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ON GABOR G-FRAMES AND FOURIER SERIES OF

OPERATORS

EIRIK SKRETTINGLAND

Abstract. We show that Hilbert-Schmidt operators can be used to
define frame-like structures for L2(Rd) over lattices in R2d that include
multi-window Gabor frames as a special case. These frame-like struc-
tures are called Gabor g-frames, as they are examples of g-frames as
introduced by Sun. We show that Gabor g-frames share many proper-
ties of Gabor frames, including a Janssen representation and Wexler-Raz
biorthogonality conditions. A central part of our analysis is a notion of
Fourier series of periodic operators based on earlier work by Feichtinger
and Kozek, where we show in particular a Poisson summation formula
for trace class operators. By choosing operators from certain Banach
subspaces of the Hilbert Schmidt operators, Gabor g-frames give equiv-
alent norms for modulation spaces in terms of weighted ℓp-norms of an
associated sequence, as previously shown for localization operators by
Dörfler, Feichtinger and Gröchenig.

1. Introduction

The study of Gabor frames is today an essential part of time-frequency
analysis. By fixing a window function ϕ ∈ L2(Rd), a signal ψ ∈ L2(Rd) is
analyzed by considering its projections onto copies of ϕ shifted in time and
frequency. In other words, one considers the short-time Fourier transform

Vϕψ(z) = 〈ψ, π(z)ϕ〉L2 for z ∈ R
2d,

where π(z) is the time-frequency shift operator defined by π(z)ϕ(t) =
e2πiω·tϕ(t − x) for z = (x, ω) ∈ R2d. If ϕ is well-behaved, one interprets
|Vϕψ(x, ω)|2 as a measure of the contribution of the frequency ω at the time
x in the signal ψ. Given a lattice Λ = AZ2d for A ∈ GL(2d,R), ϕ generates
a Gabor frame over Λ if the ℓ2-norm of the sequence {Vϕψ(λ)}λ∈Λ is equiv-
alent to the L2-norm of ψ, i.e. there should exist constants A,B > 0 such
that

(1.1) A‖ψ‖2L2 ≤
∑

λ∈Λ

|Vϕψ(λ)|2 ≤ B‖ψ‖2L2 for any ψ ∈ L2(Rd).

In the usual terminology of frames, see for instance the monographs [37, 10,
41], this simply means that {π(λ)ϕ}λ∈Λ is a frame for L2(Rd), and (1.1) is

2020 Mathematics Subject Classification. 42C15,47B38,47G30,47B10,43A32.
Key words and phrases. Gabor frame, g-frame, Cohen class, Janssen representation,

pseudodifferential operator, trace class, modulation space.
1

http://arxiv.org/abs/1906.09662v3


2 E. SKRETTINGLAND

equivalent to the fact that the frame operator

ψ 7→
∑

λ∈Λ

Vϕψ(λ)π(λ)ϕ

is bounded and invertible on L2(Rd). Research over the last thirty years
has revealed several intriguing features of Gabor frames, among them the
Janssen representation of the frame operator [45, 28, 59], the Wexler-Raz
biorthogonality conditions [65, 45, 16, 28] and that for well-behaved win-
dows ϕ summability conditions on the coefficients {Vϕψ(λ)}λ∈Λ characterize
smoothness and decay properties of ψ [26, 38, 27].

The aim of this paper is to show that Gabor frames over a lattice Λ ⊂ R2d

are a special case of a more general situation, namely that Hilbert-Schmidt
operators on L2(Rd) can be used to define a frame-like structure for L2(Rd).
These structures are obtained by shifting a ”window” operator S over Λ by
the operation

αz(S) = π(z)Sπ(z)∗ for z ∈ R
2d.

Following Werner [64] and Kozek [48] we consider αλ(S) to be a translation
of S by λ. Our main definition is that S generates a Gabor g-frame for
L2(Rd) if there exist constants A,B > 0 such that

(1.2) A‖ψ‖2L2 ≤
∑

λ∈Λ

‖αλ(S)ψ‖2L2 ≤ B‖ψ‖2L2 for ψ ∈ L2(Rd).

When S is a rank-one operator we recover the definition of Gabor frames –
more generally we obtain multi-window Gabor frames [66] if S is of finite
rank. If (1.2) holds, the associated g-frame operator SS given by

(1.3) SS(ψ) =
∑

λ∈Λ

αλ(S
∗S)ψ,

is bounded and invertible on L2(Rd), and we show that this operator is
the composition of two other natural operators: the analysis and synthesis
operators. A major goal of this paper is to show that although Gabor g-
frames are not frames, they nevertheless share much of the structure of
Gabor frames. Our terminology stems from the fact that Gabor g-frames are
examples of g-frames as introduced by Sun [62], but apart from terminology
the abstract theory of g-frames does not feature much in this paper.

Fourier series of operators and the Janssen representation. Our investiga-
tions into the structure of Gabor g-frames naturally lead to the study of
a notion of Fourier series of operators, inspired by the analysis of periodic
operators by Feichtinger and Kozek [28] and the quantum harmonic analysis
of Werner [64]. By Fourier series for operators we mean that a Λ-periodic
operator T – meaning that αλ(T ) = T for all λ ∈ Λ – has an expansion of
the form

(1.4) T =
∑

λ◦∈Λ◦

cλ◦e
−πiλ◦x·λ

◦
ωπ(λ◦).

Here Λ◦ is the adjoint lattice of Λ defined in Section 6, and we write
λ◦ = (λ◦x, λ

◦
ω). Such expansions have also been studied in [28], and the
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interpretation that this is a Fourier series of operators follows from consid-
ering the operator e−iπx·ωπ(z) for z = (x, ω) ∈ R2d as the operator-analogue
of the character t 7→ e2πiz·t on R2d. This interpretation is strengthened by
the fact that an analogue of Wiener’s classical lemma for absolutely sum-
mable Fourier series also holds for operators, by a result of Gröchenig and
Leinert [38]. We show that any Λ-periodic bounded operator on L2(Rd) has
a Fourier series expansion (1.4). This is not the only possible approach to
Fourier series of operators, see for instance [7, 17, 18, 19], and we also remark
that periodic operators have been studied in [4, Prop. 5.5].

Due to the form of the Gabor g-frame operator (1.3) it is particularly
interesting to study the Fourier series expansion of periodic operators T
given by a periodization over Λ:

T =
∑

λ∈Λ

αλ(R)

for some operator R. This leads to the following Poisson summation formula
for trace class operators : if R is a trace class operator, then

(1.5)
∑

λ∈Λ

αλ(R) =
1

|Λ|
∑

λ◦∈Λ◦

FW (R)(λ◦)e−πiλ
◦
x·λ

◦
ωπ(λ◦),

where FW is the Fourier-Wigner transform of R defined by

FW (R)(z) = e−πix·ωtr(π(−z)R) for z = (x, ω) ∈ R
2d,

which Werner [64] argued is a Fourier transform of operators. Showing that
(1.5) holds for all trace class operators requires a careful study of the conti-
nuity of several mappings. Equation (1.5) is an analogue of the usual Poisson
summation formula for functions: the Fourier coefficients of a periodization∑

λ∈Λ αλ(R) is given by the samples of the Fourier transform of R. Com-
paring (1.5) with (1.3), we obtain an alternative expression for the g-frame
operator of a Gabor g-frame which generalizes the Janssen representation
for Gabor frames. This generalized Janssen representation allows us to de-
duce an extension of the Wexler-Raz biorthogonality conditions to Gabor
g-frames, and to establish painless procedures for making Gabor g-frames
using underspread operators.

Time-frequency localization and Gabor g-frames. The definition (1.2) has
a particularly interesting interpretation if αλ(S)ψ can, in some sense, be
interpreted as the part of the signal ψ localized around the point λ in the
time-frequency plane R2d. In this case, one may interpret ‖αλ(S)ψ‖L2 as a
measure of the part of ψ localized around λ in the time-frequency plane.
For instance, picking a rank-one operator S = ϕ ⊗ ϕ for ϕ ∈ L2(Rd), one
finds that ‖αλ(S)ψ‖L2 = |Vϕψ(λ)|, which is the measure of localization of
ψ around λ used in Gabor frames. Another prime example of operators
S where αλ(S)ψ has this interpretation are the localization operators AϕχΩ

with domain Ω ⊂ R2d and window ϕ ∈ L2(Rd) introduced by Daubechies
[15, 12, 24], and the inequalities (1.2) have been studied for such operators
by Dörfler, Feichtinger and Gröchenig [22, 23]. The results of [22, 23] are



4 E. SKRETTINGLAND

therefore a second important class examples of Gabor g-frames in addition
to (multi-window) Gabor frames.

In our terminology, [22, 23] showed that if AϕχΩ
generates a Gabor g-frame

with well-behaved window ϕ, then weighted ℓp-norms of {‖αλ(AϕχΩ
)ψ‖L2}λ∈Λ

are equivalent to the norm of ψ in modulation spaces. By the properties of
modulation spaces, this implies that smoothness and decay properties of ψ
are captured by the coefficients {‖αλ(AϕχΩ

)ψ‖L2}λ∈Λ. A similar result is well-
known for Gabor frames [26, 37, 27], and in Corollary 7.7 we extend this
to a result for Gabor g-frames that includes Gabor frames and localization
operators as special cases.

The fact that the results of [22, 23] can be incorporated into the theory of
Gabor g-frames allows us to understand exactly how a signal ψ is recovered
from its time-frequency localized components ψλ := αλ(A

ϕ
χΩ
)ψ for λ ∈ Λ.

In fact, we show that AϕχΩ
has a canonical dual operator R, such that

ψ =
∑

λ∈Λ

αλ(R
∗)ψλ for any ψ ∈ L2(Rd).

This is a generalization of a well-known fact for Gabor frames to Gabor
g-frames (and in particular the localization operators of [22, 23]), namely
that if ϕ ∈ L2(Rd) generates a Gabor frame, then there is a canonical dual
window ϕ′ ∈ L2(Rd) with

ψ =
∑

λ∈Λ

Vϕψ(λ)π(λ)ϕ
′ for any ψ ∈ L2(Rd).

Cohen’s class and Gabor g-frames. A different perspective on Gabor g-
frames uses Cohen’s class of time-frequency distributions [11]. In the formal-
ism of [55], ‖αλ(S)ψ‖2L2 equals QS∗S(ψ)(λ), where QS∗S is the Cohen’s class
distribution associated with the operator S∗S as defined in [55]. Hence equa-
tion (1.2) states that the ℓ1-norm of the samples {QS∗S(ψ)(λ)}λ∈Λ should
be an equivalent norm on L2(Rd). A simple example of a Cohen’s class dis-
tribution is the spectrogram |Vϕψ(z)|2 for a window ϕ, which corresponds to
picking rank-one S. Hence the move from Gabor frames to Gabor g-frames
corresponds to replacing the spectrogram by a more general Cohen’s class
distribution, and we show that much of the structure of Gabor frames is
preserved.

Technical tools. We give a brief overview of the non-standard technical tools
needed to prove the results of the paper. We will utilize a Banach subspace
B of the trace class operators, as studied by [28, 13, 30]. The space B consists
of operators with kernel (as integral operators) in the so-called Feichtinger
algebra [25], and we aim to show readers with backgrounds in other areas
than time-frequency analysis the usefulness of B. For instance, if R ∈ B the
sum on the right hand side of (1.5) converges absolutely in the operator
norm. The same will hold if we pick R from the smaller space of Schwartz
operators [47], but the Schwartz operators do not form a Banach space.
Hence B combines desirable features from the trace class operators and the
Schwartz operators: it is a Banach space, yet small enough to have properties
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not shared by arbitrary trace class operators. A new aspect in this paper
is that we also develop a theory of weighted versions of B, and we use the
projective tensor product of Banach spaces to establish a decomposition of
operators in the weighted B-spaces in terms of rank-one operators.

We will also use the dual space B′ with its weak* topology. The sums
in the Poisson summation formula (1.5) for trace class operators converge
in this topology, but not necessarily in the weak* topology of the bounded
operator L(L2) – hence B′ is necessary even for studying trace class opera-
tors.

In order to write the g-frame operator (1.3) as the composition of an
analysis operator and a synthesis operator we will need the L2-valued se-
quence spaces ℓpm(Λ;L

2), consisting of sequences {ψλ}λ∈Λ ⊂ L2(Rd) such
that

∑
λ∈Λ ‖ψλ‖

p
L2m(λ)p < ∞, where m is a weight function. The use of

these Banach spaces is key to reducing statements about Gabor g-frames to
known results for Gabor frames in Section 7.

Organization. We recall some definitions and results from time-frequency
analysis, pseudodifferential operators and g-frames in Section 3. Section 4
is devoted to introducing and studying one of our main tools: Banach spaces
of operators with kernels in certain weighted function spaces and their de-
composition into rank-one operators. The definition and basic properties
of Gabor g-frames are given in Section 5. The theory of Fourier series of
operators and its applications to Gabor g-frames, including a Janssen rep-
resentation and Wexler-Raz biorthogonality for Gabor g-frames, is explored
in Section 6. Section 7 is devoted to using Gabor g-frames to obtain equiva-
lent norms for modulation spaces. Finally the relation of Gabor g-frames to
countably generated multi-window Gabor frames using the singular value
decomposition is explained in Section 8.

2. Notation and conventions

By a lattice Λ we mean a full-rank lattice in R2d, i.e. Λ = AZ2d for
some A ∈ GL(2d,R). The volume of Λ = AZ2d is |Λ| := det(A). The
Haar measure on R2d/Λ will always be normalized so that R2d/Λ has total
measure 1.

If X is a Banach space and X ′ its dual space, the action of y ∈ X ′ on
x ∈ X is denoted by the bracket 〈y, x〉X′,X , where the bracket is antilinear in
the second coordinate to be compatible with the notation for inner products
in Hilbert spaces. This means that we are identifying the dual space X ′

with anti linear functionals on X . For two Banach spaces X, Y we denote
by L(X, Y ) the Banach space of bounded linear operators S : X → Y ,
and if X = Y we simply write L(X). The notation X →֒ Y denotes a
norm-continuous embedding of Banach spaces.

For p ∈ [1,∞], p′ denotes the conjugate exponent, i.e. 1
p
+ 1

p′
= 1. The

notation P . Q means that there is some C > 0 such that P ≤ C ·Q, and
P ≍ Q means that Q . P and P . Q. For Ω ⊂ R2d, χΩ is the characteristic
function of Ω.
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3. Preliminaries

3.1. Time-frequency analysis and modulation spaces. The funda-
mental operators in time-frequency analysis are the translation operators
Tx and the modulation operators Mω for x, ω ∈ Rd, defined by

(Txψ)(t) = ψ(t− x), (Mωψ)(t) = e2πiω·tψ(t) for ψ ∈ L2(Rd).

By composing these operators, we get the time-frequency shifts π(z) :=
MωTx for z = (x, ω) ∈ R2d, given by

(π(z)ψ)(t) = e2πiω·tψ(t− x) for ψ ∈ L2(Rd).

The time-frequency shifts π(z) are unitary operators on L2(Rd), with adjoint
π(z)∗ = e−2πix·ωπ(−z) for z = (x, ω). For ψ, φ ∈ L2(Rd) we use the time-
frequency shifts to define the short-time Fourier transform Vφψ of ψ with
window φ by

(3.1) Vφψ(z) = 〈ψ, π(z)φ〉L2 for z ∈ R
2d.

The short-time Fourier transform satisfies an orthogonality condition, some-
times called Moyal’s identity [37, 32].

Lemma 3.1 (Moyal’s identity). If ψ1, ψ2, φ1, φ2 ∈ L2(Rd), then Vφiψj ∈
L2(R2d) for i, j ∈ {1, 2} and

〈Vφ1ψ1, Vφ2ψ2〉L2 = 〈ψ1, ψ2〉L2 〈φ1, φ2〉L2 ,

where the leftmost inner product is in L2(R2d) and those on the right are in
L2(Rd).

3.1.1. Weight functions. To define the appropriate function spaces for our
setting – the modulation spaces – we need to consider weight functions on
R2d. In this paper, a weight function is a continuous and positive function
on R2d. We will always let v denote a submultiplicative weight function
satisfying the GRS-condition. That v is submultiplicative means that

v(z1 + z2) ≤ v(z1)v(z2) for any z1, z2 ∈ R
2d,

and the GRS-condition says that

lim
n→∞

(v(nz))1/n = 1 for any z ∈ R
2d.

Furthermore, we will assume that v is symmetric in the sense that v(x, ω) =
v(−x, ω) = v(x,−ω) = v(−x,−ω) for any (x, ω) ∈ R2d, which along with
submultiplicativity implies that v ≥ 1 [40].

By m we will always mean a weight function that is v-moderate; this
means that

(3.2) m(z1 + z2) . m(z1)v(z2) for any z1, z2 ∈ R
2d.

The interested reader is encouraged to consult the survey [40] for an ex-
cellent exposition of the reasons for making these assumptions in time-
frequency analysis. The less interested reader may safely assume that all
weights are polynomial weights vs(z) = (1 + |z|)s for some s ≥ 0.
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3.1.2. Modulation spaces. Let φ0 be the normalized (in L2-norm) Gaussian
φ0(x) = 2d/4e−πx·x for x ∈ Rd, and let v be a submultiplicative, symmetric
GRS-weight. We first define the spaceM1

v (R
d) to be the space of ψ ∈ L2(Rd)

such that

‖ψ‖M1
v
:=

∫

Rd

∫

Rd

|Vφ0ψ(z)|v(z) dz <∞.

For p ∈ [1,∞] and a v-moderate weight function m we then define the
modulation space Mp

m(R
d) to be the set of ψ in the (antilinear) dual space(

M1
v (R

d)
)′

with

(3.3) ‖ψ‖Mp
m
:=

(∫

Rd

∫

Rd

|Vφ0ψ(z)|pm(z)p dz

)1/p

<∞,

where the integral is replaced by a supremum in the usual way when p =∞.
In (3.3), Vφ0ψ must be interpreted by (antilinear) duality, meaning that we
extend the definition in equation (3.1) by defining

Vφ0ψ(z) = 〈ψ, π(z)φ0〉(M1
v )

′,M1
v
.

For m ≡ 1 we will write Mp(Rd) := Mp
m(R

d). We summarize a few of
the useful properties of modulation spaces in a proposition, see [37] for the
proofs.

Proposition 3.2. Let m be a v-moderate weight and p ∈ [1,∞].

(a) Mp
m(R

d) is a Banach space with the norm defined in (3.3).
(b) If we replace φ0 with another function 0 6= φ ∈ M1

v (R
d) in (3.3), we

obtain the same space Mp
m(R

d) as with φ0, with equivalent norms.
(c) If 1 ≤ p1 ≤ p2 ≤ ∞ and m2 . m1, then M

p1
m1

(Rd) →֒ Mp2
m2

(Rd).

(d) If p < ∞ and 1
p
+ 1

p′
= 1, then Mp′

1/m(R
d) is the dual space of Mp

m(R
d)

with

(3.4) 〈φ, ψ〉
Mp′

1/m
,Mp

m
=

∫

R2d

Vφ0φ(z)Vφ0ψ(z) dz.

(e) The operators π(z) can be extended to bounded operators on Mp
m(R

d)
with ‖π(z)ψ‖Mp

m
. v(z)‖ψ‖Mp

m
for ψ ∈Mp

m(R
d).

(f) L2(Rd) =M2(Rd) with equivalent norms.
(g) M1

v (R
d) is dense in Mp

m(R
d) for p <∞ and weak*-dense in M∞

m (Rd).

Remark 3.3. (a) Assume that p < ∞. If φ ∈ L2(Rd) ∩ Mp′

1/m(R
d) and

ψ ∈ Mp
m(R

d) ∩ L2(Rd), then Moyal’s identity and (3.4) implies that
〈φ, ψ〉

Mp′

1/m
,Mp

m
= 〈φ, ψ〉L2 . We will use this fact several times in the rest

of the paper.
(b) We defined modulation spaces as subspaces of (M1

v (R
d))′ = M∞

1/v(R
d).

If one restricts to weights v of at most polynomial growth, thenM1
v (R

d)
contains the Schwartz functions S(Rd) and M∞

1/v(R
d) is a subspace of

the tempered distributions S ′(Rd) [40].
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(c) If m is v-moderate, then so is 1/m since we assume that v is symmetric:
for w1, w2 ∈ R2d we find by choosing z1 = w1 + w2 and z2 = −w2 in
(3.2) that m(w1) . m(w1 + w2)v(w2), hence

1

m(w1 + w2)
.

1

m(w1)
v(w2).

The class of modulation spaces is therefore closed under duality for
p <∞.

3.1.3. Wiener amalgam spaces and sampling estimates. Some close relatives
of the modulation spaces are the Wiener amalgam spaces. For our purposes,
these spaces are interesting because they are associated with certain sam-
pling estimates. We first define, for 1 ≤ p < ∞, any lattice Λ and weight
function m, the weighted sequence spaces

ℓpm(Λ) =

{
{cλ}λ∈Λ ⊂ C : ‖c‖p

ℓpm
:=
∑

λ∈Λ

|cλ|pm(λ)p <∞
}
,

and ℓ∞m (Λ) is defined by replacing the sum by a supremum in the usual way.
Given any function f : R2d → C we define a sequence {a(k,l)}(k,l)∈Z2d by

a(k,l) = sup
x,ω∈[0,1]d

|f(x+ k, ω + l)|;

the Wiener amalgam space W (Lpm) on R
2d is then the Banach space of

f : R2d → C such that

‖f‖W (Lp
m) := ‖{a(k,l)}‖ℓpm(Z2d) <∞.

The following is Proposition 11.1.4 in [37].

Lemma 3.4. Let Λ be a lattice in R2d, and assume that f ∈ W (Lpm) is
continuous. Then

‖f |Λ‖ℓpm . ‖f‖W (Lp
m),

where the implicit constant may be chosen to be independent of p and m.
Since M1(R2d) →֒ W (L1

m) for m ≡ 1, it follows that ‖f |Λ‖ℓ1 . ‖f‖M1 for
f ∈M1(R2d).

By combining [12, Lem. 4.1] with Lemma 3.4, one obtains the following
result.

Lemma 3.5. Let Λ be a lattice, φ ∈ M1
v (R

d) and ψ ∈ Mp
m(R

d) where
p ∈ [1,∞]. Then

‖Vφψ|Λ‖ℓpm(Λ) . ‖φ‖M1
v
‖ψ‖Mp

m
,

where the implicit constant may be chosen to be independent of p and m.

3.1.4. The symplectic Fourier transform. As the Fourier transform of func-
tions f on R2d, we will use the symplectic Fourier transform Fσf , given
by

Fσf(z) =
∫

R2d

f(z′)e−2πiσ(z,z′) dz′ for f ∈ L1(R2d), z ∈ R
2d,

where σ is the standard symplectic form σ((x1, ω1), (x2, ω2)) = ω1·x2−ω2·x1.
Then Fσ is an isomorphism on M1(R2d), and extends to a unitary operator
on L2(R2d) and an isomorphism on M∞(R2d) [28, Lem. 7.6.2].
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3.2. Trace class and Hilbert-Schmidt operators. By the singular value
decomposition, see Chapter 3.2 of [9], any compact operator S on L2(Rd)
may be written as

S =

N0∑

n=1

snξn ⊗ ϕn

for some N0 ∈ N ∪ {∞}, two orthonormal systems {ξn}N0

n=1 , {ϕn}
N0

n=1 in

L2(Rd) and a sequence of positive numbers {sn}N0

n=1 ∈ ℓ∞ called the singular
values of S. Here ξ⊗ϕ denotes the rank-one operator ξ⊗ϕ(ψ) = 〈ψ, ϕ〉L2ξ
for ϕ, ξ, ψ ∈ L2(Rd). We assume that sn+1 ≥ sn for n ∈ N.

Imposing summability conditions on the singular values of S allows us
to define two important classes of operators. The trace class operators T
are the operators S whose singular values satisfy {sn}N0

n=1 ∈ ℓ1. The norm
‖S‖T = ‖{sn}‖ℓ1 makes T into a Banach space [9]. We may define a bounded
linear functional on T called the trace by

tr(S) :=
∑

n∈N

〈Sηn, ηn〉,

where {ηn}n∈N is an orthonormal basis for L2(Rd) – the value of tr(S) can be
shown to be independent of the orthonormal basis used in its definition [9].
We also mention that the norm on T may be expressed by ‖S‖T = tr(|S|).

The Hilbert-Schmidt operators HS are the operators S where {sn}N0
n=1 ∈

ℓ2. The norm on HS can be expressed as the ℓ2 norm of the singular values,
but it will be more useful to note that ST ∈ T for any S, T ∈ HS and that
HS becomes a Hilbert space with respect to the inner product [9]

〈S, T 〉HS := tr(ST ∗).

Another description of HS is obtained by noting that it is isomorphic to
the Hilbert space tensor product L2(Rd)⊗ L2(Rd), where the isomorphism
is obtained by associating rank-one operators ψ⊗ϕ ∈ HS with elementary
tensors ψ ⊗ ϕ [33, Appendix 3].

3.3. Pseudodifferential operators. We will consider different ways to
associate functions on R

2d with operators M1(Rd)→M∞(Rd).

3.3.1. Integral operators. For k ∈ L2(R2d), we define a necessarily bounded
integral operator S : L2(Rd)→ L2(Rd) by

(3.5) Sψ(x) =

∫

Rd

k(x, y)ψ(y) dy for ψ ∈ L2(Rd).

Here k = kS is the kernel of S, and one can extend the definition above to
k ∈M∞(R2d) by defining S :M1(Rd)→M∞(Rd) by duality:

〈Sψ, φ〉M∞,M1 =
〈
k, φ⊗ ψ

〉
M∞,M1 for φ, ψ ∈M1(Rd),

where φ⊗ψ(x, y) = φ(x)ψ(y). By the kernel theorem for modulation spaces
[37, Thm. 14.4.1], any continuous linear operator S : M1(Rd) → M∞(Rd)
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is induced by a unique kernel k = kS ∈ M∞(R2d) in this way. Writing
operators using a kernel k will be particularly useful for us because

(3.6) kφ⊗ψ = φ⊗ ψ for ψ, φ ∈ L2(Rd),

where φ ⊗ ψ on the left side denotes the rank-one operator φ ⊗ ψ(ξ) =
〈ξ, ψ〉L2 φ, and on the right side the function φ ⊗ ψ(x, y) = φ(x)ψ(y). The
Hilbert-Schmidt operators are precisely those operators S : M1(Rd) →
M∞(Rd) such that kS ∈ L2(R2d).

3.3.2. The Weyl calculus. For ξ, η ∈ L2(Rd), the cross-Wigner distribution
W (ξ, η) is given by

W (ξ, η)(x, ω) =

∫

Rd

ξ

(
x+

t

2

)
η

(
x− t

2

)
e−2πiω·t dt for (x, ω) ∈ R

2d.

Using the cross-Wigner distribution we introduce the Weyl calculus. For
f ∈M∞(R2d) and ξ, η ∈M1(Rd), we define the Weyl transform Lf of f to
be the operator Lf :M

1(Rd)→M∞(Rd) given by

〈Lfη, ξ〉M∞,M1 = 〈f,W (ξ, η)〉M∞,M1 .

f is called the Weyl symbol of the operator Lf . In general we will use aS
to denote the Weyl symbol of an operator S, in other words LaS = S. By
the kernel theorem for modulation spaces, the Weyl transform is a bijection
from M∞(R2d) to the continuous linear operators M1(Rd) → M∞(Rd). As
above, HS has a simple description in terms of the Weyl symbol: S ∈ HS
if and only if aS ∈ L2(R2d).

3.3.3. Translation of operators. Several authors have considered the idea
of translating operators by a point z ∈ R2d by conjugation with π(z) [48,
28, 64]: if S : M1(Rd) → M∞(Rd) is a continuous operator, we define the
translation of S by z ∈ R2d to be

αz(S) = π(z)Sπ(z)∗.

This corresponds to a translation of the Weyl symbol [54, Lem. 3.2],

(3.7) αz(S) = LTz(aS ),

which is a major reason why the Weyl symbol is useful for us when consid-
ering Fourier series of operators in Section 6. Since π(z) is unitary, α also
respects the product of two operators in the sense that

(3.8) αz(ST ) = αz(S)αz(T ) for S, T ∈ L(L2).

It is easily shown that αz is an isometry on T ,HS and L(L2) for any
z ∈ R2d and that applying αz to a rank-one operator ψ ⊗ φ amounts to a
time-frequency shift of ψ and φ :

(3.9) αz(ψ ⊗ φ) = (π(z)ψ)⊗ (π(z)φ).

Furthermore, the map z 7→ αz is a representation of the locally compact
abelian group R2d on the space of Hilbert-Schmidt operators. In fact, if
we identify the Hilbert-Schmidt operators with the Hilbert space tensor
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product L2(Rd)⊗L2(Rd), then α is the tensor product representation π⊗π
of R2d on L2(Rd)⊗ L2(Rd), which is the notation for α used in [28].

3.3.4. The Fourier-Wigner transform. For a trace class operator S ∈ T ,
the Fourier-Wigner transform FW (S) of S is the function

FW (S)(z) = e−πix·ωtr(π(−z)S) for z = (x, ω) ∈ R
2d.

As a special case, if ψ, φ ∈ L2(Rd) we have [54, Lem. 6.1] that

(3.10) FW (φ⊗ ψ)(z) = eπix·ωVψφ(z) for z = (x, ω) ∈ R
2d,

and we also mention the easily verified relation

(3.11) FW (S∗)(z) = FW (S)(−z) for z = (x, ω) ∈ R
2d.

Werner [64] has shown that in many respects FW behaves like a Fourier
transform for operators, which is the interpretation we will often rely on.
For instance, a Riemann-Lebesgue lemma holds: if S ∈ T , then FW (S) ∈
C0(R

2d) and

(3.12) ‖FW (S)‖L∞ ≤ ‖S‖T .

The Fourier-Wigner transform and Weyl transform are related by a sym-
plectic Fourier transform:

(3.13) FW (S) = Fσ(aS),

which can be used to show that S ∈ HS if and only if FW (S) ∈ L2(R2d).
Finally, we remark that FW (S) differs only by a phase factor e−πix·ω from
the spreading function of S [6, 28].

3.3.5. Localization operators. An important class of examples of pseudodif-
ferential operators in this paper will be the localization operators. Given
ϕ ∈ L2(Rd) and h ∈ L1(R2d), the localization operator Aϕh ∈ L(L2) is
defined by

Aϕhψ =

∫

R2d

h(z)Vϕψ(z)π(z)ϕ dz for ψ ∈ L2(Rd),

where the integral is an absolutely convergent Bochner integral in L2(Rd).
Localization operators interact nicely with the various aspects of pseudo-
differential operators considered above: their Weyl symbol is given by a
convolution [8]

aAϕ
h
= h ∗W (ϕ, ϕ)

and they satisfy the translation covariance property [54, Lem. 4.3 and the-
orem. 5.1]

(3.14) αz(A
ϕ
h) = AϕTzh
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3.4. Frames and g-frames. We will briefly recall the basic definitions
of frame theory in the Hilbert space L2(Rd), referring the details to the
monographs [37, 10, 41]. Recall that a sequence {ξi}i∈I ⊂ L2(Rd) is a frame
for L2(Rd) if there exist constants A,B > 0 such that

(3.15) A‖ψ‖2L2 ≤
∑

i∈I

|〈ψ, ξi〉L2| ≤ B‖ψ‖2L2 for any ψ ∈ L2(Rd).

Here A and B are called the lower and upper frame bound, respectively.
If (3.15) holds with A = B, we say that {ξi}i∈I is a tight frame, and if
A = B = 1 we call {ξi}i∈I a Parseval frame. Whenever the rightmost
inequality in (3.15) holds for some B > 0, {ξi}i∈I is a Bessel system.

When {ξi}i∈I is a Bessel system, we associated with {ξi}i∈I several
bounded operators: the analysis operator C : L2(Rd)→ ℓ2(I) given by

Cψ = {〈ψ, ξi〉L2}i∈I for ψ ∈ L2(Rd),

the synthesis operator D : ℓ2(I)→ L2(Rd) given by

D{ci}i∈I =
∑

i∈I

ciξi for {ci}i∈I ∈ ℓ2(I)

and the frame operator S = DC ∈ L(L2) defined by

S(ψ) =
∑

i∈I

〈ψ, ξi〉L2ξi for ψ ∈ L2(Rd).

In the introduction, see equation (1.1), we introduced a special class
of frames called Gabor frames, which are frames of the form {π(λ)ϕ}λ∈Λ
for some lattice Λ and ϕ ∈ L2(Rd). More generally, a multi-window Gabor
frame [66] is a frame of the form {π(λ)ϕn}λ∈Λ,n=1,...N where ϕn ∈ L2(Rd)
for n = 1, ..., N.We call the set {π(λ)ϕn}λ∈Λ,n=1,...N the multi-window Gabor
system generated by {ϕn}Nn=1, even when {π(λ)ϕn}λ∈Λ,n=1,...N is not a frame.

3.4.1. g-frames. In [62], Sun introduced g-frames as a generalization of
frames for Hilbert spaces. We state a special case1 for the Hilbert space
L2(Rd). A sequence {Ai}i∈I ⊂ L(L2) is a g-frame for L2(Rd) with respect
to L2(Rd) if there exist positive constants A,B such that

A‖ψ‖2L2 ≤
∑

i∈I

‖Aiψ‖2L2 ≤ B‖ψ‖2L2 for any ψ ∈ L2(Rd).

If we can choose A = B, we say that the g-frame is tight. When the above
inequality holds, the g-frame operator S defined by

Sψ =
∑

i∈N

A∗
iAiψ

is positive, bounded and invertible on L2(Rd) with A ≤ ‖S‖L(L2) ≤ B.

1More generally, we could consider Ai ∈ L(H, Vi) where H is a Hilbert space and Vi

is a closed subspace of another Hilbert space H′, see [62].
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4. The space Bv⊗v of operators with kernel in M1
v⊗v

To define a suitable class of operators for our purposes, we will consider
modulation spaces on R2d. The short-time Fourier transform on phase space
R2d is

Vgf(z, ζ) = 〈f, π(z)⊗ π(ζ)g〉L2 for z, ζ ∈ R
2d and f, g ∈ L2(R2d),

where π(z)⊗ π(ζ) is defined by

π(z)⊗ π(ζ)g =M(zω ,ζω)T(zx,ζx)g for z = (zx, zω), ζ = (ζx, ζω).

Given a submultiplicative, symmetric GRS-weight v on R2d, we consider the
Banach space M1

v⊗v(R
2d) of f ∈ L2(R2d) such that

‖f‖M1
v⊗v

=

∫

R2d

∫

R2d

|Vφ0⊗φ0f(z, ζ)|v(z)v(ζ) dzdζ <∞,

where φ0 ⊗ φ0(x, y) = φ0(x)φ0(y). With these definitions it is easy to show
that if φ, ψ ∈M1

v (R
d), then φ⊗ ψ ∈M1

v⊗v(R
2d) with

(4.1) ‖ψ ⊗ φ‖M1
v⊗v

= ‖ψ‖M1
v
‖φ‖M1

v
.

In fact, M1
v⊗v(R

2d) is isomorphic to M1
v (R

d)⊗̂M1
v (R

d) [5, Thm. 5], where ⊗̂
denotes the projective tensor product of Banach spaces. This tensor product
construction is covered in detail in [61], but for our purposes it suffices to
note that

M1
v⊗v(R

2d) =M1
v (R

d)⊗̂M1
v (R

d)

=

{∑

n∈N

φ(1)
n ⊗ φ(2)

n :
∑

n∈N

‖φ(1)
n ‖M1

v
‖φ(2)

n ‖M1
v
<∞

}
,

(4.2)

with an equivalent norm for M1
v⊗v(R

2d) given by

(4.3) ‖f‖M1
v⊗v
≍ inf

{∑

n∈N

‖φ(1)
n ‖M1

v
‖φ(2)

n ‖M1
v

}
,

where the infimum is taken over all sequences {φ(1)
n }n∈N, {φ(2)

n }n∈N inM1
v (R

d)

such that f =
∑

n∈N φ
(1)
n ⊗ φ(2)

n and
∑

n∈N ‖φ
(1)
n ‖M1

v
‖φ(2)

n ‖M1
v
<∞.

We will be particularly interested in the class of operators S whose kernel
kS belongs toM1

v⊗v(R
2d), as studied by several authors [31, 28, 52] for v ≡ 1.

We denote the class of such operators by Bv⊗v, and define the norm

‖S‖Bv⊗v = ‖kS‖M1
v⊗v
.

Since M1
v⊗v(R

2d) →֒ L2(R2d), operators in Bv⊗v define bounded operators
on L2(Rd) by (3.5). In fact (see [34, 36]) we have Bv⊗v →֒ T →֒ L(L2), hence

‖S‖L(L2) ≤ ‖S‖T . ‖S‖Bv⊗v for S ∈ Bv⊗v.
Now recall from (3.6) that the kernel of a rank-one operator φ ⊗ ψ with
ψ, φ ∈M1

v (R
d) is the function φ⊗ ψ. By (4.1) we get that

‖φ⊗ ψ‖Bv⊗v = ‖φ‖M1
v
‖ψ‖M1

v
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(we have also used that ‖ψ‖M1
v
= ‖ψ‖M1

v
as v is symmetric). Equation (4.2)

therefore has the following important consequences.

Proposition 4.1. Let S ∈ Bv⊗v.
(a) There exist sequences {φ(1)

n }n∈N, {φ(2)
n }n∈N ⊂ M1

v (R
d) with

∑

n∈N

‖φ(1)
n ‖M1

v
‖φ(2)

n ‖M1
v
<∞

such that S can be written as a sum of rank-one operators

(4.4) S =
∑

n∈N

φ(1)
n ⊗ φ(2)

n .

The decomposition (4.4) converges absolutely in Bv⊗v, hence in T and
L(L2).

(b)

‖S‖Bv⊗v ≍ inf

{∑

n∈N

‖φ(1)
n ‖M1

v
‖φ(2)

n ‖M1
v

}
,

with infimum taken over all sequences {φ(1)
n }n∈N, {φ(2)

n }n∈N as in (a).
(c) Let S∗ denote the Hilbert space adjoint of S when S is viewed as an

operator L2(Rd)→ L2(Rd). Then S∗ ∈ Bv⊗v and S extends to a weak*-
to-weak*-continuous operator S :M∞

1/v(R
d)→ M∞

1/v(R
d) by defining

〈Sφ, ψ〉M∞
1/v

,M1
v
= 〈φ, S∗ψ〉M∞

1/v
,M1

v
for φ ∈M∞

1/v(R
d), ψ ∈M1

v (R
d).

The decomposition in (4.4) still holds for this extensions of S, meaning
that

Sψ =
∑

n∈N

〈
ψ, φ(2)

n

〉
M∞

1/v
,M1

v
φ(1)
n for ψ ∈M∞

1/v(R
d)

with absolute convergence of the sum in the norm of M1
v (R

2d).
(d) The extension of S to M∞

1/v(R
d) is bounded from M∞

1/v(R
d) intoM1

v (R
d),

and maps weak*-convergent sequences in M∞
1/v(R

d) to norm-convergent

sequences in M1
v (R

d).

Proof. (a) By (4.2), there exist {φ(1)
n }n∈N , {φ(2)

n }n∈N as in the statement
with

kS(x, y) =
∑

n∈N

φ(1)
n (x)φ

(2)
n (y) for x, y ∈ R

d,

with absolute convergence of the sum in the norm ofM1
v⊗v(R

2d) by (4.1).

Since the function φ
(1)
n (x)φ

(2)
n (y) is the kernel of the rank-one operator

φ
(1)
n ⊗φ(2)

n by (3.6), the decomposition of kS above and the definition of
‖ · ‖Bv⊗v implies that

S =
∑

n∈N

φ(1)
n ⊗ φ(2)

n ,

with absolute convergence in the norm of Bv⊗v.
(b) Follows from (4.3) and ‖S‖Bv⊗v = ‖kS‖M1

v⊗v
.
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(c) It is well-known that the kernel of S∗ is kS∗(x, y) = kS(y, x). Since
M1

v⊗v(R
2d) is closed under this operation – as follows from (4.2), for

instance – we get S∗ ∈ Bv⊗v. In particular, part (a) applied to S∗ implies
that S∗ is bounded M1

v (R
d) → M1

v (R
d). We may therefore define an

extension S̃ : M∞
1/v(R

d) → M∞
1/v(R

d) by defining S̃ to be the Banach
space adjoint of S∗. By definition, this means that

〈
S̃φ, ψ

〉
M∞

1/v
,M1

v

= 〈φ, S∗ψ〉M∞
1/v

,M1
v
.

It is easy to see that S̃ is an extension of S: if φ ∈ L2(Rd), we find that
〈
S̃φ, ψ

〉
M∞

1/v
,M1

v

= 〈φ, S∗ψ〉M∞
1/v

,M1
v

= 〈φ, S∗ψ〉L2

= 〈Sφ, ψ〉L2

= 〈Sφ, ψ〉M∞
1/v

,M1
v
.

From now on, we simply denote the extension S̃ by S. For the last part,

note that S∗ has a decomposition S∗ =
∑

n∈N φ
(2)
n ⊗φ(1)

n by part (a). By
definition, for ψ ∈M∞

1/v(R
d), we have

〈Sψ, φ〉M∞
1/v

,M1
v
= 〈ψ, S∗φ〉M∞

1/v
,M1

v
.

By the decomposition above, S∗φ =
∑∞

n=1

〈
φ, φ

(1)
n

〉
L2
φ
(2)
n , and as this

sum converges absolutely in the norm of M1
v (R

d) we find

〈Sψ, φ〉M∞
1/v

,M1
v
= 〈ψ, S∗φ〉M∞

1/v
,M1

v

=

〈
ψ,

∞∑

n=1

〈
φ, φ(1)

n

〉
L2 φ

(2)
n

〉

M∞
1/v

,M1
v

=

∞∑

n=1

〈
φ(1)
n , φ

〉
L2

〈
ψ, φ(2)

n

〉
M∞

1/v
,M1

v

=

〈
∞∑

n=1

〈
ψ, φ(2)

n

〉
M∞

1/v
,M1

v
φ(1)
n , φ

〉

M∞
1/v

,M1
v

.

The absolute convergence in the norm of M1
v (R

2d) follows as

∞∑

n=1

∣∣∣∣
〈
ψ, φ(2)

n

〉
M∞

1/v
,M1

v

∣∣∣∣ ‖φ(1)
n ‖M1

v
≤ ‖ψ‖M∞

1/v

∞∑

n=1

‖φ(1)
n ‖M1

v
‖φ(2)

n ‖M1
v
<∞.

(d) The last inequality above also implies that S is bounded fromM∞
1/v(R

d)

to M1
v (R

d), since it shows that

‖Sψ‖M1
v
≤ ‖ψ‖M∞

1/v

∞∑

n=1

‖φ(1)
n ‖M1

v
‖φ(2)

n ‖M1
v
.
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Finally, let {ψi}i∈N be a sequence in M∞
1/v(R

d) that converges to ψ ∈
M∞

1/v(R
d) in the weak* topology. Then

Sψi =
∑

n∈N

〈
ψi, φ

(2)
n

〉
M∞

1/v
,M1

v
φ(1)
n

i→∞−−−→
∑

n∈N

〈
ψ, φ(2)

n

〉
M∞

1/v
,M1

v
φ(1)
n = Sψ.

We have used the dominated convergence theorem for Banach spaces
[42, Prop. 1.2.5] to take the limit inside the sum: as {ψi}i∈N is weak*-
convergent there exists 0 < C < ∞ such that ‖ψi‖M∞

1/v
≤ C for any i,

so ∥∥∥∥
〈
ψi, φ

(2)
n

〉
M∞

1/v
,M1

v
φ(1)
n

∥∥∥∥
M1

v

≤ C‖φ(2)
n ‖M1

v
‖φ(1)

n ‖M1
v

for any i, and
∑

n∈N ‖φ
(1)
n ‖M1

v
‖φ(2)

n ‖M1
v
<∞.

�

As a first consequence, we show that Bv⊗v is closed under composition.
The proof is similar to that of [31, Cor. 3.11], where the result is proved for
locally compact abelian groups with no weights.

Corollary 4.2. Bv⊗v is closed under composition: if S, T ∈ Bv⊗v, then
‖ST‖Bv⊗v . ‖S‖Bv⊗v‖T‖Bv⊗v .

Proof. Let

S =
∑

n∈N

φ(1)
n ⊗ φ(2)

n , T =
∑

m∈N

ψ(1)
m ⊗ ψ(2)

m

be decompositions of S and T into rank-one operators as in Proposition 4.1.
A simple calculation shows that the composition ST is the operator

ST =
∑

m,n∈N

〈
ψ(1)
m , φ(2)

n

〉
L2 φ

(1)
n ⊗ ψ(2)

m .

This decomposition converges absolutely in Bv⊗v, as
∥∥〈ψ(1)

m , φ(2)
n

〉
L2 φ

(1)
n ⊗ ψ(2)

m

∥∥
Bv⊗v
≤
∣∣〈ψ(1)

m , φ(2)
n

〉
L2

∣∣ ∥∥φ(1)
n ⊗ ψ(2)

m

∥∥
Bv⊗v

≤ ‖ψ(1)
m ‖L2‖φ(2)

n ‖L2‖φ(1)
n ‖M1

v
‖ψ(2)

m ‖M1
v
,

so that ∑

m,n∈N

∥∥〈ψ(1)
m , φ(2)

n

〉
L2 φ

(1)
n ⊗ ψ(2)

m

∥∥
Bv⊗v

is bounded from above by
∑

m∈N

‖ψ(1)
m ‖L2‖ψ(2)

m ‖M1
v

∑

n∈N

‖φ(2)
n ‖L2‖φ(1)

n ‖M1
v
<∞.

We have used the continuous inclusion (see Proposition 3.2) M1
v (R

d) →֒
M2(Rd) = L2(Rd) to obtain ‖ψ(1)

m ‖L2 . ‖ψ(1)
m ‖M1

v
and ‖φ(1)

n ‖L2 . ‖φ(1)
n ‖M1

v
.

The inequality ‖ST‖Bv⊗v . ‖S‖Bv⊗v‖T‖Bv⊗v follows from part (b) of Propo-
sition 4.1. �
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Remark 4.3. In [28, Thm. 7.4.1] it is claimed that Bv⊗v for v ≡ 1 is even
an ideal in L(L2). This is not true. Consider S = ψ ⊗ φ0 and T = φ0 ⊗ φ0

where ψ ∈ L2(Rd) \M1(Rd). Then T ∈ B1⊗1 and S ∈ T , and ST = ψ⊗ φ0.
Yet ST (φ0) = ψ /∈ M1(Rd), so part (d) of Proposition 4.1 implies that
ST /∈ B1⊗1.

We next study a continuity property of the Fourier-Wigner transform on
Bv⊗v.
Proposition 4.4. The Fourier-Wigner transform is bounded from Bv⊗v to
W (L1

v):

‖FW (S)‖W (L1
v) . ‖S‖Bv⊗v .

Proof. First consider the rank-one operator ψ ⊗ φ ∈ Bv⊗v, with ψ, φ ∈
M1

v (R
d). By (3.10) and the proof of [37, Prop. 12.1.11], there exists C > 0

such that

‖FW (ψ ⊗ φ)‖W (L1
v) ≤ C‖ψ‖M1

v
‖φ‖M1

v
.

If we then use Proposition 4.1 to write S ∈ Bv⊗v as S =
∑

n∈N φ
(1)
n ⊗ φ(2)

n ,
we find

‖FW (S)‖W (L1
v)
≤
∑

n∈N

‖FW (φ(1)
n ⊗ φ(2)

n )‖W (L1
v)
≤ C

∑

n∈N

‖φ(1)
n ‖M1

v
‖φ(2)

n ‖M1
v
.

By part (b) of Proposition 4.1 this implies that ‖FW (S)‖W (L1
v)
≤ C‖S‖Bv⊗v .

�

Remark 4.5. If we consider the polynomial weights vs(z) = (1 + |z|)s for
s ≥ 0 and z ∈ R

2d, it is known [37, Prop. 11.3.1] that the space of Schwartz
functions S(R2d) is given by S(R2d) = ∩∞s=0M

1
vs⊗vs(R

2d). Therefore the space
of operators with kernel in S(R2d) equals ∩∞s≥0Bvs⊗vs. Such operators were
recently studied in [47].

4.1. The space B and its dual. The largest of the spaces Bv⊗v is the
space B := B1⊗1, consisting of operators S with kernel kS in M1(R2d). By
definition the map κ : B → M1(R2d) given by κ(S) = kS is an isomet-
ric isomorphism of Banach spaces. By [58, Thm. 3.1.18] the Banach space
adjoint (κ−1)∗ : B′ → M∞(R2d) is a weak*-to-weak*-continuous isometric
isomorphism, and by definition it satisfies

(4.5)
〈
(κ−1)∗(Ã), kS

〉
M∞,M1

=
〈
Ã, S

〉
B′,B

for Ã ∈ B′, S ∈ B.

Hence, to any Ã ∈ B′ we obtain a unique element (κ−1)∗(Ã) ∈M∞(R2d),
which by the kernel theorem for modulation spaces induces an operator
A : M1(Rd) → M∞(Rd) such that kA = (κ−1)∗(Ã). We summarize these
identifications in a simple diagram, where k.t. refers to the kernel theorem
for modulation spaces:

(4.6) Ã ∈ B′ (κ−1)∗←−−→ (κ−1)∗(Ã) = kA ∈M∞(R2d)
k.t.←→ A ∈ L(M1,M∞).

Hereafter we will always identify B′ with operators A :M1(Rd)→M∞(Rd),
and use the notation A to refer to both the operator A :M1(Rd)→M∞(Rd)
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and the abstract functional Ã, which are related by (4.6). Since (κ−1)∗(Ã) =
kA, (4.5) becomes

(4.7) 〈A, S〉B′,B = 〈kA, kS〉M∞,M1 for A ∈ B′, S ∈ B.

If S is a rank-one operator S = φ⊗ ψ for φ, ψ ∈ M1(Rd), then kS = φ⊗ ψ,
so the equation above becomes

(4.8) 〈A, φ⊗ ψ〉B′,B =
〈
kA, φ⊗ ψ

〉
M∞,M1 = 〈Aψ, φ〉M∞,M1 ,

which relates the action of A as an abstract linear functional on B to the
action of A as an operator from M1(Rd) to M∞(Rd).

Lemma 4.6. B is a dense subset of T with respect to ‖ · ‖T .

Proof. The rank-one operators span a dense subset of T [9, Thm. 3.11 (e)],
hence it suffices to show that any ψ ⊗ φ ∈ T with ψ, φ ∈ L2(Rd) can be
estimated by some S ∈ B. We may safely assume that φ 6= 0, otherwise
ψ ⊗ φ = 0 ∈ B. Let ǫ > 0. Since M1(Rd) is a dense subset of L2(Rd) by
[43, Lem. 4.19], we can find ξ 6= 0, η ∈M1(Rd) with ‖ψ− ξ‖L2 < ǫ

2‖φ‖L2
and

‖φ− η‖L2 < ǫ
2‖ξ‖L2

. Then ξ ⊗ φ ∈ B and

‖ψ ⊗ φ− ξ ⊗ η‖T ≤ ‖ψ ⊗ φ− ξ ⊗ φ‖T + ‖ξ ⊗ φ− ξ ⊗ η‖T
= ‖ψ − ξ‖L2‖φ‖L2 + ‖ξ‖L2‖φ− η‖L2 < ǫ.

�

Now recall that L(L2) is the dual space of T [9, Thm. 3.13], where
A ∈ L(L2) acts on S ∈ T by

(4.9) 〈A, S〉L(L2),T = tr(AS∗).

Since the inclusion B →֒ T has dense range, [58, Thm. 3.1.17] asserts that
we get a weak*-to-weak*-continuous inclusion of dual spaces L(L2) →֒ B′

satisfying

(4.10) 〈A, S〉B′,B = 〈A, S〉L(L2),T = tr(AS∗) for A ∈ L(L2), S ∈ B.

Remark 4.7. Readers with little interest in these technical details need
only note that we identify B′ with operators A ∈ L(M1(Rd),M∞(Rd)), and
that the action of A satisfies (4.7), (4.8) and (4.10).

The next result is due to Feichtinger and Kozek [28]; in their terminology
the result says that FW and the Weyl transform are Gelfand triple isomor-
phisms. Recall that HS are the Hilbert-Schmidt operators on L2(Rd).

Proposition 4.8. The Weyl transform S ←→ as and Fourier-Wigner
transform S ←→ FW (S) are isomorphisms B ←→ M1(R2d), unitary maps
HS ←→ L2(R2d) and weak*-to-weak*-continuous isomorphisms B′ ←→
M∞(R2d).
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An appropriate framework for such statements is the theory of (Banach)
Gelfand triples [28, 30, 13]. In particular, that approach gives the duality
bracket identity

(4.11) 〈S, T 〉B′,B = 〈aS, aT 〉M∞,M1 ,

where aS and aT are the Weyl symbols of S and T , see [13, Cor. 5].

Remark 4.9. We will often consider weak*-convergence of sequences in B′.
To get a better grasp of this notion of convergence, note that if a sequence
{An}n∈N ⊂ B′ converges in the weak* topology to A ∈ B′ then (4.8) gives
for ψ, φ ∈M1(Rd)

〈Anψ, φ〉M∞,M1 → 〈Aψ, φ〉M∞,M1 .

Hence: if An → A in the weak* topology of B′, then Anψ → Aψ in the
weak* topology of M∞(Rd) for any ψ ∈M1(Rd).

5. Gabor g-frames

Gabor frames, or more generally multi-window Gabor frames, have a
richer structure than general frames. Since any frame is also a g-frame, we
can ask whether Gabor frames belong to a certain class of g-frames, and
whether this class contains other g-frames that share the rich structure of
Gabor frames. This is the motivation for the following definition.

Definition 5.1. Let Λ be a lattice in R2d and S ∈ L(L2). We say that S
generates a Gabor g-frame with respect to Λ if {αλ(S)}λ∈Λ is a g-frame for
L2(Rd), i.e. if there exist positive constants A,B > 0 such that

(5.1) A‖ψ‖2L2 ≤
∑

λ∈Λ

‖αλ(S)ψ‖2L2 ≤ B‖ψ‖2L2 for any ψ ∈ L2(Rd).

Remark 5.2 (Cohen’s class). This definition may also be rephrased in
terms of Cohen’s class of time-frequency distributions[11]. In the notation
from [55] an operator T ∈ L(L2) defines a Cohen’s class distribution QT by

QT (ψ)(z) = 〈Tπ(z)∗ψ, π(z)∗ψ〉L2 for z ∈ R
2d, ψ ∈ L2(Rd).

It is straightforward to show that

‖αz(S)ψ‖2L2 = QS∗S(ψ)(z),

hence (5.1) may be rephrased as

A‖ψ‖2L2 ≤
∑

λ∈Λ

QS∗S(ψ)(λ) ≤ B‖ψ‖2L2 for any ψ ∈ L2(Rd).

We will soon see that (5.1) forces S to be a Hilbert Schmidt operator, which
implies by [55, Thm. 7.6] that QS∗S is a positive Cohen’s class distribution
satisfying

(5.2)

∫

R2d

QS∗S(ψ)(z) dz =

∫

R2d

‖αz(S)ψ‖2L2 dz = ‖S‖2HS‖ψ‖2L2 ,
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as recently studied in [55, 56]. This equality is a continuous version of (5.1),
similar to how Moyal’s identity is a continuous version 2 of the Gabor frame
inequalities (1.1). The simplest example of a Cohen’s class distribution of
the form QS∗S is the spectrogram QS∗S(z) = |Vφψ(z)|2 for some φ ∈ L2(Rd),
which corresponds to the rank-one operator S = 1

‖φ‖2
L2
φ ⊗ φ. By inserting

‖αz(S)ψ‖2L2 = QS∗S(ψ)(z) = |Vφψ(z)|2, (5.1) becomes the condition for φ
to generate a Gabor frame. We return to this special case in Example 5.4.

5.1. The Gabor g-frame operator. By the general theory of g-frames,
the g-frame operator associated to a Gabor g-frame generated by S over a
lattice Λ is the operator

(5.3) SS =
∑

λ∈Λ

(αλ(S))
∗(αλ(S)) =

∑

λ∈Λ

αλ(S
∗S),

where the last equality uses (3.8). Furthermore, SS satisfies

〈SSψ, ψ〉L2 =
∑

λ∈Λ

‖αλ(S)ψ‖2L2 for ψ ∈ L2(Rd),

andSS is positive, bounded and invertible on L2(Rd) with A ≤ ‖SS‖L(L2) ≤
B and 1

B
≤ ‖S−1

S ‖ ≤ 1
A
. Since we think of αλ(S

∗S) as the translation of
S∗S by λ ∈ Λ, the g-frame operator SS corresponds to the periodization of
S∗S over Λ.

5.2. Analysis and synthesis operators. Let ℓ2(Λ;L2(Rd)) be the Hilbert
space of sequences {ψλ}λ∈Λ ⊂ L2(Rd) such that

‖{ψλ}‖ℓ2(Λ;L2) :=

(∑

λ∈Λ

‖ψλ‖2L2

)1/2

<∞,

with inner product

〈{ψλ}, {φλ}〉ℓ2(Λ;L2) =
∑

λ∈Λ

〈ψλ, φλ〉L2 .

For S ∈ L(L2) we define the analysis operator CS by

CS(ψ) = {αλ(S)ψ}λ∈Λ for ψ ∈ L2(Rd)

and the synthesis operator DS by

DS({ψλ}) :=
∑

λ∈Λ

αλ(S
∗)ψλ for {ψλ}λ∈Λ ∈ ℓ2(Λ;L2).

The upper bound in (5.1) is precisely the statement that CS : L2(Rd) →
ℓ2(Λ;L2) is a bounded operator with operator norm ≤

√
B. It is not difficult

to show that DS is the Hilbert space adjoint of CS, which implies that DS

2In fact, Moyal’s identity says that the system {π(z)ϕ}z∈R2d is a tight continuous

frame for L2(Rd) for any 0 6= ϕ ∈ L2(Rd). See [10] for continuous frames. Similarly, (5.2)
says that {αz(S)}z∈R2d is a tight continuous g-frame as introduced in [1].
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is bounded whenever CS is, with the same operator norm as CS. It follows
from the definitions that

SS = DSCS.

5.2.1. Dual g-frames. If S generates a Gabor g-frame over Λ, then the the-
ory of g-frames [62] says that the canonical dual g-frame is

{αλ(S)S−1
S }λ∈Λ.

It is clear from (5.3) that αλ(SS) = SS for any λ ∈ Λ, and it is then easy
to check that we also have αλ(S

−1
S ) = S

−1
S . The canonical dual g-frame is

therefore

{αλ(S)S−1
S }λ∈Λ = {αλ(S)αλ(S−1

S )}λ∈Λ = {αλ(SS−1
S )}λ∈Λ.

Hence the canonical dual g-frame is also a Gabor g-frame, generated by
SS−1

S . We get the reconstruction formulas

ψ = SSS
−1
S ψ =

∑

λ∈Λ

αλ(S
∗S)S−1

S ψ =
∑

λ∈Λ

αλ(S
∗)αλ(SS

−1
S )ψ = DSCSS−1

S
ψ,

ψ = S
−1
S SSψ = S

−1
S

∑

λ∈Λ

αλ(S
∗S)ψ =

∑

λ∈Λ

αλ(S
−1
S S∗)αλ(S)ψ = DSS−1

S
CSψ.

In the very last of these equalities we have used thatS−1
S is a positive (hence

self-adjoint) operator, so (SS−1
S )∗ = S

−1
S S∗. Inspired by these formulas and

the theory of dual windows for Gabor frames [37, 29], we say that two
operators S, T ∈ L(L2) generate dual Gabor g-frames if S and T generate
Gabor g-frames and DSCT is the identity operator on L2(Rd), i.e.

(5.4)
∑

λ∈Λ

αλ(S
∗)αλ(T )ψ =

∑

λ∈Λ

αλ(S
∗T )ψ = ψ for any ψ ∈ L2(Rd).

If DS and CT are bounded operators (i.e. S and T satisfy the upper g-frame
bound in (5.1)), then (5.4) implies that both S and T generate Gabor g-
frames. This follows from the general theory of g-frames, see [62, p. 441]:
the lower bound in (5.1) for T follows from

‖ψ‖2L2 = ‖DSCTψ‖2L2 . ‖CTψ‖2ℓ2(Λ;L2) =
∑

λ∈Λ

‖αλ(T )ψ‖2L2 ,

and the lower bound for S is similar. We state this as a proposition for later
reference.

Proposition 5.3. Assume that S, T ∈ L(L2) satisfy (5.4) and the upper
bound in (5.1). Then S and T generate Gabor g-frames.

5.3. Two examples. We will now show that the Gabor g-frames include
multi-window Gabor frames as a special case.

Example 5.4 (Multi-window Gabor frames). Consider a set of N < ∞
functions {φn}Nn=1 ⊂ L2(Rd). We seek an operator S such that the multi-
window Gabor system generated by {φn}Nn=1 is captured by the system
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{αλ(S)}λ∈Λ. To achieve this, let {ξn}Nn=1 be any orthonormal set in L2(Rd),
and consider the operator

S =
N∑

n=1

ξn ⊗ φn.

We start by writing out the condition (5.1) for S to generate a Gabor g-
frame. For ψ ∈ L2(Rd), we easily find using (3.9) that

αλ(S)ψ =
N∑

n=1

Vφnψ(λ)π(λ)ξn.

By the orthonormality of {ξn}Nn=1 and Pythagoras’ theorem for inner prod-

uct spaces, this implies that ‖αλ(S)ψ‖2L2 =
∑N

n=1 |Vφnψ(λ)|2. Inserting this
into (5.1), we see that S generates a Gabor g-frame if and only if

A‖ψ‖2L2 ≤
∑

λ∈Λ

N∑

n=1

|Vφnψ(λ)|2 ≤ B‖ψ‖2L2 ψ ∈ L2(Rd)

for some A,B > 0, which is precisely the condition that {φn}Nn=1 generate
a multi-window Gabor frame.

We then note that S∗ =
∑N

n=1 φn ⊗ ξn, and S∗S =
∑N

n=1 φn ⊗ φn by
the orthonormality of {ξn}Nn=1. Denote by CMW and SMW the analysis and
frame operator associated with the multi-window Gabor system generated
by {φn}Nn=1. For ψ ∈ L2(Rd), we find that

CS(ψ) =

{
N∑

n=1

Vφnψ(λ)π(λ)ξn

}

λ∈Λ

, CMW (ψ) = {Vφnψ(λ)}n∈Zn,λ∈Λ,

SS(ψ) =
∑

λ∈Λ

N∑

n=1

Vφnψ(λ)π(λ)φn, SMW (ψ) =
∑

λ∈Λ

N∑

n=1

Vφnψ(λ)π(λ)φn.

We see that the frame operators SS and SMW are equal. Since {π(λ)ξn}n∈N
is orthonormal for each λ ∈ Λ, we also see that CMW (ψ) and CS(ψ) carry
exactly the same information: if we know CS(ψ), i.e. we know

N∑

n=1

Vφnψ(λ)π(λ)ξn

for each λ ∈ Λ, we can find CMW (ψ) by

Vφmψ(λ) =

〈
N∑

n=1

Vφnψ(λ)π(λ)ξn, π(λ)ξm

〉

L2

.

Hence multi-window Gabor frames are Gabor g-frames.

A less trivial example was considered in [22, 23]. Section 7 will be ded-
icated to showing that the results from [23] hold for more general Gabor
g-frames, and not just for the following example. The fact that the results
of [22] is an example of g-frames was noted already by Sun [62].
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Example 5.5 (Localization operators). Let 0 6= ϕ ∈ M1
v (R

d), Λ a lattice
and h ∈ L1

v(R
2d) a non-negative function. Here h ∈ L1

v(R
2d) means that

‖h‖L1
v
:=
∫
R2d h(z)v(z) dz <∞. Assume further that

A′ ≤
∑

λ∈Λ

h(z − λ) ≤ B′ for all z ∈ R
2d

for some A′, B′ > 0. Then the localization operator Aϕh generates a Gabor g-
frame over Λ [62, 23, 22]. The key to connecting the summability condition
on h to the Gabor g-frame condition for Aϕh is equation (3.14). We will
return to this example in Section 7.2.

5.4. A trace class condition. In the definition of Gabor g-frames, we
only assumed that S was a bounded linear operator on L2(Rd). We will now
show that S must be a Hilbert Schmidt operator. The following lemma is
essentially the same as [3, Lem. 3.1].

Lemma 5.6. Let T ∈ L(L2) be a positive operator. If {ξn}n∈N is an or-
thonormal basis for L2(Rd) and {ηj}j∈N is a Parseval frame, then

tr(T ) :=
∑

n∈N

〈Tξn, ξn〉L2 =
∑

j∈N

〈Tηj, ηj〉L2 .

Proof. Using the square root of the positive operator T , we have that

〈Tηj, ηj〉L2 =
〈
T 1/2ηj , T

1/2ηj
〉
L2 = ‖T 1/2ηj‖2L2 .

Hence by Parseval’s identity

∑

j∈N

〈Tηj, ηj〉L2 =
∑

j∈N

‖T 1/2ηj‖2L2

=
∑

j∈N

∑

n∈N

∣∣〈T 1/2ηj , ξn
〉
L2

∣∣2

=
∑

n∈N

∑

j∈N

∣∣〈ηj , T 1/2ξn
〉
L2

∣∣2

=
∑

n∈N

‖T 1/2ξn‖2L2 =
∑

n∈N

〈Tξn, ξn〉L2 .

�

Proposition 5.7. Let Λ be any lattice and assume that {αλ(S)}λ∈Λ satis-
fies the upper g-frame bound in (5.1). Then S∗S is a trace class operator.
Equivalently, S is a Hilbert Schmidt operator.

Proof. The upper g-frame bound implies that
∑

λ∈Λ ‖αλ(S)ψ‖2L2 < ∞ for
any ψ ∈ L2(Rd). There exist {ϕn}Nn=1 ⊂ L2(Rd) that generate a Parseval
multi-window Gabor frame over Λ [53], i.e. {π(λ)ϕn}n=1,...,N,λ∈Λ is a Parseval
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frame. Then Lemma 5.6 says that

tr(S∗S) =

N∑

n=1

∑

λ∈Λ

〈S∗Sπ(λ)ϕn, π(λ)ϕn〉L2

=

N∑

n=1

∑

λ∈Λ

〈Sπ(λ)ϕn, Sπ(λ)ϕn〉L2

=

N∑

n=1

∑

λ∈Λ

‖Sπ(λ)ϕn‖2L2 .

By first using that π(λ)∗ = e−2πiλx·λωπ(−λ) for λ = (λx, λω), and then that
π(−λ) is a unitary operator, we see that

‖Sπ(λ)ϕn‖2L2 = ‖Sπ(−λ)∗ϕn‖2L2 = ‖π(−λ)Sπ(−λ)∗ϕn‖2L2 .

Hence

tr(S∗S) =
N∑

n=1

∑

λ∈Λ

‖α−λ(S)ϕn‖2L2 =
N∑

n=1

∑

λ∈Λ

‖αλ(S)ϕn‖2L2 <∞.

so S∗S is a positive trace class operator, and S is a Hilbert Schmidt operator.
�

5.5. Periodization of operators and B. To prepare for the next section
on Fourier series of operators, we now consider the periodization of opera-
tors. The key to proving these results is [54, Thm. 8.2], which states that
for S ∈ B and T ∈ T , the function z 7→ tr(αz(S)T ) ∈M1(R2d) with

(5.5) ‖tr(αz(S)T )‖M1 . ‖S‖B‖T‖T
and similarly for S ∈ T and T ∈ B
(5.6) ‖tr(αz(S)T )‖M1 . ‖S‖T ‖T‖B.

Proposition 5.8 (Operator periodization). The periodization map given
by S 7→

∑
λ∈Λ αλ(S) is a well-defined and bounded map B → L(L2):

∥∥∥∥∥
∑

λ∈Λ

αλ(S)

∥∥∥∥∥
L(L2)

. ‖S‖B,

and a well-defined and bounded map T → B′:
∥∥∥∥∥
∑

λ∈Λ

αλ(S)

∥∥∥∥∥
B′

. ‖S‖T .

The sum
∑

λ∈Λ αλ(S) converges in the weak* topology of L(L2) when S ∈ B,
and in the weak* topology of B′ when S ∈ T .

Proof. Let S ∈ B. Since L(L2) is the dual space of T [9, Thm. 3.13], we
define

∑
λ∈Λ αλ(S) ∈ L(L2) by duality, by defining its action as an antilinear
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functional:〈∑

λ∈Λ

αλ(S), T

〉

L(L2),T

:=
∑

λ∈Λ

〈αλ(S), T 〉L(L2),T for T ∈ T .

To see that this defines a bounded antilinear functional on T , we estimate
that ∣∣∣∣∣

∑

λ∈Λ

〈αλ(S), T 〉L(L2),T

∣∣∣∣∣ ≤
∑

λ∈Λ

∣∣∣〈αλ(S), T 〉L(L2),T

∣∣∣

=
∑

λ∈Λ

|tr(αλ(S)T ∗)| by (4.9)

. ‖tr(αz(S)T ∗)‖M1 by Lemma 3.4

. ‖S‖B‖T‖T by (5.5).

It is clear that the partial sums converge to this element
∑

λ∈Λ αλ(S) in the
weak* topology of L(L2): For any finite subset J ⊂ Λ we get

〈∑

λ∈Λ

αλ(S)−
∑

λ∈J

αλ(S), T

〉

L(L2),T

=
∑

λ∈Λ\J

〈αλ(S), T 〉L(L2),T ,

and we showed above that the sum
∑

λ∈Λ 〈αλ(S), T 〉L(L2),T converges abso-

lutely. Then let S ∈ T . We define
∑

λ∈Λ αλ(S) ∈ B′ by duality:
〈∑

λ∈Λ

αλ(S), T

〉

B′,B

:=
∑

λ∈Λ

〈αλ(S), T 〉B′,B for T ∈ B.

The estimate showing that this defines a bounded antilinear functional on

B with
∣∣∣
∑

λ∈Λ 〈αλ(S), T 〉B′,B

∣∣∣ . ‖S‖T ‖T‖B is the same as above using (5.6),

but note that we need to write 〈αλ(S), T 〉B′,B = tr(αλ(S)T
∗) to use (5.6) –

this is true by (4.10). �

Corollary 5.9. If S∗S ∈ B then {αλ(S)}λ∈Λ satisfies the upper g-frame
bound

∑

λ∈Λ

‖αλ(S)ψ‖2L2 . ‖S∗S‖B‖ψ‖2L2 for all ψ ∈ L2(Rd).

In particular, this is true if S ∈ B.
Proof. We observed in the proof above (now with S∗S instead of S) that

(5.7)
∑

λ∈Λ

∣∣∣〈αλ(S∗S), T 〉L(L2),T

∣∣∣ . ‖S∗S‖B‖T‖T .

If T = ψ⊗ψ, it is simple to show that 〈αλ(S∗S), T 〉L(L2),T = 〈αλ(S∗S)ψ, ψ〉L2

and ‖T‖T = ‖ψ‖2L2 . Therefore equation (5.7) says that
∑

λ∈Λ

|〈αλ(S∗S)ψ, ψ〉L2 | . ‖S∗S‖B‖ψ‖2L2.
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As we have seen, 〈αλ(S∗S)ψ, ψ〉L2 = ‖αλ(S)ψ‖2L2, which completes the proof
of the first part. If S ∈ B, it follows from Proposition 4.1 and Corollary 4.2
that S∗S ∈ B. �

The fact that we only need S∗S ∈ B is useful in light of our treatment of
multi-window Gabor frames in Example 5.4. To a system {φn}Nn=1 ⊂M1(Rd)
we associated the operator

S =

N∑

n=1

ξn ⊗ φn,

where {ξn}Nn=1 is an arbitrary orthonormal set in L2(Rd). Hence we do not

necessarily have S ∈ B, yet S∗S =
∑N

n=1 φn ⊗ φn ∈ B. A version of this
corollary for Gabor frames is well-known [37, Thm. 12.2.3].

6. Fourier series of operators: the Janssen representation

A key insight of Werner’s paper [64] is that the Fourier-Wigner transform
in many respects behaves as a Fourier transform for operators. Given a
lattice Λ ⊂ R2d, this leads to a natural question: if an operator is in some
sense Λ-periodic, can we find a Fourier series expansion of the operator?
In fact, Λ-periodic operators were studied in [28], where an operator S was
said to be Λ-periodic if

αλ(S) = S for any λ ∈ Λ.

An important tool in [28] is the adjoint lattice Λ◦ of Λ, defined by

Λ◦ = {λ◦ ∈ R
2d : π(λ◦)π(λ) = π(λ)π(λ◦) for any λ ∈ Λ}

= {λ◦ ∈ R
2d : e2πiσ(λ

◦ ,λ) = 1 for any λ ∈ Λ},
where σ is the standard symplectic form. It is shown in [28] that Λ◦ is
a lattice, and |Λ◦| = 1

|Λ|
. One can interpret Λ◦ using abstract harmonic

analysis. Identify the dual group R̂2d with R2d by the bijection R2d ∋ z 7→
χz ∈ R̂2d, where χz is the symplectic character χz(z

′) = e2πiσ(z,z
′). With this

identification, we see that

Λ◦ = {λ◦ ∈ R
2d : χλ◦(λ) = 1 for any λ ∈ Λ}

Hence Λ◦ is the annihilator of Λ, and Λ◦ can therefore be identified with
the dual group of R2d/Λ [21, Prop. 3.6.1]. By abstract harmonic analysis,
this implies that any well-behaved Λ-periodic function f on R2d can be
expanded in a symplectic Fourier series

f(z) =
∑

λ◦∈Λ◦

cλ◦e
2πiσ(λ◦ ,z),

and we will refer to {cλ◦}λ◦∈Λ◦ as the symplectic Fourier coefficients of f .

Remark 6.1. The main results of this section, namely Theorems 6.6, 6.8
and 6.13, are due to Feichtinger and Kozek [28]. The spirit of our approach
is also the same as in [28] – we express operators as linear combinations of
time-frequency shifts by applying methods from abstract harmonic analysis
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to their symbol with respect to some pseudodifferential calculus. Since the
results form a natural and important part of the theory of Gabor g-frames,
we choose to include detailed proofs. Our proofs differ slightly from those
in [28] by using the Weyl symbol (rather than Kohn-Nirenberg symbol),
which makes it particularly transparent that the Janssen representation
is a Fourier series of operators (see Lemma 6.5). This fits well with our
interpretation of FW as a Fourier transform. We also extend the results of
[28] to trace class operators.

As our function and operator spaces we will use M1(R2d) and B along
with their duals. In the following lemma A(R2d/Λ) denotes the Λ-periodic
functions f : R2d → C with symplectic Fourier coefficients {cλ◦}λ◦∈Λ◦ in
ℓ1(Λ◦), with norm

‖f‖A(R2d/Λ) := ‖{cλ◦}‖ℓ1(Λ◦).

A′(R2d/Λ) denotes its dual space of distributions with symplectic Fourier
coefficients in ℓ∞(Λ◦). The proofs of the two parts of the next lemma can
be found in [25, Thm. 7] and [57, Prop. 13], respectively.

Lemma 6.2. Let Λ be a lattice and PΛ be the periodization operator

PΛf =
∑

λ∈Λ

Tλ(f) for f ∈M1(R2d).

(a) PΛ is bounded and surjective from M1(R2d) onto A(R2d/Λ).
(b) The range of the Banach space adjoint operator P ∗

Λ : A′(R2d/Λ) →
M∞(R2d) is the set of Λ-periodic elements of M∞(R2d).

Remark 6.3. (a) A distribution f ∈ M∞(R2d) is Λ-periodic if Tλ(f) = f
for any λ ∈ Λ, where Tλ(f) is defined by

〈Tλ(f), g〉M∞,M1 := 〈f, T−λ(g)〉M∞,M1

for g ∈M1(R2d).
(b) If q : R2d → R2d/Λ denotes the quotient map, then a simple calculation

using Weil’s formula [35, (6.2.11)] shows that P ∗
Λ(f) = 1

|Λ|
· f ◦ q for

f ∈ A(R2d/Λ).

Since PΛf has absolutely summable symplectic Fourier coefficients when
f ∈ M1(R2d) by Lemma 6.2, we can use Poisson’s summation formula to
find its symplectic Fourier coefficients, see [43, Example 5.11] or [21, Thm.
3.6.3] for a proof.

Proposition 6.4 (Poisson summation formula). Let f ∈ M1(R2d). The
symplectic Fourier coefficients of PΛf are { 1

|Λ|
Fσ(f)(λ◦)}λ◦∈Λ◦, i.e.

PΛf(z) =
1

|Λ|
∑

λ◦∈Λ◦

Fσ(f)(λ◦)e2πiσ(λ
◦ ,z).

To use this to obtain Fourier series of operators, we need the following
simple lemma [20, Prop. 198].

Lemma 6.5. For any z = (x, ω) ∈ R2d, the Weyl symbol of e−πix·ωπ(z) is
the function z′ 7→ e2πiσ(z,z

′).
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We will now consider Fourier series of operators arising as periodizations
of operators in B, in other words a Poisson summation formula for operators.
The second part of the result extends Janssen’s representation of multi-
window Gabor frame operators to Gabor g-frame operators. As mentioned,
this result is due to [28] who used it to prove the Janssen representation for
multi-window Gabor frames. In this and following statements, we use the
notation λ◦ = (λ◦x, λ

◦
ω) to denote the elements of Λ◦.

Theorem 6.6 (Janssen’s representation of Gabor g-frame operators). Let
S ∈ B and Λ a lattice. Then

∑

λ∈Λ

αλ(S) =
1

|Λ|
∑

λ◦∈Λ◦

FW (S)(λ◦)e−πiλ
◦
x·λ

◦
ωπ(λ◦).

In particular,

SS =
1

|Λ|
∑

λ◦∈Λ◦

FW (S∗S)(λ◦)e−πiλ
◦
x·λ

◦
ωπ(λ◦).

Moreover, if S ∈ Bv⊗v, then {FW (S)(λ◦)}λ◦∈Λ◦ ∈ ℓ1v(Λ◦).

Proof. Recall that αλ corresponds to a translation of the Weyl symbol by
(3.7). Since the map sending operators in B′ to their Weyl symbols in
M∞(R2d) is weak*-to-weak*-continuous by Proposition 4.8 and

∑
λ∈Λ αλ(S)

converges in the weak* topology of B′ by Proposition 5.8, the Weyl symbol
f of

∑
λ∈Λ αλ(S) is

f =
∑

λ∈Λ

Tλ(aS) ∈ M∞(R2d),

where aS is the Weyl symbol of S. Hence f = PΛaS. By the Poisson sum-
mation formula the symplectic Fourier series of f is given by

f(z) =
1

|Λ|
∑

λ◦∈Λ◦

Fσ(aS)(λ◦)e2πiσ(λ
◦,z)

=
1

|Λ|
∑

λ◦∈Λ◦

FW (S)(λ◦)e2πiσ(λ
◦ ,z) by (3.13).

By Proposition 4.8, FW (S) ∈ M1(R2d), so {FW (S)(λ◦)}λ◦∈Λ◦ ∈ ℓ1(Λ◦) by
Lemma 3.4 – hence the sum above converges absolutely in the norm of
M∞(R2d). Taking the Weyl transform of this using Lemma 6.5, we see that

∑

λ∈Λ

αλ(S) =
1

|Λ|
∑

λ◦∈Λ◦

FW (S)(λ◦)e−πiλ
◦
x·λ

◦
ωπ(λ◦).

For the last part, note that if S ∈ Bv⊗v, then FW (S) ∈ W (L1
v) by Proposi-

tion 4.4, and the result follows from Lemma 3.4. �

Example 6.7 (Multi-window Gabor frames). For {φn}Nn=1 ⊂ M1(Rd), we
saw in Example 5.4 that the frame operator of the multi-window Gabor
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system generated by {φn}Nn=1 equalsSS for S =
∑N

n=1 ξn⊗φn, where {ξn}Nn=1

is any orthonormal set in L2(Rd). Then

S∗S =
N∑

n=1

φn ⊗ φn ∈ B,

so by (3.10)

FW (S∗S)(λ◦) =
N∑

n=1

FW (φn ⊗ φn)(λ◦) =
N∑

n=1

eπiλ
◦
x·λ

◦
ωVφnφn(λ

◦).

Therefore Theorem 6.6 gives that

SS =
1

|Λ|
∑

λ◦∈Λ◦

N∑

n=1

Vφnφn(λ
◦)π(λ◦),

which is the Janssen representation for multi-window Gabor frames [23, 45].

We can also prove that any periodic operator in B′ has a Fourier series
expansion. By considering Weyl symbols, this is essentially the fact that
any Λ-periodic distribution f ∈M∞(R2d) can be expanded in a symplectic
Fourier series, which follows from the second part of Lemma 6.2. The result
is due to [28].

Theorem 6.8. Let S ∈ B′ be a Λ-periodic operator. Then there exists a
unique sequence {cλ◦}λ◦∈Λ◦ ∈ ℓ∞(Λ◦) such that

(6.1) S =
1

|Λ|
∑

λ◦∈Λ◦

cλ◦e
−πiλ◦x·λ

◦
ωπ(λ◦),

with weak* convergence in B′. Furthermore, the map

{cλ◦}λ◦∈Λ◦ 7→
∑

λ◦∈Λ◦

cλ◦e
−πiλ◦x·λ

◦
ωπ(λ◦)

is weak*-to-weak*-continuous from ℓ∞(Λ◦) to B′.

Proof. We first show that series of the form 1
|Λ|

∑
λ◦∈Λ◦ cλ◦e

−πiλ◦x·λ
◦
ωπ(λ◦)

converge in the weak* topology of B′ when {cλ◦} ∈ ℓ∞(Λ◦). For {cλ◦} ∈
ℓ∞(Λ◦), we define an antilinear functional on B by
〈

1

|Λ|
∑

λ◦∈Λ◦

cλ◦e
−πiλ◦x·λ

◦
ωπ(λ◦), T

〉

B′,B

:=
1

|Λ|
∑

λ◦∈Λ◦

cλ◦
〈
e−πiλ

◦
x·λ

◦
ωπ(λ◦), T

〉
B′,B

.

To see that this is a bounded functional, let aT be the Weyl symbol of T .
Then∣∣∣∣∣

1

|Λ|
∑

λ◦∈Λ◦

cλ◦e
−πiλ◦x·λ

◦
ω 〈π(λ◦), T 〉B′,B

∣∣∣∣∣ .
∑

λ◦∈Λ◦

|cλ◦|
∣∣∣
〈
e−πiλ

◦
x·λ

◦
ωπ(λ◦), T

〉
B′,B

∣∣∣

=
∑

λ◦∈Λ◦

|cλ◦|
∣∣tr(e−πiλ◦x·λ◦ωπ(λ◦)T ∗)

∣∣
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where the last step uses (4.9). By the definition of FW and equation (3.11),

tr(e−πiλ
◦
x·λ

◦
ωπ(λ◦)T ∗) = FW (T ∗)(−λ◦) = \FW (T )(λ◦)”.

We may therefore continue our estimate by
∑

λ◦∈Λ◦

|cλ◦|
∣∣tr(e−πiλ◦x·λ◦ωπ(λ◦)T ∗)

∣∣ =
∑

λ◦∈Λ◦

|cλ◦||FW (T )(λ◦)|

. ‖{cλ◦}‖ℓ∞(Λ◦)‖FW (T )‖M1 by Lem. 3.4

. ‖{cλ◦}‖ℓ∞(Λ◦)‖T‖B by Prop. 4.8.

Hence 1
|Λ|

∑
λ◦∈Λ◦ cλ◦e

−πiλ◦x·λ
◦
ωπ(λ◦) ∈ B′. The same calculation without ab-

solute values shows that

(6.2)

〈
1

|Λ|
∑

λ◦∈Λ◦

cλ◦e
−πiλ◦x·λ

◦
ωπ(λ◦), T

〉

B′,B

=
1

|Λ|
∑

λ◦∈Λ◦

cλ◦FW (T )(λ◦),

which implies that the map sending {cλ◦} to this functional is in fact the
Banach space adjoint of the map B → ℓ1(Λ◦) given by T 7→ { 1

|Λ|
FW (T )(λ◦)}.

In particular, the weak*-to-weak* continuity of the map

{cλ◦} 7→
∑

λ◦∈Λ◦

cλ◦e
−πiλ◦x·λ

◦
ωπ(λ◦)

follows, as does the weak* convergence of the sum.
The uniqueness also follows: the map B → ℓ1(Λ◦) defined by T 7→

{ 1
|Λ|
FW (T )(λ◦)} is surjective by [25, Thm. 7 C)] hence its Banach space ad-

joint is injective. We then turn to finding {cλ◦}λ◦∈Λ◦ such that (6.1) holds.
Since S is a Λ-periodic operator in B′, its Weyl symbol aS is a Λ-periodic dis-
tribution in M∞(R2d). By Lemma 6.2 there exists f̃ ∈ A′(R2d/Λ) such that

P ∗
Λf̃ = aS, and we pick {cλ◦}λ◦∈Λ◦ to be the symplectic Fourier coefficients

of f̃ . For any T ∈ B we have from (4.11) that

〈S, T 〉B′,B = 〈aS, aT 〉M∞,M1

=
〈
P ∗
Λf̃ , aT

〉
M∞,M1

=
〈
f̃ , PΛaT

〉
A′(R2d/Λ),A(R2d/Λ)

=
1

|Λ| 〈{c
◦
λ}, {Fσ(aT )(λ◦)}〉ℓ∞(Λ◦),ℓ1(Λ◦) .

In the last equality we have used the Poisson summation formula to get
that { 1

|Λ|
Fσ(aT )(λ◦)}λ◦∈Λ◦ are the symplectic Fourier coefficients of PΛaT .

By comparing this to (6.2) and using FW (T ) = Fσ(aT ) by (3.13), we have
proved (6.1). �

Remark 6.9. (a) The uniqueness part of the previous theorem amounts to
a well-known fact: if

∑
λ◦∈Λ◦ cλ◦π(λ

◦) = 0 for c = {cλ◦}λ◦∈Λ◦ ∈ ℓ∞(Λ◦),
then c = 0. Earlier proofs of this fact range from the rather complicated
[59] to the pleasantly elementary [39]. Our proof is similar to that in
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[39], and comes with a simple interpretation: the Fourier coefficients of
periodic operators are unique.

(b) If S ∈ B′ is Λ-periodic and its Weyl symbol aS belongs to the space
A(R2d/Λ) (i.e. its symplectic Fourier coefficients are absolutely summa-
ble), then there exists some PS ∈ B such that S =

∑
λ∈Λ αλ(PS). This

is [28, Thm.. 7.7.6], and follows from applying the surjectivity in part
(a) of Lemma 6.2 to aS.

6.1. Poisson summation formula for trace class operators. When
S ∈ T the periodization

∑
λ∈Λ αλ(S) converges in B′ by Proposition 5.8,

and by Theorem 6.8 there exists {cλ◦} ∈ ℓ∞(Λ◦) such that
∑

λ∈Λ

αλ(S) =
∑

λ◦∈Λ◦

cλ◦e
−πiλ◦x·λ

◦
ωπ(λ◦).

If S ∈ B, we know from Theorem 6.6 that cλ◦ is given by the samples of
FW (S). However, even if S ∈ T \ B, we know from the Riemann-Lebesgue
lemma (3.12) that FW (S) ∈ C0(R

2d). Hence the samples of FW (S) are still
well-defined, and we will use a continuity argument to show that cλ◦ =
FW (S)(λ◦) also when S ∈ T \ B.
Theorem 6.10 (Poisson summation formula for trace class operators). Let
S ∈ T . Then

∑

λ∈Λ

αλ(S) =
1

|Λ|
∑

λ∈Λ

FW (S)(λ◦)e−πiλ
◦
x·λ

◦
ωπ(λ◦),

with weak* convergence of both sums in B′.

Proof. Let {Sn}n∈N ⊂ B be a sequence converging to S in the norm of T
using Lemma 4.6. By Theorem 6.6, we have for each n ∈ N that

(6.3)
∑

λ∈Λ

αλ(Sn) =
1

|Λ|
∑

λ◦∈Λ◦

FW (Sn)(λ
◦)e−πiλ

◦
x·λ

◦
ωπ(λ◦).

By Proposition 5.8, the left hand side of (6.3) converges to
∑

λ∈Λ αλ(S) in
B′ as n→∞. Then note that

‖FW (S)|Λ◦ −FW (Sn)|Λ◦‖ℓ∞(Λ◦) = ‖FW (S − Sn)|Λ◦‖ℓ∞(Λ◦) ≤ ‖S − Sn‖T
by (3.12), hence the samples FW (Sn)|Λ◦ converge to FW (S)|Λ◦ in ℓ∞(Λ◦)
as n → ∞. Combining this with the continuity statement in Theorem 6.8,
we see that the right hand side of (6.3) converges in the weak* topology of
B′ to 1

|Λ|

∑
λ◦∈Λ◦ FW (S)(λ◦)e−πiλ

◦
x·λ

◦
ωπ(λ◦) as n→∞. As the limits of both

sides of (6.3) must be equal, the result follows. �

6.2. The twisted Wiener’s lemma. The results in the previous section
supplement the theory of the Fourier transform of operators, as introduced
by Werner in [64], by showing that periodic operators have a Fourier series
expansion. A classic result for Fourier series of functions is Wiener’s lemma:
if a periodic function is invertible and has an absolutely convergent Fourier
series, then its inverse has an absolutely convergent Fourier series. The same
holds for operators, by a result due to Gröchenig and Leinert [38]. Recall
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that v is a submultiplicative, symmetric GRS-weight – the GRS condition
is crucial for this result.

Theorem 6.11. Assume that S =
∑

λ◦∈Λ◦ cλ◦π(λ
◦) for some sequence

{cλ◦}λ◦∈Λ◦ ∈ ℓ1v(Λ◦) and that S is invertible on L2(Rd). Then

S−1 =
∑

λ◦

aλ◦π(λ
◦)

for some sequence {aλ◦}λ◦∈Λ◦ ∈ ℓ1v(Λ◦).

This has consequences for Gabor g-frames generated by an operator S ∈
Bv⊗v.

Corollary 6.12. Assume that S ∈ Bv⊗v generates a Gabor g-frame over a
lattice Λ. Then S

−1
S =

∑
λ◦∈Λ◦ aλ◦π(λ

◦) for a sequence {aλ◦}λ◦∈Λ◦ ∈ ℓ1v(Λ◦).

Proof. SS is invertible on L2(Rd) as S generates a Gabor g-frame. By the
Janssen representation in Theorem 6.6 we can apply Theorem 6.11 to SS.

�

6.3. Wexler-Raz and some conditions for Gabor g-frames. Recall
that two operators S, T ∈ HS generate dual Gabor g-frames if S and T
generate Gabor g-frames and

∑

λ∈Λ

αλ(S
∗T )ψ = ψ for any ψ ∈ L2(Rd).

A characterization of dual Gabor g-frames is given by a version of the
Wexler-Raz biorthogonality conditions from [28]. We extend the result in
[28] to Hilbert Schmidt operators.

Theorem 6.13 (Wexler-Raz biorthogonality). Let S, T ∈ HS such that S
and T satisfy the upper g-frame bound in (5.1). Then

(6.4)
∑

λ∈Λ

αλ(S
∗T )ψ = ψ for any ψ ∈ L2(Rd)

if and only if

(6.5) FW (S∗T )(λ◦) = |Λ|δλ◦,0 for λ◦ ∈ Λ◦.

Proof. Our assumption on S and T ensures that DSCTψ =
∑

λ αλ(S
∗T )ψ

defines a bounded operator on L2(Rd). Since S, T ∈ HS, we have S∗T ∈ T
and by Proposition 6.10

∑

λ∈Λ

αλ(S
∗T ) =

1

|Λ|
∑

λ◦∈Λ◦

FW (S∗T )(λ◦)e−iπλ
◦
x·λ

◦
ωπ(λ◦).

Equation (6.4) states that the left hand side is the identity operator π(0),
and the uniqueness part of Theorem 6.8 implies that this is true if and only
if (6.5) holds.

�
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Note that under the assumptions of Theorem 6.13, both S∗ and T gen-
erate Gabor g-frames by Proposition 5.3. As first noted in [28], the theorem
reproduces the familiar Wexler-Raz biorthogonality conditions for Gabor
frames.

Example 6.14. Consider two sets of N functions {φn}Nn=1, {ψn}Nn=1 ⊂
L2(Rd). As in Example 5.4, we associate an operator to each of these sys-
tems:

S =

N∑

n=1

ξn ⊗ φn, T =

N∑

n=1

ξn ⊗ ψn,

where {ξn}Nn=1 is an orthonormal system in L2(Rd). Assume that the multi-
window Gabor systems generated by {φn}Nn=1 and {ψn}Nn=1 are Bessel sys-
tems, i.e.

N∑

n=1

∑

λ∈Λ

|Vφnψ(λ)|2 . ‖ψ‖2L2 for any ψ ∈ L2(Rd),

and the same inequality for ψn. It is a simple exercise to show that this
condition implies that S and T satisfy the upper g-frame bound, so Theorem
6.13 applies.

Note that S∗T =
∑N

n=1 φn⊗ψn, and FW (S∗T )(z) = eπix·ω
∑N

n=1 Vψnφn(z)
by (3.10). We also find using (3.9) that

∑

λ∈Λ

αλ(S
∗T )η =

∑

λ∈Λ

Vψnη(λ)π(λ)φn for η ∈ L2(Rd).

Hence Theorem 6.13 says that

η =
∑

λ∈Λ

Vψnη(λ)π(λ)φn for η ∈ L2(Rd)

if and only if
N∑

n=1

Vψnφn(λ
◦) = |Λ|δλ◦,0 for λ◦ ∈ Λ◦.

This is the usual version of the Wexler-Raz biorthogonality conditions for
multi-window Gabor frames.

We note some simple consequences of Theorem 6.13.

Corollary 6.15. (a) Let S ∈ B. If there exists some T ∈ B such that
FW (S∗T )(0) 6= 0 and FW (S∗T )(λ◦) = 0 for λ◦ 6= 0, then S generates a
Gabor g-frame.

(b) Let S ∈ B. If there exist φ, ψ ∈M1(Rd) such that

Vφ(S
∗ψ)(λ◦) = |Λ|δλ◦,0 for λ◦ ∈ Λ◦,

then S generates a Gabor g-frame.
(c) If S ∈ B satisfies Λ◦ ∩ {z′ − z′′ : z′, z′′ ∈ supp(FW (S))} = {0}, then S

generates a tight Gabor g-frame.
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Proof. (a) Define T̃ = |Λ|
FW (S∗T )(0)

T . Then S, T̃ ∈ B, so S, T̃ satisfy the upper

g-frame bound in (5.1) by Corollary 5.9. Hence Theorem 6.13 applies
to give that S, T̃ generate dual Gabor g-frames, and the result follows
from Proposition 5.3.

(b) Let T = ψ ⊗ φ. Then S∗T = (S∗ψ)⊗ φ. Since FW ((S∗ψ) ⊗ φ)(x, ω) =
eπix·ωVφ(S

∗ψ)(x, ω) by (3.10), the result follows from part (a).
(c) It is well-known (see [54, 28]) that

FW (S∗S)(z) =

∫

R2d

FW (S∗)(z − z′)FW (S)(z′)eπiσ(z,z
′) dz′,

where the right hand side is the so-called twisted convolution of FW (S∗)
with FW (S). (3.11) we get

FW (S∗S)(z) =

∫

R2d

FW (S)(z′ − z)FW (S)(z′)eπiσ(z,z
′) dz′.

One easily deduces that a necessary condition for FW (S∗S)(z) to be
non-zero is that z = z′−z′′, where both z′, z′′ ∈ supp(FW (S)), hence the
condition in the statement ensures that FW (S∗S)(λ◦) = 0 for λ◦ 6= 0. In

addition, FW (S∗S)(0) = tr(S∗S) = ‖S‖2HS > 0. Therefore S̃ =

√
|Λ|

‖S‖HS
S

satisfies ∑

λ∈Λ

αλ(S̃
∗S̃)ψ = ψ

for any ψ ∈ L2(Rd) by Theorem 6.6, which implies that

∑

λ∈Λ

αλ(S
∗S)ψ =

‖S‖2HS

|Λ| ψ.

�

Remark 6.16. (a) The condition in part (c) above can be satisfied if S
is an underspread operator (as defined by Kozek [49, 50, 51]), with
supp(FW (S)) ⊂ BR(0) for some small R > 0, where BR(0) ⊂ R2d

is the ball of radius R centered at 0. In this case {z′ − z′′ : z′, z′′ ∈
supp(FW (S))} ⊂ B2R(0), so by picking sufficiently small R the condi-
tion in the corollary can be satisfied. Such S may easily be constructed,
for instance by picking a smooth bump function f ∈ M1(R2d) sup-
ported in BR(0) – since FW is bijective from B toM1(R2d), there exists
some S ∈ B with FW (S) = f. By a result of Janssen [46] this simple
construction will never work for Gabor frames: there is no rank-one op-
erator S = ψ⊗φ such that FW (S)(x, ω) = eπix·ωVφψ(x, ω) has compact
support.

(b) If Λ is a separable lattice Λ = αZd×βZd for α, β ∈ R, then Λ◦ = 1
β
Zd×

1
α
Zd. It follows from the Janssen representation that if FW (S∗S)(m

β
, n
α
) =

0 whenever 0 6= m ∈ Zd, then the g-frame operator is simply the multi-
plication operator

ψ(t) 7→
(

1

αβ

∑

n∈Zd

FW (S∗S)
(
0,
n

α

)
e2πin·t/α

)
ψ(t).
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If S is a rank-one operator φ⊗ φ, this can be achieved by picking com-
pactly supported φ – this leads to the painless nonorthogonal expansions
of [14].

The Wexler-Raz conditions sometimes allow us to deduce that S and T
generate dual Gabor g-frames, or, when S = T , that S generates a tight
Gabor g-frame. The Janssen representation also implies the following test
for deciding when S ∈ B generates a (not necessarily tight) Gabor g-frame.

Proposition 6.17. Let S ∈ B, and assume that
∑

06=λ◦∈Λ◦ |FW (S∗S)(λ◦)| <
‖S‖2HS. Then S generates a Gabor g-frame.

Proof. By the Janssen representation and the fact that FW (S∗S)(0) =
tr(S∗S) = ‖S‖2HS > 0,

SS =
1

|Λ|
∑

λ◦∈Λ◦

FW (S∗S)(λ◦)e−πiλ
◦
x·λ

◦
ωπ(λ◦)

=
‖S‖2HS

|Λ|

(
I +

∑

06=λ◦∈Λ◦

FW (S∗S)(λ◦)

‖S‖2HS

e−πiλ
◦
x·λ

◦
ωπ(λ◦)

)

︸ ︷︷ ︸
:=A

,

so SS has a bounded inverse on L2(Rd) if and only if A has a bounded
inverse. As

‖A− I‖L(L2) ≤
∑

06=λ◦∈Λ◦

|FW (S∗S)(λ◦)|
‖S‖2HS

< 1,

by assumption, the Neumann theorem [37, Thm. A.3] implies that A has a
bounded inverse on L2(Rd). �

Remark 6.18. When S = φ ⊗ φ for some φ ∈ M1(Rd), the proposition
above becomes a well-known result for Gabor frames. To our knowledge the
first appearance of this special case in the literature is [63, Thm. 4.1.1].

Corollary 6.19. Let 0 6= S ∈ B and Λ a lattice. There exists N ∈ N such
that S generates a Gabor g-frame over the lattice 1

N
Λ.

Proof. Since
∑

λ◦∈Λ |FW (S∗S)(λ◦)| <∞ by Theorem 6.6, there exists K ∈
N with ∑

|λ◦|>K

|FW (S∗S)(λ◦)| < ‖S‖2HS .

Let N ∈ N be the smallest integer such that |λ◦| > K/N for any 0 6= λ◦ ∈
Λ◦, and consider the lattice Γ = 1

N
Λ. Then Γ◦ = NΛ◦ ⊂ Λ◦. By definition,

the non-zero elements γ◦ ∈ Γ◦ are all of the form γ◦ = Nλ◦. In particular,
they satisfy |γ◦| > K and γ◦ ∈ Λ◦. Therefore

∑

06=γ◦∈Γ◦

|FW (S∗S)(γ◦)| ≤
∑

|λ◦|>K

|FW (S∗S)(λ◦)| < ‖S‖2HS ,

hence S generates a Gabor g-frame with respect to Γ = 1
N
Λ by Proposition

6.17. �



36 E. SKRETTINGLAND

7. Gabor g-frames and modulation spaces

It is a well-known fact that if a function φ ∈M1
v (R

d) generates a Gabor
frame, then the ℓpm(Λ)-norm of the coefficients {Vφψ(λ)}λ∈Λ is an equivalent
norm to ‖ψ‖Mp

m
. To extend this result to Gabor g-frames, we will need to

introduce some appropriate Banach spaces. Once this is done, our proofs
will mainly proceed by reducing the statement for Gabor g-frames to the
statement for Gabor frames, which may be found in the standard reference
[37].

For p ∈ [1,∞] and a v-moderate weight m we define the space ℓpm(Λ;L
2)

to be the Banach space of sequences {ψλ}λ∈Λ ⊂ L2(Rd) such that

‖{ψλ}‖ℓpm(Λ;L2) :=

(∑

λ∈Λ

‖ψλ‖pL2m(λ)p

)1/p

<∞.

For p =∞ the sum is replaced by a supremum in the usual way. For m ≡ 1
we write ℓpm(Λ;L

2) = ℓp(Λ;L2). The dual space of ℓpm(Λ;L
2) for p < ∞ is

ℓp
′

1/m(Λ;L
2) with

(7.1) 〈{φλ}, {ψλ}〉ℓp′
1/m

(Λ;L2),ℓpm(Λ;L2)
=
∑

λ∈Λ

〈φλ, ψλ〉L2

for {φλ}λ∈Λ ∈ ℓp
′

1/m(Λ;L
2), {ψλ}λ∈Λ ∈ ℓpm(Λ;L2). It is clear from the defini-

tions that finite sequences {ψλ}λ∈Λ (meaning that ψλ 6= 0 for finitely many
λ) are dense in ℓpm(Λ;L

2) for p <∞ and weak*-dense in ℓ∞m (Λ;L2).

Remark 7.1. The norm ‖{ψλ}‖ℓpm(Λ;L2) equals ‖{m(λ) ·ψλ}‖Lp(Λ,L2), where
Lp(Λ, L2) is a vector-valued Lp-space with Λ equipped with counting mea-
sure. Since m(λ) > 0 for any λ ∈ Λ, we may immediately translate re-
sults from the theory of vector-valued Lp-spaces, see Chapter 1 of [42], into
statements about ℓpm(Λ;L

2). In particular, they are Banach spaces and the
duality (7.1) follows from [42, Prop. 1.3.3].

We have already met the space ℓ2(Λ;L2), and seen that CS is bounded
from L2(Rd) into ℓ2(Λ;L2) when S generates a Gabor g-frame. The next
result shows that this result can be generalized to other p and m when
S ∈ Bv⊗v.

Theorem 7.2. If S ∈ Bv⊗v and p ∈ [1,∞], then the analysis operator CS is
bounded from Mp

m(R
d) to ℓpm(Λ;L

2) with operator norm ‖CS‖Mp
m→ℓpm(Λ;L2) .

‖S‖Bv⊗v where the implicit constant is independent of p and m.

Proof. Let

S =
∑

n∈N

φ(1)
n ⊗ φ(2)

n ,
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be a decomposition as in part (a) of Proposition 4.1. Then

‖αλ(S)ψ‖L2 =

∥∥∥∥∥

(∑

n∈N

π(λ)φ(1)
n ⊗ π(λ)φ(2)

n

)
ψ

∥∥∥∥∥
L2

≤
∑

n∈N

|V
φ
(2)
n
ψ(λ)| · ‖π(λ)φ(1)

n ‖L2

=
∑

n∈N

|V
φ
(2)
n
ψ(λ)| · ‖φ(1)

n ‖L2 .
∑

n∈N

|V
φ
(2)
n
ψ(λ)| · ‖φ(1)

n ‖M1
v
,

where the last inequality usesM1
v (R

d) →֒ L2(Rd). Then assume that p <∞,
and use the inequality above and the triangle inequality for ℓpm(Λ) to get

(∑

λ∈Λ

‖αλ(S)ψ‖pL2m(λ)p

)1/p

.

(∑

λ∈Λ

(∑

n∈N

|V
φ
(2)
n
ψ(λ)| · ‖φ(1)

n ‖M1
v

)p

m(λ)p

)1/p

=

∥∥∥∥∥
∑

n∈N

{
|V
φ
(2)
n
ψ(λ)| · ‖φ(1)

n ‖M1
v

}
λ∈Λ

∥∥∥∥∥
ℓpm(Λ)

≤
∑

n∈N

∥∥∥
{
|V
φ
(2)
n
ψ(λ)| · ‖φ(1)

n ‖M1
v

}
λ∈Λ

∥∥∥
ℓpm(Λ)

=
∑

n∈N

‖φ(1)
n ‖M1

v

∥∥∥
{
|V
φ
(2)
n
ψ(λ)|

}
λ∈Λ

∥∥∥
ℓpm(Λ)

. ‖ψ‖Mp
m

∑

n∈N

‖φ(1)
n ‖M1

v
‖φ(2)

n ‖M1
v

by Lemma 3.5.

The norm inequality ‖CS‖op . ‖S‖Bv⊗v then follows from part (b) of Propo-
sition 4.1. For p =∞, we use Lemma 3.5 to find that for any λ ∈ Λ

‖αλ(S)ψ‖L2 ·m(λ) .
∑

n∈N

|V
φ
(2)
n
ψ(λ)| ·m(λ) · ‖φ(1)

n ‖M1
v

≤ ‖ψ‖M∞
m

∑

n∈N

‖φ(2)
n ‖M1

v
‖φ(1)

n ‖M1
v
.

�

Theorem 7.3. If S ∈ Bv⊗v and p ∈ [1,∞], then the synthesis operator DS is
bounded from ℓpm(Λ;L

2) toMp
m(R

d), with operator norm ‖DS‖ℓpm(Λ;L2)→Mp
m
.

‖S‖Bv⊗v independent of p and m. For {ψλ}λ∈Λ ∈ ℓpm(Λ;L2), the expansion

DS({ψλ}) =
∑

λ∈Λ

αλ(S
∗)ψλ

converges unconditionally in Mp
m(R

d) for p <∞ and in the weak* topology
of M∞

1/v(R
d) for p =∞.
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Proof. First assume that p <∞, and let {ψλ}λ∈Λ be a finite sequence. Using

Proposition 4.1 we write S =
∑

n∈N φ
(1)
n ⊗ φ(2)

n . Then one finds using (3.9)
that

DS({ψλ}) =
∑

λ∈Λ

∑

n∈N

V
φ
(1)
n
ψλ(λ)π(λ)φ

(2)
n

=
∑

n∈N

∑

λ∈Λ

V
φ
(1)
n
ψλ(λ)π(λ)φ

(2)
n .

Interchanging the order of summation is allowed as the finiteness of the
sum over λ implies absolute convergence in Mp

m(R
d): by parts (c) and (e)

of Proposition 3.2

‖π(λ)φ(2)
n ‖Mp

m
. v(λ)‖φ(2)

n ‖M1
v
,

and by Cauchy-Schwarz and M1
v (R

d) →֒ L2(Rd)

(7.2) |V
φ
(1)
n
ψλ(λ)| =

∣∣〈ψλ, π(λ)φ(1)
n

〉
L2

∣∣ . ‖ψλ‖L2‖φ(1)
n ‖M1

v
.

Hence the absolute convergence follows by
∑

n∈N

∑

λ∈Λ

|V
φ
(1)
n
ψλ(λ)| · ‖π(λ)φ(2)

n ‖Mp
m

.
∑

n∈N

∑

λ∈Λ

‖ψλ‖L2‖φ(1)
n ‖M1

v
· v(λ) · ‖φ(2)

n ‖M1
v

=

(∑

n∈N

‖φ(1)
n ‖M1

v
‖φ(2)

n ‖M1
v

)(∑

λ∈Λ

‖ψλ‖L2v(λ)

)

<∞.
Now apply the Mp

m-norm to our expression for DS({ψλ}). When passing to
the second line, we use [37, Thm. 12.2.4], which is the Gabor frame version
of the statement we are proving, and the implicit constant is independent
of p and m.

‖DS({ψλ})‖Mp
m
≤
∑

n∈N

∥∥∥∥∥
∑

λ∈Λ

V
φ
(1)
n
ψλ(λ)π(λ)φ

(2)
n

∥∥∥∥∥
Mp

m

.
∑

n∈N

‖φ(2)
n ‖M1

v
‖{V

φ
(1)
n
ψλ}‖ℓpm(Λ)

≤
∑

n∈N

‖φ(1)
n ‖M1

v
‖φ(2)

n ‖M1
v
‖{‖ψλ‖L2}‖ℓpm(Λ) by (7.2)

= ‖{ψλ}‖ℓpm(Λ;L2)

∑

n∈N

‖φ(2)
n ‖M1

v
‖φ(1)

n ‖M1
v
.

Since finite sequences are dense in ℓpm(Λ;L
2), this shows that DS extends to

a bounded operator ℓpm(Λ;L
2)→Mp

m(R
d) and ‖DS‖ℓpm(Λ;L2)→Mp

m
. ‖S‖Bv⊗v

follows from part (b) of Proposition 4.1. The same proof works for p = ∞
when replacing the sum with a supremum. For the unconditional conver-
gence for p <∞, let J ⊂ Λ be a finite subset and let {ψλ}λ∈Λ ∈ ℓpm(Λ;L2).
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Then

‖DS({ψλ})−
∑

λ∈J

αλ(S
∗)ψλ‖pMp

m(Rd)
= ‖DS({ψλ}λ∈Λ − {ψλ}λ∈J)‖pMp

m

. ‖{ψλ}λ∈Λ − {ψλ}λ∈J‖pℓpm(Λ;L2)

=
∑

λ∈Λ\J

‖ψλ‖pL2m(λ)p.

As the sum
∑

λ∈Λ ‖ψλ‖
p
L2m(λ)p converges by assumption, the estimate above

shows that for any ǫ > 0 we can find a finite subset Jǫ ⊂ Λ such that
‖DS({ψλ}) −

∑
λ∈J αλ(S

∗)ψλ‖pMp
m
< ǫ whenever Jǫ ⊂ J . It follows that∑

λ∈Λ αλ(S
∗)ψλ converges to DS({ψλ}) in the sense that the net of partial

sums converges, which implies unconditional convergence [37, Prop. 5.3.1].
If p =∞, let φ ∈M1

v (R
d). Then

∑

λ∈Λ

| 〈αλ(S∗)ψλ, φ〉M∞
1/v

,M1
v
|

=
∑

λ∈Λ

| 〈ψλ, αλ(S)φ〉L2 | by Prop. 4.1 (c)

≤
∑

λ∈Λ

‖ψλ‖L2

1

v(λ)
‖αλ(S)φ‖L2v(λ) by Cauchy-Schwarz

≤ ‖{ψλ}‖ℓ∞
1/v

(Λ;L2)‖CS(φ)‖ℓ1v(Λ,L2)

. ‖{ψλ}‖ℓ∞
1/v

(Λ;L2)‖S‖Bv⊗v‖φ‖M1
v

by Theorem 7.2.

Hence the sum
∑

λ∈Λ 〈αλ(S∗)ψλ, φ〉M∞
1/v

,M1
v
converges absolutely for φ ∈

M1
v (R

d). �

When p <∞, {ψλ}λ∈Λ ∈ ℓpm(Λ;L2) and φ ∈Mp′

1/m(R
d), one finds that

〈φ,DS({ψλ})〉Mp′

1/m
,Mp

m
=

〈
φ,
∑

λ∈Λ

αλ(S
∗)ψλ

〉

Mp′

1/m
,Mp

m

=
∑

λ∈Λ

〈φ, αλ(S∗)ψλ〉Mp′

1/m
,Mp

m

=
∑

λ∈Λ

〈αλ(S)φ, ψλ〉L2 by Prop. 4.1 (c)

= 〈CS(φ), {ψλ}λ∈Λ〉ℓp′
1/m

(Λ;L2),ℓpm(Λ;L2)
.

In the same way, when {ψλ}λ∈Λ ∈ ℓp
′

1/m(Λ;L
2) and φ ∈Mp

m(R
d), one shows

that

〈DS({ψλ}), φ〉Mp′

1/m
,Mp

m
= 〈{ψλ}, CS(φ)〉ℓp′

1/m
(Λ;L2),ℓpm(Λ;L2)

.

These calculations and the fact that Banach space adjoints are weak*-
to-weak*-continuous imply the following result.
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Corollary 7.4. Let p <∞. The analysis operator

CS :Mp′

1/m(R
d)→ ℓp

′

1/m(Λ;L
2)

is the Banach space adjoint of the synthesis operator

DS : ℓpm(Λ;L
2)→Mp

m(R
d).

Similarly, the synthesis operator DS : ℓp
′

1/m(Λ;L
2) → Mp′

1/m(R
d) is the Ba-

nach space adjoint of the analysis operator CS : Mp
m(R

d) → ℓpm(Λ;L
2). In

particular, both CS : Mp′

1/m(R
d) → ℓp

′

1/m(Λ;L
2) and DS : ℓp

′

1/m(Λ;L
2) →

Mp′

1/m(R
d) are weak*-to-weak*-continuous.

Using the Janssen representation, we deduced in Corollary 6.12 that if
S ∈ Bv⊗v generates a Gabor g-frame, then S

−1
S has a representation

S
−1
S =

1

|Λ|
∑

λ◦∈Λ◦

cλ◦π(λ
◦)

for some sequence {cλ◦} ∈ ℓ1v(Λ◦). Since π(λ◦) is bounded on any modulation
space Mp

m(R
d) by Proposition 3.2, we find that S−1

S extends to a bounded
operator on any modulation space by

‖S−1
S ψ‖Mp

m
≤ 1

|Λ|
∑

λ◦∈Λ◦

|cλ◦|‖π(λ◦)ψ‖Mp
m

.
∑

λ◦∈Λ◦

|cλ◦|v(λ◦)‖ψ‖Mp
m
= ‖ψ‖Mp

m
‖{cλ◦}‖ℓ1v(Λ◦).

Then recall that the canonical dual Gabor g-frame is generated by the
operator SS−1

S . The next result shows that SS−1
S also satisfies the assump-

tions of Theorems 7.2 and 7.3.

Proposition 7.5. If S ∈ Bv⊗v generates a Gabor g-frame, then SS−1
S ∈

Bv⊗v.

Proof. Let

S =
∑

n∈N

φ(1)
n ⊗ φ(2)

n ,

be a decomposition of S from Proposition 4.1. For ψ ∈ L2(Rd), this implies
that

SS−1
S ψ =

∑

n∈N

〈
S

−1
S ψ, φ(2)

n

〉
L2 φ

(1)
n

=
∑

n∈N

〈
ψ,S−1

S φ(2)
n

〉
L2 φ

(1)
n ,

where we have used that S−1
S is positive and therefore self-adjoint. Hence

SS−1
S =

∑

n∈N

φ(1)
n ⊗ (S−1

S φ(2)
n ),
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and this decomposition converges absolutely in Bv⊗v since
∑

n∈N

‖φ(1)
n ⊗ (S−1

S φ(2)
n )‖Bv⊗v =

∑

n∈N

‖φ(1)
n ‖M1

v
‖S−1

S φ(2)
n ‖M1

v

.
∑

n∈N

‖φ(1)
n ‖M1

v
‖φ(2)

n ‖M1
v
<∞

by the aforementioned boundedness of S−1
S :M1

v (R
d)→M1

v (R
d). �

Corollary 7.6. Assume that S ∈ Bv⊗v generates a Gabor g-frame. For any
ψ ∈Mp

m(R
d), the expansions

ψ = DSCSS−1
S
ψ =

∑

λ∈Λ

αλ(S
∗)αλ(SS

−1
S )ψ =

∑

λ∈Λ

αλ(S
∗SS−1

S )ψ,

ψ = DSS−1
S
CSψ =

∑

λ∈Λ

αλ((SS
−1
S )∗)αλ(S)ψ =

∑

λ∈Λ

αλ(S
−1
S S∗S)ψ

converge unconditionally in Mp
m(R

d) for p < ∞ and in the weak* topology
of M∞

1/v(R
d) for p =∞.

Proof. We prove the result forDSCSS−1
S
, the same proof works forDSS−1

S
CS.

From the previous proposition, we know that S, SS−1
S ∈ Bv⊗v. In particular

we know from Theorem 7.3 that DS is bounded from ℓpm(Λ;L
2) to Mp

m(R
d),

and that CSS−1
S

is bounded from Mp
m(R

d) to ℓpm(Λ;L
2). Hence DSCSS−1

S

is bounded on Mp
m(R

d). If p < ∞, then the expansions in the statement
converge unconditionally by Theorem 7.3. We know that DSCSS−1

S
is the

identity operator on L2(Rd) from Section 5.2.1, and as M1
v (R

d) ⊂ L2(Rd) is
dense in Mp

m(R
d) by Proposition 3.2 it follows that DSCS

−1
S

is the identity

operator on Mp
m(R

d), so the expansions converge to ψ.
For p = ∞ the last part of the argument must be slightly modified:

M1
v (R

d) is only weak*-dense in M∞
m (Rd), so to conclude that DSCSS−1

S
is

the identity operator on M∞
m (Rd) we need to use that DSCSS−1

S
is weak*-

to-weak*-continuous on M∞
m (Rd) by Corollary 7.4. �

We are now ready to prove one of our main results, namely that Gabor
g-frames generated by S ∈ Bv⊗v define equivalent norms for modulation
spaces. By picking S as in Examples 5.4 and 5.5, we recover results for
Gabor frames [26, 37, 27] and localization operators [22, 23].

Corollary 7.7. Assume that S ∈ Bv⊗v generates a Gabor g-frame. There
exist constants C,D depending on v and Λ such that for any 1 ≤ p ≤ ∞
and v-moderate weight m we have

C‖ψ‖Mp
m
≤
(∑

λ∈Λ

‖αλ(S)‖pL2m(λ)p

)1/p

≤ D‖ψ‖Mp
m
,

and ψ ∈M∞
1/v(R

d) belongs to Mp
m(R

d) if and only if
∑

λ∈Λ

‖αλ(S)‖pL2m(λ)p <∞.
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For p =∞ the sum is replaced by a supremum in the usual way.

Proof. By Theorem 7.2 we have
(∑

λ∈Λ

‖αλ(S)‖pL2m(λ)p

)1/p

= ‖CSψ‖ℓpm(Λ;L2) . ‖ψ‖Mp
m

as CS is bounded. On the other hand, Corollary 7.6 says that

‖ψ‖Mp
m
= ‖DSS−1

S
CSψ‖Mp

m
. ‖CSψ‖ℓpm(Λ;L2) =

(∑

λ∈Λ

‖αλ(S)‖pL2m(λ)p

)1/p

,

where we have used that DSS−1
S

: ℓpm(Λ;L
2) → Mp

m(R
d) is bounded by

Proposition 7.5 and Theorem 7.3.
Finally, if

∑
λ∈Λ ‖αλ(S)‖

p
L2m(λ)p < ∞, then CS(ψ) ∈ ℓpm(Λ;L

2). As
DSS−1

S
is bounded ℓpm(Λ;L

2) → Mp
m(R

d), its follows from ψ = DSS−1
S
CSψ

that ψ ∈Mp
m(R

d). �

Remark 7.8. In this section we have assumed S ∈ Bv⊗v, but the result
also holds for operators S ∈ T that can be written

S =
∑

n∈N

φ(1)
n ⊗ φ(2)

n

where
∑

n∈N ‖φ
(2)
n ‖M1

v
< ∞ and {φ(1)

n }n∈N is orthonormal in L2(Rd). The

proofs of Theorems 7.2 and 7.3 still work, with upper bound
∑

n∈N ‖φ
(2)
n ‖M1

v

for the operator norms of CS andDS (in the original proofs we use ‖φ(1)
n ‖L2 .

‖φ(1)
n ‖M1

v
, using ‖φ(1)

n ‖L2 = 1 instead leads to this modified result). Since

S∗S =
∑

n∈N φ
(2)
n ⊗ φ(2)

n ∈ B, we can still use the Janssen representation to

get that S−1
S is bounded onM1

v (R
d), and the proof of Proposition 7.5 shows

that

SS−1
S =

∑

n∈N

φ(1)
n ⊗S

−1
S φ(2)

n ,

hence SS−1
S is of the same form. The proofs of the corollaries above still

work without change. In particular, this shows that our treatment of multi-
window Gabor frames in Example 5.4 is compatible with the theory of this
section.

7.1. Alternative characterization of Gabor g-frames and multi-

window Gabor frames of eigenfunctions. The norm equivalences in
Corollary 7.7 were proved for localization operators in [22, 23]. This section
is mainly a reinterpretation and slight extension of the results in [23] in
terms of Gabor g-frames – the main result is Theorem 7.12, which shows
that a surprising characterization of Gabor frames from [39] holds for Gabor
g-frames. We first need to understand the singular value decomposition of
operators in Bv⊗v. The following is due to [23] when S is a localization op-
erator, and our proof is a slight modification of their proof to allow general
S ∈ Bv⊗v.
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Lemma 7.9. Assume that S ∈ Bv⊗v. There exist N0 ∈ N∪{∞}, orthonor-
mal systems {ξn}N0

n=1 , {ϕn}
N0

n=1 in L2(Rd) and a sequence {sn}N0

n=1 ∈ ℓ1 of
positive numbers with

(7.3) S =

N0∑

n=1

snξn ⊗ ϕn

as an operator on L2(Rd). Furthermore, ϕn, ξn ∈ M1
v (R

d), and for λ ∈ Λ
the expansion

(7.4) αλ(S)ψ =

N0∑

n=1

sn 〈ψ, π(λ)ϕn〉M∞
1/v

,M1
v
π(λ)ξn

holds even for ψ ∈ M∞
1/v(R

d), with convergence of the sum in L2(Rd).

Proof. The existence of {ξn}N0

n=1, {ϕn}
N0

n=1 and {sn}
N0

n=1 with these properties
is the singular value decomposition from Section 3.2. To see that ξn ∈
M1

v (R
d), note that Proposition 4.1 says that S :M∞

1/v(R
d)→ M1

v (R
d). From

(7.3) one obtains that M1
v (R

d) ∋ Sϕn = snξn, which forces ξn ∈ M1
v (R

d)
when sn 6= 0. Since S∗ ∈ Bv⊗v by Proposition 4.1, the same argument as
above gives that M1

v (R
d) ∋ S∗ξn = snϕn, so ϕn ∈M1

v (R
d).

We prove the expansion (7.4) for λ = 0, without loss of generality. If
ψ ∈M∞

1/v(R
d), we know from Proposition 4.1 that Sψ ∈M1

v (R
d) ⊂ L2(Rd).

Thus we may find γ ∈ L2(Rd) such that

Sψ =

N0∑

n=1

〈Sψ, ξn〉L2 ξn + γ,

where γ ⊥ ξn for each n ≤ N0. The sum converges in L2(Rd) as Sψ ∈ L2(Rd)

and the set {ξn}N0

n=1 is orthonormal. By Proposition 4.1, we get

〈Sψ, ξn〉L2 = 〈Sψ, ξn〉M∞
1/v

,M1
v
= 〈ψ, S∗ξn〉M∞

1/v
,M1

v
= sn 〈ψ, ϕn〉M∞

1/v
,M1

v
,

hence we have shown

Sψ =
N0∑

n=1

sn 〈ψ, ϕn〉M∞
1/v

,M1
v
ξn + γ,

and it simply remains to show that γ = 0. Note that ‖γ‖2L2 = 〈Sψ, γ〉L2 .
As is shown in the proof of [23, Cor. 7], we can pick a sequence {ψi}i∈N
in L2(Rd) that converges to ψ in the weak* topology of M∞

1/v(R
d). Then

〈Sψi, γ〉L2 = 0, since (7.3) shows that Sψi can be expanded in terms of
the ξn, and γ is orthogonal to each ξn. However, S maps weak*-convergent
sequences in M∞

1/v(R
d) into norm convergent sequences in M1

v (R
d), hence

Sψi → Sψ in L2(Rd) and

0 = 〈Sψi, γ〉L2 → 〈Sψ, γ〉L2 = ‖γ‖L2,

which completes the proof. �
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Remark 7.10. The singular value decomposition in Lemma 7.9 should be
compared to the decomposition from Proposition 4.1. There is one clear
advantage to the singular value decomposition S =

∑N0

n=1 snξn⊗ϕn, namely

that the systems {ξn}N0

n=1 and {ϕn}N0

n=1 are orthonormal. The disadvantage
of the singular value decomposition is that, unlike the decomposition from
Proposition 4.1, it does not necessarily converge absolutely in the norm of
Bv⊗v. In other words, we cannot guarantee that

∑N0

n=1 sn‖ξn‖M1
v
‖ϕn‖M1

v
<

∞. This was recently proved in [2], solving a problem first posed by Hans
Feichtinger.

The following result is used in the proof of [23, Lem. 9] for localization
operators S. Our proof is a slight modification of the proof in [23] to allow
general S ∈ B.

Proposition 7.11. Assume that S ∈ B and let {ϕn}N0
n=1 be as in Lemma

7.9. If CS : M∞(Rd) → ℓ∞(Λ;L2) is injective, then there is some N ≤ N0

such that {ϕn}Nn=1 ⊂M1
v (R

d) generate a multi-window Gabor frame.

Proof. Assume that, for any N ≤ N0, {ϕn}Nn=1 does not generate a multi-
window Gabor frame. Consider the set

WN = {η ∈M∞(Rd) : 〈η, π(λ)ϕn〉M∞,M1 = 0 for any λ ∈ Λ, n = 1, ..., N.}

By [23, Lem. 3],WN is a non-trivial subspace ofM∞(Rd), and by [23, Lem.
10], the intersection of all WN for N ≤ N0 is a non-trivial subspace of
M∞(Rd). Let η be a non-zero element from this intersection, meaning that

〈η, π(λ)ϕn〉M∞,M1 = 0 for any λ ∈ Λ, n ≤ N0.

By (7.4), we have that αλ(S)η =
∑N0

n=1 sn 〈η, π(λ)ϕn〉M∞,M1 π(λ)ξn = 0

for any λ ∈ Λ, since 〈η, π(λ)ϕn〉M∞,M1 = 0 for n ≤ N0. This means that
CSη = 0. Thus η = 0, which contradicts our assumption. Hence there is an
N ≤ N0 such that {ϕn}Nn=1 generates a multi-window Gabor frame. �

For Gabor frames, the following theorem is one of the main results of
[39], and the reader who has consulted the proof of Proposition 7.11 may
have noted that the Gabor frame-version of the statement is the key to the
proof of that proposition.

Theorem 7.12. Let S ∈ B. S generates a Gabor g-frame if and only if
CS :M∞(Rd)→ ℓ∞(Λ;L2) is injective.

Proof. If S generates a Gabor g-frame, DSS−1
S
CS is the identity operator on

M∞(Rd) by Corollary 7.6, hence CS is injective. Then assume that CS is
injective. Since S ∈ B, Corollary 5.9 says that the upper g-frame bound in
(5.1) is satisfied. For the lower bound, Lemma 7.9 and Proposition 7.11 say

that S =
∑N0

n=1 snξn ⊗ ϕn, where {ϕn}Nn=1 generate a multi-window Gabor
frame for some N ≤ N0. Note that

‖αλ(S)ψ‖2L2 = 〈αλ(S)ψ, αλ(S)ψ〉L2 = 〈αλ(S∗S)ψ, ψ〉L2 .
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By the decomposition S =
∑N0

n=1 snξn ⊗ ϕn and orthonormality of {ξn}N0
n=1,

we get

αλ(S
∗S) =

N0∑

n=1

s2nπ(λ)ϕn ⊗ π(λ)ϕn,

hence

∑

λ∈Λ

‖αλ(S)ψ‖2L2 =
∑

λ∈Λ

〈
N0∑

n=1

s2nVϕnψ(λ)π(λ)ϕn, ψ

〉

L2

=
∑

λ∈Λ

N0∑

n=1

s2n|Vϕnψ(λ)|2

≥
∑

λ∈Λ

N∑

n=1

s2n|Vϕnψ(λ)|2

& ‖ψ‖22,

since {ϕn}Nn=1 generate a multi-window Gabor frame and sn > 0 for n ≤
N . �

7.2. Localization operators and time-frequency partitions. In [22,
23], the methods from the previous section were used to prove the norm
equivalence in Corollary 7.7 for the localization operators Aϕh in Example
5.5, i.e. assuming 0 6= ϕ ∈M1

v (R
d) and h ∈ L1

v(R
2d) a non-negative function

satisfying

A′ ≤
∑

λ∈Λ

h(z − λ) ≤ B′ for all z ∈ R
2d

for some A′, B′ > 0. Their proof consists of applying Proposition 7.11 to ob-
tain multi-window Gabor frames of eigenfunctions of localization operators
to reduce the statement to the fact that multi-window Gabor frames give
equivalent norms forMp

m(R
d). Since inserting p = 2 and m ≡ 1 in Corollary

7.7 gives the Gabor g-frame inequality, this means in particular that these
localization operators generate Gabor g-frames.

Remark 7.13. Obtaining multi-window Gabor frames consisting of eigen-
functions of localization operators is itself an interesting result. Dörfler and
Romero [24] use techniques from [60] to obtain frames consisting of eigen-
functions of localization operators in more general settings. If S = AϕχΩ

,

then αλ(S) = AϕχΩ+λ
. In this sense, applying αλ corresponds to covering R

2d

by shifts of Ω, and the results of [24] consider much more general coverings
of R2d when S is a localization operator.

In order to apply the machinery of Section 7 to localization operators
Aϕh , we need to show that Aϕh ∈ Bv⊗v. The next proposition shows that this
is true if we assume the stronger condition h ∈ L1

v2(R
2d).

Proposition 7.14. Let ϕ ∈M1
v (R

d) and h ∈ L1
v2(R

2d). Then Aϕh ∈ Bv⊗v.
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Proof. It is a straightforward calculation to check that the kernel of Aϕh is

kAϕ
h
(x, ω) =

∫

R2d

h(t, ξ)(MξTtϕ)(x)(M−ξTtϕ)(ω) dtdξ.

For each t and ξ, the function

MξTtϕ(x)M−ξTtϕ(ω) = (π(t, ξ)ϕ⊗ π(t,−ξ)ϕ) (x, ω)
belongs to M1

v⊗v by (4.1) and part (e) of Proposition 3.2, with

‖π(t, ξ)ϕ⊗ π(t,−ξ)ϕ‖M1
v⊗v

= ‖π(t, ξ)ϕ‖M1
v
‖π(t,−ξ)ϕ‖M1

v
≤ v(t, ξ)2‖ϕ‖2M1

v
,

where we have used that v is symmetric in each coordinate. Hence
∫

R2d

‖h(t, ξ) (π(t, ξ)ϕ⊗ π(t,−ξ)ϕ)) ‖M1
v⊗v

dtdξ

is bounded from above by

‖ϕ‖2M1
v

∫

R2d

|h(t, ξ)|v(t, ξ)2 dtdξ,

and this last integral converges by assumption. It follows that the integral
∫

R2d

h(t, ξ) (π(t, ξ)ϕ⊗ π(t,−ξ)ϕ) dtdξ

is a convergent Bochner integral in M1
v⊗v(R

2d), thus kAϕ
h
∈M1

v⊗v(R
2d). �

The setting S = Aϕh allows us to interpret many objects and results for
Gabor g-frames in a natural way, in particular when h = χΩ ∈ L1

v2(R
2d)

is the characteristic function of some compact Ω ⊂ R2d. Since one has the
well-known inversion formula

ψ =

∫

R2d

Vϕψ(z)π(z)ϕ dz whenever ‖ϕ‖L2 = 1,

one interprets

AϕχΩ
ψ =

∫

Ω

Vϕψ(z)π(z)ϕ dz

as the part of ψ that ”lives in Ω in the time-frequency plane” [12]. For
brevity, we call AϕχΩ

ψ the Ω-component of ψ. Since αλ(A
ϕ
χΩ
) = AϕTλ(χΩ), we

see that αλ(A
ϕ
χΩ
)ψ is the λ + Ω-component of ψ, where λ + Ω = {λ + z :

z ∈ Ω}. The corresponding analysis operator

CAϕ
χΩ
(ψ) =

{
AϕTλ(χΩ)ψ

}
λ∈Λ

therefore analyzes ψ by considering its λ + Ω-components as λ varies over
Λ.

When AϕχΩ
actually generates a Gabor g-frame, Corollary 7.7 says that

summability conditions on the L2-norm of the λ+Ω-components of ψ pre-
cisely captures the modulation space norms of ψ, as first proved by [22, 23].
Furthermore, Corollary 7.6 shows us how ψ may be reconstructed from its
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λ+Ω-components. By that result, there exists some R := AϕχΩ
S

−1
Aϕ

χΩ

∈ Bv⊗v
such that

(7.5) ψ =
∑

λ∈Λ

αλ(R)
(
AϕTλ(χΩ)ψ

)
,

with unconditional convergence in whatever modulation space Mp
m(R

d),
p < ∞, that ψ belongs to. By Remark 5.2, there is also a Cohen’s class
distribution associated with AϕχΩ

, namely

Q
(Aϕ

χΩ)
2(ψ)(z) = ‖AϕTz(χΩ)ψ‖2L2 .

This Cohen’s class distributions has an obvious interpretation: ‖AϕTz(χΩ)ψ‖2L2

measures the size of the z+Ω-component of ψ. By (5.2) one has the equality

∫

R2d

‖AϕTz(χΩ)ψ‖2L2 dz = ‖AϕχΩ
‖2HS‖ψ‖2L2.

This is a continuous version of the Gabor g-frame inequality (5.1) for local-
ization operators, in the same way that Moyal’s identity is the continuous
version of the Gabor frame inequalities.

It should be remarked that one usually associates a different Cohen’s
class distribution (independently of Ω) with localization operators AϕχΩ

,

namely the spectrogram |Vϕψ(z)|2 [55, Example 8.1].

Remark 7.15. (a) Let us clarify the relation between our results and those
of [23]. As mentioned, Corollary 7.7 was proved in [23] for localization
operators Aϕh satisfying the conditions in Example 5.5, without the no-
tion of Gabor g-frames. The statements in Section 7.1 may all be de-
duced from proofs in [23], and we have merely reinterpreted them as
natural statements about Gabor g-frames. Proposition 7.14 says that if
we assume h ∈ L1

v2(R
2d) – a stronger condition than h ∈ L1

v(R
2d) as

assumed in [23] – then Aϕh satisfies the assumptions for the other results
in Section 7. In particular, we get the inversion formula (7.5).

(b) The discussion above generalizes without change to other Gabor g-
frames
{αλS}λ∈Λ, but the natural interpretation of ‖αλ(S)‖2L2 above does not
necessarily hold when S is not a localization operator.

8. Singular value decomposition and multi-window Gabor

frames

From the very first paper published on g-frames [62], it has been known
that g-frames correspond to ordinary frames when a basis is chosen for the
Hilbert spaces involved: if {Ai}i∈I ⊂ L(L2) and {ξn}n∈N is an orthonormal
basis of L2(Rd), then {Ai}i∈I is g-frame if and only if {A∗

i ξn}i∈I,n∈N is a
frame for L2(Rd)[62, Thm. 3.1]. Gabor g-frames must therefore be related
to frames in L2(Rd), and we will now make this connection explicit. By the
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singular value decomposition, any S ∈ HS may be expanded as

S =
∑

n∈N

ξn ⊗ ϕn,

where {ξn}n∈N is an orthonormal basis for L2(Rd) and
∑

n∈N ‖ϕn‖2L2 < ∞.
For ψ ∈ L2(Rd) we find using (3.9) that

‖αλ(S)ψ‖2L2 =

〈∑

n∈N

Vϕnψ(λ)π(λ)ξn,
∑

m∈N

Vϕmψ(λ)π(λ)ξm

〉

L2

=
∑

m,n∈N

Vϕnψ(λ)Vϕmψ(λ) 〈π(λ)ξn, π(λ)ξm〉L2

=
∑

n∈N

|Vϕnψ(λ)|2.

By comparing this with the definition (5.1) of a Gabor g-frame, we see that
S generates a Gabor g-frame if and only if there exist A,B > 0 such that

A‖ψ‖2L2 ≤
∑

λ∈Λ

∑

n∈N

|Vϕnψ(λ)|2 ≤ B‖ψ‖2L2 for any ψ ∈ L2(Rd),

in other words, if and only if the functions {ϕn}n∈N generate a multi-window
Gabor frame with countably many windows. Combining this with Propo-
sition 7.11, we obtain the following result on multi-window Gabor frames
with countably many generators.

Theorem 8.1. Assume that {ϕn}n∈N ⊂M1(Rd) such that
∑

n∈N ‖ϕn‖M1 <
∞. If {ϕn}n∈N generates a multi-window Gabor frame for L2(Rd), i.e. there
exist A,B > 0 such that

(8.1) A‖ψ‖2L2 ≤
∑

λ∈Λ

∑

n∈N

|Vϕnψ(λ)|2 ≤ B‖ψ‖2L2 for any ψ ∈ L2(Rd),

then there exists N ∈ N such that {ϕn}Nn=1 generates a multi-window Gabor
frame for L2(Rd).

Proof. Let {ξn}n∈N be an orthonormal basis for L2(Rd) such that ‖ξn‖M1 ≤
C for some C > 0 – for instance a Wilson basis [37, Prop. 12.3.8]. Then let

S =
∑

n∈N

ξn ⊗ ϕn.

By our assumptions
∑

n∈N ‖ϕn‖M1 < ∞ and ‖ξn‖M1 ≤ C, this sum con-
verges absolutely in B. Hence S ∈ B. By the arguments preceding this
theorem, (8.1) ensures that S generates a Gabor g-frame. Hence Theorem

7.12 and Proposition 7.11 give3 the existence of N ∈ N such that {ϕn}Nn=1

generates a multi-window Gabor frame for L2(Rd). �

3Proposition 7.11 assumes that ϕn come from the singular value decomposition, but
this is not used in the proof besides using Lemma 7.9 to ensure that the decomposition
into rank-one operators converges.
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Remark 8.2. The fact that Gabor g-frames correspond to multi-window
Gabor frames with countably many generators, suggests that the duality
theory of Gabor g-frames (in the sense of Ron-Shen duality, see [37]) is
covered by the approach in [44], where multi-window Gabor frames with
countably many generators are considered.
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Theory and Applications. Birkhäuser/Springer Basel AG, Basel,

2011.

[21] A. Deitmar and S. Echterhoff. Principles of harmonic analysis. Uni-

versitext. Springer, Cham, second edition, 2014.

[22] M. Dörfler, H. G. Feichtinger, and K. Gröchenig. Time-frequency
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Birkhäuser Boston, Boston, MA, 1998.
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