
Model Predictive Control for Micro Aerial Vehicles: A Survey

Huan Nguyen1, Mina Kamel2, Kostas Alexis1, and Roland Siegwart3

Abstract— This paper presents a review of the design and
application of model predictive control strategies for Micro
Aerial Vehicles and specifically multirotor configurations such
as quadrotors. The diverse set of works in the domain is
organized based on the control law being optimized over linear
or nonlinear dynamics, the integration of state and input con-
straints, possible fault-tolerant design, if reinforcement learning
methods have been utilized and if the controller refers to
free-flight or other tasks such as physical interaction or load
transportation. A selected set of comparison results are also
presented and serve to provide insight for the selection between
linear and nonlinear schemes, the tuning of the prediction
horizon, the importance of disturbance observer-based offset-
free tracking and the intrinsic robustness of such methods
to parameter uncertainty. Furthermore, an overview of recent
research trends on the combined application of modern deep
reinforcement learning techniques and model predictive control
for multirotor vehicles is presented. Finally, this review con-
cludes with explicit discussion regarding selected open-source
software packages that deliver off-the-shelf model predictive
control functionality applicable to a wide variety of Micro
Aerial Vehicle configurations.

I. INTRODUCTION

Micro Aerial Vehicles (MAVs) and especially systems of
the multirotor class, such as quadrotors and hexacopters,
correspond to a widely adopted type of aerial robot. Such
systems are nowadays extensively used for autonomous
inspection [1], surveillance [2] and other remote sensing ap-
plications, alongside tasks relating to physical interaction [3],
delivery [4] and more. Their success is attributed to a variety
of factors including their simplicity, low-cost, reliability,
and agile dynamics. Naturally, a key component relates to
the accuracy and robustness of the controller onboard such
systems which alongside the state estimation process are
the two most fundamental algorithms necessary to facilitate
autonomous navigation.

In response to this fact, a wide variety of control strategies
have been proposed for the problem of MAV flight control
including both model-free and model-based methods. In the
latter, both linear and nonlinear methods have been consid-
ered, alongside methods exploiting piecewise system models,
techniques tailored to robots undergoing physical interac-
tion, load transportation, and deep neural networks-based
reinforcement learning approaches. Among the multiple ap-
proaches, model predictive control has seen wide utilization
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Fig. 1. Indicative robots from previous work of the authors that have relied
on model predictive control for their position control.

and has presented outstanding results in terms of trajectory
tracking accuracy and robust performance. Figure 1 presents
examples of MAVs relying on model predictive control.

Model Predictive Control (MPC) [5–11] offers a collection
of properties of significant importance for MAVs. Being
a model-based method, it can exploit knowledge of the
dynamics model of the system. Based on the extensive
progress in the domain, MPC methods are now feasible
both for linear and nonlinear systems, alongside hybrid
model formulations. By optimizing over a horizon, MPC
can simultaneously optimize towards optimal tracking of the
reference trajectory and satisfy input and state constraints,
while retaining robust performance. Furthermore, state con-
straints may not be limited to box constraint formulations but
also model 3D obstacles as regions of the navigation space
that must be avoided. Additionally, MPC by nature relates to
approximate dynamic programming and is very relevant to
modern research in reinforcement learning, a fact reflected in
a multitude of new works of the community. Moreover, the
power of MPC has enabled it to solve complex problems in
MAV autonomy such as the recent perception-aware model
predictive navigation method in [12].

In this paper we provide a survey with respect to the
methods proposed for trajectory tracking control of MAVs
of quadrotor, hexarotor and other multirotor configurations.
We cover the domains of Linear Model Predictive Control
(LMPC) and Nonlinear MPC (NMPC), as well as MPC
for aerial manipulation and load transportation, fault-tolerant
control, alongside the interconnection between MPC and
neural networks-based reinforcement learning approaches.
We present selective comparison results which serve to pro-
vide design guidelines and further categorize a set of open-
source code packages that provide off-the-shelf functionality
for deploying MPC onboard micro aerial vehices.

The rest of this paper is organized as follows. A model



of the multirotor dynamics is overviewed in Section II.
The survey presentation of MPC for MAVs is detailed in
Section III with subsections on linear and nonlinear methods,
strategies for fault-tolerance, load transportation, physical
interaction and works involving deep reinforcement learning.
Finally, Section IV outlines a selected set of open-source
packages, while conclusions are drawn in Section V.

II. MODELING OF MICRO AERIAL VEHICLES

A set of contributions have provided extensive means to
model multirotor MAVs at selective levels of fidelity. As
visually depicted in Figure 2, one may account to a different
extent for complex aerodynamic parameters, non-diagonal
inertia terms and other effects that have been detailed ex-
tensively in pioneering studies [13]. This modular approach
allows us to simplify, without loss of generality, the subse-
quent discussion by considering the hexarotor vehicle as a
particular instance of a multirotor system, while researchers
that build upon this presentation may decide independently
of components such as the propeller model. A hexarotor is
typically a platform consisting of six identical rotors and
propellers symmetrically configured. This propulsion system
generates the thrust and torque normal to the plane of the
vehicle, as required to facilitate stable control.

Fig. 2. Basic model components of MAV dynamics.

For the modeling derivations below we choose an inertial
reference frame I with unit vectors {~Ix,~Iy,~Iz} and a body
fixed frame B with unit vectors {~Bx, ~By, ~Bz}. The origin of
B is located at the Center of Mass (CoM) of the hexarotor
and is presented in Figure 3. For the rest of this process,
let us denote m as the total mass, J ∈ R3×3 the inertia
matrix with respect to B, RIB ∈ SO(3) the rotation matrix
representing the vehicle orientation, ω ∈ R3 the angular
velocity expressed in B, p ∈ R3 the position of the vehicle’s
CoM in expressed in I, and υ ∈ R3 the velocity of the CoM
expressed in I.

The dominant forces acting on the vehicle are generated
from the propellers. Under a set of common and well-proven
assumptions, each propeller is considered to generate thrust
proportional to the square of the propeller rotation speed and
angular moment due to the drag force. For each propeller i,
the generated thrust and moment take the form:

FT,i = knn
2
i ez (1)

Mi = (−1)i−1kmFT,i

where ni is the rotor speed of the propeller, kn, km > 0 are
constants, and ez is a unit vector in the z direction.

This level of modeling fidelity for the forces applied on
a multirotor is the one most commonly found. However, if

Fig. 3. Hexarotor model and utilized coordinate frames.

we aim to consider dynamic maneuvers, then two additional
phenomena come into play. These effects are the blade
flapping and induced drag and introduce additional forces
in the x-y rotor plane and thus add more damping to the
MAV [14]. Combining these effects into one lumped drag
coefficient [15], we derive the following aerodynamic force
for propeller i:

Faero,i = fT,iKdragR
T
IBv (2)

where Kdrag = diag(kD, kD, 0), kD > 0, and fT,i is the z-
component of the i-th thrust force. Then the motion dynamics
take the form:

ṗ = υ (3)

υ̇ =
1

m

RIB

Nr∑
i=0

FT,i−RIB

Nr∑
i=0

Faero,i+Fext

+

 0
0
−g

 (4)

ṘIB = RIB bω×c (5)

Jω̇ = −ω × J + A


n2
1

...
n2
Nr

 (6)

where Fext represents any external forces acting on the
vehicle, and A is the control allocation matrix and Nr
the number of propellers. The works in [16, 17] present
the control allocation matrix derivations for the case of
symmetric hexarotor and quadrotors respectively.
Attitude Subsystem: It is noted that commonly in application,
the attitude dynamics of a multirotor platform are controlled
with a fast embedded system running a rather simple to
calculate feedback loop often only involving fixed-gains.
Therefore, MPC is often deployed as a cascale position
controller commanding the closed loop attitude dynamics
which now should be identified. For that goal, the inner-loop
attitude model can be represented as a first-order model due
to the efficiency of onboard control and despite its otherwise
second-order nature [18]. The closed-loop attitude dynamics
to then be identified take the form:



φ̇ =
1

τφ
(kφφref − φ) (7)

θ̇ =
1

τθ
(kθθref − θ)

ψ̇ = ψ̇ref

where kφ, kθ and τφ, τθ are the dc-gains and time constants
of the roll and pitch closed-loop dynamics respectively, while
φref , θref represent the reference roll and pitch angles, and
ψ̇ref is the commanded yaw rate.

III. MODEL PREDICTIVE CONTROL FOR MAVS

In this section we overview some of the successful meth-
ods and strategies of applying model predictive control
for MAVs. In particular, linear and nonlinear schemes are
presented, methods for physical interaction and load trans-
portation, alongside techniques combining traditional MPC
and neural networks-based reinforcement learning.

A. Linear Model Predictive Control

The basic case of application of MPC for quadrotor control
relates to linear methods. Furthermore, in the most widely
adopted case, Linear Model Predictive Control (LMPC)
is deployed to handle the position dynamics of a MAV
assuming that an attitude controller is already deployed and
an associated closed-loop attitude dynamics model has been
identified as described in Eq. (7). Given this model we can
proceed to linearize the remaining system dynamics around
hover. We define the following state vector and control input:

x = [pT υT Iφ Iθ]
T (8)

u = [Iφref Iθref Tref ]
T (9)

where Tref is the commanded reference thrust, Iφ,I θ are
the roll and pitch angles expressed in the inertial frame. The
following relation with the robot roll and pitch angles holds:

[
φ
θ

]
=

[
cosψ sinψ
− sinψ cosψ

] [
Iφ
Iθ

]
(10)

Finally, after linearization and discretization the following
state-space form holds in which the effect of external forces
Fext,k and the disturbance matrix Bd are also considered:

xk+1 = Axk +Buk +BdFext,k (11)

Provided the above, the LMPC strategy repeatedly solves
the following Optimal Control Problem (OCP) assuming
that input constraints apply but no state constraints are
considered:

min
U

N−1∑
k=0

(
‖xk − xref,k‖2Qx

+ ‖uk − uref,k‖2Ru

)
(12)

+ ‖xN − xref,N‖2P

s.t. xk+1 = Axk +Buk +BdFext,k (13)
Fext,k+1 = Fext,k, k = 0, ..., N − 1

uk ∈ U
x0 = x(t0), Fext,0 = Fext(t0)

where Qx � 0,Ru � 0 are the state and input penalty
matrices, while P � 0 is the terminal state error penalty.
Furthermore xref,k,uref,k are the target state and target
control input uref,k = [Iφref,k, Iθref,k, Tref,k] respectively
at time k. The input constraints take the following form:

U =

u ∈ R3|

 φmin

θmin

Tref,min

 ≤ u ≤

 φmax

θmax

Tref,max

 (14)

Provided the derivation of the control law per iteration, the
method then applies the first control input u0 and the whole
process is repeated in a receding horizon fashion. Lastly, it is
noted that the derived thrust reference vector is nonlinearly
scaled to account for the projection of thrust when the system
roll and pitch are nonzero:

T̃ref =
Tref + g

cosφ cos θ
(15)

Disturbance Observer: A disturbance observer can be in-
corporated to the above design for offset-free tracking. This
is achieved by augmenting the system model with the dis-
turbances vector. Considering the need to track the system
output yk = Cxk and achieve offset-free tracking, a simple
observer to estimate such a disturbance takes the form:
[

x̂k+1
F̂ext,k+1

]
=

[
A Bd
0 I

] [
x̂k

F̂ext,k

]
+

[
B
0

]
uk +

[
Lx

LFext

]
(Cx̂k − ym,k) (16)

where x̂k, F̂ext,k,ym,k are the estimated state, external dis-
turbances and measured output at time k, respectively, while
Lx,LFext are the associated observer gains. Assuming a
stable observer, we can compute the steady-state MPC state
xref,k and control input uref,k at time k by solving:

[
A− I B
C 0

] [
xref,k

uref,k

]
=

[
−BdF̂ext,k

rk

]
(17)

where rk the output vector reference at time k.
Literature Review: The abovementioned derivation corre-
sponds to the most straightforward application of linear
MPC for the position control of MAVs. At the same time
the research community has explored a much more rich
set of methods. Early in the timeline of this research, the
authors in [19] proposed the application of such a receding
horizon scheme for the attitude control of a quadrotor
vehicle and further accounted for state constraints. As the
calculation of MPC subject to input and state constraints
can be expensive - especially in comparison to the fast
attitude dynamics - multiparametric approaches have been
investigated for the explicit derivation of the control law [20].
At a similar period, the authors in [21] proposed LMPC
methods with integral terms. Aiming to account for the
change in the system dynamics when the operating point
departs significantly from the hovering point - but still not



employing nonlinear methods - the works in [22, 23] present
a PieceWise Affine (PWA) modeling approach and associated
predictive control policy for the full control of a quadrotor
MAV. Furthermore, the work in [24] investigated the design
of robust MPC methods and presented extensive disturbance
rejection capabilities including the ability to handle slung
load disturbances. Currently, LMPC methods have presented
significant success and have managed to be utilized reason-
ably extensively at least in multirotors in research labs as
also visible in the discussion for open source packages in
Section IV. Connecting the domain of linear and nonlinear
MPC approaches, the work in [25] offers a flatness-based
approach which exploits feedback linearization and provides
agile flight capabiltiies across the flight envelope but with
the often reduced computational cost of linear methods.
Reachability Analysis: When safety-critical applications are
considered, guaranteed control performance is necessary.
Generally, for a dynamic system, the reachable set R for
a time t, inputs u, disturbances w and a set of initial states
S is the set of end states of trajectories starting in S after
time t [26]. Despite the importance of reachable set analysis
for MPC controllers, the literature in MPC application for
MAVs mostly lacks such considerations. Few directly or
indirectly relevant exceptions have examined the problem
either directly from a MPC standpoint or with regards to
learning-based methods [27, 28], yet it is believed that the
domain deserves further attention.

B. Nonlinear Model Predictive Control

Linear control methods are appealing due to their simplic-
ity and often reduced computational needs. Long experience
in the community has indicated that when a multirotor
MAV is largely operating around hovering/small-angles then
LMPC methods provide high performance and robustness.
However, nonlinear control has to be utilized if the complete
flight envelope of the system is to be exploited.

Towards that goal we derive a baseline formulation for
Nonlinear Model Predictive Control. We consider the fol-
lowing state and control vectors:

x = [pT υT Iφ Iθ Iψ]
T (18)

u = [Iφref Iθref Tref ]
T (19)

This in turn allows us to formulate the nonlinear OCP:

min
U

∫ T

t=0

‖x(t)− xref (t)‖2Qx
+ ‖u(t)− uref (t)‖2Ru

dt (20)

+ ‖x(T )− xref (T )‖2P

s.t. ẋ = f(x,u) (21)
u(t) ∈ U
x(0) = x(t0)

where f is composed by Eqs. (3) (4) (7). The controller
is implemented in a receding horizon fashion, where this
optimization needs to be solved in real-time. As typically this
corresponds to a computationally expensive task, especially

for the fast dynamics of MAVs and the often limited onboard
computational capabilities, direct methods [18] have gained
significant attention due to their reduced processing needs.
Multiple shooting techniques in particular have been used to
solve Eq. (20) [18] with the system dynamics and constraints
being disccretized over a coarse discrete time grid t0, ..., tN
within the interval [tk, tk+1] and for each interval solving
a Boundary Value Problem where additionally continuity
constraints are imposed.
Disturbance Observer: Analogous to the case of LMPC, we
can estimate the external disturbances Fext. This is now
achieved through an augmented state Extended Kalman Filter
(EKF) that includes the external forces. The EKF uses the
same model as in control design but further incorporates the
heading angle. The external force estimation in turn incor-
porates modelling errors and supports offset-free tracking.
Literature Review: Beyond this baseline formulation of
NMPC for MAVs, the research in the community has inves-
tigated further problems. The contribution in [29] considers
general MAV designs and an enhanced actuator model for
improved tracking performance. The work in [16] examines
the problem of applying NMPC directly for the inner attitude
dynamics of the system. The authors in [30] present a
NMPC approach formulated on the Special Euclidean group
SE(3), which has a single optimization layer and offers safe
trajectory tracking with obstacle avoidance capacity. The
work in [31] explicitly considers the role of input constraints
in NMPC design for multirotor MAVs. Towards agile perfor-
mance combined with lightweight computational needs, the
work in [32] presented a method for real-time, unconstrained
NMPC that combines trajectory optimization and tracking
control in a single, unified approach. It uses an iterative op-
timal control algorithm - namely Sequential Linear Quadratic
- in the MPC setting to solve the underlying nonlinear control
problem and simultaneously derive the optimal feedforward
and feedback terms. The authors demonstrate that the solver
can generate trajectories with a duration of multiple seconds
within only a few milliseconds. Focusing on the problem of
collision-free flight, the contribution in [33] applies NMPC
for the problem of obstacle avoidance for a quadrotor aerial
vehicle. Similarly, the work in [34] utilizes NMPC to enable
the avoidance of complex obstacles including those with
non-convex shape. Considering the specific need of carrying
external payloads, the work in [35] applies NMPC for slung
load oscillation suppression for a quadrotor MAV.

C. Comparison of Linear and Nonlinear MPC

As free-flight control is the main control task for a
multirotor MAV, in this section we present a comparison of
two baseline linear and nonlinear MPC approaches for the
position tracking problem of a hexarotor MAV.

More specifically, the Linear and Nonlinear MPC con-
trollers’ performance are compared using the C++ imple-
mentations presented in [36], with the simulated model
being an AscTec Firefly hexacopter based on the RotorS
open-source simulator [37]. The weight matrices Qx and Ru

are chosen the same for both controllers, while the terminal
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Fig. 4. Position responses of Linear and Nonlinear MPC with sinusoidal
input signal having frequency varied in the range [0.1, 0.33]Hz.

matrix P is calculated by solving the corresponding discrete
algebraic Ricatti equation. From Figure 4, it is observed
that the Nonlinear MPC outperforms the Linear MPC when
the trajectory is more aggressive (t ∈ [40, 48]s) since the
Nonlinear MPC can exploit the nonlinear dynamics of the
system when the tilt angles of the drone are large. The RMSE
errors of the Nonlinear and Linear MPC in this case are 8.6
and 19.0cm, respectively. The performance of the linear MPC
with parameter uncertainty, in this case the mass parameter,
is also verified and the results are illustrated in Figure 5.
It can be seen that even though the responses in x, y axes
are not affected much, there is offset in the z axis response
when the mass of the system is incorrect which necessitates
to incorporate a disturbance observer in practical use.
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Fig. 5. Step responses of Linear MPC when the mass of the MAV is set
correctly (m = 1.5kg) and when the mass is incorrect (m = 1.2kg and
m = 1.8kg). The disturbance observer is turned off in all cases. RMSE in
z-axis are 30.36, 42.3, and 45.1cm, respectively.

It is known that the number of prediction steps in the
MPC problem can greatly affect the feasibility and stability
of the closed-loop system. Specifically, increasing the pre-
diction horizon leads to larger region of attraction [38]. The
responses of the closed loop system with different prediction
horizons and input signal described in Figure 5 are illustrated
in Figure 6 and the RMSE values are given in Table I. It can
be seen that reasonably increasing the number of prediction
steps improves the tracking performance. However, solving

the MPC problem with larger prediction horizon requires
more computation time as described in the box plot in
Figure 7. The outlier values denoted by red crosses in
Figure 7 correspond to the cases when the control inputs are
close to the limits, which require the solvers to take more
iterations to find the solutions. Interestingly, the nonlinear
MPC solver based on [39] has smaller computation time
compared to the linear MPC solver based on [40].

Fig. 6. Step responses of Linear and Nonlinear MPC with different
prediction horizons (N = 10, 20, 30Tp with prediction step Tp = 0.1s).

TABLE I
RMSE VALUES OF THE xyz RESPONSES OF LINEAR AND NONLINEAR

MPC WITH REFERENCE SIGNAL GIVEN IN FIGURE 5

N = 10 N = 20 N = 30
LMPC (m) 1.06 0.78 0.78
NMPC (m) 0.79 0.74 0.74
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Fig. 7. Computation time of the control loop of Linear and Nonlinear
MPC with different prediction horizons on an i7 8th gen Intel CPU. The
reference signal is illustrated in Figure 5.

D. Fault-Tolerant MPC

Fault-tolerance is an essential property of every control
scheme. As MAVs can undertake critical roles, while their
airborne nature makes them potential risk factors, assess-
ing the fault-tolerance of their flight control is particularly
important. The work in [41] has demonstrated the potential
to retain full or partial controllability of a quadrotor MAV
degrees-of-freedom even subject to the loss of one, two or
even three propellers. Naturally, more control re-allocation
options arise with MAVs integrating additional actuators
(e.g., a hexacopter). In terms of MPC work, the contri-
butions in [16, 42, 43] demonstrated - following different
designs - the inherent capability of NMPC to retain dynamic
stability for a symmetric underactuated hexacopter subject
to propeller loss. Furthermore, the contribution in [44]
demonstrates the application of NMPC for a hexarotor with
three motor failures. The authors in [45] investigate the role
of partial loss of control effectiveness in the actuators of



a quadrotor and apply MPC with terminal constraints to
enable the accurate reference tracking despite the considered
faults. A fault detection and diagnosis system is designed to
assist MPC in its task. It is considered that the importance
of integration of MAVs in safety-critical applications or
the national airspace will increase the importance of fault-
tolerant predictive control design.

E. Deep Reinforcement Learning

MPC, which aims to find a solution of the constrained
finite-horizon optimization problem, is closely related to
Reinforcement Learning (RL), which learns how to make
sequential decisions to maximize a numerical reward signal
through trial-and-error search [46]. The interactive nature
of RL combined with the approximation ability of neural
networks, allow the replacement of each component in the
MPC scheme (or part of it) with this powerful representation.
The works in [47, 48] derive the terminal and transition
cost functions from the value function which is learned by
rolling out the current policy and collecting reward signals.
This reward signal can be a binary or sparse reward which
opens the opportunity to remove the need for hand-tuning
the cost matrices in MPC [49]. The authors in [50] use a
neural network to learn the dynamic function of the system,
while the contribution in [51] proposes a deep quantile
regression framework for learning bounds on distributions of
trajectories, demonstrated to generate an obstacle avoidance
path for a full-state quadrotor model subject to action noise.
The computation cost for solving the MPC problem can be
high with long prediction horizon, rendering it impractical to
be applied to many real-time control problems and in such
cases, deep RL can be used to compress the MPC policy. The
work in [52] uses an expert MPC in guided policy search to
control a MAV which not only reduces the computation time
compared to that of the expert MPC but also removes the
need for an explicit state estimation. The authors in [53]
propose a constrained neural network architecture to imitate
an explicit MPC law and then a policy gradient method
- with the advantage function calculated by utilizing the
terminal cost function in a MPC problem - is developed.
It is noted that the use of neural networks to represent the
optimal policy in critical constrained optimization problems
necessitates the need for verification methods to validate the
performance of the close loop systems. The work in [54]
demonstrates computing the 10-step forward reachable set
of a 6D quadrotor model controlled by a neural network
using Semidefinite Programming.

F. Load Transportation

Analogous to their manned counterparts, micro aerial vehi-
cles are considered for load transportation tasks [55]. Despite
the robustness of MPC and especially of certain design
variations of it [24], special control design is necessary
for high-performance load transportation using one or more
multirotor systems. The work in [56] presents a method
for cable-suspended load transportation using a quadorotor
vehicle. The authors in [3] present aerial pick-and-place

relying on MPC methods. Considering the benefits of tilt-
rotor systems, the works in [57, 58] propose MPC methods
for load transportation. As during a slung-load operation, it
is not only the aerial robot that can collide with the world but
also the load itself, the contribution [59] explicitly derives
safe paths for load transportation operations. Considering
the potential of multi-robot synergy in load transportation,
a possible MPC design is presented in [60] for two vehicles,
while a more general problem formulation is detailed in [61].

G. Physical Interaction

MPC methods have also found their way in the context of
research work relating to aerial robots physically interacting
with their environment. The authors in [62] derive a hybrid
systems-based formulation of a quadrotor that either navi-
gates in free-flight or comes in contact with the environment
in order to perform inspection tasks. The work first utilizes a
linearized model for the position dynamics of the quadrotor
in free-flight given the system identification of the closed-
loop attitude dynamics. This is combined with a linear
model of the system in contact with the environment by
accounting for the force applied from the physical surfaces.
The applicability of hybrid systems relates to the fact that
collision-dynamics are particularly fast and thus allow to
handle them as nonsmooth effects instead of stiff differential
equations [63]. A broader illustration is depicted in Figure 8.
Utilizing similar principles, the work in [64] performs force-
ful work-tasks using MPC and a tilt-rotor MAV.

Fig. 8. Physical interaction with micro aerial vehicles affords hybrid sys-
tems formulation. In free-flight the manipulator/end-effector-based induced
disturbances should also be accounted, while during physical interaction the
forces exerted by the environment have to be considered.

Investigating a more challenging task, the authors in [3]
proposed a MPC framework for a MAV performing aerial
pick-and-place tasks. Examining the problem of aerial ma-
nipulation, the authors in [65] propose a NMPC to follow
desired trajectories with the end-effecctor of a multirotor.
The work further examines the potential enabled by the
augmented kinematics the manipulator offers during free-
flight. Considering the explicit task of opening a door, the
contribution in [66] proposes a model predictive control
framework, albeit in simulation, for a quadrotor utilizing
an onboard arm to open a hinged door. Extending the
potential capacity of a MAV to perform work-tasks in its
environment, the work in [67] considers the problem of the
robot interacting with its environment through an elastic tool.



IV. OPEN-SOURCE MPC PACKAGES FOR MAVS

The success of MPC in the problem of trajectory
tracking for MAVs is also reflected in the extensive
utilization of relevant open-source packages released. The
work in [36] is associated with an open-source Robot
Operating System (ROS) package available at https:
//github.com/ethz-asl/mav_control_rw that
offers both linear and nonlinear MPC laws. The code
in https://github.com/uzh-rpg/rpg_mpc
also provides MPC functionality for multirotors and
has extensions to perception-aware functionality [12].
Similarly, it is released as a ROS package. The work
in [68] is also released as an open-source contribution
and provides both multi-robot and single-robot control
such as NMPC for quadrotors. It can be found as a ROS
package at https://github.com/DentOpt/denmpc.
Last, an implementation for ARM CPUs [69] can
be found at https://github.com/klaxalk/
multirotor-control-board. Contributing a larger
overall software library for control, the work in [70]
also provides an example for MPC of quadrotors
and can be found at https://github.com/
ethz-adrl/control-toolbox. These works are
indicative and more are available in the community.
Simultaneously, the interested researcher can also
directly refer to software packages for general MPC
design such as CVXGEN [40] available at https:
//cvxgen.com/docs/index.html, ACADO [39]
available at http://acado.sourceforge.net/doc/
html/d4/d26/example_013.html, YALMIP [71]
available at https://yalmip.github.io/,
the Multi-Parametric Toolbox [20] available at
https://www.mpt3.org/, do-mpc [72] found at
https://www.do-mpc.com/en/latest/ and other
both open-source and closed packages applicable to a variety
of programming languages and processor architectures.

V. CONCLUSIONS
A survey on the application and design considerations

of model predictive control for micro aerial vehicles was
presented. The literature in the domain includes both linear
and nonlinear controllers for the robot flight dynamics, meth-
ods for physical interaction and load transportation, fault-
tolerant control schemes and methods combining modern
reinforcement learning techniques. As the integration of
MAVs in important application domains becomes wider, we
anticipate that the study of novel MPC methods - especially
considering the uncertainties and risks in the robot navigation
process - will tend to be even more important and possibly
essential for achieving robust autonomous flight.
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