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A B S T R A C T   

The concept of the alpha-factor, a correction factor on the significant wave height limit, was 
developed by DNV to consider the effect of weather forecast uncertainty in planning and 
executing marine operations. In this paper, a new defined response-based correction factor, called 
the response-based alpha-factor αR, is proposed to account for the forecast uncertainty of both 
significant wave height Hs and peak wave period Tp, and quantify their effect on dynamic 
response of offshore structures. A general methodology for developing αR for the use in assessing 
allowable sea states for marine operations is presented, with emphasis on considering the effect of 
the weather forecast uncertainty. It consists of uncertainty quantification of the sea state forecast, 
statistical analysis of dynamic responses of the coupled system for marine operations and 
allowable sea state assessment using response-based criteria. Based on the methodology, αR for an 
operation can be derived, in terms of the ratio between the characteristic values of the operational 
limiting response parameter in the condition with or without the weather forecast uncertainty. 
Then, the allowable sea states can be assessed in terms of the forecast lead time, to include the 
effect of the weather forecast uncertainty on the operation decision-making. The workable 
weather windows can finally be identified and selected through a comparison between the 
allowable sea states and weather forecasts in the execution phase. Followed by the detailed 
description of the proposed methodology, a case study dealing with single blade installation for 
offshore wind turbine using a semi-submersible crane vessel is conducted. The crane tip motion is 
regarded as the operational limiting response parameter to illustrate the methodology based on 
frequency-domain response analysis approach. The uncertainty in sea state forecasts generated by 
two machine learning-based forecasting methods is considered in this paper. Results show that in 
addition to the forecast uncertainty of Hs, that of Tp also requires to be addressed for marine 
operations with floating structures (such as the semi-submersible crane vessel). The proposed 
method provides an efficient way to incorporate the weather forecast uncertainty into the 
allowable sea states assessment for marine operations. The obtained allowable sea states can 
provide a good reference for the decision-making of the operation in the execution phase.   
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1. Introduction 

The gradual transition away from fossil fuels towards a carbon-neutral society is one of the greatest challenges of the 21 century 
[1]. Over the past decade, renewable energy, such as wind energy and solar energy, is the fastest-growing energy source globally. 
Among them, offshore wind energy is identified as one of the most promising sources [2] since it is more stable and stronger, not being 
exhausted and produce no emissions, and it becomes also one of the cheapest ways of generating electricity from renewable energy. To 
access wind energy in deep waters and farther offshore locations, the demand of related marine operations such as the offshore wind 
turbine installation has increased dramatically. According to the definition in Det Norske Veritas (DNV) [3], marine operations are 
generally classified as either weather-restricted or weather-unrestricted, depending on the duration of the operation. Marine opera
tions with the duration less than 72 h, mainly focused in this paper, are typically defined as weather-restricted operations. Normally, 
the decision for weather-restricted operations during the execution phase is made in terms of the workable weather window. The 
workable weather window represents the duration during which the forecast sea states (typically characterized by significant wave 
height Hs and peak wave period Tp) are lower than the allowable sea states for an operation, indicating that the operation can be 
performed safely. The sea states leading to the characteristic value of a limiting response parameter of the operation lower than its 
allowable limit are the allowable sea states. Guachamin-Acero et al. [4] proposed a general methodology to determine allowable sea 
states for marine operations and applied it to the installation of monopile [5], transition piece [6,7] and tower and rotor nacelle 
assemblies (RNAs) [8] for offshore wind turbine, by identifying critical events and studying responses of corresponding limiting 
response parameters derived from numerical simulations. Several other works [9–11] have also been carried out to assess allowable 
limits for different marine operations. In addition to the allowable sea states, the forecasted sea state is another important parameter 
for decision-making in the execution phase of marine operations. At present, there are generally three types of sea state forecasting 
methods, namely the physics-based numerical method, the statistical method and the machine learning method. The physics-based 
numerical method utilizes the wave energy balance equation with various physical processes to simulate the process of wave evo
lution and solve the equation through numerical techniques. Strong physical background of the equation guarantees the reliable of the 
method, and some models based on the method have been widely used, such as WAM (wave modeling) [12], SWAN (simulating wave 
nearshore) [13] and WaveWatch III [14]. However, large computational cost of it has stimulated the development of other methods. 
The statistical method and the machine learning method do not consider physical phenomena in waves, but make forecast purely based 
on the relationship between data in the long-term historical time series. Both of them have high computational efficiency. Commonly 
used statistical-based models for wave forecasting include the autoregressive model [15,16], ARMA (autoregressive moving average) 
model [16,17], ARIMA (autoregressive moving average) model [17–19], etc. For the machine learning method, several neural net
works have been widely used, such as ANN (artificial neural network) [20–23], RNN (recurrent neural network) [24,25] and ANFIS 
(adaptive-network-based neural network) [26–29]. 

Accurate weather forecasts can improve the reliability of the weather window identification and can potentially save massive 
installation and operational costs. However, it is well known that there is inherent uncertainty in weather forecasts, no matter which 
method is employed. As a consequence, how to quantify the uncertainty in weather forecasts and how to reflect this uncertainty when 
planning and executing marine operations thus become a key issue. So far, only a few studies have been published on investigating the 
effect of weather forecast uncertainty on marine operations. At present, an alpha-factor α [30] (a normalized factor less than 1), 
proposed by DNV, is normally used to address the uncertainty in weather forecasts when performing marine operations. It is deter
mined by evaluating Hs forecasts and the aim of it is to reduce the design limit of Hs to a certain extent and therefore making the 
operation more conservative. In practical applications, DNV [3,13] provides tabulated α-factors for European waters, allowing users to 
select one for weather-restricted operations in terms of the operational period, design wave height, the quality of weather forecasts, 
etc. The selected factor can subsequently be used to correct the allowable sea state (in terms of Hs) to include the weather forecast 
uncertainty. Following this method, a similar study was carried out by Wilcken [31] to generate alpha-factors in the Barents Sea. 

Although tabulated alpha-factors for Hs are explicitly given in the standard, it does not provide tabulated alpha-factors for other 
wave variables. It is well known that floating offshore structures are increasingly used for marine operations, and such structures are 
highly sensitive to the wave period. For marine operations involving floating systems, forecast uncertainty in wave periods such as the 
peak wave period Tp is also important and should be taken into account. Furthermore, the alpha-factor is completely derived from sea 
state variables without considering the characteristics of different offshore structures. In other words, it is independent of the type and 
physical limits of marine operations. However, the failure of marine operations is in principle related to the response of offshore 
structures and equipment. Their extreme response essentially decides whether a specific operation can be performed or not during the 
execution phase. Gintautas, T, and Sørensen, J. D [32]. considered weather forecast uncertainty by applying ensemble weather 
forecasts to simulate an offshore lift operation and whether the operation should be performed or not is decided based on the com
parison between the responses with the related physical limitations. However, physical indicators are not convenient to directly guide 
the decision-making. 

Under these circumstances, it is necessary to define an operation-based factor to quantify forecast uncertainties in both Hs and Tp for 
marine operations. In this paper, a correction factor, called the response-based alpha-factor αR, is proposed to reflect the effect of 
forecast uncertainties in sea states on marine operations. It is similar to the alpha-factor but can address forecast uncertainties in both 
Hs and Tp and depends on the type and the response of operations. The design principle of the αR is to ensure that the safety level (i.e., 
the target failure probability) of the operation is the same with and without weather forecast uncertainty. It is derived by the 
quantification of weather forecast uncertainty, numerical modeling of structural dynamic responses and probabilistic analysis of 
extreme responses for a certain operation. Based on the αR, a methodology is presented to assess the allowable sea states for marine 
operations, with emphasis on considering weather forecast uncertainty. Followed by the methodology, the allowable sea sates 
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including weather forecast uncertainty of weather-restricted marine operations can be assessed, and the workable weather windows 
can be further identified and selected. 

The paper consists of the following sections. A brief introduction of the alpha-factor proposed by DNV is presented in Section 2. 
Section 3 provides a detailed description of the proposed methodology for developing the response-based alpha-factor. The key pa
rameters and framework of the methodology are described in Section 3.1 and 3.2 respectively. Subsequently, involved analytical 
techniques, i.e., forecast uncertainty quantification, extreme response analysis and αR derivation are given in Section 3.3, 3.4 and 3.5, 
respectively. Furthermore, the usage of the derived αR is briefly introduced in Section 3.6. In Section 4, a case study of offshore wind 
turbine blade installation using a semi-submersible crane vessel is conducted, to demonstrate the feasibility of the proposed meth
odology and to illustrate the procedure. A brief introduction of the study area and utilized two machine learning-based forecasting 
methods (i.e., the time-series-based machine learning (TSML) method and the physics-based machine learning (PBML) method) is 
given in Section 4.1. Section 4.2 provides the uncertainty analysis of weather forecasts. The motion response analysis, the response- 
based alpha-factor generation and allowable sea states assessment with respect to the crane tip motion are summarized and analyzed in 
Sections 4.3, 4.4 and 4.5, respectively. Finally, the conclusions are made in Section 5. 

2. Alpha-factor proposed by DNV 

A brief introduction of the alpha-factor proposed by DNV [30] is given below. The alpha-factor α is estimated by dividing the 
maximum wave height with a defined probability level to the same level maximum wave height with Hs forecast uncertainty. The 
expression is shown in Eq. (1). 

α=
Hmax

Hmax WF
(1)  

where Hmax is the characteristic value of maximum wave height, that is defined as the extreme wave height during a given reference 
period (e.g. 3 h) with an exceedance probability of 10− 4. Hmax_WF is the characteristic value of maximum wave height with the same 
exceedance probability taking into account the forecast uncertainty in Hs. For clarity, the symbols Ht

s and Hf
s are used to denote the 

actual (true) and forecasted value of Hs in the following introduction, respectively. 
When a forecasted Hf

s value is given and its forecast uncertainty is not considered, it can be regarded as the true Hs, i.e., Ht
s. Then the 

probability density function (PDF) of maximum wave height with the given significant wave height is defined as fH|Ht
s
(h′

|ht
s). Based on 

the cumulative distribution function (CDF) of maximum wave height (see Eq. (2)), the characteristic value Hmax can thereby be 
calculated by Eq. (3). 

FH(h)=
∫h

0

fH|Ht
s

(
h′

|ht
s

)
dh′ (2)  

1 − FH(Hmax) = 10− 4 (3) 

By contrast, when forecast uncertainty in Hf
s is considered, the conditional PDF of Ht

s with given forecasted value Hf
s has to be taken 

into account, to show all possible true Hs and the corresponding individual wave height distribution. As a result, a joint PDF of H and Ht
s 

is established as 

fHHt
s

(
h′

, ht
s

)
= fH|Ht

s

(
h′

|ht
s

)
· fHt

s|H
f
s

(
ht

s

⃒
⃒hf

s

)
(4)  

where fH|Ht
s
(h′

|ht
s) is the conditional PDF of maximum wave height with a given actual significant wave height, which is described 

above. fHt
s|H

f
s
(ht

s
⃒
⃒hf

s) is the conditional PDF of actual significant wave height given a forecasted significant wave height, that is obtained 

from the uncertainty analysis of the forecast model. 
Through integration, the marginal CDF of the maximum wave height can be obtained, as shown in Eq. (5). 

FWF
H (h)=

∫h

0

∫+∞

0

fH|Ht
s

(
h′

|ht
s

)
· fHt

s|H
f
s

(
ht

s

⃒
⃒hf

s

)
dht

sdh′ (5) 

In Eq. (5), it is important to quantify the weather forecast uncertainty and establish fHt
s|H

f
s
(ht

s

⃒
⃒hf

s). In the previous technical report of 

the joint industry project (JIP) [30], the forecast uncertainty of Hs is characterized by the forecast error He
s , which is defined as Eq. (6). 

He
s is a random variable which is assumed to follow a Gaussian distribution. According to Eq. (6), fHt

s|H
f
s
(ht

s

⃒
⃒hf

s) can be transformed from 

the relevant error distribution. This means that its mean value is the forecasted significant wave height adjusted by the error bias and 
its standard deviation is the same as that of the forecast error. However, it is important to emphasize that the forecast uncertainty can 
be also defined in other ways. Subsequently, the characteristic value Hmax_WF can be determined by solving Eq. (7), which is used to 
generate the α-factor for the given Hf

s by Eq. (1) together with Hmax. 
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He
s =Hf

s − Ht
s (6)  

1 − FWF
H (Hmax WF) = 10− 4 (7) 

Following the above procedure, α-factors can be estimated and tabulated for different weather forecast scenarios. Although the 
alpha-factor is obtained based on the extreme wave height, it is used as a ratio of the significant wave height for marine operations, 
assuming that the extreme wave height is proportional to the significant wave height and disregarding the effect of wave period and 
system responses. In practice, for the execution phase of an operation, the specific alpha-factor needs to be selected from the tabulated 
values in terms of the operation duration, the forecast lead time, the quality of weather forecasts, etc. This selected factor can then be 
used to correct the allowable Hs (Hs lim) of the operation by Eq. (8) to include the weather forecast uncertainty. 

Hs lim α = α ·Hs lim (8)  

where Hs lim α is the new limit Hs accounting for the forecast uncertainty. In real marine operations, the forecasted value of Hs will be 
compared to this new Hs limit to determine whether a safe operation can be performed. If the forecasted Hs is smaller than the new Hs 
limit, the marine operation can be safely performed. 

3. Response-based alpha-factor 

In this section, the methodology for derivation of the response-based alpha-factor αR is proposed and introduced. Its purpose is to 
consider the effect of forecast uncertainties in sea states (i.e., Hs and Tp) on marine operations from a perspective of the system re
sponses. A detailed description of the methodology framework, the key parameters as well as different related analytical techniques are 
introduced in the following subsections. 

3.1. Key parameters 

Considering the properties of marine operations and weather forecasting, the αR is presented as a function of:  

1) The type of marine operation and the relevant operational limiting response parameter  
2) The duration TE of the selected operation, i.e. the time used in the extreme response analysis. The characteristic value of the 

extreme response used to define and calculate the response-based alpha-factor is the value with a certain exceedance probability (e. 
g., 10− 4 or 10− 2).  

3) The sea state reference period TR, e.g. 1 h, 3 h, etc., is the period used to define a stationary sea state, to quantify the forecast 
uncertainty and to derive the allowable sea states. It is also the same period that αR will be applied in marine operations to correct 
the allowable sea states when forecast uncertainty is considered.  

4) The forecast variable of weather conditions, e.g. Hs, Tp, etc.  
5) The weather forecasting method  
6) The lead time TL of weather forecasts (i.e. the forecast horizon)  
7) The forecast uncertainty model 

Among the above factors, the type of marine operation must first be selected. The specific operation decides the critical events 
during the operation and the relevant operational limiting response parameters. Regarding the method for identification of critical 
events and limiting parameters, refer to Guachamin-Acero et al. [4]. By means of the numerical modeling of the selected operation 
during the operational duration TE, the dynamic responses of the limiting parameters can be studied. The corresponding extreme value 
distribution and the characteristic value can therefore be determined by statistically analyzing the dynamic responses. For operations 
such as offshore wind turbine blade installations, the critical event may be more concentrated in the final mating phase between blade 
root and turbine hub opening. TE is only a few minutes in this case, and the extreme response should be analyzed from the numerical 
simulation with such short period. In contrast, for operations such as towing operation and sea transports, they generally take several 
hours/days, and the numerical simulations with a long time are needed to cover the whole period. In such cases, it is more complicated. 
One needs to deal with the sequence of the sea states during operation and the worst sea state might be considered to achieve a 
conservative result. 

Regarding weather conditions, TR refers to a time interval in which the sea state can be assumed to be stationary. In this period, the 
statistics (such as the mean value and standard deviation) of a realization of the wave elevation are considered to be independent of 
time. For marine operations, TR is normally 1 h or 3 h. The other three factors, i.e. the forecast variable of weather conditions, the 
weather forecasting method and the lead time TL of weather forecasts, determine the uncertainty related to the weather forecasts. 
Regarding the forecast variable, significant wave height Hs and peak wave period Tp which are utilized to describe sea states are 
considered. It should be pointed out that for operations sensitive to wind load, uncertainty in the wind forecast may also be included 
and related variables (e.g., mean wind speed Uw) can be regarded as another forecast variable. With regard to the lead time TL, it could 
range from one- or three-hours-ahead (depending on TR) to several-days-ahead, taking into account the execution time of the selected 
marine operations. As for the forecasting method, different methods (e.g., physics-based numerical method, statistical method or 
machine learning method) can be adopted to generate forecasts. For instance, Wu et al. [29,33] developed different machine 
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learning-based methods for multi-step-ahead forecasting of wave conditions. In addition, physics-based forecast products provided by 
various institutes such as the European Center for Medium-Range Weather Forecasts (ECMWF) [34–36], the Norwegian Meteoro
logical Institute (MET-Norway) [37] and the National Center for Environmental Prediction (NCEP) [38] can be used if available. After 
obtaining weather forecasts, a forecast uncertainty model is utilized to quantify uncertainties in sea state forecasts. 

3.2. Framework 

The procedure to derive αR is introduced in this section. The framework of the proposed methodology is illustrated in Fig. 1 and 
described in the following steps. 

Weather forecast and uncertainty quantification  

1. First of all, determine the weather variable that needs to be forecasted, the sea state reference period TR and the lead time TL.  
2. Follow by the above decision, the weather conditions are then forecasted through the physics-based numerical method (such as 

WAM and SWAN), the statistical method (such as ARIMA) or the machine learning method (such as ANN and ANFIS). The weather 
forecasting is carried out for both Hs and Tp in this study, which are utilized to describe the sea state. In order to better illustrate the 
weather forecast analysis, the actual sea state is termed as (Ht

s, Tt
p) and the forecasted sea state is presented as (Hf

s , Tf
p). Normally, for 

the forecast uncertainty analysis, the forecasted data should be as much as possible.  
3. Afterwards, the forecast uncertainty should be quantified. Similar to the alpha-factor method, this can be done by analyzing the 

statistical characteristics of a pre-defined forecast error factor in terms of TL.  
4. Finally, for a given forecasted sea state (Hf

s , Tf
p), the distribution of the actual sea state (Ht

s, Tt
p) can be established by transforming 

the error distribution. This distribution reflects all possible true sea states for a given forecast value, and illustrates the weather 
forecast uncertainty. The method and details for forecast uncertainty quantification will be presented in Section 3.3. 

Fig. 1. The framework of the response-based alpha-factor method.  
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Dynamic response analysis  

1. For dynamic response analysis, a specific marine operation should be determined first. For this operation, the critical events and 
operational limiting response parameters as well as the operational duration TE should then be identified accordingly.  

2. Afterwards, for the given sea state concerned in the weather forecast analysis, the dynamic response of the limiting response 
parameter can be simulated and assessed based on frequency- or time-domain response analysis approaches. This depends on the 
properties of the selected operation.  

3. Finally, by statistically analyzing the dynamic responses, the extreme response distribution can be estimated. A description of the 
extreme response analysis will be given in Section 3.4. 

Estimation and application of the response-based alpha-factor  

1. Once the forecast uncertainty distribution and the extreme response distribution for a given sea state (Hf
s , Tf

p) are determined, the 
characteristic values of the limiting parameter in the condition with and without considering weather forecast uncertainty can be 
calculated respectively. The characteristic value corresponds to the extreme response for a target exceedance probability (e.g., 
10− 4) of the extreme response distribution within the period TE. 

2. By dividing two calculated values, the αR for this given sea state can be estimated. The details for calculating the αR will be pre
sented in Section 3.5.  

3. Followed by this procedure, the tabulated αR can be generated for various sea states. Based on it, the allowable sea states associated 
with the operation can be assessed, in order to account for the weather forecast uncertainty. This will be discussed in Section 3.6. 

3.3. Uncertainty quantification for sea state forecast 

In this subsection, the procedure for quantification of sea state forecast uncertainty is described. It is assumed that forecast un
certainties of Hs and Tp are independent. Therefore, the conditional PDF of actual sea state with a given forecasted sea state can be 
expressed as Eq. (9). 

fHt
sTt

p|H
f
s Tf

p

(
ht

s, tt
p

⃒
⃒
⃒hf

s , t
f
p

)
= fHt

s|H
f
s

(
ht

s

⃒
⃒hf

s

)
· fTt

p|T
f
p

(
tt
p

⃒
⃒
⃒tf

p

)
(9)  

where fHt
s|H

f
s
(ht

s

⃒
⃒
⃒hf

s) and fTt
p|T

f
p
(ttp
⃒
⃒
⃒tfp) describe the probability that actual Hs and Tp may occur under given forecasted Hs and Tp, 

respectively. To establish these two conditional PDFs, the forecast error is first identified, and then the conditional PDF of the actual sea 
state is obtained by converting that of the forecast error. The forecast errors εh and εt used in this study are defined in Eqs. (10) and 
(11), which can reflect the percentage of forecast errors in Hs and Tp. 

εh =
Ht

s

Hf
s

(10)  

Fig. 2. Scatter plot of sea states at the North Sea center.  
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εt =
Tt

p

Tf
p

(11) 

Since marine operations are normally executed in relatively low sea states, it is reasonable to analyze the forecast error with respect 
to the range of Hs and Tp. For this purpose, forecasted data as well as corresponding forecast errors should be categorized. Sea states of 
the North Sea center (an offshore site at the central part of the North Sea, refer to the site 15 in Li et al. [39]) are taken as an example to 
illustrate this procedure. Fig. 2 shows a scatter plot of Hs and Tp as well as their respective histograms, based on the hindcast data of the 
CERA-20C dataset [40] by the ECMWF from 2001 to 2009. According to the displayed scatter plot, the interval of the Hs group is set to 
0.5 m, and the group is named using the center value of the interval. For instance, the error group ‘1.5 m’ represents forecasted 
significant wave height between 1.25 m and 1.75 m. In order to ensure that there are sufficient data to fit uncertainty distributions in 
all groups, all errors with Hs lower than 0.75 m and higher than 3.75 m are classified as ‘0.5 m’ and ‘4 m’ group respectively. Likewise, 
all Tp errors are categorized into different groups in terms of forecasted Tp with an interval of 1s. All errors of Tp lower than 5.5 s and 
higher than 9.5 s are classified as ‘5 s’ group and ‘10 s’, respectively. In addition, it is important to emphasize that the considered sea 
state range is site specific and should be determined according to the characteristics of the target sea areas. 

Subsequently, error distribution for each group can be fitted. Both εh and εt are modelled as Gaussian distributed, whose parameters 
should be estimated separately based on errors in the group. Correspondingly, the conditional PDFs can be expressed as Eqs. (12) and 
(13) respectively. 

fEh |H
f
s

(

εh| hf
s

)

=
1
̅̅̅̅̅
2π

√
σεh

exp
[

−
1
2

(
εh − μεh

σεh

)2]

(12)  

fEt |Tf
p

(

εt|tf
p

)

=
1
̅̅̅̅̅
2π

√
σεt

exp
[

−
1
2

(
εt − μεt

σεt

)2]

(13)  

where mean value μεh and standard deviation σεh are functions of Hf
s and TL. Mean value μεt and standard deviation σεt are functions of 

Tf
p and TL. 

μεh = μεh
(

hf
s , TL

)
(14)  

σεh = σεh
(

hf
s , TL

)
(15)  

μεt = μεt

(
tf
p, TL

)
(16)  

σεt = σεt

(
tf
p, TL

)
(17) 

Based on the expressions of εh and εt, actual Hs and Tp are also Gaussian distributed and can be described as Eqs. (18) and (19). They 
reflect the forecast uncertainty in forecasted sea states. 

ht
s = εh · hf

s ∼ N
(

hf
s · μεh, hf 2

s · σ2
εh

)
(18)  

tt
p = εt · tf

p ∼ N
(

tf
p · μεt, tf 2

p · σ2
εt

)
(19)  

3.4. Extreme response analysis for marine operations 

In this section, the method for evaluating the conditional distribution of the extreme response for a given sea state will be briefly 
introduced. Normally, the extreme response distribution is built based on the dynamic responses by numerical analysis. According to 
the nature of the problem, two different methods are mainly applied, i.e. frequency domain (FD) and time domain (TD) methods. 
Regarding marine operations, for problems that can be considered under a linear assumption, it is possible to study the dynamic 
response in frequency domain to significantly reduce computational cost. Whereas for complex non-linear systems, time domain 
response analysis approach is more suitable. 

3.4.1. Frequency domain analysis 
When analyzing the dynamic response of an offshore structure subjected to wave loads in frequency domain, it is assumed that the 

response amplitude ya varies linearly with the wave amplitude ζa for each frequency. Hence, the dynamic response can be analyzed in 
frequency domain. Specifically, the transfer function hξY(ω) is utilized to characterize the deterministic relation between wave process 
ξ(t) and response process Y(t), reflecting the effect of a given sea state on the marine structure. Correspondingly, the response spectrum 
SYY(ω; ht

s, tt
p) can be given by 

SYY

(
ω; ht

s, t
t
p

)
= |hξY(ω)|2 · Sξξ

(
ω; ht

s, tt
p

)
(20) 
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where Sξξ(ω; ht
s, tt

p) is the wave spectrum for a given sea state (ht
s, tt

p). |hξY(ω)| is the absolute value of transfer function. 
Given that the wave surface process can be modelled as a Gaussian process, the response process can also be modelled as a Gaussian 

process due to the assumption of linearity. Correspondingly, it is reasonable to model the global response maxima Ro as a Rayleigh 
distribution under a given sea state, as shown in Eq. (21). 

FRo|Ht
sTt

p

(
r0|ht

s, tt
p

)
= 1 − exp

[

−
1
2

(
r0

σY
(
ht

s, tt
p

)

)2]

(21)  

where σ2
Y(ht

s, ttp) is the variance defined by Eq. (22), in which m(0)
YY(ht

s, tt
p) is the zero-th order spectral moment. 

σ2
Y

(
ht

s, tt
p

)
=m(0)

YY

(
ht

s, t
t
p

)
(22) 

The j-th order spectral moments m(j)
YY(ht

s, tt
p) can be defined as a general form 

m(j)
YY

(
ht

s, tt
p

)
=

∫∞

0

ωjSYY

(
ω; ht

s, tt
p

)
dω (23) 

Assume that all global response maxima of the given sea state are independent and identically distributed, the CDF of extreme 
response R can be given by Eq. (24), where n is the expected number of global maxima during the given period calculated by Eq. (25). 

FR|Ht
sTt

p

(

r
⃒
⃒
⃒ht

s, tt
p

)

=

{

1 − exp

[

−
1
2

(
r

σY
(
ht

s, tt
p

)

)2]}n

(24)  

n=
TE

Tm02
(25)  

where Tm02 is the mean zero-up-crossing period, given by 

Tm02 = 2π

̅̅̅̅̅̅̅̅

m(0)
YY

m(2)
YY

√

(26) 

As n increases, this CDF can be reasonably approximated by the Gumbel distribution, which is shown in Eq. (27). 

FR|Ht
sTt

p

(
r
⃒
⃒
⃒ht

s, t
t
p

)
= exp

{
− exp

[
−

r − γ
β

]}
(27)  

where γ and β are the location and scale parameters expressed as 

γ = σY

(
ht

s, t
t
p

) ̅̅̅̅̅̅̅̅̅
2lnn

√
(28)  

β=
σY

(
ht

s, tt
p

)

̅̅̅̅̅̅̅̅̅
2lnn

√ (29) 

In summary, the procedure of estimating the extreme response distribution in frequency domain used in the response-based alpha- 
factor method is as follows:  

1) For a given sea state, the corresponding wave spectrum Sξξ(ω) can be generated. For instance, the wave condition can be described 
by a JONSWAP spectrum, that is the most commonly used wave spectrum in the North Sea area. 

2) Meanwhile, for a specific offshore structure, the motion\force transfer functions in frequency domain can be obtained from hy
drodynamic software (such as WAMIT [41] and HYDROD [42]) using potential panel theory.  

3) Afterwards, the response spectrum SYY(ω) is calculated by Eq. (20). All statistical information such as the variance σ2
Y(ht

s, ttp) can be 
derived from it.  

4) The Gumbel parameters can thereby be calculated based on Eqs. (28) and (29). Finally, the extreme response distribution under the 

given sea state FR|Ht
sTt

p
(r
⃒
⃒
⃒ht

s, tt
p) is determined according to Eq. (27). Based on Eq. (27), the characteristic value of the dynamic 

response corresponding to a target exceedance probability can be calculated. 

3.4.2. Time domain analysis 
For marine operations like blade installation of offshore wind turbine, there exists a number of non-linear sources such as second- 

order wave forces on floating vessel, aerodynamic loads on blade and so on. Hence, dynamic response of the system should be 
addressed in time domain. In this case, the assumption of Rayleigh distributed global maxima is no longer valid. Nevertheless, a 
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Gumbel extreme value distribution is still valid for most cases [43], but the expressions of Gumbel parameters shown in Eqs. (28) and 
(29) need to be modified. To find Gumbel parameters, it is necessary to fit the extreme response distribution based on the response time 
series from the time domain simulation. The procedure is described as follows:  

1) For a given sea state, perform the time domain simulation of the operation during the operational duration TE (e.g. 10 min) and get 
a realization of the dynamic response. From the realization, the response maxima r can be extracted.  

2) To better fit the tail of the extreme response distribution, it is necessary to perform multiple simulations under the same sea state to 
extract a sufficient number of maxima. Hence, repeat the simulation k times with random wave seeds. Then k independent response 
maxima {r1, r2, r3, …, rk} can be obtained. 

3) According to the series of response maxima, the Gumbel distribution can be fitted by different methods, e.g., the method of mo
ments, maximum likelihood estimation and so on. Based on the fitted Gumbel distribution, the related characteristic value can be 
calculated, corresponding to a target exceedance probability from the extreme response distribution.  

4) Repeat the procedure for a large number of different sea states, the continuous functions of the Gumbel parameters can be obtained, 
which are the functions of Hs and Tp. 

γ = γ
(

ht
s, tt

p

)
(30)  

β= β
(

ht
s, t

t
p

)
(31)  

3.5. Derivation of the response-based alpha-factor 

Followed by the weather forecast analysis and the extreme response analysis, the response-based alpha-factor αR for a given sea 
state can be calculated by Eq. (32): 

αR =
RE

RE WF
(32)  

where RE is the characteristic value of the limiting response parameter within an operational duration TE in a given sea state. It is 
defined as the extreme response with an exceedance probability (e.g., 10− 4) from the extreme value distribution. The definition of 
RE_WF is similar to RE but considering the forecast uncertainty of the sea state.  

1) Calculation of RE 

When the weather forecast uncertainty is not considered, the forecasted sea state is regarded as the true value, i.e. (Ht
s, Tt

p). In this 
sea state, the extreme response distribution of a specific operation can be estimated directly by frequency- or time-domain response 

analysis approaches. The PDF of the structural extreme response is denoted as fR|Ht
sTt

p
(r′
⃒
⃒
⃒ht

s,ttp), and its CDF can be expressed as Eq. (33). 

FR
(
r
)
=

∫r

0

fR|Ht
sTt

p

(

r′
⃒
⃒
⃒ht

s, tt
p

)

dr′ (33) 

By solving Eq. (34) with a certain exceedance probability (e.g., 10− 4), the RE value under the sea state can be determined. It should 
be noted that the target exceedance probability depends on the type of operation and consequences of failure events. 

1 − FR(RE) = 10− 4 (34) 

For marine operations, the exceedance probability of the extreme response is normally set to 10− 4. However, the selection of such 
exceedance probability level is subjected to discussion. The target level can reflect the consequences of operation failure and one may 
also consider for example 10− 2 for marine operations if the consequence of failure is not significant. For instance, for the mating 
operation by an installation vessel, the motion response of the crane tip can be regarded as a limiting response parameter. It is not a 
structural response parameter like lift wire tension. Large crane tip motion will lead to unsuccessful operation, but may not cause any 
structural failure or operation failure. Operator may try a second operation, if the first operation is not possible. Therefore, in this case, 
the characteristic values of the limiting parameter can be derived on the basis of extreme response analysis corresponding to a 
relatively high exceedance probability level.  

2) Calculation of RE _WF 

When the weather forecast uncertainty is taken into account, the forecasted sea state cannot be regarded as the true value directly. 
Instead, for a forecasted sea state, there are many possibilities for the actual sea state. Therefore, it is of importance to establish the 

conditional PDF of actual sea state under a given forecasted sea state, i.e. fHt
sTt

p|H
f
s T

f
p
(ht

s, tt
p

⃒
⃒
⃒hf

s , tf
p). In this case, the value of RE_WF can be 

determined by a joint PDF of the extreme response R and the actual sea state (Ht
s, Tt

p), that is established as 
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fRHt
sTt

p

(
r
′

, ht
s, tt

p

)
= fR|Ht

sTt
p

(
r
′
⃒
⃒
⃒ht

s, tt
p

)
· fHt

sTt
p|H

f
s Tf

p

(
ht

s, tt
p

⃒
⃒
⃒hf

s , tf
p

)
(35)  

where fR|Ht
sTt

p
(r′
⃒
⃒
⃒ht

s, tt
p) is the conditional PDF of the extreme response with a given actual sea state. fHt

sTt
p|H

f
sT

f
p
(ht

s, tt
p

⃒
⃒
⃒hf

s , tf
p) reflects the 

forecast uncertainty, which accounts for the uncertainty in both Hs and Tp forecasts. 
Through integration, the marginal CDF of R can be obtained, as shown in Eq. (36). 

FWF
R

(
r
)
=

∫r

0

∫+∞

0

∫+∞

0

fR|Ht
sTt

p

(

r
′
⃒
⃒
⃒ht

s, tt
p

)

· fHt
sTt

p|H
f
s Tf

p

(

ht
s, tt

p

⃒
⃒
⃒hf

s , t
f
p

)

dht
sdtt

pdr
′ (36) 

By solving Eq. (37), the corresponding RE_WF value with the same exceedance probability as RE can be determined. 

1 − FWF
R (RE WF) = 10− 4 (37)    

3) Calculation of αR 

For the given sea state, by substituting RE and RE_WF, the corresponding αR value can be calculated by Eq. (32). αR depends on the 
type and duration of the marine operation, the forecast variable, the lead time, etc., mentioned in Section 3.1. For a specific marine 
operation, repeating this procedure in different sea states, the tabulated response-based alpha-factor αR can be obtained. 

3.6. Application of the response-based alpha-factor 

According to the α-factor proposed by DNV, the allowable sea states in terms of Hs can be adjusted directly by the selected α. In 
comparison, the αR proposed in this study is from the perspective of response, and it also depends on the type of operations. Besides, αR 
takes into account the forecast uncertainty in both Hs and Tp. Correspondingly, it should be more comprehensive and reliable in the 
application of marine operations. However, the αR is a response-based criterion and cannot be used directly to correct sea state limits. 
In this case, allowable sea states have to be re-assessed considering explicitly the forecast uncertainty and depending on the forecast 
horizon. The procedures of applying the αR in marine operations are summarized as follows:  

• When sea state forecasts are available, based on the aforementioned procedure, forecast uncertainty analysis can be carried out and 
characteristic values RE_WF for various sea state scenarios can be obtained for a specific operation, in terms of the forecast lead time. 
For a certain lead time, different sea states under which RE_WF equals to the allowable limit of response can be found. These sea 
states consist of a contour line representing the maximum sea states that the operation can be safely executed. Following this 
procedure, one can generate contour lines for different forecast lead times. In the execution phase, when sea state forecasts are 
provided, they can be compared with corresponding contour lines with the same forecast lead time. The comparison result could 
support decision-making of the operation.  

• In addition, the tabulated αR factors can be directly used to correct RE values without performing forecast uncertainty analysis of sea 
states. For a specific operation, characteristic values RE of the limiting parameter can be calculated for different sea states. These RE 
values can be adjusted by pre-calculated αR factors under same sea states to account for the weather forecast uncertainty. And 
therefore, RE_WF values for the operation can be obtained. Likewise, by comparing the RE_WF with the allowable limit, the allowable 
sea states involving weather forecast uncertainty can be assessed. In the subsequent execution phase, the allowable sea states can be 
compared with the weather forecasts to find workable weather windows. 

These will be further discussed in Section 4.5. 

4. Case study on single blade installation of offshore wind turbines 

In this section, the proposed method is applied to the blade installation of offshore wind turbine by a semi-submersible crane vessel, 
in order to illustrate its application. Compared with jack-up crane vessels, installation by floating crane vessels is more challenging. 
This is mainly because floating crane vessels are more sensitive to wave conditions. The wave-induced motion of the floating crane 
vessel will contribute to a significant motion at the crane tip. The crane tip motion could further increase the motion of the blade to 
some extent and challenge the security of the offshore wind turbine installation. Thus, the uncertainty inherent in sea state forecasts 
should be dealt with and it is of great importance to investigate their effect on the offshore blade installation. In this case study, only 
the crane tip motion is focused on. Given that the wave-induced vessel motion is the main source of the crane tip motion, the wave 
condition is of main interest and the wind condition is not considered in this paper. 

4.1. Study area and forecasting methods 

The North Sea center is focused in this study, since various marine operations related to the offshore wind turbine installation have 
been studied within this area [4,44–48]. At the target site, short-term wave conditions, characterized by Hs and Tp of the total sea, are 
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forecasted based on machine learning algorithms. Two related methods, i.e., the time series-based machine learning (TSML) method 
and the physics-based machine learning (PBML) method, are adopted for one-day-ahead wave forecasting. The former one is a pure 
machine learning method, and Wu et al. [49] have compared different TSML methods for multi-step-ahead forecasting of wave and 
wind conditions. Among them, the ANN M − 1 model with univariate input variable is utilized in this paper due to the high 
computational efficiency. Specifically, the artificial neural network (ANN) is employed as the machine learning algorithm for fore
casting. To generate multi-step-ahead forecasts, a multi-step-ahead forecast strategy, that is the M − 1 model is applied, which uses the 
relationship between last M data up to the current time and the next data to build the model, and then makes forecast recursively. 
Besides, ‘univariate input variable’ refers to that the future data of a weather variable (e.g., Hs) is forecasted only based on its past data. 
The ANN M − 1 model for Hs and Tp forecasting can be expressed as Eqs. (38) and (39) respectively. A preliminary study on the 
structure of models with different M values indicates that the model with M equal to 5 has better performance and can be used for the 
TSML model. For detailed description of the TSML model and parameters, as well as discussions on the multi-step-ahead forecast 
results at the North Sea center, refer to Wu et al. [29,49]. 

Hs(t+ 1)= f T
h (Hs(t),Hs(t − 1),…,Hs(t − M + 1)

)
(38)  

Tp(t+ 1)= f T
t

(
Tp(t), Tp(t − 1),…, Tp(t − M + 1)

)
(39)  

where t is the current time. fT
h and fT

t are TSML models of Hs and Tp, respectively. 
In addition to the TSML method purely relying on the wave time series, the PBML method which combines physical phenomenon of 

wave evolution and machine learning algorithm, is utilized as another forecasting method in the study. This model depicts a dynamic 
system, in which two important parts are required as the input to forecast sea states, namely the initial condition and the forcing. 
Specifically, the model is initialized with the wave condition characterized by significant wave height Hs and peak wave period Tp at 
the current time t. Besides, wind conditions are regarded as the forcing source, which is consistent with the considerations in the 
physics-based numerical wave models like WAM [12] and SWAN [13]. In the PBML model, the wind forcing at two continuous time 
steps up to the forecast step t + N are applied to reflect the dynamic characteristics of wind field, while other processes like wave 
dissipation and redistribution are automatically learned by machine learning algorithms from data. The corresponding forecasting 
models of Hs and Tp based on the PBML method are expressed in Eqs. (40) and (41) respectively. It should be noted that the PBML 
method can be utilized for both small domain and a single location. In this study, a small domain containing 9 grid points is considered 

Fig. 3. Forecast error PDFs of Hs and Tp at different lead times (a) εh distribution (TSML method) (b) εh distribution (PBML method) (c) εt distribution 
(TSML method) (d) εt distribution (PBML method). 
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and the forecast accuracy of the center point is analyzed. For details about the model description and its forecast performance at the 
North Sea center, refer to Wu et al. [33]. 

Hs(t+N)= f P
h

(
Hs(t),Tp(t),Uw(t+N),Uw(t+N − 1),Du(t+N),Du(t+N − 1)

)
(40)  

Tp(t+N)= f P
t (Hs(t),Tp(t),Uw(t+N),Uw(t+N − 1),Du(t+N),Du(t+N − 1)

)
(41)  

where N is the forecast step. fP
h and fP

t are PBML models of Hs and Tp. Du and Uw are the wave direction and mean wind speed, 
respectively. 

To establish above forecasting models, it is ideal to use long-term historical measurement data. However, due to the limited amount 
of measurement data and the high quality of the hindcast data, the hindcast data are utilized in the study. Hindcast wave and wind data 
are from the CERA-20C dataset [40] within the period from 2001 to 2010 at the North Sea center. The whole dataset is divided into two 
parts: the data of the first nine years (2001–2009) are the training data used for model establishment and validation, and the data of the 
last year (2010) are the testing data used for forecast uncertainty quantification. Noted that the temporal resolution of the CERA-20C 
data is 3 h. Hence, in order to perform one-day-ahead forecasts, eight iterations are required for the TSML model, and N needs to be 
selected from one to eight for the PBML model. In addition, it should be emphasized that in this paper, only forecasts of the total sea are 
considered and utilized for the following uncertainty quantification analysis. For the swell and wind sea, they were forecasted 
separately in Ref. [33], in which the corresponding uncertainty models are built. However, the effect of their forecast uncertainties on 
marine operations are not addressed in the paper. 

4.2. Forecast results, uncertainty quantification and trend analysis 

Based on the trained forecasting models, one-day-ahead Hs and Tp forecasts can be produced. Following the method described in 
Section 3.3, distributions of the forecast error εh and εt (defined in Eqs. (10) and (11)) can then be generated. The PDFs of the εh and εt 
for different lead times are plotted in Fig. 3, from which two conclusions can be drawn. On one hand, the error seems to follow the 
Gaussian distribution, and this observation is directly used in the following study without further verification. On the other hand, the 
distributions show more discrepancies as the lead time increases. This phenomenon illustrates that forecast uncertainty would increase 
as the increase of the forecast horizon. By comparison, it seems that when the lead time less than 6 h, the TSML method has better 
forecast performance, while the advantage of the PBML method is more obvious as the lead time further increases. 

As aforementioned, forecast errors should be analyzed with respect to the range of Hs and Tp. Figs. 4–7 present statistics of εh and εt 
(discrete points in different colors), which are functions of lead time TL for different error groups by the TSML and PBML methods, 
respectively. It is evident that error statistics show certain fluctuations, caused by the statistical uncertainty due to the limited number 
of forecasts. This phenomenon can be observed especially in the cases with small significant wave height and short wave period. This is 
because for the definition of the forecast error, small values will have larger error ratio than the large values for the same absolute 
error, even if the discrepancy between the forecast and actual are the same. To eliminate these effects to a certain extent, the trend 
analysis is performed subsequently. The trend lines (linear) of the discrete points in the above figures are estimated using the least- 
square fit algorithm and they are shown as the solid lines in the corresponding figures. From the generated trend lines, one can 
observe that both μεh and μεt are close to one in different groups, except for cases with Hs in the range of 0.5–1.0 m by the TSML method. 
Meanwhile, the level of σεh and σεt increase as the lead time TL increases and the range decreases. By using error statistics along trend 
lines, the PDF of actual sea states considering uncertainties can be generated, referring to Eqs. (18) and (19). 

4.3. Motion response analysis of the crane tip 

Crane tip motion during the final mating phase of blade installation can be analyzed by applying frequency domain or time domain 
method. Since the crane tip motion is mainly caused by the semi-submersible’s wave-induced motion and dynamic properties of the 
system do not significantly change in time, frequency-domain response analysis approach is a reasonable choice for the advantage of 

Fig. 4. Statistics of εh and trend line analysis for different lead times (TSML method) (a) μεh (b).σεh  
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the high cost efficiency. A preliminary study on dynamic response analysis of the crane tip motion in frequency- and time-domain 
indicates that there is a good agreement of the crane tip motion between two methods. Thus, the frequency-domain approach 
using spectral analyses is considered for the response calculation of the crane tip in this study. 

4.3.1. Numerical modeling 
Based on the frequency-domain response analysis approach, the motion of semi-submersible and crane tip can be directly obtained 

by the motion transfer functions and wave spectra. The first-order motion transfer functions for the semi-submersible are obtained 

Fig. 5. Statistics of εh and trend line analysis for different lead times (PBML method) (a) μεh (b).σεh  

Fig. 6. Statistics of εt and trend line analysis for different lead times (TSML method) (a) μεt (b).σεt  

Fig. 7. Statistics of εt and trend line analysis for different lead times (PBML method) (a) μεt (b).σεt  

Table 1 
Main properties of the installation system.  

Parameters Unit Values 

Semi-submersible Length M 175 
Breadth M 87 
Operational draught M 26.1 

Crane tip position in the vessel-related coordinate system M (66, 65.3, 144.9)  
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from the published hydrodynamic code HydroD, using potential panel theory. Based on the motion transfer functions of the semi- 
submersible and the relative coordinate of the crane tip to semi-submersible’s COG, the motion transfer functions for the crane tip 
can be calculated. The dimensions of the semi-submersible and the relative coordinate of the crane tip are presented in Table 1. More 
detailed description of the model properties, refer to Zhao et al. [44]. The numerical model is illustrated in Fig. 8. In the figure, two 
right-handed coordinate systems, i.e., a vessel-related coordinate system Ov-XvYvZv and a crane-related coordinate system Oc-XcYcZc, 
are used, whose origins are located at the center of the waterplane of the semi-submersible at rest and the crane tip, respectively. In this 
study, the beam sea condition is considered, which means that the incident wave angle θwv is zero. Besides, the simulation time is 10 
min, which is consistent with the duration of the final mating phase of the blade installation. 

In the beam sea condition, the transfer functions of the first-order motion of the semi-submersible are shown in Fig. 9. As expected, 
heave and roll motions of the semi-submersible are high. However, the pitch motion is also high in the beam sea. This is because in the 
numerical model, the pontoons of the semi-submersible are symmetric, while the columns are asymmetric in the YOZ-plane. This 
causes the vertical force on the pontoons on the left part of the floater with respect to the YOZ plane to be different from the vertical 
force on the right part. As a result, a moment is created along the Y axis, inducing the pitch motion of the semi-submersible. Besides, the 
natural periods of the semi-submersible in heave, roll and pitch are presented in Table 2. As displayed, the natural periods in heave, roll 
and pitch are between 18 s and 24 s. Multiple peaks in heave and pitch can be observed in Fig. 9, indicating that there is a strong 
coupling between heave and pitch for the semi-submersible. Based on the motion transfer functions of the semi-submersible, the 
transfer functions of the first-order motion of the crane tip in 3 degree-of-freedoms (DOFs) are calculated, as shown in Fig. 10. 

Although the transfer functions of the semi-submersible for the roll and pitch resonance periods are high, they will not affect the 
results since the frequency-domain method is used and the relevant wave periods for wind turbine installation are very small. In the 
paper, the main focus of Tp is in the range of 5–10 s. Correspondingly, it is only related to the transfer functions with a frequency of 
0.6–2.5 rad/s. An example of the wave spectrum and the resulting motion spectra of the crane tip is illustrated in Fig. 11. In the figure, 
the sea state is described by a JONSWAP spectrum with a peakedness factor γ of 3.3 [50], Hs = 2 m and different Tp (from 5 s to 10 s), 
and the corresponding motion spectra are established by spectral analysis. 

As illustrated in Fig. 11, for a given Hs, the shape of power spectra of crane tip motion is significantly affected by the selection of Tp. 
The spectrum peaks increase with increasing Tp values, which indicates that the crane tip motion is larger at sea state with larger Tp. 
This is because the relevant wave periods are well smaller than the natural periods of the semi-submersible roll (or pitch) motions and 
when the wave period increases, the roll (or pitch) motion increases. Moreover, characteristic values of the corresponding crane tip 
motion for 10− 4 exceedance probability are calculated and presented in Fig. 12. The comparison among cases further proves the 
importance of Tp to crane tip motion. By comparing the crane tip motion in Xc, Yc and Zc directions in the crane-related coordinate 
system, it is visible that the motion in Yc direction is larger than that in other two directions in the beam sea condition. Hence, only Yc 
direction is concerned, and the crane tip motion refers to its motion in Yc direction in the following analysis. 

4.3.2. Extreme response analysis in frequency domain 
In frequency domain, the motion spectra of the crane tip can give a complete description of its statistical properties, and a Gumbel 

distribution can be adopted to describe the extreme crane tip motion. Thus, the characteristic value of the crane tip motion under 
certain exceedance probability can be identified from the simulation in FD, following the method described in Section 3.4.1. Fig. 13 
gives an example of extreme response distributions with and without including weather forecast uncertainty. In this example, the 
characteristic value of crane tip motion (in Yc direction in the crane-related coordinate system) is the extreme value in 10 min with an 

Fig. 8. Numerical model of the blade installation.  
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exceedance probability of 10− 4. The TSML method is used in the sea state forecasting and TL is 3 h. 
The obvious difference between blue and black lines in Fig. 13 indicates that the uncertainty of sea state forecasts strongly affects 

the extreme value distribution. Since the weather forecast uncertainty is included, the blue distribution is much more dispersed than 
the black one. Based on these two distributions, characteristic values corresponding to an exceedance probability of 10− 4 are selected 
respectively. By dividing them, the relevant response-based alpha-factor for the crane tip motion can be established. 

Fig. 9. Motion transfer functions of the semi-submersible in the beam condition (in the vessel-related coordinated system).  

Table 2 
The natural periods (s) of the semi-submersible’s motions.  

Vessel Heave Pitch Roll 

Semi-submersible 23.4 18.5 23.3  

Fig. 10. Motion transfer functions of the crane tip in the beam condition (in the crane-related coordinated system).  
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Generally, the characteristic value is determined from the extreme value distribution with a target exceedance probability, to 
ensure the safety of the design with an acceptable low probability of damage or collapse. The target exceedance probability depends on 
the type of operation, the consequence of failure, etc. During the blade installation, since large crane tip motion may not lead to the 
installation operation failure, a larger probability of exceedance (i.e., 10− 2) can also be considered as well as 10− 4 recommended in 
DNV standard. Fig. 14 shows the relevant results with the 10− 2 exceedance probability under the same condition as shown in Fig. 13. 

Following the same procedure, RE and RE_WF values regarding the crane tip motion with exceedance probabilities of 10− 4 and 10− 2 

in different sea states can be estimated. Results with 10− 4 exceedance probability are presented in Tables 3 and 4. The RE_WF values still 
correspond to the TSML method with TL of 3 h. 

By comparison of results in Tables 3 and 4, it is visible that the RE_WF values are generally larger than the corresponding RE values 
when forecast uncertainties in sea states are involved. The degree of this difference reflects the effect of weather forecast uncertainty on 
the motion response. Based on RE and RE_WF values, corresponding αR factors can be calculated. This will be summarized and analyzed 
in Section 4.4. Furthermore, characteristic values at other lead times can be calculated by the same procedure. Similar analysis can also 

Fig. 11. Wave spectra and power spectra of crane tip motion for different Tp (Hs = 2 m) (a) Wave spectra (b) Power spectra of crane tip motion (Xc 
direction) (c) Power spectra of crane tip motion (Yc direction) (d) Power spectra of crane tip motion (Zc direction). 

Fig. 12. Characteristic values of crane tip motion for different Tp (Hs = 2 m) (a) Xc direction (b) Yc direction (c) Zc direction.  

M. Wu and Z. Gao                                                                                                                                                                                                    



Marine Structures 79 (2021) 103050

17

be performed with respect to the forecasts by the PBML method. 

4.4. Response-based alpha-factor 

For the definition of the response-based alpha-factor, an αR of 1.0 presents the sea state forecast is completely correct. The farther it 
is from one, the greater the uncertainty implicit in the weather forecasts. Figs. 15 and 16 show αR factors for the crane tip motion with 
exceedance probability of 10− 4. They use weather forecasts generated by the TSML and PBML methods, respectively. To investigate the 
effect of Tp forecast uncertainty on αR, the variations of αR with Hs in different Tp groups are plotted and displayed by solid lines with 
different colors. Besides, subfigures (a) and (b) in each figure show αR at the lead time of 3 h and 24 h respectively, to explore the 
influence of the forecast horizon. 

In addition to the αR, the α-factors, extracted from the DNV standard [3], are plotted in figures for comparison. They correspond to 
the weather forecast Level C and are based on the work performed in JIP [30] during the years 2005–2007. According to the forecast 

Fig. 13. Extreme response distributions with and without considering weather forecast uncertainty (Example: Hs = 1 m, Tp = 7 s, TSML method, 
10− 4 exceedance probability) (a) CDF (b) PDF. 

Fig. 14. Extreme response distributions with and without considering weather forecast uncertainty (Example: Hs = 1 m, Tp = 7 s, TSML method, 
10− 2 exceedance probability) (a) CDF (b) PDF. 

Table 3 
RE values (m) of the crane tip motion (10− 4 exceedance probability).  

Hs (m) Tp (s) 

5 6 7 8 9 10 

0.5 0.02 0.05 0.10 0.13 0.16 0.17 
1.0 0.04 0.10 0.19 0.26 0.31 0.35 
1.5 0.06 0.15 0.28 0.40 0.47 0.52 
2.0 0.08 0.20 0.37 0.52 0.62 0.70 
2.5 0.10 0.26 0.47 0.65 0.78 0.87 
3.0 0.12 0.31 0.56 0.78 0.94 1.04 
3.5 0.14 0.36 0.65 0.91 1.09 1.22 
4.0 0.16 0.41 0.75 1.04 1.25 1.39  
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horizon of the α-factors in the DNV standard, only results with the lead time of 24 h are plotted in subfigures (b). Meanwhile, following 
the derivation process, α-factors are also calculated using the generated weather forecasts by TSML or PBML method, and are plotted in 
the corresponding figures. It should be noted that regarding the α-factor, Hmax and Hmax_WF are estimated from the extreme wave height 
distributions during a given sea state reference period, that is 3 h in the study. This implies that the difference between the sea state 
reference period TR and the operation duration TE is not taken into account. For the sake of consistency, the α-factor generated by 
analyzing maximum wave heights during 10 min (i.e., the duration corresponds to the blade installation) is calculated and displayed as 
well. The properties of the considered correction factors are summarized in Table 5. 

The response-based alpha-factor is a complex indicator and both the extreme response of offshore structures and weather forecast 
uncertainty affect its value. According to the above extreme response analysis, the characteristic response of the crane tip motion 
increases significantly with increasing Hs and Tp. However, this effect may not be equivalently reflected in the value of αR. Funda
mentally, this is due to the fact that the αR is a ratio of the extreme responses without and with the consideration of the weather forecast 
uncertainty for a given sea state. In view of a frequency-domain approach is applied for motion analysis, the response of the system is 
very likely linear with respect to wave height. As a result, αR does not change very much with Hs for a given Tp, as shown in Figs. 15 and 
16. By contrast, the αR varies greatly among different Tp groups. Nevertheless, the dependency of the αR on Tp is not necessary to be the 
same as that of the characteristic responses on Tp. As can be observed in Fig. 12, for a given Hs, the characteristic response increases as 
Tp increases, while the αR does not. The greatly contribution of the forecast uncertainty in Tp to the αR might be the reason. For instance, 
as illustrated in Fig. 7, the forecast uncertainty in the Tp groups with 5–6 s is higher than that in other groups. This causes a large 
difference between RE and RE_WF, and therefore making the αR lower in these two groups, as shown in Fig. 16. 

In general, a large difference in αR factors is observed in different Tp groups with the same Hs, indicating that Tp is not a negligible 
variable in the blade installation design using a floating crane vessel. However, uncertainty in Tp forecasts is not reflected in the widely 

Table 4 
RE_WF values (m) of the crane tip motion (TL = 3 h, TSML method, 10− 4).  

Hs (m) Tp (s) 

5 6 7 8 9 10 

0.5 0.07 0.10 0.11 0.14 0.18 0.33 
1.0 0.15 0.20 0.24 0.28 0.38 0.70 
1.5 0.23 0.31 0.36 0.43 0.57 1.05 
2.0 0.31 0.42 0.49 0.59 0.78 1.42 
2.5 0.38 0.51 0.60 0.72 0.96 1.69 
3.0 0.46 0.61 0.72 0.85 1.14 1.94 
3.5 0.54 0.72 0.84 1.00 1.34 2.19 
4.0 0.64 0.87 1.02 1.22 1.61 2.43  

Fig. 15. αR vs. Hs in different Tp groups (TSML method) (a) Lead time TL: 3 h (b) Lead time TL: 24 h.  

Fig. 16. αR vs. Hs in different Tp groups (PBML method) (c) Lead time TL: 3 h (d) Lead time TL: 24 h.  
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used α-factor. For instance, for the Hs group of 0.5 m in Fig. 15 (a), the α-factor 1 and α-factor 2 are 0.938 and 0.944 respectively, which 
are independent of Tp. By comparison, αR varies from 0.27 to 0.95 considering forecast uncertainty of Tp in different Tp groups. 
Furthermore, the α-factor is purely generated by analyzing weather data while their effect on the dynamic response is not be 
considered. Comparison between subfigures (a) and (b) in the above two figures shows that although the α-factor decreases with the 
forecast horizon, the influence of the weather forecast uncertainty on the crane tip motion cannot be clearly identified, especially when 
the forecast horizon is long. This may because the dynamic response is not totally proportional to Hs, and Tp is essential for operations 
based on floating structures. Therefore, uncertainty in Tp forecasts should also be taken into account. Regarding the αR, it can reflect 
the impact of sea state forecast uncertainties on the dynamic response and a large lead time induce a smaller correction factor. 
However, it should be emphasized that the αR in this paper is generated for the installation system using a semi-submersible crane 
vessel with larger natural periods. Given that the αR is an operation specific factor, it should be recalculated when other types of 
installation vessels (e.g., jack-up vessel or mono-hull vessel) are used. In those cases, its variations under various sea state forecasts may 
be different. In addition, the quality of weather forecasts is important to generate both the α-factor and the αR. Compared to the PBML 
method, the TSML forecasting method makes the αR decrease more when the lead time is extended to 24 h. The comparison results 
related to the three α-factors can also implicitly reflect the forecast performance of machine learning-based methods and physics-based 
numerical methods to a certain extent. However, it needs to be emphasized that this is not a strict comparison, because the conditions 
for generating the three α-factors are not exactly the same. 

4.5. Allowable sea states in terms of crane tip motion 

Regarding the allowable sea states assessment, Hs-based alpha-factor derived by DNV can be used directly as a correction factor that 
is multiplied with the actual Hs limit of marine operations for decision-making when weather forecast uncertainty is considered. This is 
done by comparing the forecasted Hs with the new Hs limit with the alpha-factor. However, the response-based alpha-factor derived 
above cannot be directly used in combination with the forecasted values of Hs and Tp for decision-making of marine operations. This is 
because it is defined as a correction factor based on the response parameter, not on the wave height or Hs. Moreover, uncertainties in 
both Hs and Tp will play a role for the determination of the αR. This is the drawback of using the response-based alpha-factor. However, 
based on the same procedure for estimating the extreme responses in Section 3.5, one can inversely identify the allowable sea states in 
which a safe marine operation can be performed by comparing the extreme response with the allowable limit of response. This can also 
be done when using the forecast sea states and considering the forecast uncertainty. 

One example is illustrated in Fig. 17. The solid black line, resulting into the same extreme response, indicates the sea state limit 
under which a safe marine operation can be performed when a certain allowable response limit RE

0 is used. For instance, at the point A, 
RE

A, which is the characteristic value of the response under the actual sea state (HA
s , TA

p ), is equal to the allowable limit RE
0. Therefore, 

the black curve represents the allowable sea states of the operation and should be used in the comparison with the forecast sea states for 
decision-making. 

This is the case without considering the uncertainty in forecast sea states. If forecast uncertainty of this sea state at a certain lead 

time (e.g., 3 h) is considered, the actual sea state should be described by the distribution fHt
sTt

p|H
f
sT

f
p
(ht

s, tt
p

⃒
⃒
⃒hf

s , tf
p) instead of a single value, 

Table 5 
Properties of the calculated factors.  

Factor Forecast 
uncertainty in Hs 

Forecast 
uncertainty in Tp 

The effect of weather forecast 
uncertainty on dynamic response 

Reference period to estimate the 
characteristic value 

Forecasting 
methods 

αR ✓ ✓ ✓ 10 min TSML or PBML 
α-factor 1 ✓   3 h TSML or PBML 
α-factor 2 ✓   10 min TSML or PBML 
α-factor 3 ✓   3 h DNV standard  

Fig. 17. Schematic outline of allowable sea state assessment considering weather forecast uncertainty.  
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which is represented by the red circles around the point A. In this case, the characteristic value RE_WF
A , calculated by Eqs. (36) and (37), 

is larger than RE
A. The ratio is the αR with respect to this sea state and forecast lead time. This implies that if the sea state forecast 

uncertainty is included, the extreme response will larger than the allowable response limit and the operation cannot be safely per
formed for this forecasted sea state (HAf

s , TAf
p ). Therefore, the sea state should be reduced to a certain level to ensure that the char

acteristic value of the extreme response can be equal to the same allowable response limit. For example, at the point B, it is found that 
the characteristic value RE_WF

B , corresponding to the forecasted sea state (HBf
s , TBf

p ) with the lead time of 3 h, is equal to the allowable 
response limit RE

0. As a result, this point is along the allowable sea states considering sea state forecast uncertainty. 
By performing the same calculation for various forecasted sea states, allowable sea states including the uncertainty in sea state 

forecasts at different forecast lead times can be produced. These are plotted as blue and green dash lines. All these curves need to be 
provided for the use in real marine operations, and compared with sea state forecasts to support decision-making during the execution 
phase. For instance, if a 3 h-ahead forecasted sea state is (HCf

s , TCf
p ), by checking its location in Fig. 17 (that is at the point C), one can 

conclude that the operation cannot be executed since it is above the blue line. By contrast, if the 3 h-ahead forecasted sea state is (HDf
s ,

TDf
p ) which is below the blue line, the operation is considered executable. 

Followed by this procedure, the allowable sea states in terms of the crane tip motion are assessed. This is done by comparing the 
characteristic values of the crane tip motion with the corresponding allowable limits for each sea state. Regarding the allowable limit of 
response, it is normally estimated based on structural damage criteria and reasonable assumptions. In this study, the allowable limits 
are simply assumed to be constant values. Figs. 18 and 19 illustrate the allowable sea states with 10− 4 and 10− 2 exceedance proba
bilities, and the corresponding allowable limits of the crane tip motion in Yc direction are assumed to be 0.8 m and 0.4 m respectively. 
For each selected exceedance probability, results based on TSML and PBML methods are parallelly provided. 

Similar to the description in Fig. 17, the line in Figs. 18 and 19 represents the maximum allowable sea states, and all sea states 
below the line are feasible. The black solid line denotes allowable sea state limits that does not include weather forecast uncertainty. 
The dash lines in different colors are allowable sea states considering forecast uncertainties at different lead times. 

It is visible that by adopting the response-based alpha-factor method, allowable sea states at different lead times can be generated, 
which is convenient to assist decision-making during the execution of installation operation. As displayed, there is a significant dif
ference in the allowable sea states when the uncertainty in sea state forecast is included. In addition, the allowable sea states gradually 
decrease as the forecast lead time increases. The forecast uncertainties induced by the two methods (i.e. TSML and PBML) also result in 
different allowable sea states. 

According to the allowable sea states, workable weather windows can further be identified by comparing the weather forecasts 
with allowable sea states. The allowable sea states shown in Fig. 18 (a) are utilized and taken as an example for illustration. The 
forecasted time series and identified weather windows in one year are shown in Fig. 20. The weather windows based on the alpha- 
factor method are also provided as a reference. Given that uncertainties related to Tp forecasts are not taken into account in the 
alpha-factor method, two marginal cases are considered. Since all sea states along the solid line in Fig. 18 (a) are allowable sea states 
correspond to the allowable limit, there are series critical couples of the Hs and Tp. In this study, the Hs of 4 m and 2.3 m are utilized, 
corresponding to the maximum and minimum Tp (i.e., 7.2 s and 10 s). The related α-factors are estimated following the method 
proposed by DNV, on the basis of Hs forecasts generated by the TSML method at the North Sea center. 

Fig. 20 (a) shows the continuous forecasted time series of Hs and Tp in a year by the TSML method, which are one-day-ahead 
forecasts starting from 0 o’clock every day and all one-day-ahead forecasts are linked end to end. Fig. 20 (b) shows the comparison 
result between the weather forecasts and the allowable sea states based on the response-based alpha-factor method. The green part is 
the time period that weather forecasts in terms of Hs and Tp are lower than the allowable sea states, indicating that the operation can be 
executed safely. Otherwise, the operation is unsafe, represented by the red part. Meanwhile, Fig. 20 (c) and (d) show the similar results 
based on the alpha-factor method, where the operational limits in terms of Hs are 4 m and 2.3 m, respectively. A large difference can be 
seen from the subfigures (c) and (d), indicating that the uncertainty related forecasts of Tp has a significant influence on the weather 
windows. Hence, it is necessary to consider wave period forecast uncertainty in marine operations, at least for the operations applying 
floating crane vessels. In comparison, subfigure (b) can give more reliable weather windows, by including forecast uncertainties in Tp 

Fig. 18. Allowable sea states of the crane tip motion (allowable limit = 0.8 m, 10− 4 exceedance probability) (a) TSML method (b) PBML method.  
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together with Hs into dynamic response analysis, allowable sea states assessment as well as weather windows identification. 
Overall, application of the response-based alpha-factor method on allowable sea states assessment as well as weather windows 

identification is preliminary illustrated in this section. An important but simple parameter, the crane tip motion, in the blade 
installation of offshore wind turbine is discussed as an example by numerical simulation in frequency domain. Advantages of this new 
proposed method is shown by a comparison with the alpha-factor method. 

5. Conclusions 

In this study, a methodology for developing a response-based correction factor (called the response-based alpha-factor αR) is 
proposed for the use in assessing allowable sea states for marine operations, with emphasis on accounting for the effect of weather 
forecast uncertainty. It comprises three main parts, namely quantification of the weather forecast uncertainty, statistical analysis of 
structural dynamic responses of coupled system for marine operations and allowable sea states assessment by means of response-based 
criteria. Based on the methodology, the αR can be derived for a specific operation, which is similar as the α-factor proposed by DNV but 
can reflect the effect of forecast uncertainties of both Hs and Tp on the dynamic response of offshore structures. It should be noted that 
the forecast uncertainty of other weather variables (such as wave direction Du and mean wind speed Uw) can also be included in the 
method if necessary. Then, the allowable sea states accounting for the weather forecast uncertainty for the operation can be assessed at 
different forecast lead times. By comparing the allowable sea states with weather forecasts, workable weather windows can be 
identified and selected, which is a better reference for the decision-making in the execution phase. 

Fig. 19. Allowable sea states of the crane tip motion (allowable limit = 0.4 m, 10–2 exceedance probability) (a) TSML method (b) PBML method.  

Fig. 20. Effect of weather forecast uncertainty on weather windows estimation (crane tip motion, TSML method) (a) Forecasted sea state time series 
(b) Weather windows estimation (with response-based alpha-factor) (c) Weather windows estimation (with alpha-factor, Hs_lim = 4 m) (d) Weather 
windows estimation (with alpha-factor, Hs_lim = 2.3 m). 
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A case study regarding the blade installation of offshore wind turbine by a semi-submersible crane vessel is carried out to illustrate 
the procedure and show the usage of the proposed αR. In the paper, crane tip motion is considered and regarded as the operational 
limiting response parameter. Following the proposed method, uncertainties inherent in Hs and Tp forecasts generated by the TSML and 
PBML methods at the North Sea center are quantified first. Then, based on the characteristic values evaluated by the probabilistic 
analysis of dynamic responses with and without weather forecast uncertainty, αR factors are established for various sea states. The 
corresponding allowable sea states are then assessed, and the workable weather windows are finally identified and selected. Results 
indicate that forecast uncertainties in both Hs and Tp are important, and compared to the α-factor, the αR can take into account them 
more comprehensive and reflects their effect on the crane tip motion. Overall, this case study demonstrates that the proposed method 
can provide an effective and reliable way to assess the allowable sea states of the operation considering weather forecast uncertainty 
and further assist in operation decision-making. 

However, it should be emphasized that the case study only deals with the motion response of the crane tip under wave conditions, 
to illustrate the feasibility of the proposed method. In practice, in addition to the wave loads, the nonlinear wind loads acting on the 
blade are important during the blade installation. Correspondingly, the limiting response parameter related to the blade motion and 
the influences of coupled wind and waves on the installation system should be considered. The effect of weather forecast uncertainty 
on the entire blade installation process will be addressed using the proposed method in time domain in the near future. 
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