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a b s t r a c t 

In this work, the Harten-Lax-van Leer Contact (HLLC) approximate Riemann solver is extended to two- 

phase flow through ducts with discontinuous cross-sections. Two main strategies are explored regard- 

ing the treatment of the non-conservative term arising in the governing equations. In the first, labelled 

HLLC+S, the non-conservative term is discretized separately. In the second, labelled HLLCS, the non- 

conservative term is incorporated in the Riemann solver. The methods are assessed by numerical tests 

for single and two-phase flow of CO 2 , the latter employing a homogeneous equilibrium model where the 

thermodynamic properties are calculated using the Peng–Robinson equation of state. The methods have 

different strengths, but in general, HLLCS is found to work best. In particular, it is demonstrated to be 

equally accurate and more robust than existing methods for non-resonant flow. It is also well-balanced 

for subsonic flow in the sense that it conserves steady-state flow. 

© 2021 The Authors. Published by Elsevier Ltd. 
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. Introduction 

The simulation of two-phase flow through ducts with discon- 

inuous cross-sections is essential in several industrial applications. 

uch simulations are needed for modelling e.g. two-phase flow in 

ellbores in the oil and gas industry [1] , nuclear reactor coolant 

ows [2] , emergency venting of hydrocarbon pipelines [3] and cav- 

tation in refrigeration systems [4] . Systems like those mentioned 

bove can often be modelled as quasi one-dimensional with dis- 

ontinuous changes in cross-sectional area of the flow. The sys- 

em of equations modelling such flow contains a non-conservative 

erm, and this term complicates numerical simulations greatly as 

t can cause numerical oscillations [5,6] and divergence [5] . 

Several authors have constructed numerical methods for the 

ompressible nozzle flow equations [1,5,7–9] , and systems of sim- 

lar form [10–16] , developing “well-balanced” [17,18] schemes to 

apture the flow behaviour at discontinuities. Most of the early re- 

earch has focused on the special case of single-phase flow with 

he ideal gas equation of state (EOS). Notable schemes include 

röner and Thanh’s well-balanced numerical scheme based on the 

ax-Friedrichs flux [19] , which was extended for resonant cases in 

5] , Rochette et al.’s VFRoe based scheme [6] and Cuong et al.’s Go- 
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unov scheme based on an exact Riemann solver [8] . Brown et al. 

20] proposed the first methodology for resolving two-phase CO 2 

ow in pipes with discontinuous cross-sectional area changes for 

he homogeneous equilibrium two-phase flow model (HEM) with 

he Peng-Robinson (PR) EOS [21] using the AUSM 

+ -up scheme. 

ecently, Abbasi et al. [1] developed a Godunov-type scheme for 

he two-phase drift-flux model with variable cross-section, though 

ith simple EOSs for liquid and gas. 

A HLLC-type method has yet to be tested on the problem of 

ompressible flow with discontinuous cross-sections. Note, how- 

ver, that the HLLC-scheme has been extended for the Euler equa- 

ions in ducts of smoothly varying cross sections [22] . HLLC-type 

chemes apply information about the eigenstructure of the govern- 

ng equations in their solution [10,11,23] , making the schemes less 

issipative than general methods such as AUSM 

+ -up [24] . For the 

pplication on two-phase flow, the HLLC-scheme’s accurate resolu- 

ion of contact discontinuities [23] is particularly desirable as this 

lso makes the scheme more accurate in resolving transitions be- 

ween gas, liquid, and mixture flows. As the eigenstructure of the 

ne-dimensional compressible duct flow equations is known, the 

dvantages above motivates the construction of a HLLC solver for 

his system. 

This is further motivated as augmented versions of HLLC have 

een constructed for similar systems, where abrupt changes are ac- 

ounted for [10,11] . An augmented version of HLLC for the Baer- 

unziato (BN) equations [25] was developed by Tokareva and Toro 
nder the CC BY license ( http://creativecommons.org/licenses/by/4.0/ ) 
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10] , giving promising results for many test cases. The method 

nvolves a nonlinear system which was further linearized by Lo- 

hon et al. [26] . Murillo and García-Navarro [11] also developed an 

ugmented version of HLLC for the shallow-water equations. This 

ethod produced promising results as well, though the authors 

ote difficulties such as the need for a “source-fix” to avoid un- 

hysical solutions in certain cases. 

The contribution of this work is to develop and investigate two 

odified HLLC solvers for compressible duct flow and assess their 

trengths and weaknesses. In particular, we will consider two- 

hase flow of CO 2 , due to its use as a natural working fluid in

efrigeration engineering, and the importance of safe and efficient 

O 2 transportation as part of CO 2 capture and storage (CCS) as 

 climate-change mitigation technology [27] . We show that the 

resent method is both robust and accurate when solving challeng- 

ng two-phase Riemann problems. 

We will first present the equation system in more detail and 

riefly discuss the Riemann problem for the system in Section 2 . 

he HEM and the PR EOS are outlined in Section 3 . The numeri-

al methods are derived in Section 4 , the methods are assessed in 

ection 5 , and finally some concluding remarks and suggestions for 

urther work are given in Section 6 . 

. Governing equations and the Riemann problem 

The system of equations describing compressible one- 

imensional flow of a single fluid in a rigid duct of variable 

ross-sectional area, A , is 

 t + F (U ) x = S, (1) 

here 

 = 

⎛ ⎜ ⎝ 

ρA 

ρuA 

EA 

A 

⎞ ⎟ ⎠ 

, F (U ) = 

⎛ ⎜ ⎝ 

ρuA 

(ρu 

2 + p) A 

(E + p) uA 

0 

⎞ ⎟ ⎠ 

, S = 

⎛ ⎜ ⎝ 

0 

p ∂A 
∂x 
0 

0 

⎞ ⎟ ⎠ 

. 

ere, ρ is the density, u the velocity, E = ρ(e + 

1 
2 u 

2 ) the total en-

rgy, e the specific internal energy, and p the pressure of the fluid. 

is a non-conservative term. The set of Eq. (1) belongs to the 

lass of non-conservative resonant systems [5,28] meaning that the 

aves which arise in this system can interact and “resonate” with 

ach other. For smooth solutions, the system (1) can be rewritten 

n quasi-linear form, 

 t + A (U ) U x = 0 , (2) 

here A is the Jacobian matrix of the system. Note that the non- 

onservative term has now been moved to the left-hand side of 

he equation. A full derivation of A for a general EOS can be found

n [29, Appendix D] , and we have included the full expression of A

n Appendix A . 

It can be shown [19,28,29] that the eigenvalues of A are; 

0 = 0 , λ1 = u − c, λ2 = u, λ3 = u + c. 

ote that any of the eigenvalues λ1 , λ2 , λ3 may coincide with λ0 , 

iving rise to resonance in the system [28] . The system of equa- 

ions is hyperbolic away from the points where λ1 = λ0 or λ3 = λ0 

nd nonstrictly hyperbolic when λ2 = λ0 [28] . 

.1. The Riemann problem 

Consider the Riemann problem for compressible duct flow, 

 t + F (U ) x = S, (3) 

 (x, 0) = 

{
U L , if x < 0 

U R , if x ≥ 0 

, (4) 
2 
here U L and U R are two different constant states. A thorough 

nalysis on the characteristic fields, Riemann invariants and the 

olution to this Riemann problem is presented by Andrianov and 

arnecke in [28] . 

When there is no change in A , A L = A R , the system (1) reduces

o the Euler equations. We then have the same characteristics and 

iemann invariants as for the Euler equations associated with the 

igenvalues λ1 , λ2 , λ3 . The Riemann invariants are 

, u + 

2 c 

�
across 

d x 1 
d t 

= u − c (5) 

, p across 
d x 2 
d t 

= u (6) 

, u − 2 c 

�
across 

d x 3 
d t 

= u + c, (7) 

here s is the specific entropy and � is the first Grüneisen param- 

ter, 

= 

1 

ρ

(
∂ p 

∂e 

)
ρ

= 

1 

ρc v 

(
∂ p 

∂T 

)
ρ

. (8) 

ere, c v is the specific heat capacity at constant volume. Admissi- 

le waves for the solution to the Riemann problem are then rar- 

factions and shocks associated with λ1 , λ3 and a contact discon- 

inuity associated with λ2 . 

At points with discontinuous area change, there is a stationary 

ontact discontinuity associated with the eigenvalue λ0 = 0 [19] , the 

-wave. Across the 0-wave we have the following Riemann invari- 

nts as shown in [28] 

ρu, s, h + 

1 

2 

u 

2 , across 
d x 0 
d t 

= λ0 = 0 , (9) 

here h = e + 

p 
ρ is the specific enthalpy of the fluid. The invari-

nts describe the conservation of mass flux, entropy and stagna- 

ion enthalpy over the area change. The addition of this wave in 

he solution to the Riemann problem causes complications such as 

on-uniqueness [28] and resonance [5,19,30] . In Fig. 1 we provide 

n example of the structure of a Riemann problem solution in the 

ase of subsonic flow i.e. | u | < c from left to right. The example

as created using Andrianov’s program [31] (CONSTRUCT). 

. Thermodynamic models 

In this work, we model the fluid as an ideal gas for benchmark 

ests of numerical solvers of the equation system (1) , defined by 

he equation of state (EOS) 

p = ρ(γ − 1) e, (10) 

here γ is the ratio of specific heats γ = 

c p 
c v 

. In addition to bench- 

ark testing, it is also relevant to study the system (1) for two- 

hase flow of liquid and gas. To model this, we apply the homo- 

eneous equilibrium model (HEM) with the Peng-Robinson (PR) EOS 

21] . The PR EOS is given by 

p = 

RT 

v m 

− b 
− αa 

v 2 m 

+ 2 bv m 

− b 2 
, (11) 

here v m 

is the specific molar volume of the fluid and R is the gas

onstant. a , b and α are defined as 

 = 0 . 45724 

R 

2 T 2 c 

p c 
, (12) 

 = 0 . 07780 

RT c 

p c 
, (13) 
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Fig. 1. The characteristics of a Riemann problem for 1D compressible duct flow with subsonic flow where ρL > ρR , p L > p R and A L > A R , giving a rarefaction to the left, a 

stationary contact discontinuity (red), then a contact discontinuity and a shock to the right. Created using [31] . (For interpretation of the references to colour in this figure 

legend, the reader is referred to the web version of this article.) 

Fig. 2. A one dimensional interval subdivided into grid cells, � j , with cell centers 

at x j and faces x j−1 / 2 , x j+1 / 2 . 
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Fig. 3. The flux function F 

+ 
j−1 / 2 

approximates the flux F + 
j−1 / 2 

just to the right of the 

interface at x j−1 / 2 . The flux function F 

−
j+1 / 2 

approximates the flux F −
j+1 / 2 

just to the 

left of the interface at x j+1 / 2 . 
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= 

[ 

1 + 

(
0 . 37464 + 1 . 54226 ω − 0 . 26992 ω 

2 
)( 

1 −
√ 

T 

T c 

) ] 2 

, 

(14) 

here T c , p c and ω are the critical temperature, critical pressure 

nd the acentric factor of the species. For CO 2 , these are 

p c = 7 . 3773 MPa , T c = 304 . 35 K , and ω = 0 . 2236 . (15) 

he PR EOS only gives residual heat capacities, c res 
p , c res 

v . In order to

ompute the total heat capacities c p = c ideal 
p + c res 

p , c v in JK 

−1 kg −1 

e use the following estimate, 

 

ideal 
p = 479 . 107 + 1 . 524318 T − 1 . 078176 · 10 

−3 T 2 + 

+ 3 . 38976 · 10 

−7 T 3 + 2 . 8876 · 10 

−11 T 4 . (16) 

In the HEM it is assumed that the two phases are in thermal, 

hemical and mechanical equilibrium, which is valid if the phases 

re well-mixed. Mixture properties are then used in the flow 

q. (1) . In this work, SINTEF’s thermodynamic library [32,33] has 

een applied to provide solutions for the HEM with the PR EOS. 

etails on the specific methods applied in the library to obtain rel- 

vant variables are presented in [34] , though we ignore here the 

resence of any solid. 

. Numerical methods 

The computational domain is discretized in finite volumes � j 

s depicted in Fig. 2 . We use two different kinds of finite-volume 

ethods (FVMs) to solve Eq. (1) on this grid. The first FVM is anal-

gous to the spatial discretization that Brown et al. apply in [20] , 

ith an Euler time step giving 

 

n +1 
j 

= U 

n 
j −


t (F j+1 / 2 − F j−1 / 2 

)
+ 
t ̃  S j , (17) 

x 

3 
here F = F (U L , U R ) is a numerical flux function approximating 

he average flux F at the cell interfaces x = x j−1 / 2 , x = x j+1 / 2 , and
 

 j approximates the contribution of the non-conservative term in 

ell j. 

The second FVM is a conservative Godunov scheme which in- 

ludes the non-conservative term in the numerical flux functions 

11] . The FVM takes the following form 

 

n +1 
j 

= U 

n 
j −


t 


x 

(
F 

−
j+1 / 2 

− F 

+ 
j−1 / 2 

)
, (18) 

here again an Euler time step is used for the temporal discretiza- 

ion. Here, F 

± = F 

±(U L , U R , S) are numerical flux functions ap- 

roximating the average flux, F , right next to the east, F −
j+1 / 2 

, and

est, F + 
j−1 / 2 

, cell faces as illustrated in Fig. 3 . 

In the following, we will briefly review the HLLC method and 

hen suggest two modified HLLC-type methods to approximate the 

uxes for the compressible duct flow. 

.1. The HLLC approximate Riemann solver 

The HLLC method, proposed by Toro, Spruce and Speares [23] , 

pproximates the cell interface Riemann problem by a three-wave 

olution; 

˜ 

 (x/t) = 

⎧ ⎪ ⎨ ⎪ ⎩ 

U L , if x < v L t, 
U 

HLLC 
L , if v L t ≤ x < v C t, 

U 

HLLC 
R , if v C t ≤ x < v R t, 

U R , if x ≥ v R t, 

(19) 

here v L and v R are the fastest signal velocities arising from the 

nitial condition of the Riemann problem, and v C is the speed of 

he contact wave. The intermediate states U 

HLLC 
L 

, U 

HLLC 
R 

are approx- 

mated to be constant, 

 

HLLC 
L = 

1 


t(v C − v L ) 

∫ 
tv C 


tv 
U (x, 
t) d x (20) 
L 
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HLLC 
R = 

1 


t(v R − v C ) 

∫ 
tv R 


tv C 
U (x, 
t) d x, (21) 

hey are however unknown and must be estimated. HLLC approxi- 

ates the numerical flux function by 

 j+1 / 2 = 

⎧ ⎪ ⎨ ⎪ ⎩ 

F L , if 0 < v L , 
F HLLC 

L , if v L ≤ 0 < v C , 
F HLLC 

R , if v C ≤ 0 < v R , 
F R , if 0 ≥ v R . 

(22) 

he intermediate state fluxes, F HLLC 
L 

for positive subsonic flow, and 

 

HLLC 
R 

for negative subsonic flow, are also unknown. In order to 

etermine the fluxes, Rankine-Hugoniot (RH) relations are used 

cross the waves and the additional set of Riemann invariants 

cross the contact discontinuity is applied to close the system. The 

H relation states that across a wave 

F = v 
U , (23) 

here v is the speed of the wave. For compressible duct flow, we 

nd through some manipulation that the intermediate fluxes F HLLC 
K 

, 

 = L, R can be expressed as 

 

HLLC 
K = F K + v K (U 

HLLC 
K − U K ) , (24) 

here the intermediate states are approximated by 

 

HLLC 
K = ρK A K 

(v K − u K 

v K − v C 

)( 

1 

v C 
E K 
ρK 

+ (v C − u K ) 
(
v C + 

p K 
ρK (v K −u K ) 

)
) 

, (25) 

K = R, L, (25) 

nd 

 C = 

p R − p L + ρL u L (v L − u L ) − ρR u R (v R − u R ) 

ρL (v L − u L ) − ρR (v R − u R ) 
. (26) 

.2. Wave-speed estimates 

The HLLC solver needs estimates for the wave speeds v L and 

 R . There are several different approaches to estimate these wave 

peeds, some of which are outlined in [35] , Section 10.5. In this 

ork, the Roe average wave speed estimate [36] is used. Both 

avis [37] and Einfeldt [38] suggest using the Roe averaged eigen- 

alues for the wave speeds; 

v L, j+1 / 2 = min 

(
λ1 (U j ) , λ1 ( ̂  U j+1 / 2 ) 

)
, 

 R, j+1 / 2 = max 
(
λ3 (U j+1 ) , λ3 ( ̂  U j+1 / 2 ) 

)
, (27) 

here ̂ U is the Roe average of the conserved variables. The Roe av- 

raged variables can be found by the Roe averaged matrix A 

̂ (U L , U R )

36] , which must satisfy certain conditions. 

We follow the approach of Evje and Flåtten [39] and Munke- 

ord [40] for the two-fluid model, which also involves a non- 

onservative term, and search for a Roe averaged matrix A 

̂ which 

atisfies the following conditions: 

1 A 

̂ (U L , U R )(U R − U L ) = 
F (U L , U R ) 

2 A 

̂ (U L , U R ) has real eigenvalues and is diagonalizable, and 

3 A 

̂ (U L , U R ) → A (U ) smoothly as U L , U R → U , 

herein 
F (U L , U R ) is formulated as 

F (U L , U R ) = 

⎛ ⎜ ⎝ 

{ ρuA } 
{ (ρu 

2 + p) A } − ˆ p { A } 
{ (E + p) uA } 

0 

⎞ ⎟ ⎠ 

. (28) 

ere, 

 x } = x R − x L , (29) 
4 
nd ˆ p is a particular average of the pressures from the left and 

ight states ˆ p = ˆ p (U L , U R ) , similarly to αk (U L , U R ) in [39] , [40] . 

A 

̂ can be determined by finding a special average of the state 

ectors U L and U R , 
̂ U (U L , U R ) , such that A 

̂ = A ( ̂  U ) , ˆ p = ˆ p ( ̂  U ) . A set

f averages satisfying R1–R3 are: 

̂ A = 

ρL A L + ρR A R 

2 

, (30) 

ˆ 
 = 

A L + A R 

2 

, (31) 

ˆ 
 = 

√ 

ρL A L u L + 

√ 

ρR A R u R √ 

ρL A L + 

√ 

ρR A R 

, (32) 

ˆ 
 = 

√ 

ρL A L H L + 

√ 

ρR A R H R √ 

ρL A L + 

√ 

ρR A R 

, (33) 

here H k = h k + 

1 
2 u 

2 
k 
, k = L, R . 

.3. HLLC with added non-conservative term, HLLC+S 

The HLLC scheme assumes a three wave solution, however we 

an still apply the scheme to compressible duct flow provided 

hat we also account for the fourth, stationary wave. We apply 

he FVM (17) with the HLLC numerical flux function. This FVM 

equires a representation of the non-conservative term, ˜ S j . The 

iscretization of this term requires special care to ensure numer- 

cal stability. We follow the approach of Brown et al. [20] for 

heir AUSM 

+ -up scheme and apply a discretization of the non- 

onservative term which satisfies the non-disturbance relation dis- 

ussed by Liou et al. [41] . The relation states that under steady 

onditions with u = 0 and p = const. 

∂(Ap) 

∂x 
= p 

∂A 

∂x 
. (34) 

he following discretization, which satisfies the non-disturbance 

elation, is used: 

 

 j = 

p j 


x 

⎛ ⎜ ⎝ 

0 

A j − A j−1 

0 

0 

⎞ ⎟ ⎠ 

, if u j > 0 and ˜ S j = 

p j 


x 

⎛ ⎜ ⎝ 

0 

A j+1 − A j 

0 

0 

⎞ ⎟ ⎠ 

, if u j ≤ 0 . 

(35) 

.4. HLLCS approximate Riemann solver 

We will here derive an augmented version of HLLC, following 

n part the approach of Murillo and García-Navarro [11] for the 

hallow-water equations and the approach of Tokareva and Toro 

10] for the Baer-Nunziato equations. We follow the naming con- 

ention of Murillo and García-Navarro [11] and call this method 

HLLCS”, emphasizing that our method is very similar to their dis- 

retization of the source term in the shallow-water equations. The 

LLCS approximate Riemann solver assumes a four-wave solution 

nstead of a three-wave solution, incorporating the 0-wave. Sim- 

larly to HLLC, we will assume that the waves separate constant 

ntermediate states. 

For systems in the form of Eq. (1) , Murillo and García-Navarro 

erived the following consistency condition which the approximate 

ntermediate states must satisfy: 

1 


t(v R − v L ) 

∫ 
tv R 


tv L 
U (x, 
t) d x = 

v R U R − v L U L − (F R − F L ) + S 

v R − v L 
, 

(36) 
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Fig. 4. Integration control volume [ x L , x R ] × [0 , 
t] in the x − t plane. The control 

volume contains the two fastest signal velocities, v L and v R from the Riemann prob- 

lem. The solution consists of three inner states separated by the stationary wave at 

x = 0 and the contact discontinuity of positive speed, v C . 
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volume contains the two fastest signal velocities v L , v R from the Riemann problem. 

The solution consists of three inner states separated by the stationary wave at x = 0 

and the contact discontinuity of negative speed, v C . 
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here 

 = 

1 


t 

∫ x R 

x L 

∫ 
t 

0 

S d t d x. (37) 

wo different estimates of S are used in this work and they are 

resented in Section 4.4.4 . HLLCS will be developed to ensure the 

ubsonic case satisfies the condition (36) . For supersonic flow, the 

uxes are easily found as will be shown below. 

.4.1. Supersonic flow 

For positive supersonic flow, the flux just to the left of the in- 

erface, x = 0 , is simply F L , giving 

 

−
j+1 / 2 

= F L . (38) 

he flow just to the right of the interface has passed the area 

hange such that 

 

+ 
j+1 / 2 

= F L + S . (39) 

imilarly for negative supersonic flow, the numerical fluxes at 
t

ecome: 

 

−
j+1 / 2 

= F R − S , (40) 

 

+ 
j+1 / 2 

= F R . (41) 

.4.2. Subsonic flow 

An illustration of a control volume containing the wave struc- 

ure of a Riemann problem for positive subsonic flow is shown in 

ig. 4 . In this case there are three unknown intermediate states 

eparated by the stationary wave at x = 0 and the contact discon- 

inuity, U 

−
L 

, U 

+ 
R 

and U 

++ 
R 

. 

We approximate the intermediate states, U 

−
L 

, U 

+ 
R 

and U 

++ 
R 

by 

U 

−
L 

= 

1 
−
tv L 

∫ 0 


tv L 
U (x, 
t) d x 

U 

+ 
R 

= 

1 

tv C 

∫ 
tv C 

0 

U (x, 
t) d x 

U 

++ 
R 

= 

1 

t(v R −v C ) 

∫ 
tv R 


tv C 
U (x, 
t) d x 

⎫ ⎪ ⎪ ⎪ ⎪ ⎪ ⎬ ⎪ ⎪ ⎪ ⎪ ⎪ ⎭ 

. (42) 

In order to estimate the intermediate fluxes, the RH condition 

s applied across all the waves in the problem. The RH relations 

re 

 

−
L − F L = v L (U 

−
L − U L ) , (43) 
5 
 

+ 
R − F −L − S = v (U 

+ 
R − U 

−
L ) = 0 , (44) 

 

++ 
R − F + R = v C (U 

++ 
R − U 

+ 
R ) , (45) 

 R − F ++ 
R = v R (U R − U 

++ 
R ) . (46) 

t can be shown that the RH relations (43) - (46) are enough to sat-

sfy the consistency condition (36) . To close the system, we impose 

he Riemann invariants across the stationary wave and the contact 

iscontinuity, 

u 

++ 
R 

= u 

+ 
R 

= v C 
p ++ 

R 
= p + 

R 

}
, (47) 

(Aρu ) −L = (Aρu ) + R 

s −L = s + R 

 

u 

2 

2 

+ h ) −L = ( 
u 

2 

2 

+ h ) + R } . (48) 

he RH condition across the wave associated with the wave speed 

 L gives 

−
L = ρL 

v L − u L 

v L − u 

−
L 

, (49) 

p −L = p L + ρL (v L − u L )(u 

−
L − u L ) , (50) 

 

−
L = ρL 

(
v L − u L 

v L − u 

−
L 

)(
E L 
ρL 

+ (u 

−
L − u L ) 

(
u 

−
L + 

p L 
ρL (v L − u L ) 

))
, (51) 

nd the RH condition across the wave associated with the wave 

peed v R gives 

++ 
R = ρR 

v R − u R 

v R − u 

++ 
R 

, (52) 

p ++ 
R = p R + ρR (v R − u R )(u 

++ 
R − u R ) , (53) 

 

++ 
R = ρR 

(
v R − u R 

v R − u 

++ 
R 

)(
E R 
ρR 

+ (u 

++ 
R − u R ) 

(
u 

++ 
R + 

p R 
ρR (v R − u R ) 

))
. 

(54) 
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Fig. 6. The graphs show for which values of p −
L 
, p + 

R 
that f 1 = 0 (blue) and f 2 = 0 (red) for Mod. A (a) and Mod. B (b). For Mod B, an estimate of the point where | f | is 

minimized is marked with an x. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 
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Fig. 7. Comparison of the exact density solution (black line) and the solutions of 

HLLC+S (red circles), HLLCS with RS (blue plus signs) and HLLCS with FS (green 

crosses) at t/t ref = 0 . 02 for Test 1. (For interpretation of the references to colour in 

this figure legend, the reader is referred to the web version of this article.) 
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qs. (49) - (51) and (52) - (54) with the Riemann invariants constitute 

 nonlinear system which can be solved iteratively. Tokareva and 

oro [10] obtained a similar, but larger system of equations which 

ust be solved for the Baer-Nunziato equations. 

Both for compressible duct flow and the Baer-Nunziato equa- 

ions, either the pressures p −
L 

, p + 
R 

= p ++ 
R 

or the velocities u −
L 

, u + 
R 

=
 

++ 
R 

can be chosen as independent variables to solve the system. 

s stated in [10] , there is no difference between the approaches 

rom a theoretical point of view as the two representations of the 

ystem are mathematically equivalent. Following Tokareva et al. 

10] , we choose p −
L 
, p + 

R 
as the independent variables to ensure 

ressure positivity when searching for solutions of the system. 

We therefore express u −
L 

and u + 
R 

= u ++ 
R 

using p −
L 

and p + 
R 

, 

 

−
L (p −L ) = u L + 

p −
L 

− p L 

ρL (v L − u L ) 
, (55) 

 

+ 
R (p + R ) = u R + 

p + 
R 

− p R 

ρR (v R − u R ) 
. (56) 

e then have that U 

−
L 

= U 

−
L 

(p −
L 
) , such that s −

L 
= s −

L 
(p −

L 
) , and en-

orcing the Riemann invariant s −
L 

= s + 
R 

= s , we have that s + 
R 

=
 

+ 
R 
(p −

L 
) . The relation for mass flux and the relation for stagnation

nthalpy then give the following: 

f = 

( 

A L ρ
−
L 
(p −

L 
) u −

L 
(p −

L 
) − A R ρ

+ 
R 

(
p + 

R 
, s (p −

L 
) 
)
u + 

R 
(p + 

R 
) 

h + 
R 

(
p + 

R 
, s (p −

L 
) 
)

+ 

1 
2 

(
u + 

R 
(p + 

R 
) 
)2 −

[ 
h −

L 

(
p −

L 
, s (p −

L 
) 
)

+ 

1 
2 

(
u −

L 
(p −

L 
) 
)2 
] ) 

= 0 . 

(57) 

hese are two equations for the two independent variables p −
L 
, p + 

R 
. 

he system (57) can be solved iteratively by e.g. Newton-Raphson’s 

ethod and it may have zero or up to three solutions. If the sys- 

em has multiple solutions, we choose the solution which satisfies 

he following criteria: 

1 The solution is self-consistent in the sense that the Riemann 

problem for the states U 

−
L 

(p −
L 
) , U 

+ 
R 

(p −
L 
, p + 

R 
) provide wavespeed

estimates which suggest subsonic flow. 

2 The solution has the highest entropy s −
L 
(p −

L 
) = s + 

R 
= s of the

self-consistent solutions. 

If there are no solutions, we approximate p −
L 
, p + 

R 
as the point 

hich minimizes the absolute value f 1 (p −
L 
, p + 

R 
) + f 2 (p −

L 
, p + 

R 
) of f . 

Once p −
L 

and p + 
R 

are determined, the state U 

−
L 

can be calculated 

sing Eqs. (55) , (49) and (51) . With this we can finally find the

nknown fluxes F −
L 

and F + 
R 

from Eq. (43) and Eq. (44) , giving 

 

−
L = F L + v L (U 

−
L − U L ) , (58) 

 

+ 
R = F −L + S . (59) 
6 
The negative subsonic flow case can be seen as simply the mir- 

or image of the positive flow case. We now have the states U 

−−
L 

,

 

−
L 

and U 

+ 
R 

as illustrated in Fig. 5 . 

An equivalent system to (57) can be found for this case and the 

ame criteria C1 and C2 can be applied to choose a valid solution. 

.4.3. Solution for stationary waves 

Suppose now that we have the states U L , U R which satisfy the 

onditions for a stationary wave across the area change, 

Aρu ) L = (Aρu ) R , h L + 

u 

2 
L 

2 

= h R + 

u 

2 
R 

2 

, s L = s R . (60) 

he exact solution for the Riemann problem (3) –(4) with the two 

tates U L , U R is a jump from U L to U R at the area change. The solu-

ion which satisfies the criteria C1 and C2 is p −
L 

= p L and p + 
R 

= p R .

he intermediate states then become U 

−
L 

= U L and U 

+ 
R 

= U 

++ 
R 

= U R .

his means that for stationary waves, when the correct solution 

s chosen, the intermediate states found in the HLLCS approximate 

iemann solver are exact. 

.4.4. The non-conservative term for HLLCS 

In this work, two non-conservative terms are tested to estimate 

he fluxes based on the HLLCS approximate Riemann solver. The 
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Fig. 8. Results of the convergence test for HLLC+S (red line with circles) and HLLCS with RS (blue line with plus signs) for Test 1. (For interpretation of the references to 

colour in this figure legend, the reader is referred to the web version of this article.) 

Fig. 9. Density solution of HLLC+S (red dashed line), HLLCS with RS (blue dotted 

line) and HLLCS with FS (green dash-dotted line) compared to the exact solution 

(black line) for Test 2 at t/t ref = 0 . 1 , with N cells = 10 0 0 . (For interpretation of the 

references to colour in this figure legend, the reader is referred to the web version 

of this article.) 
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rst approximate non-conservative term is given by 

 RS = 

⎛ ⎜ ⎝ 

0 

ˆ p ( A R − A L ) 
0 

0 

⎞ ⎟ ⎠ 

, (61) 

here ˆ p is the Roe-averaged pressure introduced in Section 4.2 . 

e therefore call this the Roe-average-based term (RS). RS is for- 

ulated generally such that it may be applied on subsonic, sonic 

nd supersonic flow. 

For subsonic flow, the nonlinear system of equations determin- 

ng the approximate intermediate states and fluxes is solved. The 

on-conservative term is then given implicitly by the RH condi- 

ions. For positive subsonic flow, we get that the non-conservative 

erm must be 

 FS+ = F ++ 
R − v C (U 

++ 
R − U 

+ 
R ) − F −L . (62) 

imilarly for negative subsonic flow, we get that 

 FS- = F + R − F −−
L + v C (U 

−
L − U 

−−
L ) . (63) 

s the non-conservative term includes the approximate fluxes, we 

all it the flux-based term (FS). Note that this estimate only holds 

f the HLLCS approximate Riemann solver has a solution. FS is only 

ormulated for subsonic flow and may therefore only be applied 

or subsonic flow problems. 
7 
.4.5. The HLLCS-based fluxes 

The HLLCS method approximates the flux functions F 

−
j+1 / 2 

and 

 

+ 
j+1 / 2 

needed for the FVM (18) as shown in Algorithm 1 . 

Algorithm 1: The HLLCS solver. If subsonic flow is identified, 

a solver is called to find a valid solution satisfying C1 and C2 

or an optimization method is used to minimize f . When a 

solution is found, v C and the intermediate states U 

−
L 

, U 

+ 
R 

and 

U 

−−
L 

or U 

++ 
R 

are returned. 

Result : Fluxes for the HLLCS solver, F + 
R 

and F −
L 

. 

if v L > 0 then 

F −
L 

= F L 

F + 
R 

= F −
L 

+ S 

end 

if v L ≤ 0 and v R > 0 then 

call solver, returning v C and intermediate states; 

if v C ≥ 0 then 

F −
L 

= F L + v L (U 

−
L 

− U L ) 

F + 
R 

= F −
L 

+ S 

else 
F + 

R 
= F R − v R (U R − U 

+ 
R 

) 

F −
L 

= F + 
R 

− S 

end 

end 

if v R ≤ 0 then 

F + 
R 

= F R 

F −
L 

= F + 
R 

− S 

end 

Set F 

−
j+1 / 2 

= F −
L 

and F 

+ 
j+1 / 2 

= F + 
R 

. 

Remark: Note that for a (subsonic) steady-state wave across 

he area change, applying S FS will give that F 

−
j+1 / 2 

= F −
L 

= F L and 

 

+ 
j+1 / 2 

= F + 
R 

= F R . Inserting this in the FVM (18) , we find that 

 

n +1 
j 

= U 

n 
j ∀ j, (64) 

.e. the HLLCS-based FVM with FS conserves the steady-state solu- 

ion exactly. This means that the FVM is well-balanced . 

.5. Summary 

In this work, we apply two finite-volume methods HLLC+S and 

LLCS. The numerical scheme for the HLLC+S solver is given by 

 

n +1 
j 

= U 

n 
j −


t (F j+1 / 2 − F j−1 / 2 

)
+ 
t ̃  S j , (65) 

x 
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Fig. 10. Results of the convergence test for HLLC+S (red line with circles), HLLCS with RS (blue line with plus signs) and HLLCS with FS (green line with crosses) for Test 2. 

(For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 

Fig. 11. Comparison of exact solution (black line) and the density solution (a) and velocity solutions (b) of HLLC+S (red dashed line), and HLLCS with RS (blue dash-dotted 

line) on Test 3 for velocity at t/t ref = 0 . 2 , N cells = 10 0 0 . (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this 

article.) 

w

s

t

U

w

i

A

5

fi

b

t

i

a

g  

w

t

f

a

s

Table 1 

The left and right states for the Sod shock-tube problem with modified left 

and right areas for Mod. A and Mod. B. 

p/p ref u/u ref ρ/ρref Mod. A: A/A ref Mod. B: A/A ref 

Left 1.0 0.0 1.0 1.0 1.0 

Right 0.1 0.0 0.125 0.9 1.1 

5

R

 

R
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m
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g

v
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s

c

here the flux functions F j+1 / 2 , F j−1 / 2 are given by the HLLC 

olver, and 

˜ S j is given by Eq. (35) . The discretization of ˜ S j is such 

hat the stationary state is conserved. 

The HLLCS FVM is given by 

 

n +1 
j 

= U 

n 
j −


t 


x 

(
F 

−
j+1 / 2 

− F 

+ 
j−1 / 2 

)
, (66) 

here the flux functions F 

−
j+1 / 2 

, F 

+ 
j−1 / 2 

are approximated us- 

ng the HLLCS approximate Riemann solver as described in 

lgorithm 1 . 

. Assessment of the methods 

In this section, we assess the performance of the proposed 

nite-volume methods, HLLC+S and HLLCS. As the HLLCS FVM is 

ased on a new approximate Riemann solver, we start by testing 

he HLLCS approximate Riemann solver on local Riemann problems 

n Section 5.1 . We then investigate the performance of the HLLC+S 

nd HLLCS finite-volume methods on benchmark tests for the ideal 

as EOS in Section 5.2 . The methods are further tested on the HEM

ith the PR EOS in Section 5.3 . We finally compare our methods 

o the results of different solvers for a water vapour test. Note that 

or tests with the ideal gas EOS, we use dimensionless variables 

nd denote this by ∗/ ∗ref , where ∗ is some variable and the sub- 

cript ref refers to some reference value. 
8 
.1. Behaviour of the HLLCS approximate Riemann solver for local 

iemann problems 

As shown in Section 4.4.2 we must solve a nonlinear system, 

f = ( f 1 , f 2 ) 
T = 0 , to obtain a solution with the HLLCS approximate

iemann solver for subsonic flow. It is therefore of interest to in- 

estigate how this nonlinear system behaves for different local Rie- 

ann problems inducing subsonic flow. We investigate this using 

wo modified versions of the common Sod shock-tube problem, 

iving positive subsonic flow, where we include area change. The 

alues of the left and right states in the Sod shock-tube problem 

nd the left and right areas in the modified tests, Mod. A and Mod. 

 are given in Table 1 . 

In Fig. 6 we plot for which values of p −
L 
, p + 

R 
that f 1 = 0 and

f 2 = 0 for the two modified Sod shock-tube tests. When the lines 

f 1 = 0 , f 2 = 0 cross, f = 0 has a solution. For Mod. A, there are

wo possible solutions. We find that the solution to the lower left 

n Fig. 6 (a) is inconsistent as it suggests supersonic flow across the 

rea change even though the Riemann problem is subsonic. The 

olution to the upper right suggests subsonic flow across the area 

hange and is therefore valid. 
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Fig. 12. Results of the convergence test for HLLC+S (red line with circles) and HLLCS with RS (blue line with plus signs) for Test 3. (For interpretation of the references to 

colour in this figure legend, the reader is referred to the web version of this article.) 

Table 2 

The left and right states for Test 1. 

p/p ref u/u ref ρ/ρref A/A ref 

Left 10.0 5.0 0.35 1.0 

Right 13.462929846413655 2.695480449295447 0.432823271625514 1.5 
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Table 3 

The left and right states for Test 2 including the intermediate states 

separating elementary waves of the exact Riemann solution for the 

test ordered from left to right. 

p/p ref u/u ref ρ/ρref A/A ref 

Left 3.0 –0.90532425 2.191799866 0.9 

State 1 1.0 0.1 1.0 0.9 

State 2 0.89002806 0.4890494 0.92015244 0.2 

State 3 0.89002806 0.4890494 0.5 0.2 

Right 0.80290021 0.37372087 0.46454221 0.2 
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For Mod. B there is no solution. Mod. B is a resonant case, 

here a fifth wave is induced in the Riemann solution, so the as- 

umption of a four-wave solution in the HLLCS approximate Rie- 

ann solver does not hold here. Strictly speaking, the approximate 

iemann solver is invalid for resonant cases. We choose the inter- 

ediate pressures p −
L 
, p + 

R 
to estimate the minimum absolute value 

f f , marked with an x in Fig. 6 (b). The resulting intermediate

tates approximate a solution for the HLLCS Riemann solver. These 

ntermediate states do not satisfy the RH relations (43) –(46) , how- 

ver, and the error increases when the area discontinuity or pres- 

ure is increased. 

.2. Benchmark tests with the ideal gas EOS 

In this section, three selected benchmark tests for compressible 

uct flow with the ideal gas EOS are used to test the performance 

f HLLC+S and HLLCS. For all the tests, the CFL number is set to C =
max (λ) 
t 


x 
= 0 . 9 , extrapolation is used at the boundaries and γ = 

 . 4 . 

.2.1. Test 1: Steady-state 

Test 1 is taken from Cuong and Thanh [8] , and includes steady 

ow which satisfies the conditions for a stationary wave across the 

rea change. The initial condition for Test 1 is given in Table 2 . For

his test, the solution is computed along the interval x/x ref ∈ [0 , 1] ,

he discontinuity is at x/x ref = 0 . 5 and N cells = 100 . The solutions

or HLLC+S and HLLCS at t/t ref = 0 . 02 are plotted in Fig. 7 . 

As expected, HLLCS with FS conserves the steady state because 

he scheme is well-balanced, as shown in Section 4.4.4 . Neither 

LLC+S nor HLLCS with RS are well-balanced, however, the solu- 

ion of HLLCS with RS is not very inaccurate. 

We further present a convergence study for HLLC+S and HLLCS 

ith RS for this test. The grids used for the convergence study 

ave tripling numbers of grid cells, N cells , such that cell centres will 

verlap for all the grids. We calculate the 1-norm of error for the 

ensity, the density error, by 

 1 ,ρ (
x ) = 
x 

N cells ∑ 

j=1 

| ρexact 
j − ρapprox 

j 
| , 
9 
here 
x is the grid spacing, and the convergence rate, l, for 

ripling N cells by 

 = 

1 

log (3) 
log 

(
E 1 ,ρ (
x ) 

E 1 ,ρ ( 
x 
3 

) 

)
. 

The density error for HLLC+S and HLLCS with RS is shown in 

ig. 8 (a) and the convergence rate for their density solution is 

hown in Fig. 8 (b). Though HLLCS with RS has a significantly lower 

rror than HLLC+S, both solvers reach a convergence rate of 0. This 

eans that neither of these solvers is consistent. 

.2.2. Test 2: Strong non-conservative term 

We now present Test 2, which includes a strong non- 

onservative term. In Table 3 , the initial conditions and interme- 

iate states separating elementary waves of the exact Riemann so- 

ution for Test 2 is given. The interval and discontinuity are the 

ame as for Test 1. 

The numerical solvers give significant numerical smearing near 

he area change due to the strong non-conservative term, so a 

ather fine grid of N cells = 10 0 0 is used to resolve the problem

o see clearly how the solvers perform. The density solution for 

LLC+S and HLLCS with both RS and FS are compared to the exact 

olution at t/t ref = 0 . 1 in Fig. 9 . The exact solution for the test is

roduced using CONSTRUCT [31] . 

For this test, HLLC+S produces unsatisfactory results. The be- 

aviour near the area change does not approximate the exact solu- 

ion. The density after the area change becomes much too low as 

ompared to the exact solution. Both HLLCS with FS and with RS 

ave numerical smearing between the area change and the contact 
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Fig. 13. The solutions of HLLC+S (red, dashed line), HLLCS RS (blue, dash-dotted line) and HLLCS FS (green line) for pressure (a), density (b), velocity(c), Mach number (d), 

entropy (e) and mass fraction of gas (f) for Test 4 at t = 1 . 2 ms with the initial discontinuity at x = 0 . 6 m. The result is compared to a reference HLLCS FS solution on a finer 

grid (black dotted line). (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 
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Table 4 

The left and right states for Test 3 and the interme- 

diate states separating elementary waves of the exact 

Riemann solution ordered from left to right. 

p/p ref u/u ref ρ/ρref A/A ref 

Left 8.0 0.5 5.0 1.0 

State 1 3.5111 1.3306 2.7766 1.0 

State 2 1.7227 1.8438 1.6697 1.2 

State 3 2.3427 1.5738 2.0779 1.2 

State 4 2.3427 1.5738 1.8047 1.2 

Right 1.0 0.8 1.0 1.2 

fl

t

u

iscontinuity, but appear to approximate the solution well other- 

ise. HLLCS with RS does not approximate the location of the right 

hock perfectly, but performs similarly to HLLCS with FS otherwise. 

We further present a grid refinement study for this test. The 

ensity error for the solvers is shown in Fig. 10 (a) and the con-

ergence rate for their density solution is shown in Fig. 10 (b). It is

lear that HLLCS outperforms HLLC+S. HLLC+S’ error settles at ap- 

roximately 0.02, and its convergence rate goes to 0. HLLCS with 

S’s convergence rate also goes to zero, though at a much lower 

ensity error than HLLC+S. The density error for HLLCS with FS 

eeps falling for increasing numbers of grid cells and its conver- 

ence rate stays above 0.5 for very fine grids. 

.2.3. Test 3: Resonance 

Test 3, suggested by Thanh and Kröner [5] , involves the interac- 

ion between a rarefaction to the left and an expansion causing the 
10 
ow to become choked exactly at the area discontinuity. This leads 

o resonance which induces an “extra” shock in the wave config- 

ration. In Table 4 the initial condition and the states separating 
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Fig. 14. Temperature results for Test 4 with 100 grid cells (a) and 10,0 0 0 grid cells (b). 
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Table 5 

Initial conditions for Test 4. 

p (MPa) u (ms −1 ) T (K) A (m 

2 ) αg (-) 

Left 5 0 283.547 1 0.0 

Right 4 0 278.565 0.5 0.986 
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lementary waves of the exact Riemann solution are given for Test 

. The solution is computed along the interval x/x ref ∈ [0 , 2] and

he discontinuity is at x/x ref = 1 . Following Thanh and Kröner [5] ,

rown et al. [20] , we employ N cells = 10 0 0 . 

For Test 3, HLLCS with FS fails to compute a solution. The non- 

inear system in the HLLCS approximate Riemann solver does not 

ave a solution for the local Riemann problem for this test, simi- 

arly to Mod. B in Section 5.1 . We compute the intermediate states 

losest to a solution for the HLLCS Riemann solver. However, as 

hey are not a true solution, the states do not satisfy the RH re-

ations (43) –(46) . The FS estimate of the non-conservative term 

62) is defined implicitly through these relations and the estimate 

s poor when inconsistent intermediate states are used in its cal- 

ulation. In this particular case, the error causes HLLCS with FS to 

btain negative internal energies during the simulation and crash. 

LLCS with RS is less affected by this because the RS discretization 

oes not depend on the intermediate states. 

The solutions for density and velocity are given in Figs. 11 (a) 

nd 11 (b) respectively for HLLC+S and HLLCS with RS at t/t ref = 0 . 2

ogether with points of the exact solution. Both HLLC+S and HLLCS 

ith RS resolve the problem well and there is no sign of instabil- 

ty as often occurs for solvers applied on resonant cases [5] . HLLCS 

S approximates the solution better than HLLC+S, which is partic- 

larly evident for the density between the stationary wave and the 

dditional shock, for x/x ref ∈ [1 , 1 . 1] and between the additional

hock and the contact discontinuity, x/x ref ∈ [1 . 1 , 1 . 3] . HLLCS with

S overestimates the velocity of the fluid in the area between the 

tationary wave and the additional shock. Thanh and Kröner’s LxF 

cheme with the computational corrector does not obtain such an 

vershoot [5] . Brown et al., however, get a similar overshoot for 

heir AUSM 

+ -up scheme for this test [20] . We present the results 

f a grid refinement study in Figs. 12 (a) and 12 (b). HLLCS with RS

btains a lower density error than HLLC+S. The convergence rates 

f both solvers tend to zero, confirming once again that HLLC+S 

nd HLLCS with RS are not consistent for the system. 

One should note two things here. Firstly, HLLCS with both FS 

nd RS is not generally good at solving resonant problems, but the 

olver shows promising behaviour and might be modified to work 

ell with resonance. Secondly, even though HLLC+S performed 

oorly for the stationary state and a strong non-conservative term, 

t still obtained a reasonable result here. One should not be fooled 

y this as HLLC+S is generally a poor solver for the system (1) . 

.3. Two-phase test with the HEM and the PR EOS 

We present here two tests with two-phase CO 2 flow modelled 

y the HEM with the PR EOS. Test 4 is rather similar to “Test 

” presented by Brown et al. for their AUSM 

+ -up scheme [20] . 
11 
ur Test 5 includes a stronger non-conservative term than that of 

est 4 for which HLLC+S fails to compute a reasonable solution, 

hereas HLLCS performs well. Note that no exact solution is avail- 

ble for these tests. In order to provide some reference, we com- 

ute a solution with our best performing solver, HLLCS FS, with a 

ery fine grid on which the discontinuous area change is smoothed 

ver a few grid cells. 

.3.1. Test 4: Two-phase test similar to that of Brown et al. 

Test 4 is similar to “Test 5” presented by Brown et al. [20] for 

he HEM with the PR EOS and a discontinuous cross-sectional area. 

he initial conditions for Test 4 is given in Table 5 , where αg is

he volume fraction of gas. Here, the temperatures and αg are cho- 

en to match the initial conditions given for “Test 5” in [20] , p L =
 MPa , p R = 4 MPa , ρL = 829 . 1 kg.m 

−3 , ρR = 126 . 8 kg.m 

−3 . For the 

nitial state to the right, the volume fraction in [20] is set to αR =
 . 9 , however our calculations with the PR EOS requires αR = 0 . 986

o get a density of 126 . 8 kg.m 

−3 
at a saturation pressure of 4 MPa 

or CO 2 . We have therefore modified the volume fraction in our ini- 

ial condition. Furthermore, we choose a CFL number of 0.9 rather 

han 0.3 as applied by Brown et al. Otherwise, we use the same 

arameters as Brown et al.: x ∈ [0 , 1] m, the discontinuity is at

 = 0 . 6 m and N cells = 10 0 0 . For the HLLCS FS reference solution, we

pply N = 90 0 0 so the area change occurs over 9 grid cells. 

The reference solution and the solutions of HLLC+S, HLLCS RS 

nd HLLCS FS for pressure, density, velocity, Mach number, en- 

ropy and mass fraction of gas are shown in Figs. 13 (a), 13 (b), 13 (c),

3 (d), 13 (e) and 13 (f), respectively, for t = 1 . 2 ms. Similarly to the

esult in [20] , we obtain a rarefaction to the left, a stationary wave

t the area change, x = 0 . 6 m , a very slow-moving contact discon- 

inuity just to the right of the area change at x ≈ 0 . 61 m and a 

hock to the right. There is an evaporation jump following the 

hock and further evaporation to the left of the area change as 

an be seen in the mass fraction of gas in x ∈ [0 . 52 , 0 . 6] m , see

ig. 13 (f). This causes a “splitting” of the rarefaction wave as ob- 

erved in Fig. 13 (a) because the wave travels quickly in the pure 

iquid and more slowly in the two-phase area due to different 

peeds of sound for single and two-phase flow. The entropy in- 

reases at the contact discontinuity. These results are as expected. 

We note, however, that HLLC+S’s solution contains a spike in 

he pressure and density at the area change, x = 0 . 6 m. Such a 
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Fig. 15. The solutions of HLLC+S (red, dashed line), HLLCS RS (blue, dash-dotted line) and HLLCS FS (green line) for pressure (a), density (b), velocity(c), Mach number (d), 

entropy (e) and mass fraction of gas (f) for Test 5 at t = 1 . 2 ms with the initial discontinuity at x = 0 . 6 m. The result is compared to a reference HLLCS FS solution on a finer 

grid (black dotted line). (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 
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Table 6 

Initial conditions for Test 5. 

p (MPa) u (ms −1 ) T (K) A (m 

2 ) αg (-) 

Left 5 0 283.547 1 0.0 

Right 3.5 0 280 0.2 0.986 

H

t

a

5

l

T

m

pike is not present for the HLLCS solvers. There is no physical 

eason for a spike to be present in the pressure and density at 

he area change so this must be caused by the discretization of 

he non-conservative term in HLLC+S. The AUSM 

+ -up scheme pre- 

ented in [20] also gets a spike in its density solution at the area

hange. Based on our results, it seems likely that the spike for 

he AUSM 

+ -up scheme in [20] is also caused by the discretiza- 

ion of the non-conservative term, and that the HLLCS methods 

re more accurate than the AUSM 

+ -up scheme. HLLCS RS approxi- 

ates the wavespeeds of the rarefaction and shock less accurately 

han HLLCS FS and HLLC+S, but seems to perform well otherwise. 

LLCS FS appears to be the most accurate, which is reasonable 

ased on the results for the ideal gas tests. 

We further present the temperature results for a coarse grid 

ith N cells = 100 and a fine grid with N cells = 10 , 0 0 0 in Figs. 14 (a)

nd 14 (b). HLLCS with FS performs well, even for the coarse grid. 
12 
LLCS with RS performs poorly for the coarse grid, but converges 

owards HLLCS with FS on the fine grid. HLLC+S converges towards 

n incorrect solution. 

.3.2. Test 5: Two-phase test with a large non-conservative term 

We have constructed the present case test to provide a chal- 

enging test for the discretization of the non-conservative term. 

he initial condition is given in Table 6 . We employ the same do- 

ain, position of the discontinuity, grids and CFL number as in Test 
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Fig. 16. Test 6: Results of a water vapour shock-tube interaction with an abrupt contraction at t = 2 . 5 ms for HLLCS FS compared with WAHA results from Tiselj et al. [42] , 

the results of Daude and Galon’s scheme [45] and a 2D axisymmetric simulation from [46] provided by Daude. 

Table 7 

Initial conditions for water vapour shock test (Test 6). 

p (MPa) u (ms −1 ) T (K) A (m 

2 ) αg (-) 

x ∈ [0 , 2] 15 0 644.17 0.4 1.0 

x ∈ [2 , 3] 10 0 607.96 0.4 1.0 

x ∈ [3 , 5] 10 0 607.96 0.02 1.0 
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. We compute a HLLCS FS reference solution on a finer grid for 

hich the area change occurs over 9 grid cells for this test as well.

The reference solution and the solutions of HLLC+S, HLLCS RS 

nd HLLCS FS for pressure, density, velocity, Mach number, en- 

ropy and mass fraction of gas are shown in Figs. 15 (a), 15 (b),

5 (c), 15 (d), 15 (e) and 15 (f), respectively, for t = 1 . 2 ms. It is ev-

dent in the plots of pressure, density, velocity and Mach num- 

er that HLLC+S has failed to compute a reasonable solution and 

s unstable. In Fig. 15 (a), we have cut off the pressure peak at 

he area change, x = 0 . 6 m which reaches 14 MPa . Based on the 

esults of this test and further on the result of the steady-state 

est in Section 5.2.1 , we see that imposing the non-disturbance 

elation [41] for compressible duct flow on the discretization of 

he non-conservative term is not enough to ensure the stability of 

he solver. As the discretization of the non-conservative term in 

he AUSM 

+ -up scheme is only based on this principle, similarly to 

LLC+S, the scheme will likely also fail for this test. 

.4. Test 6: Single-phase steam shock-tube interaction with an abrupt 

ontraction 

We will here apply our best performing method, HLLCS with 

S, to a water vapour test originally proposed by Tiselj et al. [42] to

ompare its results with existing methods. In the present work, the 

APWS-95 equation of state is used for modelling water [43] , us- 

ng the TREND software [44] . We compare our results to those of 

AHA [42] , a HLLC-based method proposed by Daude and Galon 

45] and a 2D axisymmetric simulation of the system provided by 

aude and Galon [46] . Note that Daude and Galon model the water 

ifferently, using steam-water tables based on the 1984 NBS/NRC 

ormulation [47] . The initial conditions for this test is presented in 

able 7 . The test is run with 20 0 0 grid cells and a CFL number of

.8. In WAHA, 125 nodes are applied. 

The results for pressure and temperature at t = 2 . 5 ms are plot- 

ed in Figs. 16 (a) and 16 (b) respectively. The schemes perform sim- 

larly, except for the calculated plateau between the area change at 

 = 3 m and the transmitted shock wave at x ≈ 3 . 45 m. The differ-

nt thermodynamic modelling of water may contribute to the dif- 
13 
erence in the results, however, as the results agree well for all the 

ther waves in the solution it seems more likely that the difference 

s related to the numerical schemes. Daude and Galon’s scheme 

grees the most with the 2D axisymmetric simulation. However, 

e note that the 2D result appears to be smeared in this area and 

he simulation might not be fully converged. Note also that Daude 

nd Galon’s scheme obtains a small peak in the temperature at 

 = 3 . 0 m. None of the other solvers obtain this. HLLCS FS is closer 

o Daude and Galon’s scheme and the 2D axisymmetric result than 

AHA. The HLLCS FS scheme provides the least smeared result and 

as no artefacts such as bumps or peaks in its solution. We there- 

ore find the result reasonable. 

. Conclusion 

We have proposed HLLC-type finite-volume methods to simu- 

ate transient two-phase flow in pipes with discontinuous cross- 

ectional area. Such simulations are relevant to describe flow in 

ellbores, nuclear coolant flows and high-pressure pipeline flow. 

HLLC+S is a relatively simple scheme, incorporating the non- 

onservative term in the governing equations much like a source 

erm with a discretization constructed to conserve the station- 

ry state exactly. This approach is similar to that of Brown et al. 

20] for an AUSM 

+ -up scheme. HLLCS is a new approximate Rie- 

ann solver, assuming a four-wave solution, which includes the 

on-conservative term in a more thorough manner. For subsonic 

ow, HLLCS requires the solution of a nonlinear system. Notably, 

oth HLLC+S and HLLCS can be applied with a general equation of 

tate. 

The methods are tested on benchmark tests with the ideal 

as EOS, including a steady-state test, a Riemann problem with a 

trong non-conservative term and a resonant case. Though HLLC+S 

erforms well for the resonant case, it performs poorly otherwise. 

his solution scheme is not consistent for the system. We have 

ested two discretizations of the non-conservative term for the 

LLCS-based FVM which we have called FS and RS. FS is based on 

he flux-estimates of the HLLCS approximate Riemann solver across 

ell faces, and RS is based on the Roe-average between neighbour- 

ng grid cells. It is found that HLLCS does not have a solution for 

ts nonlinear system for resonant flow, where the assumption of a 

our-wave solution is incorrect. Despite this, HLLCS with RS com- 

utes a more accurate solution than HLLC+S for the resonant case. 

LLCS with FS does not reach a solution for this case. Otherwise, 

LLCS with FS is superior in accuracy and is found to be well- 

alanced in the sense that it conserves the steady state exactly. 
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[

We have further applied the methods to two Riemann problems 

ith two-phase CO 2 flow, governed by a homogeneous equilibrium 

odel (HEM) together with the Peng–Robinson EOS. In the first 

est we find that HLLC+S has an unphysical behaviour at the area 

iscontinuity. This is not present for the HLLCS solvers. We show 

ith the second test that it is possible to design a case in which

LLC+S diverges whereas HLLCS does not. Finally, we have tested 

ur best performing method, HLLCS with FS, on a test with water 

apour and compared our results to other available solvers for the 

ompressible duct flow equations. The result appears reasonable. 

Based on these results, HLLCS with FS holds promise as an ac- 

urate and robust method to simulate various challenging tran- 

ient two-phase flow problems. However, HLLCS cannot be applied 

n cases of flow towards an expansion where the flow becomes 

hoked at the area discontinuity because such cases are resonant. 

his is a limitation of HLLCS which should be improved upon if 

he solver is to be used in general industrial applications. Future 

ork includes the extension of HLLCS to resonant flow, possibly by 

ncluding a fifth wave in its solution, and the derivation of higher- 

rder HLLCS-based methods. 
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ppendix A. Jacobian matrix of compressible duct flow 

For smooth solutions, the compressible duct flow equations can 

e expressed as 

 t + A (U ) U x = 0 , (A.1) 

 = 

⎛ ⎜ ⎝ 

0 1 

c 2 − u 

2 − �(e + 

p 
ρ − 1 

2 
u 

2 ) (2 − �) u 

u 

(
c 2 − (� + 1)(e + 

1 
2 

u 

2 + 

p 
ρ ) + �u 

2 
)

e + 

p 
ρ + 

1 
2 

u 

2 − �u 

2 

0 0 
14 
here A is the Jacobian matrix of the system. If the pressure is 

iven by some general equation of state (EOS), p = p(e, ρ) a small 

hange in pressure, d p, can be expressed as 

d p = 

(
∂ p 

∂ρ

)
e 

d ρ + 

(
∂ p 

∂e 

)
ρ

d e = (c 2 − �
p 

ρ
) d ρ + �ρ d e, (A.2) 

here c is the speed of sound and � is the first Grüneisen param- 

ter. Then A (U ) is given by Eq. (A.3) . 

0 0 

� p� − ρc 2 

+ 1) u u 

(
p(� + 1) − ρc 2 

)
0 0 

⎞ ⎟ ⎠ 

(A.3) 
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