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Abstract

Multiple Sclerosis (MS) is a chronic disease. It affects the central nervous

system and its clinical manifestation can variate. Magnetic Resonance Imaging

(MRI) is often used to detect, characterize and quantify MS lesions in the

brain, due to the detailed structural information that it can provide. Manual

detection and measurement of MS lesions in MRI data is time-consuming,

subjective and prone to errors. Therefore, multiple automated methodologies

for MRI-based MS lesion segmentation have been proposed. Here, a review of

the state-of-the-art of automatic methods available in the literature is presented.

The current survey provides a categorization of the methodologies in exis-

tence in terms of their input data handling, their main strategy of segmentation

and their type of supervision. The strengths and weaknesses of each category

are analyzed and explicitly discussed. The positive and negative aspects of the

methods are highlighted, pointing out the future trends and, thus, leading to

possible promising directions for future research. In addition, a further cluster-

ing of the methods, based on the databases used for their evaluation, is provided.

The aforementioned clustering achieves a reliable comparison among methods

evaluated on the same databases.
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Despite the large number of methods that have emerged in the field, there is

as yet no commonly accepted methodology that has been established in clinical

practice. Future challenges such as the simultaneous exploitation of more so-

phisticatedMRI protocols and the hybridization of the most promising methods

are expected to further improve the performance of the segmentation.

Keywords: Brain MRI, Multiple Sclerosis, Automated Segmentation, Survey

1. Introduction

Multiple sclerosis (MS) is a chronic disease that affects the central nervous

system (CNS) with great variability in its clinical manifestation. MS is a pro-

gressive neurological disease which changes the morphology and structure of

the brain, causing disability in young adults. Depending on the area of the5

CNS which is affected, symptoms ranging from blurred vision, severe muscle

weakness and degradation (Filippi et al., 1995) to coordination and cognitive

impairment are observed (Compston and Coles, 2008). MS is relatively com-

mon in Europe, the United States and parts of Australia, but rare in Asia. In

addition, it is more prevalent in women than men and its incidence increases10

rapidly after the age of 18, reaches a peak between 25 and 35 and then slowly

declines, becoming rare at 50 and older. According to the latest epidemiological

studies (Browne et al., 2014; World Health Organization (WHO) and Multiple

Sclerosis International Federation, 2008), the frequency of the disease has been

increasing worldwide. While the etiology of the disease is not entirely known,15

environmental factors and genetic effects are considered as the most probable

causes (Noseworthy et al., 2000). Although MS does not affect significantly the

patients’ life duration, there is a substantial impact on the quality of life of the

patients and their families.

Conventional MRI is considered as one of the most important modalities of20

medical imaging and, in general, is an excellent non-invasive imaging technique

for studying the brain. MRI is highly sensitive in detecting MS plaques and can

provide quantitative assessment of inflammatory activity and lesion load. This
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has established MRI as a key clinical tool for diagnosing MS (Fazekas et al.,

1999; Simon et al., 2006), assessing the progression (Martola et al., 2010; Rovira25

and León, 2008; Rovira et al., 2009) and the activity (Tian et al., 2012) of the

disease and monitoring the efficacy of medical treatments (Calcagno et al., 2010;

Ge, 2006; Van Den Elskamp et al., 2010). The presence and spatial pattern of

MS lesions in MRI (dissemination in space) and the appearance of new MS

lesions (dissemination in time) are key components of current diagnostic criteria30

for the disease (Polman et al., 2011). Thus, identifying and segmenting MS

lesions is an essential first step in characterizing the disease, and in calculating

and interpreting more specialized metrics of damage.

The most common MRI protocols (Hashemi et al., 2012) used in detecting

MS lesions are T1-weighted (T1-w), T2-weighted (T2-w), PD-weighted (PD-w)35

and fluid attenuated inversion recovery T2 (T2-FLAIR)sequences. MS lesions

exhibit hyperintensities in T2-w, PD-w and T2-FLAIR MRI sequences, and

hypointensities in T1-w MRI sequences, with respect to normal intensities.

Figure 1 shows four MRI images (T1-w, PD-w, T2-w, and T2-FLAIR) of a

brain with MS lesions.40

Figure 1: (a) T1-w, (b) PD-w, (c) T2-w, and (d) T2-FLAIR images of a damaged brain. MS

lesions are pointed at by red arrows.

Before the advent of computers in radiology, lesions were visually identi-

fied and measured by neuroradiologists. However, manual segmentation of MS

lesions is a time-consuming and tedious process. In addition, it suffers from sub-

jectiveness and is very prone to human errors. This is what makes an automated
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MS lesion segmentation technique an attractive aid for neuroradiologists. The45

ultimate goal is to obtain an automatic segmentation method that enables the

efficient processing of the large amount of information within an MRI. Al-

though many automated MS lesion segmentation methods have been proposed

in recent years, no single method is yet widely employed. This is because the

aforementioned methods are still encountering technical difficulties. A major dif-50

ficulty is the overlapping intensity distributions of MS lesions and gray matter

of the brain (Sahraian and Radue, 2008). Some regions of the lesion cannot be

distinguished from gray matter using either nonparametric or multi-parametric

statistical classification techniques. This is due to the heterogeneity of lesions

as well as the finite resolution of the images and complicated shapes of the55

brain tissues that impact a large number of the voxels located on the borders of

various tissues (Mortazavi et al., 2012). In addition, although the gap between

experts and automated approaches has been decreased during the recent years,

automated methods are, in most cases, still outperformed by manual segmenta-

tions performed by experts. Thus, there is still room for improvement, in terms60

of performance. Much work has been done to improve the quality of the auto-

matic segmentation, and newer methods provide more complex approaches to

deal with the aforementioned drawbacks. These drawbacks constitute the main

reason that research on this field is open and a comprehensive review of the

state-of-the-art approaches can prove to be of great importance for researchers65

who want to improve upon previous work or develop new automated methods.

In the current survey, we explicitly analyze the developed automated MS

lesion segmentation approaches through a comprehensive up-to-date state-of-

the-art review. To this end, the approaches are categorized, in terms of their

main features and properties. Furthermore a qualitative and quantitative com-70

parison of the state-of-the-art approaches is provided, while their strengths and

weaknesses are illustrated. The ultimate goal of this survey is to aid in identi-

fying the most promising research directions in the field.

It must be pointed out that there are four very extensive reviews on method-

ologies published until 2013 (Garćıa-Lorenzo et al., 2013; Lladó et al., 2012a;75
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Lladó et al., 2012b; Mortazavi et al., 2012). In order to keep the length of the

current survey within practical limits, the current survey is focused on auto-

mated MS lesion segmentation techniques published since 2013; the reader is

refereed to the four aforementioned surveys for techniques published up to 2013.

Thus, not only a novel categorization of the related techniques is provided, but80

also the techniques, illustrated in the current review, are not included in the

existing surveys. The bibliography is very rich and a relatively large number of

new methods have been published since 2013. Table 1 summarizes the number

of state-of-the-art methodologies reviewed by the previous as well as the current

survey. As the previous four surveys were published at a similar time, there is85

a great overlap between the reviewed methods between them.

SURVEY PUBLISHED # OF METHODS REVIEWED

(Mortazavi et al., 2012) 2012 44

(Lladó et al., 2012b) 2012 34

(Lladó et al., 2012a) 2012 34

(Garćıa-Lorenzo et al., 2013) 2013 55

Current Survey 2018 45

Table 1: Number of methodologies reviewed in the previous and the current survey.

Providing a reliable comparison of the state-of-the-art methodologies in-

cludes some objective difficulties. These stem from the fact that the existing

methodologies employ different evaluation measures and different MS lesion

databases. Ideally, all methods would be applied on a common database and90

its accompanying ground truth. Then, the techniques would be directly and

reliably comparable using the same evaluation measures. However, due to the

public unavailability of the source code of most methodologies and the lack of

large-scale publicly available databases of real images along with their ground

truth, this ideal situation cannot be achieved at present. Consequently, through-95

out the current survey, the state-of-the-art methodologies will be compared ac-

cording to their reported results and evaluation measures, as per the literature.

Fortunately, the recent establishment of MS Lesion Segmentation Challenges
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(Carass et al., 2017; Commowick et al., 2016; Styner et al., 2008) has provided

a common framework for MS lesion segmentation algorithms, allowing reliable100

and direct comparisons to be made between different approaches.

The rest of this survey is organized as follows: In Section 2, the publicly

available MS lesion databases as well as the most common evaluation measures

for MS lesion segmentation techniques are illustrated. Section 3 reviews the

state-of-the-art automated MS lesion segmentation methodologies. Section 4105

provides a qualitative and quantitative comparison of the aforementioned state-

of-the-art methodologies. A discussion, where directions for future research in

the field are drawn, is given in Section 5. Future challenges and suggestions are

highlighted in Section 6.

2. Materials110

2.1. MS lesion databases

Due to the lack of large-scale publicly available databases and corresponding

ground truth data that can be used to benchmark MS lesion segmentation

methodologies, the comparison of the state-of-the-art approaches is a bit tricky.

Ideally, all the approaches should be tested on the same benchmark database(s)115

providing direct and reliable comparisons. Many state-of-the-art methodologies

use their own proprietary database raising questions of reproducibility.

In recent years, there has been some progress towards the creation of bench-

mark MRI databases for MS lesion segmentation techniques. MICCAI and

ISBI MS Lesion Segmentation Challenges (Carass et al., 2017; Commowick120

et al., 2016; Styner et al., 2008) provided common databases that were used by

some of the state-of-the-art approaches for evaluation. Techniques that were

tested on these databases can be compared more reliably. At this point it has

to be pointed out that reports that stem out of such challenges do not contain

a birds eye view of the field since they are restricted only to the papers that125

participate to these challenges.
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The MICCAI 2008 (Styner et al., 2008) database consists of MRI images

acquired by a 3T Siemens Allegra system. The data were fully anonymized

for dissemination purposes. Eventually, the database was segmented by three

expert raters. The evaluation is performed against all the experts’ results. The130

participants were provided with 20 training cases with manual segmentations

from one of the experts and 25 testing cases without expert segmentations. The

subjects of the database were randomly assigned to training and testing. The

database contained the same number of high resolution T1-w weighted, T2-w

and T2-FLAIR. All the images were given the same axial orientation and were135

appropriately processed, in terms of registration and interpolation, to be more

easily manageable by the participants.

In MICCAI 2016 (Commowick et al., 2016), the data were acquired by

many different MRI scanners using different magnetic field strengths. A 3T

Siemens Aera 1.5T , a Siemens Verio 3T , a Philips Ingenia 3T and a General140

Electric Discovery 3T were used. Once again, the images were pre-processed

for the convenience of the participants. The data were also anonymized. The

participants were provided with 15 training cases and 38 testing cases, randomly

selected. The training cases were accompanied by their ground truth manual

segmentations. The database contained T1-w weighted, T1-w gadolinium en-145

hanced (T1-w Gd), T2-w, T2-FLAIR and PD-w images.

Although ISBI 2015 (Carass et al., 2017) data set deals with longitudinal

MS lesions, it has been used for validating automatic MS lesion segmentation

techniques. In this case, the longitudinal of the data set can be disregarded as

the annotation of the data has been performed manually and independently. In150

ISBI 2015, the data were acquired using a 3T Philips Medical Systems MRI

scanner. The data were anonymized and the participants were provided with 5

training cases and 14 testing cases, randomly selected. The training cases were

accompanied by their ground truth segmentations. The database contained high

resolution T1-w weighted, T2-w, T2-FLAIR and PD-w images. Once again, the155

images were pre-processed for the convenience of the participants.

In the case of the Whole Brain Atlas database (Summers, 2003), there
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is no available information on the MRI scanner used in order to acquire the

anonymous MRI data. This database consists of 100 subjects along with their

labeled ground truth. The MRI image sequences acquired are T1-w weighted,160

T2-w and PD-w.

The aforementioned databases contain real clinical data from real patients.

A different approach is the creation of synthetic databases. In this case, the

images are synthesized based on a small number of real data. This is very

useful for the creation of big databases, as the available real clinical data are165

restricted. BrainWeb (Cocosco et al., 1997; Collins et al., 1998; Kwan et al.,

1996, 1999), is the first effort in this direction. It produced three different MRI

image sequences (T1-w, T2-w and PD-w) for normal or MS diseased subjects.

The technical characteristics of the produced sequences are determined by the

user. More precisely, the user can determine the desired MRI image sequence,170

the slice thickness, the noise and the intensity non-uniformity (RF ). All the

possible combinations can produce data for a maximum of 270 virtual patients.

In Table 2, the publicly availableMRI databases forMS lesion segmentation

evaluation are illustrated. At this point, it must be highlighted, that the three

public databases have an important drawback; they are small scale. Thus, the175

question of reproducibility of the results of the techniques evaluated on these

databases, still remains.

DATABASE PUBLISHED NR OF SUBJECTS MRI SEQUENCES MRI SCANNER

BrainWeb (Cocosco et al., 1997) 1997 270 T1-w, T2-w, PD-w Synthetic

Whole Brain Atlas (Summers, 2003) 2003 100 T1-w, T2-w, PD-w N/A

MICCAI 2008 (Styner et al., 2008) 2008 45 T1-w, T2-w, T2-FLAIR 3T SIEMENS

ISBI 2015 (Carass et al., 2017) 2015 19 T1-w, T2-w, T2-FLAIR, PD-w, 3T PHILIPS

MICCAI 2016 (Commowick et al., 2016) 2016 53 T1-w, T2-w, T2-FLAIR, PD-w, T1-w Gd 1.5T SIEMENS

3T SIEMENS

3T PHILIPS

3T GE

Table 2: Publicly available databases for MRI-based MS lesion segmentation evaluation.

2.2. Evaluation measures

A variety of measures are used in the literature to evaluate the automated

methods proposed for the segmentation of MS lesions. All of these measures180
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are based on comparing the result of the automated segmentation against the

ground truth. In order to comprehend the evaluation measures, four basic

retrieval terms and their clinical meaning should be understood (Goldberg-

Zimring et al., 1998):

• True Positive (TP ): Refers to correctly segmented MS lesions areas.185

• True Negative (TN): Refers to correctly rejected MS lesions areas.

• False Positive (FP ): Refers to incorrectly segmented MS lesions areas.

• False Negative (FN): Refers to incorrectly rejected MS lesions areas.

With the above terminology in mind, the evaluation measures used in the

segmentation techniques are concisely presented in Table 3. Each measure is190

followed by its mathematical calculation and a description when needed. It

should be noted that all these measures are closely related. Sometimes, different

researchers used the same evaluation measure under different names. This fact

is taken into account in the last column of Table 3.

The above measures can be classified into five main groups:195

• Deterministic measures: Each voxel is assigned to only one tissue type.

• Probabilistic measures: Each voxel has a membership value for belonging

to the different tissue types.

• Area measures: Compare areas of automatically detected segments to the

ground truth areas.200

• Volume measures: Compare volumes of automatically detected segments

to the ground truth volumes.

• Distance measures: Evaluate how far the boundaries of an obtained lesion

segmentation are from those of the ground truth.

Table 4 summarizes the classification of the evaluation measures.205
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DETERMINISTIC PROBABILISTIC AREA VOLUME DISTANCE

SEN ICC DER VD HD

SPE PrC OER AD

ACC RAE

DSC CDR

PPV FDR

FALL

EF

JI

Table 4: Classification of evaluation measures for automated MS lesion segmentation.

It must be pointed out that there are many more evaluation metrics for

segmentation but in the current survey, only the set of measures which are used

in the reviewed techniques presented in Section 3, are illustrated. For more

evaluation metrics and corresponding categories on medical image segmentation,

the reader is refereed to (Taha and Hanbury, 2015). Note that most measures210

are deterministic followed by area measures, distance measures, probabilistic

measures and volume measures. It appears that the DSC measure is the most

prolific one for evaluating MS lesion segmentation methods, as it is the only

evaluation measure in common among all the reviewed methodologies.

3. Methods215

A categorization of the state-of-the-art methodologies is first suggested and

a review of the methodologies follows, based on the given categorization. The

review emphasizes on the steps that differentiate the methodologies.

3.1. Categorization of Methodologies

Although it is hard to explicitly categorize the state-of-the-art MRI-based220

MS lesion segmentation techniques because of large overlaps between them,

we have formulated categories based on the following characteristics that all

methods have:
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• Input data handling.

• Main strategy.225

• Existence of supervision.

With respect to the input data handling, the following classification is sug-

gested:

• 3D volume-based methodologies: The input data represent the 3D volume

of the patient’s brain. Such methodologies process data at voxel level.230

Some of the methods of this category are able to directly perform 3D

segmentation.

• 2D image -based methodologies: The data represent the sequence of 2D

MRI images of the patient’s brain. The methodologies belonging to this

category, process data at pixel level. They implement 2D segmentation235

on each image, and then, they are able combine the individual image

segmentations in order to provide the final 3D segmentation.

For the main strategy of the methodologies the following six categories are

suggested:

• Data-driven methodologies: These methods implement data-based ap-240

proaches such as thresholding, spatial analysis, intensity analysis, mor-

phology analysis topology analysis or region growing.

• Feature-based methodologies: These methods extract features, that can

be used to model the input data. These features are meant to contain

all the meaningful information of the initial data and, thus, represent an245

explicit representation that can be used for further processing.

• Atlas-based methodologies: An atlas is a brain map providing either sta-

tistical or topological information. A statistical atlas provides the prior

probability of each voxel belonging to a particular tissue class. On the
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other hand, a topological atlas encodes a specific topology for each struc-250

ture and group of structures. Methodologies that use atlas information

require the application of a registration process in order to fit the atlas to

the input data.

• Statistical methodologies: The methods of this category exploit estimation

of probability density functions which lead to probabilistic segmentation.255

• Tissue-based methodologies: These methods segment the normal tissues

of the brain first and then the MS lesions appear as outliers on each

normal tissue.

• Lesion-based methodologies: This group of methods either directly seg-

ment the lesions or they segment the lesions simultaneously with normal260

tissues.

Finally, with respect to supervision, two categories exist:

• Supervised methodologies: These methods implement a training process

in order to learn the definition of lesions from exemplary data, previously

segmented by another method. The exemplary data is usually manually265

segmented. The training is based on the features extracted by the method-

ologies. The main feature extraction strategies of the supervised methods

recruit atlas-based, data-driven or statistical methodologies.

• Unsupervised methodologies: These methods do not require labeled train-

ing data to perform the segmentation. Most of these methods employ clus-270

tering techniques to separate the voxels (or pixels) into different classes (or

clusters) based on different extracted features. Typically, these clusters are

then assigned to White Matter (WM), Gray Matter (GM), Cerebrospinal

Fluid (CSF ), or MS lesion according to some a priori information.

Figure 2, illustrates the proposed categorization of the state-of-the-art MS275

lesion segmentation techniques. Figures 3 and 4 illustrate the collective general-

ized pipeline of supervised and unsupervised MS lesion segmentation method-

ologies respectively.
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Figure 2: Proposed categorization of state-of-the-art MS lesion segmentation methodologies.

3.2. Review of Methodologies

The review is focused on the steps that differentiate the methodologies and280

is structured according to the proposed categorization. Note that some methods

could be categorized into multiple categories; the category that is closest to the

core algorithm that the method implements is used.

3.2.1. Supervised Methodologies

3.2.1.1. 3D Volume-based Methodologies.285

3.2.1.1.1. Feature-based Methodologies

In (Jog et al., 2015), all images undergo pre-processing including N4 bias

correction (Tustison et al., 2010), rigid registration (Collins et al., 1995) and

skull stripping (Carass et al., 2011). Then, segmentation takes place using290

trained multi-output decision trees. As training features, besides the local in-

tensity information which is unable distinguish between lesion and normal tissue

alone, features that provide global context for a voxel are also recruited. Fi-

nally, the membership image acquired from the multi-output decision ensemble

is smoothed using a Gaussian filter in order to reduce false positives.295

Intensity, spatial and symmetry features obtained by multimodal MRI data,

are used to train a Random Forest (RF ) classifier in method (Geremia et al.,

2013). RF aims at automatic semantic labeling of the input MRI data. During

training, it learns the optimal image sampling associated with the classification

task. During testing, the algorithm quickly handles the background and focuses300
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Figure 3: Generalized pipeline of supervised MRI-based state-of-the-art MS lesion segmen-

tation methodologies. Parts of the image were published in (Lladó et al., 2012b) (usage

permission granted by authors and publisher).

on challenging image regions to refine the classification.

The method in (Strumia et al., 2016) implements the algorithm presented

in (Li et al., 2009) in order to perform inhomogeneities’ correction and healthy

tissue segmentation at the same time. Then the topological features of MS

lesions are used for training. Thus, the aforementioned features are modeled on305

a geometric brain model which is implemented for recognizing and segmenting

the MS lesions.

In (Maier and Handels, 2015), intensity standardization is implemented as a

pre-processing step. A RF classifier is trained on spatial features of the voxels.

A total of 200 trees are trained without any growth-restriction. To obtain310

a binary segmentation mask, the output of the RF classifier is thresholded.

Finally, single unconnected lesion voxels are removed, holes in binary lesion

objects are closed and a single-iteration closing operation with a 3D square-

connected component is applied.
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Figure 4: Generalized pipeline of unsupervised MRI-based state-of-the-art MS lesion seg-

mentation methodologies. Parts of the image were published in (Lladó et al., 2012b) (usage

permission granted by authors and publisher).

In (Steenwijk et al., 2013) intensity and spatial features are first extracted;315

the latter are normalized based on robust range normalization (De Boer et al.,

2009) and histogram matching (Lao et al., 2008; Younis et al., 2008). Then,

Multi-Atlas segmentation (Aljabar et al., 2009) obtains prior probabilistic maps

indicating the positioning of the CSF , WM and GM structures of the brain.

These maps are called Tissue Type Priors (TTP ). The extracted features along320

with the TTP s create the training vector for a k-Nearest Neighbor (k − NN)

classifier. The classifier is used to decide whether a voxel is a lesion or not. Fi-

nally, a post-processing step is implemented which reduces false positives based

on the lesion volumes.

The method proposed in (Mahbod et al., 2016) employs a rich pre-processing325

step on the initial MRI data which includes histogram matching (Yoo et al.,

2002), intensity inhomogeneity correction, extremely low intensity values re-

moval and normalization. Then, intensity-based and spatial-based features are
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extracted and imported to a supervised Artificial Neural Network (ANN) clas-

sifier. Finally, the ANN performs a per voxel segmentation.330

In (Muschelli et al., 2016), the initial MRI images were corrected, using

the N4 inhomogeneity correction (Tustison et al., 2010). Then, image pre-

dictors are derived, based on the pre-processed input MRI image sequences.

These predictors exploit features such as the normalized intensity of the voxels,

their neighborhood and their contralateral differences. Finally, an RF classi-335

fier (Breiman, 2001) is trained in order to provide the probability that a voxel

belongs to a lesion.

After the harmonization of every input MRI image sequence intensity, the

authors of (Vera-Olmos et al., 2016) extract a number of intensity-based and

location-based features. These features are used to train an RF classifier (Buit-340

inck et al., 2013). This classifier derives an initial lesion mask and a lesion prob-

ability mask. These masks are exploited by a Markov Random Field (MRF )

model in order to grow lesion areas through mask-indicated probable neighbor-

hoods.

3.2.1.1.2. Data-driven Methodologies345

(Prados et al., 2015) exploits the multimodal characteristic intensity dif-

ference between MS lesions and normal tissues. The Optimized PAtchMatch

Label (OPAL) fusion approach (Ta et al., 2014) is used to locate pathological

regions using a template library comprising a series of multimodal 3D images350

with manually segmented MS lesions. By matching patches between the target

multimodal 3D image and the multimodal 3D images in the template library,

OPAL can provide a rough estimate of the location of the lesions in the target

image.

The method in (Iheme and Unay, 2015) is based on intensity thresholding355

and 3D voxel connectivity analysis. Voxels that exceed the threshold defined

by the authors, are segmented as MS lesions. The 3D connectivity analysis

involves examining every detected voxel for the degree of connectivity with each
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of its neighboring voxels. The training data was used to determine a minimum

volume for lesions; connected components that are below this volume threshold360

are deemed insignificant and assumed to be false positives. To further reduce

the incidence of false positives, the interhemispheric fissure is estimated using a

RANSAC-based approach (Ekin, 2006). Lesions that fall within a prescribed

distance of the interhemispheric fissure are also removed as false positives.

Technique (Guizard et al., 2015) implements data denoising (Coupé et al.,365

2008), N3 inhomogeneities’ correction (Sled et al., 1998), multimodal MRI data

registration and skull-stripping (Eskildsen et al., 2012). The NLM algorithm

(Coupé et al., 2008) is enriched by using a rotation-invariant distance metric,

instead of the L2-norm metric. The aforementioned procedure accurately cap-

tures the MS lesion spatial distribution which is used for system training. Thus,370

lesions of various orientation, shape or size can be detected.

3.2.1.1.3. Atlas-based Methodologies

The methodology presented in (Jesson and Arbel, 2015) performs intensity

normalization and denoising, based on a non-local mean method (Coupé et al.,375

2008), as pre-processing steps. Then, working at the voxel level, lesion and

tissue labels are estimated through a MRF segmentation framework that lever-

ages spatial prior probabilities for 9 healthy tissues through multi-atlas fusion

(MALF ). This initial segmentation builds healthy and lesion intensity distri-

butions, which are then fed to a RF (Breiman, 2001) classifier for training. The380

trained RF classifier provides lesion refinement at the region level.

The authors of (Shiee et al., 2010), exploit an extension of the TOpology-

preserving Anatomical Segmentation (TOADS) algorithm (Bazin and Pham,

2008). TOADS incorporates statistical and topological atlases to give a topo-

logically consistent segmentation of healthy brain anatomy. Initially, the atlases385

are registered with the MRI data. Then, the method builds upon previous

work (Bazin and Pham, 2008) by using the aforementioned segmentation and

handling MS lesions as topological outliers. Finally, taking into account the
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intensity profile of the lesions, a post-processing step for reducing false positives

is applied.390

3.2.1.1.4. Statistical Methodologies

Authors in (Ghafoorian and Platel, 2015) utilize a deep Convolutional Neural

Network (CNN) with five layers to create a statistical voxel-based classifier.

Initially, the image intensity is normalized. The CNN learns if the central voxel395

of a given region of interest is a lesion or not. A leave-one-out cross validation

is employed to provide training data for the CNN . Stochastic gradient descent

is used for the network optimization.

In (McKinley et al., 2016), a deep convolutional architecture for MS lesion

segmentation is presented. The aforementioned, is a probabilistic architecture400

which combines a fully-convolutional network for local data information, as well

as an encoder-decoder network in which convolutional layers compute high-level

information. In total, 18 network layers are used.

Similar to (McKinley et al., 2016), (Brosch et al., 2016) also employs deep

3D convolutional encoder networks. The main idea is to segment MS lesions405

by finding a function that maps multimodal MRI data to corresponding binary

lesion masks. The network is made up of convolutional and pooling layers.

The convolutional layers are used to increase learning of more abstract and

higher-level image information. The pooling layers aim to predict the final

segmentation probability at the voxel level.410

After performing NL-Means based denoising (Coupé et al., 2008), rigid reg-

istration (Commowick et al., 2012), skull stripping using the V olBrain platform

(Manjón and Coupé, 2016), inhomogeneity correction using the N4 algorithm

(Tustison et al., 2010) and normalization on the initial MRI data, the method

of (Valverde et al., 2016) proposes a CNN trained with 3D patches of candidate415

lesion voxels. The proposed CNN uses two dense convolution layers to proba-

bilistically classify the voxels. An extension of the previous work is presented

in (Valverde et al., 2017). In (Valverde et al., 2017) the CNN is improved to
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a more sensitive cascaded 3D CNN which can be sufficiently trained using a

small set of labeled data.420

In (Doyle et al., 2018; Subbanna et al., 2015) IMaGe is introduced, an Iter-

ative Multilevel probabilistic Graphical model for the detection and segmenta-

tion of MS lesions. It includes two MRF levels. At the bottom level, a regular

grid voxel-based MRF identifies potential lesion voxels, as well as other tissue

classes, using local and neighborhood intensities and class priors. Contiguous425

voxels of a particular tissue type are grouped into regions. A higher, non-lattice

MRF is then constructed, in which each node corresponds to a region, and edges

are defined based on neighborhood relationships between regions. The goal of

this MRF is to evaluate the probability of candidate lesions, based on group

intensity, texture and neighborhood regions. The inferred information is then430

propagated to the voxel-level MRF which performs voxel wise classification.

Roy et al. Roy et al. (2018) applies a preprocessing step containing regis-

tration (Avants et al., 2011), skull stripping (Carass et al., 2011; Roy et al.,

2017b) and N4 intensity inhomogeneity (Tustison et al., 2010). Then a CNN,

implementing a 2 level convolution pathway is implemented. The results of the435

two levels are concatenated towards achieving the lesion segmentation.

Meier et al. (Meier et al., 2017) performs N4 intensity inhomogeneity (Tusti-

son et al., 2010) on the initial data, followed by a coregistration (Johnson et al.,

2007) and skull stripping process (Smith, 2002). Then, tissue segmentation into

the three main tissue classes (WM, GM, CSF) takes place using FREESURFER440

tool (Fischl et al., 2002). The latter segmentation is exploited in generating

individual tissue probability maps for the spatial distribution of each tissue

type. The latter allows the deployment of heuristic topological-based rules. The

aforementioned info is exploited by the MRF -based classification algorithm pre-

sented in (Van Leemput et al., 2001) in order to propose the lesion segmentation.445

A lesion size-based post-processing step for minimizing false positives integrates

the proposed pipeline.

3.2.1.2. 2D Image-based Methodologies.

20



3.2.1.2.1. Feature-based Methodologies

450

The method presented in (Santos et al., 2016), initially performs inhomo-

geneities’ correction using the N3 procedure (Sled et al., 1998). In the sequel,

brain extraction via the bet2 tool (Jenkinson et al., 2005) takes place. Denoising

all images with a Gaussian filter completes the pre-processing steps. A simple

Multilayer Perceptron (MLP ) classifier with a single hidden layer containing455

just a few neurons for fast computation of outputs is implemented. The classi-

fier is trained using T2-FLAIR intensity-based features. In the post-processing

stage, a lesion probability atlas (Mazziotta et al., 2001) to remove false positives

occurring in low probability regions, was employed.

Andermatt et al. (Andermatt et al., 2018), uses a weighted variation of460

the multi-dimensional gated recurrent units (MD − GRU) on automated le-

sion segmentation in multiple sclerosis presented in (Andermatt et al., 2016).

MD−GRU is actually a convolution-based feature extraction model. The afore-

mentioned model is implemented upon a Recurrent Neural Network (RNN).

Their variation allows shorter training time. Data augmentation is also used for465

further improvement of the training.

3.2.1.2.2. Data-driven Methodologies

In (Storelli et al., 2016), the classification technique used is based on a region

growing approach. Manual identification of lesions was employed to initialize470

the algorithm and manual segmentation was also used for the training and val-

idation of the proposed method. The region growing approach is based on an

intensity threshold function which was selected by maximizing the dice similar-

ity coefficient between the manually and automatically outlined lesions. The

disadvantage of this method is that it is considered semi-automatic due to the475

manual interventions that are contained within its pipeline.
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3.2.1.2.3. Atlas-based Methodologies

Fleishman et al (Fleishman et al., 2018), perform some preprocessing con-

taining N3 normalization (Sled et al., 1998), skull stripping (Carass et al., 2011),480

resampling and registration. In addition, based on the Joint intensity Fusion

(JIF ) algorithm, a synthetic image is created. JIF is a variation of multi-atlas

label fusion (MALF ) presented in (Wang et al., 2013). For the creation of the

synthetic image, several brain atlases are used. The synthetic image, along with

the processed data is passed through OASIS classifiers in order for the lesions485

to be segmented.

3.2.1.2.4. Statistical Methodologies

In (Havaei et al., 2016), a typical CNN architecture which takes a multi-

plane image as input, is implemented. The CNN consists of the back end, the490

abstraction and the front end layers. The back end uses two individual convo-

lutional layers which create information maps based on the multimodal input.

The statistics of the aforementioned maps are computed in the abstraction layer

which, after concatenation, are processed by two further convolutional layers in

the front end, yielding pixel-wise probabilistic classifications outputs.495

3.2.2. Unsupervised Methodologies

3.2.2.1. 3D Volume-Based Methodologies.

3.2.2.1.1. Lesion-Based Methodologies

The authors of (Tomas-Fernandez and Warfield, 2015) were inspired by the500

ability of experts to detect lesions based on their local signal intensity char-

acteristics. Initially, MRI data are processed to compensate for the effect of

intensity inhomogeneity as well as for thermal noise. Then, an algorithm is

proposed that achieves lesion and brain tissue clustering using a mixture model
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for each of them. Their approach is called MOdel of Population and Subject505

(MOPS) intensities. The work in (Tomas-Fernandez and Warfield, 2016) is a

different version of (Tomas-Fernandez and Warfield, 2015). After smoothing the

effect of intensity inhomogeneity and thermal noise, an algorithm is proposed

that achieves lesion and brain tissue clustering using a Gaussian Mixture Model

(GMM) for each of them.510

Based on the hypothesis that the T2-FLAIR intensity is higher in a lesion

than in the surrounding region, the authors of (Urien et al., 2016), employ

a max-tree representation of the MRI images (Salembier et al., 1998) which

highlights regions of high relative intensity. The suspicious regions correspond

to the nodes that cover two criteria. The first is based on the difference in515

intensities between a candidate lesion and its surroundings and the second is

based on the fact that lesions tend to appear near the ventricles. To improve

segmentation performance, additional constraints are used, depending on the

location of the lesions with respect to more brain structures such as WM .

In (Koley et al., 2016), the normalized cross-correlation coefficient is com-520

puted as a similarity metric between 3D Gaussian templates with varying radii

and the MRI volume. The value of the similarity metric is used to detect brain

lesions. The advantage of this method is that it performs fast computation of

similarity between the templates and the actual volume.

3.2.2.1.2. Tissue-Based Methodologies525

In (Catanese et al., 2015), the Expectation-Maximization (EM) algorithm

(Garćıa-Lorenzo et al., 2011) is used in order to cluster the brain data into WM ,

GM and CSF . Next, the graph-cut technique (Garćıa-Lorenzo et al., 2009) is

applied to detect lesions as outliers on the aforementioned segmented tissues.530

Finally, a post-processing step is applied in order to help remove false positives.

This step uses a fuzzy logic approach in order to estimate the WM . The MS

lesions are assumed to appear surrounded by WM . Any candidate lesions that

violate this criterion are removed. Finally, all candidate lesions smaller than
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3mm3 are discarded.535

The method of (Beaumont et al., 2016b) is quite similar to (Catanese et al.,

2015). At first, the MRI data are denoised with the NL-Means algorithm

(Coupé et al., 2008), rigidly registered (Commowick et al., 2012), brain ex-

tracted using the V olBrain platform (Manjón and Coupé, 2016) and bias cor-

rected using the N4 algorithm (Tustison et al., 2010). Next, the EM algorithm540

(Garćıa-Lorenzo et al., 2011) is used for brain tissue clustering. The results

initialize the graph-cut approach (Garćıa-Lorenzo et al., 2009) which detects

lesions as outliers. Finally, the application of rules to remove false positives

takes place.

Initially, the method presented in (Beaumont et al., 2016a) performs reg-545

istration and intensity normalization on the MRI data. Then, a modification

of the Maximum Likelihood Estimator (MLE) (Notsu et al., 2014) in order to

cluster the brain structures into CSF , WM and GM is used. MS lesions are

considered as outliers of the aforementioned model. Finally, the segmentation

is refined by applying several lesion appearance rules.550

In method (Roura et al., 2016) image denoising, using the anisotropic dif-

fusion filter of (Perona and Malik, 1990), is initially applied on the MRI data.

Then, the N3 normalization method (Sled et al., 1998) for inhomogeneities’

correction is used. Next, skull stripping and tissue clustering, using the algo-

rithm of (Ashburner and Friston, 2005) is performed. As a result, each voxel is555

characterized as WM , GM or CSF . MS lesions are segmented as outliers to

the normal tissue. Finally, a false positive reduction step, based on discarding

lesions forming elongated shapes, is applied.

The SPM8 (http://www.fil.ion.ucl.ac.uk/spm) and its V BM8 tool-

box (http://dbm.neuro.uni-jena.de/vbm) is used by method (Schmidt et al.,560

2012) as a pre-processing step. Next, the three tissue classes of GM , WM and

CSF are determined. Then, the T2-FLAIR intensity distribution of each tissue

class is recruited in order to detect outliers, which are interpreted as lesion be-

liefs. Finally, neighboring voxels are analyzed and assigned to lesions through a

lesion growth model. This is done iteratively until no further voxels are assigned565
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to lesions, thus resulting in a final lesion map.

The authors of (Doyle et al., 2016) initially perform registration and inho-

mogeneities correction using the N4 algorithm (Tustison et al., 2010). Then, a

weighted Gaussian tissue model is used to perform a first clustering of the brain

tissues into the three main clusters (CSF , WM and GM). Outlier voxels that570

are not well described by the normal tissue model, are characterized as lesion

candidates. The candidate lesion regions are used to populate the weighted

Gaussian model and guide convergence to an optimal solution.

In (Roura et al., 2015) the segmentation process is initiated by a pre-processing

step including skull stripping (Smith, 2002), denoising, N3 inhomogeneities’ cor-575

rection (Sled et al., 1998) and intra-subject co-registration. Then, the SPM8

tissue segmentation algorithm (Ashburner and Friston, 2005) is used for seg-

menting normal brain WM , GM and CSF tissues. A linear combination of the

mean and the standard deviation of the GM intensity distribution is used as

a threshold to detect outliers which constitute the set of candidate lesions. Fi-580

nally, further filtering, involving the neighborhood and the size of the candidate

lesions, is utilized in order to neglect false positives.

3.2.2.1.3. Atlas-Based Methodologies

The technique presented in (Freire and Ferrari, 2016) begins with a very rich585

pre-processing procedure which involves noise reduction (Buades et al., 2005),

inhomogeneity correction (Tustison et al., 2010) and image registration using

the NiftyReg tool (http://sourceforge.net/projects/niftyreg/). Then,

three probabilistic anatomical atlases, corresponding to GM , WM and CSF ,

obtained by (Mazziotta et al., 2001), are recruited. These atlases are used for590

intensity-based clustering of the brain using the proposed iterative Student’s t

mixture algorithm. This algorithm continuously refines the resulting segmented

tissue subclasses until all MS lesions are grouped as one simple class. Finally,

a post-processing step is applied in order to remove false positives.

Dong et al. (Dong et al., 2017), uses a JIF approach similar to (Fleishman595
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et al., 2018). They recruit different brain atlases than (Fleishman et al., 2018).

In addition, they do not use the OASIS classifier. Instead, they use the Joint

Label Framework (JLF ) (Wang et al., 2013) where the total segmentation error

is expressed as pairwise expected joint segmentation errors for all pairs of atlases

used.600

3.2.2.2. 2D Image-Based Methodologies.

3.2.2.2.1. Lesion-Based Methodologies

In (Knight and Khademi, 2016), MRI data is corrected in terms of intensity

inhomogeneity using the SPM12 toolbox (Ashburner and Friston, 2005). A 3D605

Gaussian low-pass filter is then used to minimize random noise. Next, fuzzy

clustering using an edge-based model (Khademi et al., 2012, 2014) is performed.

This model assumes that the gray levels of each tissue cluster are distributed

along a unique range. The initial fuzzy clustering is thresholded to give a binary

segmentation image. Finally, false positive reduction strategies are appended610

to the pipeline to refine the segmentation; these strategies involve brain volume

and distance metrics.

After performing skull-stripping (Smith, 2002) and inhomogeneities’ correc-

tion (Tustison et al., 2010), method presented in (Weiss et al., 2013) extracts

and normalizes 2D image patches of the initial MRI data. The 2D patches615

are used for the creation of a dictionary which defines normal tissues. Based

on the aforementioned dictionary, an error map is constructed for each patch

highlighting lesions as errors. Finally, a thresholding technique is applied on the

error maps in order to only keep the lesions.

Initially, authors in (Roy et al., 2017a), use a skull removal methodology (Roy620

et al., 2016) to improve MS lesion segmentation. Then, the method is composed

of two key steps: background generation and binarization. In the first step, the

contour of the brain is exploited in order to create an adaptive background

image. This image consists of normal tissues without any MS lesions. In the
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second step, a binarized method that selects a threshold based on entropy and625

standard deviation (Roy et al., 2013) is used. This step derives a binarized

image consisting of MS lesion and other normal tissues. The background image

is then subtracted from the binarized image to segment out the MS lesions.

3.2.2.2.2. Tissue-Based Methodologies

630

In (Hill et al., 2015), the initial MRI data is skull-stripped, rescaled and

histogram manipulated. Then, the multi-contrast data is mapped to pseudo-

color images. Next, the Improved Jump Method (IJM) (Sugar and James,

2003) is used for clustering CSF , WM and GM structures. IJM is enhanced

by the Canny edge detector (Ding and Goshtasby, 2001), in order to outline635

edges with low error and thus further improve clustering performance. From

this preliminary clustering, a pseudo-color to gray-scale conversion is designed

to equalize the intensities of the normal brain tissues, leaving the MS lesions

as outliers.

3.2.2.2.3. Data-driven Methodologies640

The authors of (Rodrigo et al., 2013), initially automatically locate hyper-

intense pixels on the T2-FLAIR MRI images using dynamic threshold bina-

rization. These pixels are considered to be the centroids of lesion areas. The

aforementioned hyperintensity pixels are used as seed points for an intensity-645

based region growing approach. The latter aims to extend the areas around the

seed points until MS lesion areas are distinguished.

The first step of method (Ali and Maher, 2016) is to perform skull stripping

on the initial MRI data. Then, it performs lesion segmentation by utilizing a

second order differentiation approach. The main target of such an approach is650

to detect structure edges on the brain data. They include a smoothing process

(i.e. using a 2D Gaussian operator) followed by the second order derivative (i.e.

Laplacian differential operator) to differentiate between image regions. To this
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end, (Ali and Maher, 2016) adopts the Marr-Hildreth edge detector (Marr and

Hildreth, 1980).655

(Keeli et al., 2017) also performs skull stripping as a first pre-processing

step. Then, in order to improve the sensitivity of lesion detection, a series of

further operations are applied to the image obtained from the skull stripping

step. First, Local Histogram Equalization (LHE) (Boudraa et al., 2000) is ap-

plied on the brain tissue. Then, pixels of the pre-processed image are clustered660

using the fuzzy C means clustering algorithm (Bezdek, 1973). The intensity

values of the pixels are used in order to feed the clustering process. To com-

plete lesion detection a region-growing algorithm (Yu and Yla-Jaaski, 1991) is

employed, which enables the determination of the exact boundaries of lesions.

Finally, GPU -accelerated volumetric calculation and 3D model construction are665

performed to provide a 3D segmentation.

4. Comparison of reviewed methods

An extensive set of aspects of the reviewed methodologies are compared in

the form of tables. This leads to useful conclusions discussed in Section 5. Note

that the techniques reviewed in the current survey represent the state-of-the-art670

of methodologies published since 2013. Table 5 gives the main comparison of the

methodologies reviewed. Each method is analyzed according to the database

used for its experiments, the MRI image sequences used, the MRI slice thick-

ness (in millimeters), the data handling category, its main algorithmic strategy,

whether it is supervised or not, the classifier or clustering method it uses, its675

computational efficiency and, finally, its performance. The computational effi-

ciency is related to the mathematical approach used and is thus deduced from

Table 7. For the most cases the performance is expressed in terms of the mean

DSC measure which is the most common among all methodologies. Only for

the cases of the techniques tested on MICCAI 2008 data set, the performance680

is expressed by an overall score combing the V D, SEN and FALL metric (see

Section 2). Methodologies tested on the same database are much more reliably
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compared. Some methodologies are tested on more than one databases. Fig-

ures 5, 6, 7 and 8 illustrate the performance of the state-of-the-art methodologies

tested on the same database (MICCAI 2008, ISBI 2015 and MICCAI 2016685

respectively). Taking into account methodologies (Brosch et al., 2016; Geremia

et al., 2013; Havaei et al., 2016) and (Hill et al., 2015; Shiee et al., 2010) which

were tested on the same database (MICCAI 2008 and BrainWeb respectively),

the ones published after 2013 are quite comparable to the earlier ones in terms

of performance.690

Table 6 records the advantages and disadvantages of each proposed cate-

gory, while Table 7 presents the characteristics of the mathematical approaches

implemented by the reviewed methodologies in their main strategy. Table 8

illustrates the popularity of each category. Finally, Table 9 shows the advanta-

geous characteristics of each MRI acquired image sequence over the MS lesion695

segmentation problem.

METHOD DATABASE MRI DATA MRI SLICE MRI SLICE DATA STRATEGY SUPEVISION CLASSIFIER CLUSTERING COMPUTATIONAL PERFORMANCE

THICKNESS GAP HANDLING EFFICIENCY (DSC)

(McKinley et al., 2016) MICCAI 2016 T2-FLAIR 0.0 mm No gap 3D Volume Statistical YES CNN NO Low 0.591

(Roura et al., 2016) MICCAI 2016 T1-w, T1-w Gd, T2-FLAIR 1.0 mm No gap 3D Volume Tissue-based NO NO GMM Medium 0.572

(Valverde et al., 2016) MICCAI 2016 T1-w, T1-w Gd, T2-w, T2-FLAIR, PD-w 1.0 mm No gap 3D Volume Statistical YES CNN NO Low 0.541

(Vera-Olmos et al., 2016) MICCAI 2016 T1-w, T1-w Gd, T2-FLAIR 1.0 mm No gap 3D Volume Statistical YES MRF NO Medium 0.521

(Knight and Khademi, 2016) MICCAI 2016 T2-FLAIR 1.0 mm No gap 2D Images Lesion-based NO NO NO High 0.490

(Doyle et al., 2016) MICCAI 2016 T1-w, T1-w Gd T2-FLAIR 1.0 mm No gap 3D Volume Tissue-based NO NO GMM Medium 0.489

(Beaumont et al., 2016a) MICCAI 2016 T2-w, T2-FLAIR 1.0 mm No gap 3D Volume Tissue-based NO NO MLE Medium 0.485

(Beaumont et al., 2016b) MICCAI 2016 T1-w, T1-w Gd, T2-w, T2-FLAIR, PD-w 1.0 mm No gap 3D Volume Tissue-based NO NO EM Medium 0.453

(Mahbod et al., 2016) MICCAI 2016 T1-w, T1-w Gd, T2-w, T2-FLAIR, PD-w 1.0 mm No gap 3D Volume Statistical YES ANN NO Low 0.430

(Urien et al., 2016) MICCAI 2016 T1-w, T1-w Gd, T2-w, T2-FLAIR, PD-w 1.0 mm No gap 3D Volume Lesion-based NO NO NO High 0.347

(Muschelli et al., 2016) MICCAI 2016 T1-w, T1-w Gd, T2-w, T2-FLAIR, PD-w 1.0 mm No gap 3D Volume Statistical YES RF NO Medium 0.341

(Santos et al., 2016) MICCAI 2016 T1-w, T1-w Gd, T2-w, T2-FLAIR, PD-w 1.0 mm No gap 2D Images Data-driven YES MLP NO Medium 0.340

(Tomas-Fernandez and Warfield, 2016) MICCAI 2016 T1-w, T1-w Gd, T2-w, T2-FLAIR 1.0 mm No gap 3D Volume Lesion-based NO NO GMM Medium 0.228

(Freire and Ferrari, 2016) ISBI 2015 T1-w, T2-w, T2-FLAIR, PD-w 2.2 mm N/A 3D Volume Atlas-based NO NO Atlas High 0.659

(Jesson and Arbel, 2015) ISBI 2015 T1-w, T2-w, T2-FLAIR 2.2 mm N/A 3D Volume Atlas-based YES RF NO Medium 0.638

(Andermatt et al., 2018) ISBI 2015 T1-w, T2-w, T2-FLAIR, PD-w 2.2 mm N/A 2D Images Feature-based YES RNN NO Low 0.629

(Ghafoorian and Platel, 2015) ISBI 2015 T1-w, T2-w, T2-FLAIR, PD-w 2.2 mm N/A 3D Volume Statistical YES CNN NO Low 0.614

(Maier and Handels, 2015) ISBI 2015 T1-w, T2-w, T2-FLAIR, PD-w 2.2 mm N/A 3D Volume Statistical YES RF NO Medium 0.609

(Catanese et al., 2015) ISBI 2015 T1-w, T2-w, T2-FLAIR 2.2 mm N/A 3D Volume Tissue-based NO NO EM Medium 0.607

(Prados et al., 2015) ISBI 2015 T1-w, T2-w, T2-FLAIR, PD-w 2.2 mm N/A 3D Volume Data-driven YES 3D Templates NO High 0.598

(Shiee et al., 2010) ISBI 2015 T1-w, T2-FLAIR 2.2 mm N/A 3D Volume Atlas-based YES 3D Templates NO High 0.579

(Roy et al., 2018) ISBI 2015 T1-w, T2-w, T2-FLAIR 2.2 mm N/A 3D Volume Statistical YES CNN NO Low 0.524

(Jog et al., 2015) ISBI 2015 T1-w, T2-w, T2-FLAIR 2.2 mm N/A 3D Volume Data-driven YES Decision Trees NO Low 0.474

(Iheme and Unay, 2015) ISBI 2015 T2-FLAIR 2.2 mm N/A 3D Volume Data-driven YES Threshold-based NO Low 0.426

(Tomas-Fernandez and Warfield, 2015) ISBI 2015 T1-w, T2-w, T2-FLAIR 2.2 mm N/A 3D Volume Lesion-based NO NO GMM Medium 0.415

(Valverde et al., 2017) MICCAI 2008 T1-w, T2-w, T2-FLAIR 0.5 mm No gap 3D Volume Statistical YES CNN NO Low 0.871

(Guizard et al., 2015) MICCAI 2008 T1-w, T2-w, T2-FLAIR 0.5 mm No gap 3D Volume Data-driven YES 3D Templates NO High 0.861

(Tomas-Fernandez and Warfield, 2015) MICCAI 2008 T1-w, T2-w, T2-FLAIR 0.5 mm No gap 3D Volume Lesion-based NO NO GMM Medium 0.844

(Brosch et al., 2016) MICCAI 2008 T1-w, T2-w, T2-FLAIR 0.5 mm No gap 3D Volume Statistical YES CNN NO Low 0.840

(Strumia et al., 2016) MICCAI 2008 T1-w, T2-FLAIR 0.5 mm No gap 3D Volume Data-driven YES 3D Templates GMM Medium 0.839

(Havaei et al., 2016) MICCAI 2008 T1-w, T2-w, T2-FLAIR 0.5 mm No gap 2D Images Statistical YES CNN NO Low 0.832

(Roura et al., 2015) MICCAI 2008 T1-w, T2-FLAIR 0.5 mm No gap 3D Volume Tissue-based NO NO NO High 0.823

(Geremia et al., 2013) MICCAI 2008 T1-w, T2-w, T2-FLAIR 0.5 mm No gap 3D Volume Data-driven YES RF NO Medium 0.821

(Shiee et al., 2010) MICCAI 2008 T1-w, T2-FLAIR 0.5 mm No gap 3D Volume Atlas-based YES 3D Templates NO High 0.799

(Shiee et al., 2010) BrainWeb T1-w, T2-w, PD-w 2.2 mm N/A 3D Volume Atlas-based YES 3D Templates NO High 0.789

(Hill et al., 2015) BrainWeb T1-w, T2-w, PD-w N/A N/A 2D Images Tissue-based NO NO IJM Low 0.739

(Weiss et al., 2013) BrainWeb T1-w, T2-w 1.0 mm N/A 2D Images Data-driven NO NO NO High 0.710

(Roy et al., 2017a) WholeBrainAtlas T1-w, T2-w, PD-w 0.5 mm 1.0 mm 2D Images Tissue-based NO NO NO High N/A

(Keeli et al., 2017) Proprietary T2-FLAIR N/A N/A 2D Images Data-driven NO NO Fuzzy C Means Medium 0.841

(Schmidt et al., 2012) Proprietary T1-w, T2-FLAIR 1.0 mm No gap 3D Volume Tissue-based NO NO NO High 0.753

(Steenwijk et al., 2013) Proprietary T1-w 1.0 mm No gap 3D Volume Atlas-based YES k −NN NO Low 0.740

(Subbanna et al., 2015) Proprietary T1-w, T2-w, T2-FLAIR, PD-w N/A N/A 3D Volume Statistical YES MRF NO Medium 0.690

(Storelli et al., 2016) Proprietary T2-w, PD-w 3.0 mm N/A 2D Images Data-driven YES Threshold-based Region Growing Low 0.620

(Dong et al., 2017) Proprietary T1-w, T2-FLAIR N/A N/A 3D Volume Atlas-based YES JLF NO High 0.586

(Fleishman et al., 2018) Proprietary T1-w, T2-w, T2-FLAIR, PD-w N/A N/A 2D Images Atlas-based YES OASIS NO High 0.570

(Meier et al., 2017) Proprietary T1-w, T2-w, T2-FLAIR 1.0 mm N/A 3D Volume Statistical YES MRF FREESURFER Low 0.510

(Koley et al., 2016) Proprietary T2-w, T2-FLAIR 1.0 mm N/A 3D Volume Lesion-based NO NO 3D Templates High N/A

(Rodrigo et al., 2013) Proprietary T2-w, T2-FLAIR, PD-w N/A N/A 2D Images Data-driven NO NO Region Growing High N/A

(Ali and Maher, 2016) Proprietary T2-w N/A N/A 2D Images Data-driven NO NO Threshold-based Low N/A

Table 5: Comparison of MS lesion segmentation methodologies since 2013.
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Figure 5: Performance of the state-of-the-art techniques tested on BrainWeb synthetic

database.

5. Discussion

MRI is the most widely used imaging modality for diagnosing and following

up the MS disease. MS is manifested through lesions in the brain which are

usually asymmetric. The number and size of these lesions are important signs700

of the progression of the disease.

Regarding the modalities, T1-w images are widely used for the tissue seg-

mentation and in this modality lesions appear as hypointensities. MS lesions

are usually detected in the T2-w and PD-w modalities where they appear as

hyperintensities. The major drawback of these images is the similarity in the705

intensities of lesions and CSF , which makes the discrimination between ven-

tricles and lesions difficult, especially when they are connected. In such cases,

T2-FLAIR images can be of great importance, but such images have problems
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Figure 6: Performance of the state-of-the-art techniques tested on MICCAI 2008 database.

when dealing with sub-cortical structures. One could therefore conclude that

there is great promise in multi-modal MS lesion segmentation techniques. The710

pros and cons of the various modalities are presented in Table 9.

The evaluation and comparison ofMS lesion segmentation techniques present

difficulties as there are only a few public databases, with corresponding ground

truth, that can be used as evaluation benchmarks (see Table 2). In addition,

the aforementioned databases contain a small number of subjects. Issues of715

the results’ reproducibility from these databases thus arise. Furthermore, these

databases are not suitable for recruiting powerful state-of-the-art machine learn-
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Figure 7: Performance of the state-of-the-art techniques tested on ISBI 2015 database.

ing techniques, due to the restricted number of subjects contained. Conse-

quently, there is a need for large-scale public benchmark databases with ground

truth. The idea of creating synthetic big databases based on small real ones720

seems to be very appealing on that matter.

The criteria used in order to quantify the performance of MS lesion seg-

mentation methodologies (see Table 3) can be classified into 5 groups. The

deterministic, the probabilistic, the area, the volume and the distance one (see

Table 4). The most popular group is the deterministic one, where each voxel725

is assigned to only one tissue type, while the most common measure is the
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Figure 8: Performance of the state-of-the-art techniques tested on MICCAI 2016 database.

DSC. However, different types of measures should be combined to obtain a

more objective and reliable assessment (Cárdenes et al., 2009).

We have categorized the methodologies of the state-of-the-art based on how

they handle their input, their main strategy and on their supervision type. As730

far as the handling of the input is concerned, 2 sub-categories are suggested:

3D volume-based and 2D image sequence-based. The first sub-category con-

tains 33 methodologies while the second only 12. Using 3D metrics for disease

interpretation, such as volumetry and 3D voxel neighborhood, most of the times

outperforms the, easier to handle, 2D data.735
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CATEGORY ADVANTAGES DISADVANTAGES

Supervised 1. A wide list of classifiers can be used 1. Time consuming due to training process

2. Strengthen accuracy due to training process

Unsupervised 1. Fast set up as no training process needed 1. Wrong assumption of normal distributions for the intensity of brain tissues

2. More difficult to achieve high accuracy

3D volume-based 1. 3D voxels’ neighborhood can be considered 1. Time consuming calculations when large voxels’ neighborhood are taken into account

2. Direct 3D MS lesion segmentation is implied

2D image sequence-based 1. Easier to processing than 3D volumes 1. Only 2D voxels’ neighborhood can be considered

2. Faster operators can be exploited 2. 3D volume reconstruction needed to provide 3D MS lesion segmentation

Atlas-based 1. Local information included 1. Registration needed

2. Segmented structures are spatially constrained 2. Previous segmentations for atlas creation needed

Data-driven 1. Simple to implement 1. Relatively inaccurate

Statistical 1. Balance between performance and implementation 1. Time consuming calculations needed

Tissue-based 1. Lesion segmentation is smoothly guided 1. Quality of the tissue segmentation dependance

Lesion-based 1. Sub-lesions can be segmented 1. Artifacts may share lesion properties

Table 6: Advantages and disadvantages of each category of MS lesion segmentation method-

ologies.

In terms of their main strategy, 6 sub-categories are suggested: the atlas-

based, the statistical, the lesion-based, the data-driven, the tissue-based and the

feature-based. The first sub-category, which is the least popular one, contains

5 methods, the second contains 9 and the third contains 6 methods, the fourth

has 7 methods, the fifth includes 8 methods and the final sub-category is the740

most popular one counting 10 methods. The most recently appeared methods

are statistical and are mainly based on convolutional neural networks (CNN).

Thus, it appears that CNN is a trend on the field. However, based on the

results of the challenges, it is clear that further wok is needed for CNNs to get

to their full potential.745

Finally, based on the segmentation approach, 2 sub-categories are suggested:

supervised and unsupervised methods. The supervised and unsupervised method-

ologies almost share popularity containing 26 and 19 methods respectively. This

result cannot indicate a trend towards supervised or unsupervised direction.

The fact that unsupervised methods avoid the time-consuming training pro-750

cess, which needs the acquisition of a respectable amount of data, may be a

reason for choosing an unsupervised strategy. On the other hand, exploiting

the powerful properties of the classifiers, especially of the CNN , can be a rea-

son for choosing a supervised mentality. All the aforementioned statements

are illustrated in Table 8, where the popularity of each method is expressed as755
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MODEL ACCURACY TIME-COMPLEXITY SPACE-COMPLEXITY

CNN High High High

RF High Medium Medium

k −NN Medium High High

ANN Medium High High

Decision Trees Medium High Medium

MLP Medium Medium Medium

Threshold-based Low High Low

IJM High High Medium

CRF High Medium Medium

Max-Tree Medium Medium Medium

GMM Medium Medium Medium

Fuzzy C Means Medium Medium Low

MRF Medium Medium Low

EM Medium Medium Low

MLE Medium Medium Low

Region Growing Low Low Low

Table 7: Characteristics of the mathematical approaches implemented by the MS lesion

segmentation methodologies.

percentage units.

Some useful conclusions can be extracted from Figure 2. First, there are

no unsupervised feature-based and statistical methodologies. This is because

feature-based techniques implement their extracted features to provide input

to some sort of training process, while most statistical methodologies employ760

CNNs, which involve supervised training, thus, they cannot be unsupervised.

Second, there are no supervised tissue or lesion-based methods. This is because

the logical path for unsupervised techniques which do not have any prior knowl-

edge, is to simulate the clinical procedure, based on clinical knowledge which is

expressed computationally and relates the MRI data to the brain anatomies, in765

order to segment these anatomies (including lesions). Third, due to the fact that

the most popular brain atlases are 3D, there is only one atlas-based method-
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CATEGORY POPULARITY (%) CATEGORY POPULARITY (%) CATEGORY POPULARITY (%)

Supervised 58

3D Volume-based 51

Atlas-based 4

Data-driven 8

Feature-based 20

Statistical 19

2D Image sequences-based 7

Atlas-based 1

Data-driven 2

Feature-based 2

Statistical 2

Unsupervised

42

3D Volume-based 28

Atlas-based 4

Data-driven 0

Tissue-based 16

Lesion-based 8

2D Image sequences-based 14

Atlas-based 0

Data-driven 6

Tissue-based 2

Lesion-based 6

Table 8: Category popularity of MS lesion segmentation methodologies (number of method-

ologies).

ology using MRI data exclusively as 2D image sequences. Finally, there are

no unsupervised 3D volume-based data-driven methodologies. This may lie to

the fact that most of the data-driven algorithms, which are used mainly for770

clustering in the case of unsupervised methods, operate on 2D data, instead of

3D volumes.

According to Table 6, the supervised 3D volume-based methods appear to

have more advantages than other combinations. On the contrary, unsupervised

2D image sequence-based methods appear to have more disadvantages than any775

other combination. Thus, taking also into account the results of Table 5, when

it comes to techniques tested on the same data sets, it appears that supervised

3D volume-based methodologies are more advantageous, as they achieve better

performance. However, the performance of a methodology alone is not sufficient

to decide on its appropriateness in real world applications. Computational effi-780

ciency is also important in real-world applications and this is indicated in Tables

5 and 7. Most techniques use MRI brain data having zero slice thickness, which

is the most time-consuming data to capture. On the other hand, MRI zero

slice thickness facilitates the imaging of the whole volume of lesions, resulting
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MRI IMAGE SEQUENCE PROPERTIES

T1-w 1. MS lesions appear as hypointensities

T1-w Gd 2. Anatomical images

3. Useful for image registration

T2-w 1. MS lesions appear as hyperintensities

2. CSF , GM and MS lesions have similar intensities

3. MS lesions are better highlighted than in PD-w

PD-w 1. MS lesions appear as hyperintensities

2. MS lesions and CSF are not easily distinguished

T2-FLAIR 1. MS lesions appear as hyperintensities

2. CSF and MS lesions intensities can be distinguished

3. MS lesions placed in brain stem and cerebellum are hard to be distinguished

Table 9: Properties of MRI acquired data.

in better performance.785

As Table 7 indicates, which is an enrichment of a table illustrated in (Mor-

tazavi et al., 2012), when it comes to supervised classification, CNN and RF

are the most robust approaches. Although the aforementioned approaches have

high time and space complexity (especially CNN), this is outbalanced by the

high achieved performance of the MS lesion segmentation techniques into which790

they are integrated. Space complexity is not a major issue nowadays, so long as

it does not grow beyond control, e.g. exponentially. In terms of clustering, IJM

and CRF are robust. However, IJM could use some acceleration. Thus there

are indications that supervised MS lesion techniques which integrate CNNs or

RF s and unsupervised clustering-based techniques which implement IJM or795

CRF are more promising.

The analysis of the previous paragraphs agrees with the conclusions ex-

tracted from Table 5. More precisely, supervised 3D volume-based methodolo-

gies using statistical approaches for their main strategy and a CNN or RF

classifier occupy top performance places among other techniques tested on the800

same databases. On the other hand, data-driven techniques (whether super-

vised or unsupervised, 3D volume or 2D image-based) appear to achieve worse

performance. This could be explained by the fact that data-driven techniques
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are exclusively based on intensity and spatial features of the MRI data, which

are pretty simple cues. It should be noted that, despite the progress in the field,805

there is not yet a specific segmentation approach which can be used as standard.

This is probably because the results are still below the expert neuroradiologists’

and clinical doctors’ performance. For example, on the MICCAI 2016 database

the DSC achieved by an expert human rater is 0.782 while method (McKinley

et al., 2016) achieves the highest DSC which equals to 0.591. Consequently,810

there is much room for further improvement here.

6. Future challenges

The first future challenge concerns MRI data acquisition. In recent years,

enriched MRI protocols, such as magnetization transfer imaging, quantitative

MRI, diffusion tensor imaging, and magnetic resonance spectroscopy (Bakshi815

et al., 2008; Blystad et al., 2016; Zivadinov et al., 2008) have been developed.

Although these techniques are more complicated to implement and interpret and

thus not yet widely used in clinical practice, it is expected that their continu-

ous improvement, in terms of standardization and optimization, will establish

them in the future. Combining different magnetic resonance methods, which820

are sensitive to different aspects of MS pathology appears to be a promising

path to further improve the performance of automated MS lesion segmentation

methods (Vrenken et al., 2013). In addition, using such multimodal data, future

segmentation methodologies could be able to even distinguish among MS lesion

sub-classes (i.e. black holes, enhancing lesions), instead of just segmenting them825

(Tadayon et al., 2016).

Another future challenge has to do with the injection of the contrast medium

during the MRI data acquisition process. Although contrast-enhancing MS

lesions is an important tool for diagnosing and monitoring MS, intravenous

contrast agents involve an expense and a potential risk of adverse effects for the830

patients. Thus, it would be desirable to identify active lesions without using a

contrast agent. Presently, it seems that Gd injection cannot be avoided (Blystad
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et al., 2016), but it is expected that the automated MS lesion segmentation

techniques of the future could provide solutions without it.

Comparing different automated MS lesion segmentation techniques, based835

on MRI data, faces objective difficulties. To begin with, not all the approaches

of the-state-of-the-art are publicly available to the research community. Fur-

thermore, many of the methodologies are tested on proprietary MRI databases,

making the comparison between them unreliable. There are only a few cases

where a (small) number of techniques were tested on the same database (Carass840

et al., 2017; Commowick et al., 2016; Styner et al., 2008). The aforementioned

databases are remarkable efforts but suffer from the fact that they are very

restricted in terms of the number of subjects, raising issues of reproducibility.

A large scale benchmark database, along with the corresponding ground truth,

would be a very positive addition to this thriving field. However, collecting845

many thousands of brain MRI data is not an easy task. A first work recruiting

synthetic data, instead of real clinical data, is the so-called BrainWeb database

(Cocosco et al., 1997). However, this database still produces a very restricted

number of brain MRI data.

Future brain MRI-based MS lesion segmentation techniques are expected850

to be hybrid. Combining the most promising individual strategies of the state-

of-the-art and exploiting their combined advantages, should prove very useful

in order to further improve MS lesion segmentation performance. In addi-

tion, combining the advantages of different techniques may compensate some

of the missing parts of some strategies and may enable the development of less855

subjective and more automated approaches. Although supervised techniques

presently achieve better results, it is also expected that, in the future, effort will

also be directed to unsupervised techniques in order to avoid the costly training

process. Finally, in a more generic framework, robust MS lesion segmentation

techniques can be used for MS lesion quantification in clinically relevant settings860

like patients’ eFolder Ma et al. (2015).
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7. Conclusions

MS is a chronic disease that influences the central nervous system of the

patients, affecting their daily routine. MRI is the most widely used imaging

technique for diagnosing and following up MS lesions. The manual detection of865

MS lesions in the MRI images is a process that is time-consuming, subjective

and prone to human errors. This stresses the importance of the implementation

of automatedMS lesion segmentation techniques, which is an open research field

due to the challenges which arise from the variability of the intensity values of

MS lesions in MRI images, among others.870

In the current survey we provide a comprehensive review of up-to-date state-

of-the-art automated MS lesion segmentation methodologies, published from

2013 onwards. In addition, the most common data sets and evaluation mea-

sures used in this field are reviewed. The aforementioned methodologies were

categorized according to their technical nature. Comparing different approaches875

is difficult, due to the lack of a common database and a proper gold standard,

but general trends can be identified and their advantages and disadvantages help

pave the way for researchers who wish to improve or develop new automated

methods. A detailed discussion of the reviewed works and a comparison of their

performance is given. Future challenges and aspects of potential methodologies880

are identified.

Despite recent progress, there is not yet a specific automated lesion seg-

mentation approach robust enough to emerge as a standard. The main reasons

are the mediocre (but rapidly) improving results and the high computational

cost. Thus it seems that there is room for improvement in the automated seg-885

mentation of MS lesions using MRI data. New algorithms, new advances in

MRI acquisition protocols and new hardware-based differential diagnosis will

undoubtedly assist neuroradiologists in improving the early diagnosis and as-

sessment of therapies as well as the differential follow-up.
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Garćıa-Lorenzo, D., Lecoeur, J., Arnold, D. L., Collins, D. L., Barillot, C.,

2009. Multiple sclerosis lesion segmentation using an automatic multimodal1055

graph cuts. In: International Conference on Medical Image Computing and

Computer-Assisted Intervention. pp. 584–591.
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J. C., Ramió-Torrentà, L., Rovira, À., 2012a. Automated detection of multiple1135

sclerosis lesions in serial brain MRI. Neuroradiology 54 (8), 787–807.

49
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Ramió-Torrentà, L., Rovira, À., Lladó, X., 2015. A toolbox for multiple scle-

rosis lesion segmentation. Neuroradiology 57 (10), 1031–1043.
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