as an integrated system of smart meters,
communications networks, and MDMSs with automated, two-
way communications between utilities and customers [13]. A
typical AMI communication network is depicted in Fig. 1,
which consists of two layers. The first layer mainly connects
intermediate data collection points (e.g., cell towers) with
utilities, and the second layer connects the other interme-
diate collection points (e.g., cell relays) with smart meters.
The communications between smart meters and utilities are
bidirectional. On the upstream path, smart meter data are sent
to utilities for billing and monitoring purposes, whereas on
the downstream path, utilities send operational commands to
smart meters for two-way communication applications.

At present, the AMI two-way communication is being
implemented by a variety of wired and wireless communi-
cation technologies. Those communication technologies are
well reviewed in the literature [11], [14], [15]. Fiber-optic
networks and WMNs are common choices for the first and the
second layers of the AMI network, respectively. While other
networks are also selected by utilities based on their needs
on the network bandwidth, latency, cost, coverage, spectrum
availability, cybersecurity, etc.

B. Industrial Practice

Starting from 2006, the Federal Energy Regulatory Com-
mission (FERC) publishes annual reports to assess advanced
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metering and demand response programs in the U.S. It is found
that, originally, the AMI two-way communication was mainly
developed to send time-based rates to customers to support
demand response programs (i.e., billing purpose), but recently
the two-way communication has been increasingly deployed to
send control commands to smart meters and smart devices to
support advanced applications (i.e., beyond billing purposes)
[13]. Moreover, in 2019, the U.S. Department of Energy
surveyed 120 electric utilities about their AMI applications
beyond billing purposes. The survey shows that AMI has been
successfully developed and demonstrated for monitoring and
managing operating conditions, outage monitoring and man-
agement, DERs monitoring and management, asset monitoring
and diagnostics, etc. [14].

In specific, Commonwealth Edison, Duke Energy, and sev-
eral other utility companies utilize the smart meter ping-
ing functionality to detect the operational status of certain
distribution-level devices and then determine the cause and
location of outages [14], [15]. For example, when there is an
outage, the utility can ping a single smart meter to detect the
energized status of the meter such that determine the outage
cause (e.g., a response from the meter indicates the outage is a
customer issue, such as tripped breakers, whereas no response
from the meter indicates the outage is a system issue, such as
damaged transformers); and the utility can also ping a batch
of smart meters to identify outage locations or boundaries and
verify restoration completeness. This is especially helpful in
identifying whether the nested outage (e.g., a smaller outage
nested within a larger outage) has been cleared up and whether
the restoration to specific customers has been completed.

Pacific Gas and Electric Company (PG&E) plays a pi-
oneering role in leveraging the AMI network to monitor
and manage grid edge devices and DERs. Recently, PG&E
used smart meters’ voltage reading functionality to identify
customer-owned DERs that were causing voltage deviation,
and also utilized smart meter data in hosting capacity studies,
helping PG&E determine allowable DER capacity to the
system. PG&E successfully demonstrated the AMI capability
that monitors, communicates with, and controls various end
devices, such as smart inverters and DER controllers, over the
existing AMI network with the IEEE 2030.5 protocol [17].

III. MODEL OF AMI COMMUNICATION NETWORK

From 2006 to now, the applications of the AMI two-way
communication have been extended from the billing purpose to
the monitoring and management purpose. Some of the new ap-
plications, such as outage management and DER management,
have QoS requirements on the communication network. Thus,
it is advantageous to investigate the AMI network performance
under the new applications.

Fig. 2. A tree structure model.

As aforementioned, there are two layers of the AMI net-
work. In the first layer, optical fibers are typically used to
directly connect the cell towers to the control center. This
work is mainly focused on the second layer since it is involved
with a large amount of intermediate data collection points with
complex dynamics. In this section, a tree-based model of the
AMI second layer (i.e., AMI WMN) is provided.

An AMI WMN logically can be treated as a tree network as
shown in Fig. 2. The root node of the tree network refers to a
cell tower and its children nodes (i.e., relay nodes) refer to cell
relays. Each relay node has a number of immediate children
nodes (i.e., meter nodes), and each meter node may also have
its children nodes (this relation may further extend). Also,
each link is a wireless link, where the wireless channel may
be shared by multiple nodes, using certain MAC mechanisms.
Briefly, the contention-based MAC works as follows. When a
packet reaches the head of the queue at a node, sensing is per-
formed and the packet is sent to the channel when the channel
is sensed idle for a defined duration and the backoff countdown
has reached zero. There are multiple backoff stages, each has
a different initial value for backoff countdown. The packet
is dropped if it does not get sent when the highest backoff
stage is reached. Though different in some specific details,
the essence of this medium access and backoff procedure is
adopted by Wi-Fi (802.11), 802.15.4 (LR-WPAN), and 802.16
(Wi-MAX). Here, carrier-sense multiple access with collision
avoidance (CSMA/CA) MAC is used between the cell tower
and relay nodes, as well as within each relay node cell.

Also, in the tree network, all meter nodes under the same
relay node are said to belong to the cell of this relay node.
We assume that the network has been planned such that the
meter nodes with different parent nodes do not interfere during
their transmission. This includes two cases. One is that the
meter nodes in different relay node cells do not interfere.
Another one is that, even though they are within the same
relay node cell, if a customer node’s parent node is different
from another one’s, the two nodes do not interfere. We also
practically assume that the transmission between the cell tower
and relay nodes is independent of the transmission among the
relay nodes and meter nodes.

Note that when a meter node relays traffic from other meter
nodes towards the root, all meter nodes may need to compete
to use the same wireless channel. An implication is that, if a
meter node is used as a relay, its transmission not only needs
to compete for the channel with its own child nodes but also
with its sibling and parent meter nodes.

IV. PERFORMANCE ANALYSIS OF AMI COMMUNICATION
NETWORK

The end-to-end time delay is an important parameter to
assess the AMI WMN performance. In this section, a network
calculus-inspired approach is developed to calculate the delay
between the cell tower and smart meters.

A. Key Ideas for the Analysis

Network calculus, as a queuing theory for performance
guarantee analysis of computer networks, was first introduced
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by Cruz for modeling network entities and flows [21], [24]. In
the past two decades, it has been generalized by making use
of alternate algebras such as min-plus and max-plus algebra to
transform complex network systems into analytically tractable
systems [21]–[24].

For delay bound analysis of WMNs, if the capacity of
each link is dedicated and deterministically upper-bounded
and the traffic is also upper-bounded, the network calculus-
based analysis approach or procedure used for some existing
network scenarios, e.g., [25], may be adapted. However, when
the link is only logic and its characteristic is affected both
by its corresponding wireless channel and by other users
sharing the channel, to the best of our knowledge, no delay
bound analysis, either based on network calculus or queuing
theory, is immediately applicable for WMNs. Particularly,
when the sharing of the wireless channel is contention-based,
e.g. CSMA, even for the single-cell case, the analysis is
already formidable, e.g., [26], [27], and additionally when one
user is acting as the relay for other users, the analysis becomes
more complex, e.g., [28], [29]. In the following, we outline
some key ideas for the delay analysis.

• On both the upstream and the downstream paths, the
end-to-end delay consists of two parts. One is the delay
between the cell tower and the corresponding relay node,
and another is the delay between the corresponding relay
node and the meter node. The latter can be further
decomposed into the delay on each hop, if other nodes
are involved in forwarding, and the last hop is between
the considered customer and the node that it connects to
and forwards its traffic towards the root.

• For a node that helps relay traffic of other nodes, the
traffic that is relayed by the node can be approximated
as a Poisson process. This is from the result that, with
CSMA with random backoff, the aggregate output process
of packets from the users through the channel can be
approximated as a Poisson process (see Theorem 1 in
[26]). Note that such nodes include both the relay nodes
and those nodes within each cell which have children
nodes in the tree topology.

• For the last or first hop, e.g. from a customer node to its
parent node on the upstream (e.g., meter reading) or from
the cell tower to the relay nodes on the downstream (e.g.,
meter pinging), we assume that the traffic characterization
is known, though it may not be Poisson.

• For each node, the service provided by the correspond-
ing wireless channel to it can be characterized using a
stochastic service curve (see Theorem 3 in [27]), which is
a server model in stochastic network calculus. The results
in [26], [27] essentially indicate that the delays of packets
spent at the channel due to CSMA random backoff
can be approximately viewed to follow an exponential
distribution. Though the analysis in [26], [27] is for
802.11, similar observations are also found for 802.15.4
in an extensive experimental study [30].

• With the above traffic and service characterizations, the
delay at each hop can be derived, based on which the
end-to-end delay Te2e is immediately obtained.

B. The Basics

1) A decomposition view of delay: Considering an AMI
WMN with one root and N nodes, the upstream delay TU

n

of a packet from the node n (n = 1, . . . , N) to the root and
the downstream delay TD

n from the root to the node n can be
simply written as the sum of the delay at each link:

TU
n = Tn→rG−1

+

G−2∑
g=1

Trg+1→rg + Tr1→r0 (1)

TD
n = Tr0→r1 +

G−2∑
g=1

Trg→rg+1 + TrG−1→n (2)

where x → y refers to the link from node x to node y,
and Tx→y refers to the delay on the link x → y, with
x, y ∈ {n, rG−1, . . . , r1, r0}. Here, r0 denotes the root, rg ,
g = 1, . . . , G − 1 denotes the nodes on the path between the
root and node n, and G denotes the number of links on the
path. On the upstream path n → r0, there are total G number
of links, n → rG−1, . . . , r1 → r0, whereas on the downstream
path r0 → n, there are also total G number of links, r0 → r1,
. . . , rG−1 → n.

Both the upstream delay and the downstream delay consist
of two components, the packet’s waiting time in queue before
the packet reaches the head-of-queue (HoQ) at each link,
denoted as Wg on the g-th link, and the transmission time
after the packet has reached the HoQ till it is successfully
received, denoted as δg on the g-th link. Then the equations
above can also be written as:

TU
n =

G∑
g=1

WU
g +

G∑
g=1

δUg (3)

TD
n =

G∑
g=1

WD
g +

G∑
g=1

δDg (4)

To simplify representation, the superscript U or D is omitted
in the following discussion, but is clear from the context.

C. Best Case Delays (Minimum Delays)

Following (3) and (4), the minimum delay Tn,min can be
calculated with the maximum transmission rate of the g-th link
Rg and the length of the packet l.

Tn ≥
G∑

g=1

δDg ≥
G∑

g=1

l

Rg
≡ Tn,min (5)

This minimum delay can be reached when the traffic from
other nodes on every link is so light that the link seems to be
dedicated to the considered flow and when a packet arrives at
every link seeing no previous packets from the same flow. Let
us call the former the best condition. We are more interested
in the maximum delay under the best condition, called the
best case maximum delay Tn,bcm. As the discussion implies,
it should only be affected by the traffic of the flow itself.
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Suppose the amount of traffic generated by the customer
node n in any period [s, t], denoted as An(s, t), is upper-
bounded by a function, called arrival curve in network calcu-
lus, e.g., A(s, t) ≤ r(t− s)+ b. Then, the best case delay can
be found from the network calculus analysis: if r ≤ ming Rg ,

Tn,bcm =
b

minGg=1 Rg

+

G∑
g=1,g ̸=g′

l

Rg
(6)

where Rg denotes the data rate of the g-th link, and g′

denotes the link whose data rate is ming Rg , implying it is
the bottleneck link. The right hand side of (6) has two parts.
Intuitively, the delay is composed of the transmission time of a
packet on all other links (i.e., the second part), and the delay
of the packet at the most congested link due to the traffic
constraint condition (i.e., the first part).

D. Average Delays

Given (3) and (4), the average delay for the upstream traffic
or downstream traffic of node n is simply

E[T ]n =

G∑
g=1

E[W ]g +

G∑
g=1

δ̄g (7)

where δ̄g denotes the mean of δg .
For all nodes under one relay node r, letting Nr denote the

set of these nodes and Nr the number, their average delay is:

E[T ]r =

∑
n∈Nr

E[T ]n

Nr
(8)

Similarly, for all nodes in the network, letting N denote the
set of nodes and N the number, the average delay is:

E[T ] =

∑
n∈N E[T ]n

N
(9)

E. Delay Bounds

1) A General Bound: Given (3) and (4), if the distribution
of every Wg and δg is known, an upper bound on the
distribution of TU or TD can be proved from the union bound:

P{Tn > t} ≤ inf∑2G
g=1 pg=1

G∑
g=1

[
F c
Wg

(pgt) + F c
δg (pG+gt)

]
(10)

for ∀0 < pg < 1, g = 1, . . . , 2G, where F c
X(x) denotes

the complimentary cumulative distribution function (CCDF)
of random variable X , i.e., F c

X(x) ≡ P{X > x}.
Note that the bound (10) is valid no matter if Wg and δg ,

for all g = 1, . . . , G, are coupled or dependent.
2) An Improved Bound: Define the convolution operation

∗ of two distribution functions F (t) and G(t) as:

F ∗G(t) =

∫ ∞

−∞
F (t− s)dG(s)

If Wg and δg , for all g = 1, . . . , G, were independent on
each other, improved bound on P{T > t} ≡ F c

T = 1 − FT

would be obtained by applying the fact that the sum of
2G random variables with a cumulative distribution function

(CDF) FW1
, . . . , FWG

, Fδ1 , . . . , Fδg has a CDF of the con-
volution of those probability density functions (pdfs), i.e.,
FT = FW1 ∗ · · · ∗ FWG

∗ Fδ1 ∗ · · · ∗ FδG . Hence,

P (Tn > t) = 1− FW1 ∗ · · · ∗ FWG
∗ Fδ1 ∗ · · · ∗ FδG(11)

Note that, with the distribution bounds, bounds on the
average delay can be immediately obtained, because Tn ≥ 0
and hence

E[Tn] =

∫ ∞

0

P (Tn > t)dt

V. CASE STUDIES

In this section, a set of case studies are carried out on the
IEEE 13-node feeder and real-world feeder systems using ns-3
to verify the performances of the proposed methods.

A. Modified 13-Node Test Feeder

In IEEE Std. 1729-2014 IEEE Recommended Practice for
Electric Power Distribution System Analysis, four small size
distribution system models are recommended for test feeders,
including 4, 13, 34, and 37 nodes test feeders [31]. Those test
feeders provide complete models of medium-voltage and low-
voltage distribution circuits for distribution system solutions
testing, where a single electrical connection point is repre-
sented by a “node” and a set of electrical connection points
at a geographic location is represented by a “bus”. Due to
the limited space, this paper only makes use of a modified
13-node test feeder as shown in Fig 3.

In the distribution domain, the original 13-node test feeder
is a small radial distribution system including most of the
common components deployed in actual distribution networks,
such as voltage regulators, shunt capacitors, overhead and
underground lines, and unbalanced loads. It has nine end-use
loads with a peak load of 3.6 MVA (i.e., a highly loaded
test feeder). The complete details can be found in [31].
Here, we assumed that each end-use load is connected with
one residential network through a single-phase distribution
transformer, and each residential network consists of different
numbers of household customers as shown in Table I.

In the communication domain, the corresponding commu-
nication network includes a cell tower, nine cell relays, and a
set of smart meters. It is assumed that each end-use load has
been installed a cell relay and each household customer has its
own smart meter. Also, the communication between the cell
tower and cell relay follows IEEE 802.16 (WiMAX) and the
communication of the mesh network follows IEEE 802.15.4.
Both networks adopt CSMA for MAC. Other important com-
munication parameters can be found in Tables II.

In Case 1, smart meters are required to report energy
consumption in the past 8 hours within the next 5 hours.
To avoid burst traffic, each meter randomly picks a starting
time to transmit the data in a 5-hour window. In Case 2, the
smart meters are requested to report energy consumption along
with DER voltages. This means the payload data size becomes
greater to carry the voltage readings at each meter location.
The time window for transmitting meter data is still 5 hours.

In both cases, a single meter read consists of multiple
network packets. It is viewed as a failed meter read if any
of the packets does not reach the communication tower.
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Fig. 3. Modified 13-Node Test Feeder

TABLE I
PARAMETERS OF AMI NETWORK

Node Number of End-User Phase
634 48 ABC
645 16 B
646 24 B
652 11 A
671 151 ABC
675 108 ABC
692 16 C
611 16 C
632 83 ABC

First, we examine the end-to-end delay between the cell
relay and the smart meter. In terms of Case 1, the minimum
and average delays using the network calculus method and
the minimum and average delays using the ns-3 simulation
are presented in Table III and Fig. 4, respectively. The detailed
calculation of the network calculus can be found in Appendix.
It is observed that the delay results through the network
calculus and the simulation are consistent, validating the
effectiveness of the proposed two-way communication model
and network calculus method.

TABLE II
PARAMETERS OF TRAFFIC PATTERNS

Item Case 1 Case 2
Data Time Window 8 hours 24 hours

Sending Time Window 5 hours 5 hours
Number of Packet for Single Read 2 6

Size per Packet 600 bytes 700 bytes

TABLE III
CALCULATION RESULTS OF CASE 1

Cell Relay Index Node Minimum Delay (ms) Average Delay (ms)
1 634 39.4 122.8
2 645 39.4 40.3
3 646 39.4 52.0
4 652 39.4 40.3
5 671 39.4 144.0
6 675 39.4 130.4
7 692 39.4 40.3
8 611 39.4 40.3
9 632 39.4 182.7

10 633 39.4 112.2
11 680 39.4 104.5
12 684 39.4 158.3

Next, we evaluate the impact of DER monitoring on the
AMI network. In Case 2, the smart meter is assumed to add
DER measurements to smart meter readings such that the size
of a smart meter message increases to 700*6 bytes, instead
of 600*2 bytes. In addition, the smart meter is applied with
heavier network traffic, where each smart meter is requested
to send the meter reading every 24 hours, instead of 8 hours.
The corresponding simulation results are presented in Fig. 5.
It is shown that compared with Case 1, the end-to-end delays
in Case 2 increase slightly. Those simulation results suggest
that the AMI network configures with high bandwidth and the
DER monitoring brings low impact on the AMI network. The
DER monitoring is feasible for this AMI network.

Moreover, in both Figs 4 and 5, the average tree depth of
each cell relay group is provided, representing the average
packet hop counts that smart meter messages are transmitted
to the corresponding cell relays. It is found that the average
tree depth has a proportional relationship with the delay. This
is because the actual number of hops in each cell relay group
directly affects the maximum and average delays.

Fig. 4. Simulation results of Case 1.

Fig. 5. Simulation results of Case 2.
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B. Real-World Feeder

Several recent papers point out that the existing test systems
typically cover only small portions of distribution circuits. The
small- and medium-size test systems may not thoughtfully
verify the new resolutions in face of the real complex cyber-
physical systems [31]. An accurate scale-up of simulation
techniques is critical for real-world application. To this end, a
large real-world test system is employed here.

The parameters of the real-world test system are obtained
from a research project through collaboration with an electric
utility company in the U.S. The AMI network topology is
similar to the one in Fig 1. The WiMAX network and the mesh
network have bandwidth of 5Mbps and 250Kbps, respectively.
The mesh network includes 24,413 smart meters and 72 cell
relays.

With the large real-world test system, Cases 1 and 2 are
repeated as Cases 3 and 4. The corresponding simulation
results via ns-3 are shown in Figs. 6 and 7. We found that the
distribution of the delays in Cases 3 and 4 is similar to that of
Cases 1 and 2. In addition to the delay, we also observed the
bandwidth usage using throughout as an indicator as shown
in Fig .8. This result not only indicates the bandwidth usage
of the AMI network but also implies the likelihood of traffic
congestion between a cell relay and a smart meter. Those
results suggest that the AMI network has additional bandwidth
available, which allows the AMI network to communicate with
and control DERs, such as solar PV and smart inverters.

In engineering, high communication delay increases the
packet loss rate due to timeout errors, and the high packet loss
rate directly impacts the delivery of smart meters’ readings.
Thus, it is important to study the smart meter packet behaviors
and AMI network performances for different smart meter ap-
plications over different AMI networks. The proposed network
calculus and the ns-3 simulation can help utilities investigate
their AMI network performances (e.g., whether the average
end-to-end delay and package loss rate meet the requirements
of time-critical applications). The proposed studies can also
help engineers identify the bandwidth usage and the weakest
link and ultimately better make investment decisions.

VI. CONCLUSION

Today’s power distribution system is changing to a power-
electronics-enabled distribution system, especially with the
increasing penetration of DERs. To monitor and manage
those power electronic devices and DERs at the grid edge,
smart meters-based AMI networks present great potentials,
since they are the only networks that are widely deployed
between electric utilities and end users and allowing two-
way communications. This paper discussed the AMI two-
way communication and its recent industrial practice in the
U.S., especially the ones about applying smart meter pinging
function to monitor grid edge devices and DERs. This paper
then developed the two-way communication model and the
network calculus method to quantify the impact of the two-
way communication on the AMI network. In the end, the
proposed method is validated with ns-3 simulation using the
modified 13-node test feeder and real-world feeder systems.

Fig. 6. Simulation results of Case 3.

Fig. 7. Simulation results of Case 4.

Future work could include incorporating the proposed ns-3
model and network calculus method to the open-source co-
simulation platform called Hierarchical Engine for Large-scale
Infrastructure Co-Simulation (HELICS), and investigating the
interaction between the two-way communication and distribu-
tion systems.
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APPENDIX

We provide some examples of applying the network calculus
method to calculate the delay.
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Fig. 8. Test results of bandwidth usage.

A. The Setting (Case 1)
Considering an AMI network as shown in Fig.s 1 and 2,

the wireless channel for nodes under each relay node has a
bandwidth of 250kbps and the channel between the cell tower
and the relay nodes a bandwidth of 5Mbps. In other words,
the service rate of each channel is: Rg = 250 kbps, for g =
1, . . . , G− 1, and RG = 5Mbps.

There are 12 cell relay nodes, where 9 of them directly
connect 473 end users. There are 485 smart meters (473 at
end users + 12 at cell relays). In other words, N = 485, and
Nr = Nend−users+1, where Nend−users denotes the number
of end-users under cell node r.

In Case 1, smart meters are required to report energy
consumption in the past 8 hours within the next 5 hours. To
avoid burst traffic, each meter randomly picks a starting time
to transmit the data in a 5-hour window. The number of data
packages for a single meter read is 2, where the size of each
is 600bytes. It is viewed as a failed meter read if any of these
packages do not reach the cell tower. For this reason, we take
l as the size of the message batch, i.e., l = 1200bytes.

The data rate per customer/smart meter is 2 packets every
8 hours, yielding λ = 0.25 pph (packets per hour) = 1/14400
pps (packets per second) and r = 1/3 bps.

In addition, the traffic generated by the meter is upper
bounded A(s, t) ≤ r(t − s) + b with b = 2 messages =
1200bytes. The service rate of each channel is µn→r =
250Kbps/4800bpp = 187.5Kpps (packets per second), for
g = 1, . . . , G and µr→0 = 20µn→r pps for g = G.

B. Best Case Delay (Minimum Delay)
For customer nodes under each cell relay, the best case is

that the smart meter is an immediate child node of the relay

node. In this case, G = 2; R1 = 250Kbps, R2 = 5Mbps;
b = 1200bytes. Then, following (6), the minimum Tn,bcm on
the upstream is:

b/R1 + l/R2 ≈ 39.4ms.

C. Average Delay

In [26], cf. Theorem 1, it has been shown that under
CSMA/CA, the aggregate packet process by the users through
the channel can be approximated as a Poisson process. In addi-
tion, according to the investigation in [27], δ is approximately
exponentially-distributed.

We use (7) to find an estimate. Specifically, since all nodes
under the same cell relay compete on the same channel, we
simplify (7) for a customer node n:

E[T ]n = E[W ]n→r + E[W ]r→0 +

G∑
g=1

δ̄g (12)

E[W ]n→r =
ρn→r

µn→r − 2Nrλ
(13)

E[W ]r→0 =
ρr→0

µr→0 −Nλ
(14)

δ̄g =
l

Rg
(15)

with ρn→r ≡ 2Nrλ/µn→r and ρr→0 ≡ Nλ/µr→0, where
E[W ] is approximated from M/M/1 queuing analysis. The
alert reader may have noticed that on the right hand side
of (12), and the path from n to the relay r is only treated
as if there were only one queue, instead of G − 1 queues.
This approximation can be verified using stochastic network
calculus analysis technique [24].
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As a highlight, the total packet rate to the link n → r is
twice the total packet rate of all customer nodes under the
relay r in (13). This is because, after receiving the packets
from all the smart meters, the relay node still needs to relay
them to the cell tower via the same channel.

For a more specific example, consider one user node / smart
meter under the relay with 151 end users (cf. Table I), and
suppose for this node G = 5, i.e., tree depth is about 4 in Fig.
4. Then, µn→r ≈ 52 pps (packets per second), and 2Nrλ ≈
0.02 pps.

E[W ]n→r =
0.02/52

52− 0.02
seconds < 1ms (16)

E[W ]r→0 =
ρr→0

µr→0 −Nλ
< 1ms (17)

δ̄g =
l

Rg
≈ 38.5ms, 1 ≤ g < G (18)

δ̄G =
l

RG
≈ 2ms (19)

Hence, for this node, the expected delay is:

E[T ]n = E[W ]n→r + E[W ]r→0 + 4δ̄g + δ̄G ≈ 156ms

Note that in the calculation in Table III, in terms of the
cell relay #5, the average tree depth is 3.7 and thus the
corresponding average delay is 144ms, instead of 156ms.

D. Delay Distribution Bounds

Following the same analogy, we simplify (3) or (4) and use:

Tn = Wc→r +Wr→0 +

G∑
g=1

δg (20)

For δg , according to the investigation in [27], it is approxi-
mately exponentially-distributed, i.e.,

P{δg > t} ≤ e−δ̄gt (21)

For waiting time in a system, such as Wc→r and Wr→0,
various bounds are proved in [24]. In particular, corresponding
to the two cases, i.e., i.i.d. Poisson arrival or periodic arrival
and i.i.d. exponentially distributed service time, the following
bound has been proved [24]:

P{Wg > t} ≤ e−νgt (22)

with νg = µg − λg and g representing the corresponding hop
of c → r or r → 0.

Applying the above, the distribution bounds (10) and (11)
can be simplified and calculated.
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