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ON GABOR G-FRAMES AND FOURIER SERIES OF
OPERATORS

EIRIK SKRETTINGLAND

ABSTRACT. We show that Hilbert-Schmidt operators can be used to
define frame-like structures for L?(R9) over lattices in R?? that include
multi-window Gabor frames as a special case. These frame-like struc-
tures are called Gabor g-frames, as they are examples of g-frames as
introduced by Sun. We show that Gabor g-frames share many proper-
ties of Gabor frames, including a Janssen representation and Wexler-Raz
biorthogonality conditions. A central part of our analysis is a notion of
Fourier series of periodic operators based on earlier work by Feichtinger
and Kozek, where we show in particular a Poisson summation formula
for trace class operators. By choosing operators from certain Banach
subspaces of the Hilbert Schmidt operators, Gabor g-frames give equiv-
alent norms for modulation spaces in terms of weighted ¢P-norms of an
associated sequence, as previously shown for localization operators by
Dorfler, Feichtinger and Grochenig.

1. INTRODUCTION

The study of Gabor frames is today an essential part of time-frequency
analysis. By fixing a window function ¢ € L?(RY), a signal ¢ € L*(RY) is
analyzed by considering its projections onto copies of ¢ shifted in time and
frequency. In other words, one considers the short-time Fourier transform

Vob(2) = (U, m(2)p) . for z € R,

where m(z) is the time-frequency shift operator defined by m(z)p(t) =
eFmiwlp(t — ) for z = (x,w) € R¥. If ¢ is well-behaved, one interprets
|V, (z,w)|? as a measure of the contribution of the frequency w at the time
x in the signal ¢. Given a lattice A = AZ?? for A € GL(2d,R), o generates
a Gabor frame over A if the ¢>-norm of the sequence {V,1)(\)}en is equiv-
alent to the L?-norm of 1), i.e. there should exist constants A, B > 0 such

that

(1.1) AlllI7e <D IVep(MP < Bll¢|l7.  for any ¢ € L*(RY).
AEA

In the usual terminology of frames, see for instance the monographs [37, 10,
41], this simply means that {m(\)@}aea is a frame for L2(R9), and (L)) is
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equivalent to the fact that the frame operator

Y > Vb (Wm(Vg

AEA

is bounded and invertible on L?(R%). Research over the last thirty years
has revealed several intriguing features of Gabor frames, among them the
Janssen representation of the frame operator [45, 28, [59], the Wexler-Raz
biorthogonality conditions [65, 45, [16, 28] and that for well-behaved win-
dows ¢ summability conditions on the coefficients {V,,1)(X) }rea characterize
smoothness and decay properties of ¢ [26, [38], 27].

The aim of this paper is to show that Gabor frames over a lattice A C R??
are a special case of a more general situation, namely that Hilbert-Schmidt
operators on L?(R%) can be used to define a frame-like structure for L?(R?).
These structures are obtained by shifting a ”window” operator S over A by
the operation

a.(S) = m(2)Sm(z)* for z € R*.
Following Werner [64] and Kozek [48] we consider a,(S) to be a translation
of S by A. Our main definition is that S generates a Gabor g-frame for
L*(RY) if there exist constants A, B > 0 such that

(12) Al < 3 lan(S)6l2: < BIIE:  for v e LA(RY),

AEA
When S is a rank-one operator we recover the definition of Gabor frames —
more generally we obtain multi-window Gabor frames [66] if S is of finite
rank. If (C2) holds, the associated g-frame operator &g given by

(1.3) Gs(1h) = Y an(S"9),

AEA

is bounded and invertible on L?(R%), and we show that this operator is
the composition of two other natural operators: the analysis and synthesis
operators. A major goal of this paper is to show that although Gabor g-
frames are not frames, they nevertheless share much of the structure of
Gabor frames. Our terminology stems from the fact that Gabor g-frames are
examples of g-frames as introduced by Sun [62], but apart from terminology
the abstract theory of g-frames does not feature much in this paper.

Fourier series of operators and the Janssen representation. Our investiga-
tions into the structure of Gabor g-frames naturally lead to the study of
a notion of Fourier series of operators, inspired by the analysis of periodic
operators by Feichtinger and Kozek [28] and the quantum harmonic analysis
of Werner [64]. By Fourier series for operators we mean that a A-periodic
operator T' — meaning that a, (7)) = T for all A € A — has an expansion of
the form

(1.4) T= ) croe ™5Na(\).

Aoen°
Here A° is the adjoint lattice of A defined in Section [, and we write
A% = (A2, A2). Such expansions have also been studied in [28], and the

)T w
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interpretation that this is a Fourier series of operators follows from consid-
ering the operator e~™*“r(2) for z = (x,w) € R?? as the operator-analogue
of the character ¢t — €>™** on R??. This interpretation is strengthened by
the fact that an analogue of Wiener’s classical lemma for absolutely sum-
mable Fourier series also holds for operators, by a result of Gréchenig and
Leinert [38]. We show that any A-periodic bounded operator on L?(R?) has
a Fourier series expansion (L4]). This is not the only possible approach to
Fourier series of operators, see for instance [7,[17, [18],[19], and we also remark
that periodic operators have been studied in [4, Prop. 5.5].

Due to the form of the Gabor g-frame operator (L3)) it is particularly
interesting to study the Fourier series expansion of periodic operators T’
given by a periodization over A:

T =) ax(R)

for some operator R. This leads to the following Poisson summation formula
for trace class operators: if R is a trace class operator, then

(1.5) S aa(R) = ﬁ S Fi(B)(A)e ™ rn(xe),

AEA ACeAN°

where Fyy is the Fourier-Wigner transform of R defined by
Fw(R)(2) = e ™ “tr(1(—2)R) for z = (v,w) € R*,

which Werner [64] argued is a Fourier transform of operators. Showing that
(LH) holds for all trace class operators requires a careful study of the conti-
nuity of several mappings. Equation (LH]) is an analogue of the usual Poisson
summation formula for functions: the Fourier coefficients of a periodization
Y rea @a(R) is given by the samples of the Fourier transform of R. Com-
paring (LH) with (T3]), we obtain an alternative expression for the g-frame
operator of a Gabor g-frame which generalizes the Janssen representation
for Gabor frames. This generalized Janssen representation allows us to de-
duce an extension of the Wexler-Raz biorthogonality conditions to Gabor
g-frames, and to establish painless procedures for making Gabor g-frames
using underspread operators.

Time-frequency localization and Gabor g-frames. The definition (L2]) has
a particularly interesting interpretation if «,(S)ty can, in some sense, be
interpreted as the part of the signal 1 localized around the point A in the
time-frequency plane R??. In this case, one may interpret ||ay(S5)v||p2 as a
measure of the part of ¢ localized around A in the time-frequency plane.
For instance, picking a rank-one operator S = ¢ ® ¢ for ¢ € L*(R?), one
finds that [|ax(S)Y| 2 = |V¥(N)|, which is the measure of localization of
1 around A used in Gabor frames. Another prime example of operators
S where a(S)y has this interpretation are the localization operators A%
with domain 2 C R*! and window ¢ € L*(R?) introduced by Daubechies
[15, 12, 24], and the inequalities (L2) have been studied for such operators
by Dorfler, Feichtinger and Grochenig [22] 23]. The results of [22 23] are
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therefore a second important class examples of Gabor g-frames in addition
to (multi-window) Gabor frames.

In our terminology, [22} 23] showed that if AY generates a Gabor g-frame
with well-behaved window ¢, then weighted ¢-norms of {||ax (AL )Y ||z frea
are equivalent to the norm of ¢/ in modulation spaces. By the properties of
modulation spaces, this implies that smoothness and decay properties of 1
are captured by the coefficients {[|ax(AY,)¥[[z2 }aca- A similar result is well-
known for Gabor frames [26, 37, 27], and in Corollary [[.7] we extend this
to a result for Gabor g-frames that includes Gabor frames and localization
operators as special cases.

The fact that the results of [22, 23] can be incorporated into the theory of
Gabor g-frames allows us to understand exactly how a signal v is recovered
from its time-frequency localized components ¢ := ax(A% )y for A € A.
In fact, we show that A¥  has a canonical dual operator R, such that

Y=Y on(R)ey  for any ¢ € L*(RY).
AEA
This is a generalization of a well-known fact for Gabor frames to Gabor
g-frames (and in particular the localization operators of [22] 23]), namely

that if ¢ € L?(R?) generates a Gabor frame, then there is a canonical dual
window ¢’ € L*(R?) with

Y = Z VoM m(N)¢' for any o € L*(RY).

AEA

Cohen’s class and Gabor g-frames. A different perspective on Gabor g-
frames uses Cohen'’s class of time-frequency distributions [11]. In the formal-
ism of [B5], ||ax(S)Y |2, equals Qg+5(1)(N), where Qg+s is the Cohen’s class
distribution associated with the operator S*S as defined in [55]. Hence equa-
tion (L2) states that the ¢!-norm of the samples {Qg+s(1)(A)}rea should
be an equivalent norm on L*(R?). A simple example of a Cohen’s class dis-
tribution is the spectrogram |V,1(z)|? for a window ¢, which corresponds to
picking rank-one S. Hence the move from Gabor frames to Gabor g-frames
corresponds to replacing the spectrogram by a more general Cohen’s class
distribution, and we show that much of the structure of Gabor frames is
preserved.

Technical tools. We give a brief overview of the non-standard technical tools
needed to prove the results of the paper. We will utilize a Banach subspace
BB of the trace class operators, as studied by [28] 13, [30]. The space B consists
of operators with kernel (as integral operators) in the so-called Feichtinger
algebra [25], and we aim to show readers with backgrounds in other areas
than time-frequency analysis the usefulness of B. For instance, if R € B the
sum on the right hand side of (L3 converges absolutely in the operator
norm. The same will hold if we pick R from the smaller space of Schwartz
operators [47], but the Schwartz operators do not form a Banach space.
Hence B combines desirable features from the trace class operators and the
Schwartz operators: it is a Banach space, yet small enough to have properties
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not shared by arbitrary trace class operators. A new aspect in this paper
is that we also develop a theory of weighted versions of B, and we use the
projective tensor product of Banach spaces to establish a decomposition of
operators in the weighted B-spaces in terms of rank-one operators.

We will also use the dual space B’ with its weak® topology. The sums
in the Poisson summation formula (LH]) for trace class operators converge
in this topology, but not necessarily in the weak™ topology of the bounded
operator £(L?) — hence B’ is necessary even for studying trace class opera-
tors.

In order to write the g-frame operator (L3]) as the composition of an
analysis operator and a synthesis operator we will need the L2-valued se-
quence spaces 2 (A; L?), consisting of sequences {1y }rea C L*(R?) such
that >~ cx [[Ualf2m(N)P < oo, where m is a weight function. The use of
these Banach spaces is key to reducing statements about Gabor g-frames to
known results for Gabor frames in Section [7.

Organization. We recall some definitions and results from time-frequency
analysis, pseudodifferential operators and g-frames in Section Bl Section [
is devoted to introducing and studying one of our main tools: Banach spaces
of operators with kernels in certain weighted function spaces and their de-
composition into rank-one operators. The definition and basic properties
of Gabor g-frames are given in Section Bl The theory of Fourier series of
operators and its applications to Gabor g-frames, including a Janssen rep-
resentation and Wexler-Raz biorthogonality for Gabor g-frames, is explored
in Section [6l Section [7lis devoted to using Gabor g-frames to obtain equiva-
lent norms for modulation spaces. Finally the relation of Gabor g-frames to
countably generated multi-window Gabor frames using the singular value
decomposition is explained in Section [8

2. NOTATION AND CONVENTIONS

By a lattice A we mean a full-rank lattice in R??, i.e. A = AZ?? for
some A € GL(2d,R). The volume of A = AZ* is |A| := det(A). The
Haar measure on R??/A will always be normalized so that R??/A has total
measure 1.

If X is a Banach space and X’ its dual space, the action of y € X’ on
z € X is denoted by the bracket (y, )y, y, where the bracket is antilinear in
the second coordinate to be compatible with the notation for inner products
in Hilbert spaces. This means that we are identifying the dual space X’
with antilinear functionals on X. For two Banach spaces X,Y we denote
by L(X,Y) the Banach space of bounded linear operators S : X — Y,
and if X =Y we simply write £(X). The notation X < Y denotes a
norm-continuous embedding of Banach spaces.

For p € [1,00], p’ denotes the conjugate exponent, i.e. % + 1% = 1. The
notation P < @ means that there is some C' > 0 such that P < C' - @, and
P = @ means that Q < P and P < Q. For Q C R??, yq is the characteristic
function of €.
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3. PRELIMINARIES

3.1. Time-frequency analysis and modulation spaces. The funda-
mental operators in time-frequency analysis are the translation operators
T, and the modulation operators M, for z,w € R?, defined by

(T)(t) = vt —x),  (M)(t) =™ "(t)  for ¢ € L*(RY).

By composing these operators, we get the time-frequency shifts w(z) :=
M,T, for z = (z,w) € R?* given by

(m(2)¥)(t) = ™M (t —x)  for ¢ € L*(RY).
The time-frequency shifts 7(2) are unitary operators on L*(R¢), with adjoint
m(2)* = e " @r(—z) for 2 = (z,w). For ¢, ¢ € L?(R?) we use the time-
frequency shifts to define the short-time Fourier transform Vi of ¢ with
window ¢ by

(3.1) Vah(2) = (O, m(2)p) ;. for z € R*.

The short-time Fourier transform satisfies an orthogonality condition, some-
times called Moyal’s identity [37, 32].

Lemma 3.1 (Moyal’s identity). If 11,9, ¢1,¢2 € L*(R?), then Vy1; €
L*(R*) fori,j € {1,2} and

<V¢1¢1> V¢2¢2>L2 = <¢1>¢2>L2 <¢1a ¢2>L27

where the leftmost inner product is in L*(R?*?) and those on the right are in

L2(RY).

3.1.1. Wewght functions. To define the appropriate function spaces for our
setting — the modulation spaces — we need to consider weight functions on
R2?. In this paper, a weight function is a continuous and positive function
on R??. We will always let v denote a submultiplicative weight function
satisfying the GRS-condition. That v is submultiplicative means that

v(z1 + 22) < v(21)v(z) for any 21, 2o € R*,
and the GRS-condition says that

lim (v(nz))Y" =1 for any z € R*.
n—oo

Furthermore, we will assume that v is symmetric in the sense that v(z,w) =
v(—z,w) = v(zr, —w) = v(—x, —w) for any (z,w) € R*, which along with
submultiplicativity implies that v > 1 [40].

By m we will always mean a weight function that is v-moderate; this
means that

(3.2) m(z + z) < m(z1)v(zy) for any 21, 2, € R*.

The interested reader is encouraged to consult the survey [40] for an ex-
cellent exposition of the reasons for making these assumptions in time-
frequency analysis. The less interested reader may safely assume that all
weights are polynomial weights vs(z) = (1 + |z|)® for some s > 0.



GABOR G-FRAMES 7

3.1.2. Modulation spaces. Let ¢o be the normalized (in L?>-norm) Gaussian
do(z) = 2¥4e ™% for x € R, and let v be a submultiplicative, symmetric
GRS-weight. We first define the space M} (R?) to be the space of 1 € L*(R?)
such that

lh]| a2 == /R /Rd|v¢0¢(z)|v(z) dz < 0o.

For p € [1,00] and a v-moderate weight function m we then define the
modulation space MP (R?) to be the set of ¢ in the (antilinear) dual space
(ML(RY))" with

33 = ([ [ Wavrmera) "o,

where the integral is replaced by a supremum in the usual way when p = cc.
In (B3), Vi,v must be interpreted by (antilinear) duality, meaning that we
extend the definition in equation (B1I) by defining

V¢01/1<Z) = <w77r<z>¢0>(M%)/7M% .

For m = 1 we will write MP(R?) := MP (R?). We summarize a few of
the useful properties of modulation spaces in a proposition, see [37] for the
proofs.

Proposition 3.2. Let m be a v-moderate weight and p € [1, o).

(a) MP (R?) is a Banach space with the norm defined in (3.3).

(b) If we replace ¢y with another function 0 # ¢ € M} (RY) in B3), we
obtain the same space MP (R?) as with ¢o, with equivalent norms.

(c) If 1 < p; < py <00 and me S my, Ithen Mﬁlll(Rd) — M%(Rd).

(d) [f.fh< oo and % + z% =1, then Mf/m(]Rd) is the dual space of MP (R?)
wi

(3.4) GOy g = /R V(9 d

(e) The operators w(z) can be extended to bounded operators on MP, (R?)
with ()], < 0]y, for b € MR,

(f) L*(RY) = M?(R?) with equivalent norms.

(9) M}(R?) is dense in MP (R?) for p < oo and weak*-dense in M°(R?).

Remark 3.3. (a) Assume that p < oo. If ¢ € L*(R?) N Mf;m(Rd) and
Y € MP(RY) N L*(R?), then Moyal’s identity and (B.4]) implies that
(D, 0) 3 ayp = (&, %) 2. We will use this fact several times in the rest
1/m>7"m
of the paper.
(b) We defined modulation spaces as subspaces of (M, (R?))" = M, (R?).

If one restricts to weights v of at most polynomial growth, then M} (R%)
contains the Schwartz functions S(RY) and Mf;’v(Rd) is a subspace of

the tempered distributions &'(R?) [40].
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(¢) If m is v-moderate, then so is 1/m since we assume that v is symmetric:
for wy, wy € R?? we find by choosing 2z, = w; + wy and 2z, = —w, in
B2) that m(w;) < m(w; + wa)v(ws), hence

1 1
m(wy + we) ~ m(w)
The class of modulation spaces is therefore closed under duality for
p < 00.

v(wy).

3.1.3. Wiener amalgam spaces and sampling estimates. Some close relatives
of the modulation spaces are the Wiener amalgam spaces. For our purposes,
these spaces are interesting because they are associated with certain sam-
pling estimates. We first define, for 1 < p < oo, any lattice A and weight
function m, the weighted sequence spaces

,(4) = {{cm@ cC: el = lalPm(a)y < oo} ,
AEA
and £5°(A) is defined by replacing the sum by a supremum in the usual way.
Given any function f : R?** — C we define a sequence {a()}1ez2e by
agy = sup | f(z+k,w+1);

z,wel0,1]¢

the Wiener amalgam space W (LE,) on R?? is then the Banach space of
f :R%* — C such that

1A lwzzy = [Han Hle, @2y < oo
The following is Proposition 11.1.4 in [37].

Lemma 3.4. Let A be a lattice in R?*?, and assume that f € W(LP)) is
continuous. Then
1f|aller, S WS lwez,)

where the implicit constant may be chosen to be independent of p and m.
Since MY(R??) — W(LL) for m = 1, it follows that || f|aller S | fllae for
f € M*(R*),

By combining [12, Lem. 4.1] with Lemma [B:4] one obtains the following
result.

Lemma 3.5. Let A be a lattice, ¢ € M}(RY) and v € MP,(RY) where
p € [1,00|. Then

Votblaller, ) S Nllaey |91l ar,
where the implicit constant may be chosen to be independent of p and m.

3.1.4. The symplectic Fourier transform. As the Fourier transform of func-
tions f on R?? we will use the symplectic Fourier transform F,f, given
by
Fof(z) = (e 202 qy for f e LYR*), z € R%,
R2d

where o is the standard symplectic form o((x1, w1), (72, ws)) = w1 To—wo 1.
Then F, is an isomorphism on M!(R??), and extends to a unitary operator
on L*(R*?) and an isomorphism on M (R?*?) [28, Lem. 7.6.2].
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3.2. Trace class and Hilbert-Schmidt operators. By the singular value
decomposition, see Chapter 3.2 of [9], any compact operator S on L?(R%)
may be written as

No

for some Ny € N U {00}, two orthonormal systems {6300 {on}l, in
L*(R%) and a sequence of positive numbers {s,}.°, € (> called the singular
values of S. Here £ ® ¢ denotes the rank-one operator £ ® p(1) = (¥, p)r2€
for p,&, 1 € L*(RY). We assume that s, > s, for n € N.

Imposing summability conditions on the singular values of S allows us
to define two important classes of operators. The trace class operators T
are the operators S whose singular values satisfy {s,}°, € ¢'. The norm
1S1l7 = lI{sn}]|er makes T into a Banach space [9]. We may define a bounded
linear functional on 7 called the trace by

tl"(S) = Z(Snm 77n>>

neN

where {1, }nen is an orthonormal basis for L?(R?) — the value of tr(.S) can be
shown to be independent of the orthonormal basis used in its definition [9].
We also mention that the norm on 7 may be expressed by ||S||7 = tr(|S|)

The Hilbert-Schmidt operators HS are the operators S where {s, }°, €
2. The norm on HS can be expressed as the ¢? norm of the singular values,
but it will be more useful to note that ST € T for any S, T € HS and that
HS becomes a Hilbert space with respect to the inner product [9]

(S, T)ys = tr(ST).

Another description of HS is obtained by noting that it is isomorphic to
the Hilbert space tensor product L*(RY) @ L?*(R?), where the isomorphism
is obtained by associating rank-one operators ¥ ® ¢ € HS with elementary
tensors ¥ ® ¢ [33, Appendix 3].

3.3. Pseudodifferential operators. We will consider different ways to
associate functions on R?? with operators M*(R?) — M>(R?).

3.3.1. Integral operators. For k € L*(R??), we define a necessarily bounded
integral operator S : L2(R%) — L?(R%) by

(3.5) Sule) = [ Keg)o) dy for v € (R,

Here k = kg is the kernel of S, and one can extend the definition above to
k € M>(R*?) by defining S : M} (R?) — M>(R?) by duality:

(S¥, D)oo = (k0@ V) o for ¢,9 € MY(RY),

where ¢ @1 (z,y) = ¢(x)Y(y). By the kernel theorem for modulation spaces
[37, Thm. 14.4.1], any continuous linear operator S : M*(R?) — M>(R%)
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is induced by a unique kernel k = kg € M>(R?*®) in this way. Writing
operators using a kernel £ will be particularly useful for us because

(3.6) koap =0 @1 for ¥, ¢ € L*(R),
where ¢ ® ¢ on the left side denotes the rank-one operator ¢ ® WY€) =

(£,1) 2 ¢, and on the right side the function ¢ ® ¥ (x,y) = ¢(z)i(y). The
Hilbert-Schmidt operators are precisely those operators S : M'(R?) —

M (R?) such that kg € L*(R??).

3.3.2. The Weyl calculus. For £,n € L*(RY), the cross-Wigner distribution
W (&, n) is given by

W(En)(e.w) = [

R

¢ (z + E) n (z - E)G_Zm't dtfor (v,w) € R*.
) 2 2

Using the cross-Wigner distribution we introduce the Weyl calculus. For
f € M>(R?*) and &, € M'(R?), we define the Weyl transform Ly of f to
be the operator Ly : M'(R?) — M>(R?) given by

<Lfn7§>MOO7M1 = <f7W(€777)>M°°,M1 :

f is called the Weyl symbol of the operator L;. In general we will use ag
to denote the Weyl symbol of an operator .S, in other words L,, = S. By
the kernel theorem for modulation spaces, the Weyl transform is a bijection
from M*(R??) to the continuous linear operators M*(R?) — M*>(R?). As
above, HS has a simple description in terms of the Weyl symbol: S € HS
if and only if ag € L*(R*?).

3.3.3. Translation of operators. Several authors have considered the idea
of translating operators by a point z € R* by conjugation with m(2) [48,
28, [64]: if S : M'(R?) — M>(R?) is a continuous operator, we define the
translation of S by z € R?? to be

a,(S) =m(2)S7(z)".
This corresponds to a translation of the Weyl symbol [54, Lem. 3.2,
(3.7) OzZ<S) = LTZ(GS)7

which is a major reason why the Weyl symbol is useful for us when consid-
ering Fourier series of operators in Section [6l Since 7(z) is unitary, « also
respects the product of two operators in the sense that

(3.8) a.(ST) = a,(S)a,(T) for S,T € L(L?).

It is easily shown that a, is an isometry on 7, HS and £(L?) for any
2z € R?? and that applying a. to a rank-one operator ¥ ® ¢ amounts to a
time-frequency shift of ¢ and ¢ :

(3.9) a.(y ® ¢) = (w(2)9) © (n(2)9).

Furthermore, the map z — a, is a representation of the locally compact
abelian group R?? on the space of Hilbert-Schmidt operators. In fact, if
we identify the Hilbert-Schmidt operators with the Hilbert space tensor
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product L*(R?%) @ L*(R?), then « is the tensor product representation ™ @7
of R?? on L?(R%) @ L*(R?), which is the notation for o used in [28].

3.3.4. The Fourier-Wigner transform. For a trace class operator S € T,
the Fourier-Wigner transform Fw (S) of S is the function

Fw(S)(2) = e ™ “tr(n(—2)S) for z = (z,w) € R*.
As a special case, if ¥, ¢ € L?(R?) we have [54) Lem. 6.1] that
(3.10)  Fw(6@6)() = Vo) for 2 = (,w) € R,
and we also mention the easily verified relation
(3.11) Fw(S")(2) = Fw(S)(=2) for z = (z,w) € R¥,

Werner [64] has shown that in many respects Fy behaves like a Fourier
transform for operators, which is the interpretation we will often rely on.
For instance, a Riemann-Lebesgue lemma holds: if S € T, then Fy (5) €
Co(R?*?) and

(3.12) [Fw (S)lze < (IS]7

The Fourier-Wigner transform and Weyl transform are related by a sym-
plectic Fourier transform:

(3.13) Fw(5) = Fo(as),

which can be used to show that S € HS if and only if Fy (S) € L*(R*).
Finally, we remark that Fy(S) differs only by a phase factor e ™ from
the spreading function of S [6l, 28].

3.3.5. Localization operators. An important class of examples of pseudodif-
ferential operators in this paper will be the localization operators. Given
o € L*(RY) and h € L'(R*!), the localization operator AY € L(L?) is
defined by

AP = h(2)Vp(2)m(2)p dz  for ¢ € L*(RY),
R2d

where the integral is an absolutely convergent Bochner integral in L?(R?).
Localization operators interact nicely with the various aspects of pseudo-
differential operators considered above: their Weyl symbol is given by a
convolution [§]

axr =hxW(p,p)

and they satisfy the translation covariance property [54, Lem. 4.3 and the-
orem. 5.1]

(3.14) a.(AD) = A%,
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3.4. Frames and g-frames. We will briefly recall the basic definitions
of frame theory in the Hilbert space L?*(RY), referring the details to the
monographs [37, [0, 41]. Recall that a sequence {&;}ic; C L?(R?) is a frame
for L2(RY) if there exist constants A, B > 0 such that

(3.15) Al < 31, € el < BIYlE.  for any ¢ € LX(RY),
el

Here A and B are called the lower and upper frame bound, respectively.
If BI5) holds with A = B, we say that {&}iesr is a tight frame, and if
A = B =1 we call {{}ier a Parseval frame. Whenever the rightmost
inequality in (3.I3]) holds for some B > 0, {&; }ier is a Bessel system.

When {;}icr is a Bessel system, we associated with {&;}ic; several
bounded operators: the analysis operator C': L*>(R?) — ¢*(I) given by

Cp = {(¢, &) peYier  for ¢ € L*(RY),
the synthesis operator D : (*(I) — L*(R?) given by
D{ci}ier = Z ci& for {ci}ier € (1)
i€l

and the frame operator & = DC € L(L?) defined by
&) =Y (¥, &)2&  for ¥ € L(RY).

iel
In the introduction, see equation (LII), we introduced a special class
of frames called Gabor frames, which are frames of the form {m(\)¢}rea
for some lattice A and ¢ € L*(R?). More generally, a multi-window Gabor
frame [66] is a frame of the form {m(A\)@n}rean=1,. n Where ¢, € L?(R?)
forn =1, ..., N. We call the set {7m(\)@n }rean=1,. n the multi-window Gabor
system generated by {p, }N_, even when {m(A\)¢n }acan=1.. .~ is not a frame.

3.4.1. g-frames. In [62], Sun introduced g-frames as a generalization of
frames for Hilbert spaces. We state a special casd] for the Hilbert space
L*(RY). A sequence {A;}ier C L(L?) is a g-frame for L?(R?) with respect
to L2(R?) if there exist positive constants A, B such that

Allgl72 <Y Al72 < Bllyll7.  for any ¢ € L*(RY).
icl
If we can choose A = B, we say that the g-frame is tight. When the above
inequality holds, the g-frame operator & defined by

Sy = ATA
ieN
is positive, bounded and invertible on L*(R%) with A < ||&]|z2) < B.

IMore generally, we could consider A; € L(H,V;) where H is a Hilbert space and V;
is a closed subspace of another Hilbert space H’, see [62].
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4. THE SPACE B,g, OF OPERATORS WITH KERNEL IN M,

To define a suitable class of operators for our purposes, we will consider
modulation spaces on R??. The short-time Fourier transform on phase space

R is
V,f(2,) = {fim(z) @7(()g) . for 2,¢ € R* and f,g € L*(R*),
where 7(z) ® () is defined by

7T(Z) ® 71-(C)g = M(Zw,cw)T(Zx,Cx)g for z = (Zxa Zw)a g = (Cxa Cw)

Given a submultiplicative, symmetric GRS-weight v on R??, we consider the
Banach space M, (R*) of f € L?*(R?*®) such that

1l / / Vaosenf (2. O)0(2)0(C) dzdC < oo,

where ¢o ® ¢o(z,y) = ¢o(x)do(y). With these definitions it is easy to show
that if ¢,¢ € M}(RY), then ¢ ® ¢ € M}, (R*) with

(4.1) 19 @ llar,, = 10l lldllazz-

In fact, M}, (R?*?) is isomorphic to M}(RY) &M (R?) [5, Thm. 5], where &
denotes the projective tensor product of Banach spaces. This tensor product
construction is covered in detail in [61], but for our purposes it suffices to
note that

My, (R*) = M, (R")@M, (R?)

(4.2) _ {Z o @ 6@ > 16D arz 16222 < OO} )

neN neN

with an equivalent norm for M}, (R*®) given by

(4.3) 1/ 2z, = inf {Z |’¢1(11)|’M3”¢1(12)”M3}7

neN

where the infimum is taken over all sequences {gbnl }neN, {gb,(f)}neN in M} (R%)

such that f =37,y 68 @ 67 and 32, 160 1687 [lasy < oo,

We will be particularly interested in the class of operators S whose kernel
ks belongs to M, (R*®), as studied by several authors [31), 28, 52] for v = 1.
We denote the class of such operators by B,g,, and define the norm

151Bue0 = lIksllarz,, -

Since M., (R*?) — L*(R??), operators in By, define bounded operators
on L*(R%) by (B.3)). In fact (see [34, 36]) we have B,g, < T < L(L?), hence

1SNz < 11517 S 1Sl81e, — for S € Bugo-

Now recall from (B.6]) that the kernel of a rank-one operator ¢ ® ¢ with
P, ¢ € MH(R?) is the function ¢ ® 1. By ([@I) we get that

I @ PllBus, = Nzl llazy
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(we have also used that [|¢)||ar1 = ||¢)]|an as v is symmetric). Equation (Z.2)
therefore has the following important consequences.

Proposition 4.1. Let S € Byg,.
(a) There exist sequences {05 Ynen, {0 hnen C ME(RY) with

D 10 168 sy < 00

neN

such that S can be written as a sum of rank-one operators

(4.4) S=> o @l

neN

The decomposition ({4l converges absolutely in Byg,, hence in T and
L(L?).
(b)

IS]|5,5, = inf {Z ||¢>S>||le||¢§>||w} :

neN

with infimum taken over all sequences {gf)g)}neN, {gbg)}neN as in (a).
(c) Let S* denote the Hilbert space adjoint of S when S is viewed as an

operator L*(R?) — L*(RY). Then S* € B,g, and S extends to a weak*-

to-weak*-continuous operator S : Mf;’v(Rd) — Mf;’v(Rd) by defining

<S¢7 1/}>MT7U,M1} = <¢7 S*w>Mf7U,M1} fOT ¢ € f/C)v(Rd)7 1/} € Mg (Rd)

The decomposition in ([L4) still holds for this extensions of S, meaning
that
St =Y (4, ¢53’>M107 D for € M3, (RY)
neN

with absolute convergence of the sum in the norm of M} (R??).

(d) The extension of S to M, (R?) is bounded from My, (R?) into My (R?),

and maps weak*-convergent sequences in Mf/"v(Rd) to norm-convergent

sequences in M} (R?).

Proof. (a) By (A2), there exist {¢£})}n€N,{¢£3’}n€N as in the statement
with

ks(a,y) =Y 0P (2)6P(y)  for z,y € R,

neN
with absolute convergence of the sum in the norm of M}, (R?*?) by ().

Since the function gb,(f)(x) 2 (y) is the kernel of the rank-one operator

o) @ ¢ by ([B6), the decomposition of kg above and the definition of
| - ||B,g, implies that

S=Y P e,

neN

with absolute convergence in the norm of B,g,,.
(b) Follows from (&3] and ||5]8,., = |ks| s

vRU :
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(c) It is well-known that the kernel of S* is kg«(z,y) = ks(y,x). Since
M, (R*?) is closed under this operation — as follows from (EZ2), for
instance — we get S* € B,g,. In particular, part (a) applied to S* implies
that S* is bounded M}!(R?) — M!(RY). We may therefore define an
extension S : M5, (RY) — M (R?) by defining S to be the Banach
space adjoint of S*. By definition, this means that

($6.0) = (6.5 -

T My 1/v

It is easy to see that S is an extension of S: if ¢ € L?*(R?), we find that

(So.0) = (6.5 Ve an

7]\41 1/v
= (¢, 57 1
= <S¢7 w>L2
= (59, ¢>Mf7U,M7} :
From now on, we simply denote the extension S by S. For the last part,
note that S* has a decomposition 5* =3 o2 @ ¢ by part (a). By
definition, for ¥ € Mf;’v(]Rd), we have

(S, ¢>M§7U,Mg = (¥, 5"@) pree ML

1/v27 v
By the decomposition above, S*¢ = Y > <¢, q§511)> , ¢512), and as this
L
sum converges absolutely in the norm of M}(R?) we find

(S, ¢>M§7”,M5 = (¥, S*¢>Mf7v,Ml}

= <w,z RIS ¢£3>>
n=1

M3, M}

= > (0,00, (06,
n=1

- E <w7 ¢512)>Moo Ml ¢£Ll)7 ¢
1/v" v
n=1

The absolute convergence in the norm of M} (R??) follows as

1
Mgs,, M}

o

D

08 g a0
n=1

(d) The last inequality above also implies that S'is bounded from M, (RY)
to M!(RY), since it shows that

1/v

e 1azy < lares, Y NS arg 62 sy < 0.
n=1

1/v

1S9 llarg < Nbllarss, > N0 Marg 162 1asg-
n=1
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Finally, let {1;};en be a sequence in Mf/ov(]Rd) that converges to ¢ €

M5, (R?) in the weak* topology. Then

Swl = Z <wla ¢£L2)>Mf7v7M1} ¢£Ll) H—OO) Z <77Z)7 ¢£L2)>M107U7M1} ¢1(11) = S'QZ)
neN neN

We have used the dominated convergence theorem for Banach spaces
[42], Prop. 1.2.5] to take the limit inside the sum: as {1 };en is weak™-
convergent there exists 0 < C' < oo such that ||| My, < C for any i,
SO

H <77Z)za ¢512)>M1°7U,M7} gbgzl)

< Cl162 1 ana l|6P | asz
M}

for any i, and 3", 6% [ a |65 |4y < o0.
]

As a first consequence, we show that B,g, is closed under composition.
The proof is similar to that of [31], Cor. 3.11], where the result is proved for
locally compact abelian groups with no weights.

Corollary 4.2. B,g, is closed under composition: if S, T € Byg,, then

15T 8,00 S N5 11Boe 1T 10,
Proof. Let
S=) ¢V @e?, T=Y) o) ouvd
neN meN

be decompositions of S and T into rank-one operators as in Proposition 11
A simple calculation shows that the composition ST is the operator

ST= > (9, 69),, 60 @y,

m,neN

This decomposition converges absolutely in B,g,, as
1) (2 1 2 1 (2 1 2
I, &) 2 0 @ Wi, < (W), &) ol |62 @ 452,
<N 2102 2 08 are 105 1 vz

so that
> KW 6P L ol @ )|

m,neN

Bv@v
is bounded from above by

D RNl N a D 1622108 [1asz < oo

meN neN

We have used the continuous inclusion (see Proposition B.2) M}(RY) —
M2(RY) = L2(R%) to obtain ||’ ||z S [l [lay and |62 < llén” lass-
The inequality ||ST||5,0, S 1S118,e. 17| B,e, follows from part (b) of Propo-

vVRU NY vRU VRV

sition [4.11 ]
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Remark 4.3. In [28, Thm. 7.4.1] it is claimed that B,g, for v =1 is even
an ideal in £(L?). This is not true. Consider S = ¢ ® ¢y and T = ¢y @ ¢g
where ¢ € L*(R?)\ MY(R?). Then T € Byg; and S € T, and ST = 9 @ ¢o.
Yet ST(¢o) = 1 ¢ M'(R?), so part (d) of Proposition EI] implies that
ST ¢ Bl®1.

We next study a continuity property of the Fourier-Wigner transform on

Bugw-

Proposition 4.4. The Fourier- Wigner transform is bounded from B, to
W(Ly):
[Fw (S wwsy S 1Sl5.e.-

Proof. First consider the rank-one operator ¥ ® ¢ € B,g,, with ¥, ¢ €
M (R?). By (BI0) and the proof of [37, Prop. 12.1.11], there exists C' > 0
such that

| Fw (¥ @ O)llwryy < Cllv||a @] -

If we then use Proposition 1] to write S € Bygy as S = >y qbg) ® qbg),
we find

1Fw (Dllwey <D I1Fw (68 @ 68wy < CY 1680 an 165 ase-

neN neN
By part (b) of Proposition @1l this implies that || Fyw (S)||w i) < C||S||5

vRuv *

g

Remark 4.5. If we consider the polynomial weights vs(z) = (1 + |z|)® for
s >0 and z € R* it is known [37, Prop. 11.3.1] that the space of Schwartz
functions S(R*?) is given by S(R*!) = N2, M, 5, (R*¥). Therefore the space
of operators with kernel in S(R?*?) equals N2 B, ¢v,. Such operators were

recently studied in [47].

4.1. The space B and its dual. The largest of the spaces B,g, is the
space B := Big1, consisting of operators S with kernel kg in M'(R??). By
definition the map x : B — M (R?*¥) given by k(S) = kg is an isomet-
ric isomorphism of Banach spaces. By [58, Thm. 3.1.18] the Banach space
adjoint (k71)* : B — M*>(R??) is a weak*-to-weak*-continuous isometric
isomorphism, and by definition it satisfies

(4.5) <(/{_1)*(/~l), k:5>Moo = <A, S>B/ . fordeB.seB

Hence, to any A € B’ we obtain a unique element (x~)*(A) € M>(R??),
which by the kernel theorem for modulation spaces induces an operator
A MY (RY) — M>(R?) such that ky = (k7 1)*(A). We summarize these
identifications in a simple diagram, where k.t. refers to the kernel theorem
for modulation spaces:

4.6) AeB Vs () (A) = ka € MR &Y A e (MY, M™).

Hereafter we will always identify B’ with operators A : M*(RY) — M>(R%),
and use the notation A to refer to both the operator A : M'(R?) — M>(R?)
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and the abstract functional A, which are related by ([@G)). Since (x~)*(A) =
ka, (@3] becomes

(4.7) (A, ) 5 = (kacks)ym . for A€ B, S €B.

If S is a rank-one operator S = ¢ ® 1) for ¢, € M*'(R?), then kg = ¢ ® 1),
so the equation above becomes

(48) <A, ¢ ® ¢>B’,B = <kA7 ¢ ® @>M007M1 = <Aw7 ¢>M°°,M1 )

which relates the action of A as an abstract linear functional on B to the
action of A as an operator from M!(R?) to M>(R?).

Lemma 4.6. B is a dense subset of T with respect to || - || 7.

Proof. The rank-one operators span a dense subset of 7 [0, Thm. 3.11 (e)],
hence it suffices to show that any ¥ ® ¢ € T with ¥, ¢ € L*(R?) can be
estimated by some S € B. We may safely assume that ¢ # 0, otherwise
Y ®¢ =0 ¢€ B. Let ¢ > 0. Since M(R?) is a dense subset of L?(R%) by
[43, Lem. 4.19], we can find £ # 0,7 € M (R?) with ||ty — &1z < 55— and

2|8l .2
¢ —nllze < 55— Then £ ® ¢ € B and
2[I€ll .2

[W@¢—¢@nlr<lv©o—-E@olr+§@o—E@mnlr
=l = €lle2llllzz + €]l z2ll¢ — nllze <e

t

Now recall that £(L?) is the dual space of 7 [0, Thm. 3.13], where
A€ L(L* actson S € T by

(4.9) (A, S) g2y = tr(AS").

Since the inclusion B < T has dense range, [58, Thm. 3.1.17] asserts that
we get a weak*-to-weak*-continuous inclusion of dual spaces £(L?) — B’
satisfying

4.10 A SY e p=1(A,8) 10~ =tr(AS*) for A e L(L*),S € B.
BB L(L?), T

Remark 4.7. Readers with little interest in these technical details need
only note that we identify B’ with operators A € L(M!(R%), M>°(R?)), and

that the action of A satisfies (A7), (£8) and (£I10).

The next result is due to Feichtinger and Kozek [28]; in their terminology
the result says that Fy, and the Weyl transform are Gelfand triple isomor-
phisms. Recall that HS are the Hilbert-Schmidt operators on L?(IRY).

Proposition 4.8. The Weyl transform S <— as and Fourier-Wigner
transform S <— Fw (S) are isomorphisms B <— M(R?*?), unitary maps
HS «— L*(R?*%) and weak*-to-weak*-continuous isomorphisms B' <+—
Me°(R?%),
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An appropriate framework for such statements is the theory of (Banach)
Gelfand triples [28] 30} 13]. In particular, that approach gives the duality
bracket identity

(4.11) (S, T)B,ﬁ = (as, aT)MOO,Ml ,
where ag and ar are the Weyl symbols of S and T', see [13] Cor. 5].

Remark 4.9. We will often consider weak*-convergence of sequences in 5'.
To get a better grasp of this notion of convergence, note that if a sequence
{A, }nen C B’ converges in the weak* topology to A € B’ then (L)) gives
for v, ¢ € M (R?)

(Anth, @)y apr = (A, G) proe a1 -

Hence: if A, — A in the weak™ topology of B’, then A,1) — Ay in the
weak* topology of M>°(R?) for any 1 € M!(R?).

5. GABOR G-FRAMES

Gabor frames, or more generally multi-window Gabor frames, have a
richer structure than general frames. Since any frame is also a g-frame, we
can ask whether Gabor frames belong to a certain class of g-frames, and
whether this class contains other g-frames that share the rich structure of
Gabor frames. This is the motivation for the following definition.

Definition 5.1. Let A be a lattice in R?* and S € £(L?). We say that S
generates a Gabor g-frame with respect to A if {a,\(S5)}rea is a g-frame for
L*(R%), i.e. if there exist positive constants A, B > 0 such that

(51 Al <D lea(S)¥l7z < Bllwl7a  for any ¢ € L*(RY).
AEA

Remark 5.2 (Cohen’s class). This definition may also be rephrased in
terms of Cohen’s class of time-frequency distributions|[I1]. In the notation
from [55] an operator T' € £(L?) defines a Cohen’s class distribution Qr by

Qr(v)(2) = (Tm(2)" ¢, m(2)" ). for z € R*, v € L*(RY).
It is straightforward to show that

lo-(S) 72 = Qs-s(¥)(2),
hence (5.J)) may be rephrased as
Al¢lF: <Y Qs-s(W)(N) < BI¢ll7.  for any ¢ € L*(R?).
AeA

We will soon see that (B.]) forces S to be a Hilbert Schmidt operator, which
implies by [55, Thm. 7.6] that Qg+ is a positive Cohen’s class distribution
satisfying

(5.2) Qs+s(¥)(2) dz = /de le:(S)0II72 dz = IS I3l 1122,

R2d
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as recently studied in [55] [56]. This equality is a continuous version of (5.1]),
similar to how Moyal’s identity is a continuous version [ of the Gabor frame
inequalities (LI]). The simplest example of a Cohen’s class distribution of
the form Qg+ is the spectrogram Qg-g(2) = |V (2)|? for some ¢ € L*(RY),
which corresponds to the rank-one operator S = Wqﬁ ® ¢. By inserting

| () Y3: = Qss(¥)(2) = |Vap(2)|?, (BI) becomes the condition for ¢

to generate a Gabor frame. We return to this special case in Example [(£.4]

5.1. The Gabor g-frame operator. By the general theory of g-frames,
the g-frame operator associated to a Gabor g-frame generated by S over a
lattice A is the operator

(5:3) S5 = (ax(9)"(an(9)) = ) ax(575),
AEA AEA
where the last equality uses (B.8)). Furthermore, Sg satisfies
(G5t U2 =) llaa(S)ollz>  for ¢ € L*(RY),
AEA

and Gy is positive, bounded and invertible on L?(R?) with A < [|Sg||zz2) <
B and 4+ < |65 < 4. Since we think of a,(5*S) as the translation of

S*S by A € A, the g-frame operator &g corresponds to the periodization of
S*S over A.

5.2. Analysis and synthesis operators. Let ¢*(A; L?(R?)) be the Hilbert
space of sequences {1y }rea C L?(R?) such that

1/2
{oa |2 a2y = <Z ||@/)A||%2> < 00,

AEA
with inner product
({unt, {¢A}>z2(A;L2) - Z (x, Ox) 2 -
A€A

For S € L(L?) we define the analysis operator Cs by

Cs() = {an(S)}yep  for ¢ € LA(RY)
and the synthesis operator Dg by

Ds({tr}) =Y _an(S")en  for {ta}aen € £2(A; L7).
AEA
The upper bound in (5.I)) is precisely the statement that Cg : L?(R?) —
(?(A\; L?) is a bounded operator with operator norm < v/B. It is not difficult
to show that Dg is the Hilbert space adjoint of Cg, which implies that Dg

2In fact, Moyal’s identity says that the system {m(z)p},cgea is a tight continuous
frame for L2(R?) for any 0 # ¢ € L?(R9). See [10] for continuous frames. Similarly, (5.2)
says that {a,(95)}.crea is a tight continuous g-frame as introduced in [I].
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is bounded whenever Cy is, with the same operator norm as Cg. It follows
from the definitions that

65 - Dscg.

5.2.1. Dual g-frames. If S generates a Gabor g-frame over A, then the the-
ory of g-frames [62] says that the canonical dual g-frame is

{ax(9)65 }rea.

It is clear from (5.3) that a)(Sg) = Sg for any A € A, and it is then easy
to check that we also have a,(&3') = G5'. The canonical dual g-frame is
therefore

{oa(9)65 hen = {an(S)an(G5") haer = {aa (565" hren.

Hence the canonical dual g-frame is also a Gabor g-frame, generated by
S&'. We get the reconstruction formulas

”Lp 6565 ’l/} ZOZ)\ S* 6511/} ZOO\ Oé)\ 56 )w = DSCSGEIw7

AEA A€A
V=656t = 65" Y ar(S" ) =) an(65'5")an(S)¢ = D1 Csth.
AEA A€A

In the very last of these equalities we have used that 6;1 is a positive (hence
self-adjoint) operator, so (S&3')* = G55*. Inspired by these formulas and
the theory of dual windows for Gabor frames [37, 29], we say that two
operators S, T € L(L?) generate dual Gabor g-frames if S and T generate
Gabor g-frames and DgCr is the identity operator on L?(RY), i.e

(54) D oS =) (S T)p=v for any ¢ € L*(RY).

AEA AEA

If Dg and Cr are bounded operators (i.e. S and T satisfy the upper g-frame
bound in (5.1))), then (5.4) implies that both S and T generate Gabor g-
frames. This follows from the general theory of g-frames; see [62, p. 441]:
the lower bound in (5.1]) for T" follows from

10lZ2 = 1DsCroolle S 1O ey = D laa(T)¥llZ,
AEA
and the lower bound for S'is similar. We state this as a proposition for later

reference.

Proposition 5.3. Assume that S,T € L(L?) satisfy (5.4) and the upper
bound in (B10). Then S and T' generate Gabor g-frames.

5.3. Two examples. We will now show that the Gabor g-frames include
multi-window Gabor frames as a special case.

Example 5.4 (Multi-window Gabor frames). Consider a set of N < oo
functions {¢,}2_, € L?*(RY). We seek an operator S such that the multi-
window Gabor system generated by {¢,}Y_, is captured by the system
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{ax(S)}aea. To achieve this, let {£,}Y_, be any orthonormal set in L?(R?),
and consider the operator

N
§ =2 & on.
n=1

We start by writing out the condition (5.1) for S to generate a Gabor g-
frame. For ¢ € L?(RY), we easily find using (3.9) that

Sy = Z Vo, (M) (N)€

By the orthonormality of {£,}Y_, and Pythagoras theorem for inner prod-
uct spaces, this implies that [[a,(S)¢ 3. = anl |Vy, (N)[%. Inserting this
into (B.0]), we see that S generates a Gabor g-frame if and only if

AllYllZ> < ZZ Vo, oWI? < Bll|l7. ¢ € L*(RY)

AeA n=1

for some A, B > 0, which is precisely the condition that {¢,}"_, generate
a multi- Wlndow Gabor frame.

We then note that S* = ZnN:1 On ® &y, and S*S = ZnN:1 On @ ¢ by
the orthonormality of {£,}2_,. Denote by Cpr and &y the analysis and
frame operator associated with the multi-window Gabor system generated

by {¢,}Y ;. For ¢ € L*(R?), we find that

= {Z V%@Z)()‘)W(A)fn} ;o Cuw() = {V%@/)()\)}nezn,xe/\,
= AEA

N
ZZV% A)bn, Suw (V) = ZZV%@ZJ A)m(N)g

A€A n=1 AEA n=1

We see that the frame operators &g and S,y are equal. Since {7(A)&, }rnen
is orthonormal for each A € A, we also see that Cpw(¢0) and Cs(¢)) carry
exactly the same information: if we know Cg(v)), i.e. we know

> Vo, (NT(N)E

for each A € A, we can find Cpw () by

Vo t( <ZV¢n A, ()§m> :

Hence multi-window Gabor frames are Gabor g-frames.

A less trivial example was considered in [22] 23]. Section [0 will be ded-
icated to showing that the results from [23] hold for more general Gabor
g-frames, and not just for the following example. The fact that the results
of [22] is an example of g-frames was noted already by Sun [62].
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Example 5.5 (Localization operators). Let 0 # ¢ € M}(R?), A a lattice
and h € LL(R?!) a non-negative function. Here h € L!(R?*?) means that
1hllLy := [goa R(2)v(2) dz < co. Assume further that

A<y h(z=A)<B forall z € R
AEA

for some A’, B’ > 0. Then the localization operator A} generates a Gabor g-
frame over A [62], 23] 22]. The key to connecting the summability condition
on h to the Gabor g-frame condition for A} is equation (B.I4]). We will
return to this example in Section [.2

5.4. A trace class condition. In the definition of Gabor g-frames, we
only assumed that S was a bounded linear operator on L*(R?). We will now
show that S must be a Hilbert Schmidt operator. The following lemma is
essentially the same as [3, Lem. 3.1].

Lemma 5.6. Let T € L(L?) be a positive operator. If {&,}nen is an or-
thonormal basis for L*(RY) and {n;};en is a Parseval frame, then

tr(T) = Z <T€n, gn)LQ = Z <T77j777j>L2 :

neN jEN

Proof. Using the square root of the positive operator T, we have that

(Tnj, ;) e = (Tn;, TV ;) L, = | T2

Hence by Parseval’s identity

D AT e = 1T 0572

JEN jEN
2
- Z Z }<T1/277j7 £”>L2 ‘
j€N neN
- Z Z }<77ja T1/2§n>L2 ’2
neN jeN
=D NTV263 =) (T, &a)pe -
neN neN

n

Proposition 5.7. Let A be any lattice and assume that {ax(S)}rea satis-
fies the upper g-frame bound in (B.I)). Then S*S is a trace class operator.
Equivalently, S is a Hilbert Schmidt operator.

Proof. The upper g-frame bound implies that Y, [[aa(S)¢[[3. < oo for
any ¢ € L?(R?). There exist {¢,})_; C L*(RY) that generate a Parseval
multi-window Gabor frame over A [53], i.e. {7(A)@n =1, nren is a Parseval
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frame. Then Lemma [5.6] says that

tr(S*S) = Z Z (SST(A)pn, T(A)pn) 2

n=1 \A€A

[
WE

<S7T(>‘)‘an SWO‘)‘P?L)L?

1

>
-

3
Il

S

D IISTN)eallz.
A€A

[
M) =

1

By first using that 7(\)* = e 2"« Awr(—)) for A = (\,, \,), and then that
m(—\) is a unitary operator, we see that

1ST(N)enllze = 1S7(=A)"@allze = [l7(=A)ST(=A)"pull7--

3
l

Hence

tr(578) = Y Y MlaalS)enllie =Y Y laa(S)pnllze < oo

n=1 €A n=1 AeA

so S*S is a positive trace class operator, and S is a Hilbert Schmidt operator.
O

5.5. Periodization of operators and B. To prepare for the next section
on Fourier series of operators, we now consider the periodization of opera-
tors. The key to proving these results is [54, Thm. 8.2], which states that
for S € Band T € T, the function z — tr(a,(S)T) € M (R?*) with

(5.5) [tr(c= (S)T) s S NS BNT |7
and similarly for S € T and T € B
(5.6) [tr(a.(S) D) lare S IS 7IT |-

Proposition 5.8 (Operator periodization). The periodization map given
by S — > cn an(S) is a well-defined and bounded map B — L(L?):

ZOJ)\(S)

AEA

S 151,
L(L2)

and a well-defined and bounded map T — B':

> aa(s)

AEA

S Sl
B/

The sum Y, ax(S) converges in the weak™* topology of L(L*) when S € B,
and in the weak™ topology of B' when S € T .

Proof. Let S € B. Since £(L?) is the dual space of T [9, Thm. 3.13], we
define °,_, ax(S) € L(L?) by duality, by defining its action as an antilinear
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functional:
<Z a,\(S),T> = Z an(S), T)ppoyy forT €T,
AEA L£(L2),T AEA

To see that this defines a bounded antilinear functional on 7, we estimate
that

Z (@x(S), 1) ey 7

AEA

—Z’O‘A L2).T

AEA

= ltr(@($)T7) by @)

AEA
S It (S)T)||ar - by Lemma [3:4]

S ISsl Tl by E.3).

It is clear that the partial sums converge to this element ) ,_, a,(S) in the
weak* topology of £(L?): For any finite subset J C A we get

<Zax(5)—2ak(5),T> — Z (an(S), T) g2y 7
L),

AEA AeJ AEAJ

and we showed above that the sum 37, (@x(S5),T) z2) 7 converges abso-
lutely. Then let S € 7. We define )., ax(S) € B’ by duality:

<Zax(5),T> = (ax(8),T)g s for T eB.

AEA AEA

The estimate showing that this defines a bounded antilinear functional on
B with ’ZMA (ax(S),T) g B’ < ||S]|7||IT]| 5 is the same as above using (5.6)),
but note that we need to write (ax(S5),T), 5 = tr(ax(S)T™) to use (B.6) -
this is true by (£I0). O

Corollary 5.9. If S*S € B then {a(S)}rea satisfies the upper g-frame
bound

D llea(S)ellz: S ISSllslllza  for all g € L*(RY).
AEA

In particular, this is true if S € B.

Proof. We observed in the proof above (now with S*S instead of S) that
(5.7) > ’(&A(S*S),Th(m)xr SIS SHslI Tl
AEA

IfT = ¢®@v, it is simple to show that (ax(S*S), T) o (12) 7 = (ax(S"S) ¥, V) 12
and ||T||7 = ||¢]|32. Therefore equation (5.7)) says that

> (S S) e, 1) o] SIS S|lsll 13-

AEA
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As we have seen, (a,(S*S),¥) 2 = [|ax(S)¥]|3., which completes the proof
of the first part. If S € B, it follows from Proposition 4.1 and Corollary
that S*S € B. O

The fact that we only need S*S € B is useful in light of our treatment of
multi-window Gabor frames in Example[5.4l To a system {¢, }_, € M!(R?)
we associated the operator

N
n=1

where {&,})_, is an arbitrary orthonormal set in L?(R?). Hence we do not
necessarily have S € B, yet §*S = ZnN:1 On ® ¢, € B. A version of this
corollary for Gabor frames is well-known [37, Thm. 12.2.3].

6. FOURIER SERIES OF OPERATORS: THE JANSSEN REPRESENTATION

A key insight of Werner’s paper [64] is that the Fourier-Wigner transform
in many respects behaves as a Fourier transform for operators. Given a
lattice A C R??, this leads to a natural question: if an operator is in some
sense A-periodic, can we find a Fourier series expansion of the operator?
In fact, A-periodic operators were studied in [28], where an operator S was
said to be A-periodic if

ay(S) =S for any A € A.
An important tool in [28] is the adjoint lattice A° of A, defined by
A° = {\° € R¥: 7(\°)7(\) = 7(A)7(\°) for any A € A}
= {\° € R%: 20N — 1 for any A € A},

where o is the standard symplectic form. It is shown in [28] that A° is

a lattice, and |A°] = ITI\ One can interpret A° using abstract harmonic

analysis. Identify the dual group R2 with R by the bijection R?*? 3 z
X € R2d where ., is the symplectic character y,(2') = ™) With this
identification, we see that

A° = {X° € R*: y,o(\) =1 for any A € A}

Hence A° is the annihilator of A, and A° can therefore be identified with
the dual group of R??/A [21, Prop. 3.6.1]. By abstract harmonic analysis,
this implies that any well-behaved A-periodic function f on R?? can be
expanded in a symplectic Fourier series

f<Z> — Z C}\O€27rio()\°,z)’
A°eA°
and we will refer to {cye }aoeno as the symplectic Fourier coefficients of f.
Remark 6.1. The main results of this section, namely Theorems [6.0]
and [6.13] are due to Feichtinger and Kozek [28]. The spirit of our approach

is also the same as in [28] — we express operators as linear combinations of
time-frequency shifts by applying methods from abstract harmonic analysis
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to their symbol with respect to some pseudodifferential calculus. Since the
results form a natural and important part of the theory of Gabor g-frames,
we choose to include detailed proofs. Our proofs differ slightly from those
in [28] by using the Weyl symbol (rather than Kohn-Nirenberg symbol),
which makes it particularly transparent that the Janssen representation
is a Fourier series of operators (see Lemma [6.5]). This fits well with our
interpretation of Fy as a Fourier transform. We also extend the results of
[28] to trace class operators.

As our function and operator spaces we will use M!(R??) and B along
with their duals. In the following lemma A(R??/A) denotes the A-periodic
functions f : R?* — C with symplectic Fourier coefficients {cro }reene in
(*(A°), with norm

1f Lagezasa) = [[{exe Hlerae)-
A'(R*/A) denotes its dual space of distributions with symplectic Fourier
coefficients in ¢>°(A°). The proofs of the two parts of the next lemma can
be found in [25, Thm. 7] and [57, Prop. 13], respectively.

Lemma 6.2. Let A be a lattice and Py be the periodization operator

Pof =Y _TN(f) for f € M'(R™).
AEA
(a) Py is bounded and surjective from M'(R?*®) onto A(R?*?/A).
(b) The range of the Banach space adjoint operator Py : A'(R*™/A) —
M (R?%) is the set of A-periodic elements of M>(R??).

Remark 6.3. (a) A distribution f € M*>(R??) is A-periodic if T\(f) = f
for any A € A, where T)(f) is defined by

(TN(F)s 9 agoe arr = (s T-M(9)) are art

for g € M1(R??).
(b) If ¢ : R?¢ — R4 /A denotes the quotient map, then a simple calculation
using Weil’s formula [35, (6.2.11)] shows that Pi(f) = — - f o q for

f e AR2/A). "

Since Py f has absolutely summable symplectic Fourier coefficients when
f € M*(R*?) by Lemma [6.2] we can use Poisson’s summation formula to
find its symplectic Fourier coefficients, see [43, Example 5.11] or [2I, Thm.
3.6.3] for a proof.

Proposition 6.4 (Poisson summation formula). Let f € M'(R?*). The
symplectic Fourier coefficients of Ppf are {ﬁfo(f)()\o)},\o@o, i.e.

PAf(Z) _ ﬁ Z ‘F0<f)<)\o)627ri0()\07z)_

ACeA°
To use this to obtain Fourier series of operators, we need the following
simple lemma [20, Prop. 198].

Lemma 6.5. For any z = (z,w) € R*, the Weyl symbol of e ™1 (z) is

the function 2’ s e2™(%%).
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We will now consider Fourier series of operators arising as periodizations
of operators in B, in other words a Poisson summation formula for operators.
The second part of the result extends Janssen’s representation of multi-
window Gabor frame operators to Gabor g-frame operators. As mentioned,
this result is due to [28] who used it to prove the Janssen representation for
multi-window Gabor frames. In this and following statements, we use the
notation A° = (A2, A2) to denote the elements of A°.

x) 7w

Theorem 6.6 (Janssen’s representation of Gabor g-frame operators). Let
S € B and A a lattice. Then

> on(8) = i 3 FwlS)N)e (),
AEA A°eA°

In particular,
Gs =1 > Fwl(S S)(A\)e ™ Nom(X).

A°eA°

|A] A

Moreover, if S € Bygy, then {Fw (S)(A°)}roene € LE(A°).

Proof. Recall that ay corresponds to a translation of the Weyl symbol by
(B17). Since the map sending operators in B’ to their Weyl symbols in
M*>(R>?) is weak*-to-weak*-continuous by Proposition L8 and Y, , o (S)
converges in the weak™® topology of B’ by Proposition 5.8, the Weyl symbol

fof > caan(S)is
f =Y Ti(as) € M*(R™),
AEA

where ag is the Weyl symbol of S. Hence f = Ppag. By the Poisson sum-
mation formula the symplectic Fourier series of f is given by

) =15 D Falas)(X)etmod
‘ ‘ )\OEAO
Z -FW 27rw()\ ,2) by (m)
A°eA°

By Proposition I8 Fy (S) € M1(R?), so {Fw (S)(A\°)}reens € £1(A°) by
Lemma 3.4 — hence the sum above converges absolutely in the norm of
M®°(R?*®). Taking the Weyl transform of this using Lemma [6.5], we see that

Z OQ(S) Z FW —TIAZAS, ()\o).
AEA )\OEAO

For the last part, note that if S € B,g,, then Fy(S) € W(L.) by Proposi-
tion 4.4l and the result follows from Lemma 3.4l O

Example 6.7 (Multi-window Gabor frames). For {¢,}_, C M'(R?), w
saw in Example [5.4] that the frame operator of the multl window Gabor
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system generated by {¢, }_; equals &g for S = Z 1 £ @0, where {&, 10,
is any orthonormal set in LQ(]Rd) Then

N
= Z ¢n ® ¢n € B,
n=1
so by (B.10)
N N A
F(S7S)(N°) = D Fiw(dn @ 9n)(X°) = D ™75V, 60(X°).
n=1 n=1

Therefore Theorem gives that

Sy = W >, ZV%% (A)m(X°),

A°eA° n=1
which is the Janssen representation for multi-window Gabor frames [23] 45].
We can also prove that any periodic operator in B’ has a Fourier series
expansion. By considering Weyl symbols, this is essentially the fact that
any A-periodic distribution f € M>(R??) can be expanded in a symplectic

Fourier series, which follows from the second part of Lemma [6.2] The result
is due to [28].

Theorem 6.8. Let S € B' be a A-periodic operator. Then there exists a
unique sequence {Cxo }rocno € EOO(A") such that

(6.1) Z Cro€ TN (A0,
)\OGAO
with weak™ convergence in B'. Furthermore, the map
{cre Froene — Z c)\oe_m)‘g"\gw()\o)
A°eA°
is weak*-to-weak*-continuous from (> (A°) to B'.
Proof. We first show that series of the form ﬁ D oo Croe TATALT(N)

converge in the weak® topology of B’ when {c)} € ¢*(A°). For {cyo} €
0>°(A°), we define an antilinear functional on B by

1 3030 1 0.0
<m Z CAOe_WMx.)\wTr()‘O)aT> = m Z Che <6—7”>\x'>\w77—()\0)’ T>B/7B
BB

A°EA° AocA°

To see that this is a bounded functional, let ar be the Weyl symbol of T
Then

Z C)\ 677”)\ )\O ()\O)7 T>B/,B

)\OeAO

S D el

A°eA°

= D lox]

A°eAe

<€,7ri)\;')‘2:71'()\0)7 T>B/78’

tr(eiﬂiA;-ASJW()\O)T*)
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where the last step uses (4.9). By the definition of Fy and equation (3.11)),
e (0T = Ry (1) X) = T

We may therefore continue our estimate by

Z |C)\o| tr(e—m')\g-)\f,ﬂ()\o)T*) _ Z |C>\o J—_-W(T)()\o”
A°€EAN° AocA°
S Heae Hlee(aoy | Fw (T) || s by Lem. B.41

S IHexo Hleeao) | T']|8 - by Prop. &8

Hence ﬁ > oo Cro€ TN (X°) € B'. The same calculation without ab-
solute values shows that

1 Ceae e 1 "
(6.2) <W Y e () ),T> = 1A > e Fw(T)(X),
BB

A°eA° A°EA°
which implies that the map sending {cy} to this functional is in fact the
Banach space adjoint of the map B — ¢*(A°) given by T +— {ﬁfW(T)()\")}.
In particular, the weak*-to-weak™ continuity of the map

{cro} = Z Croe TN AT ()

A°eA°

follows, as does the weak™® convergence of the sum.
The uniqueness also follows: the map B — ¢*(A°) defined by T
{ﬁ]—"w(T)()\o)} is surjective by [25) Thm. 7 C)] hence its Banach space ad-

joint is injective. We then turn to finding {cye }reepo such that (61I) holds.
Since S is a A-periodic operator in B', its Weyl symbol ag is a A-periodic dis-
tribution in M*(R??). By Lemma 6.2 there exists f € A’(R>/A) such that
P f = ag, and we pick {cro }rcene to be the symplectic Fourier coefficients
of f. For any T € B we have from (ZII) that

(5, T>B',B = (as, aT>Moo,M1
- {ri7.on
= <JE7 PAaT>
— 37 R0 (B (@)D a0

In the last equality we have used the Poisson summation formula to get
that {‘%'Fo(aT)()\o)} xeene are the symplectic Fourier coefficients of Pyar.
By comparing this to (6.2)) and using Fw (T') = F,(ar) by BI3]), we have
proved (G.T). O

Remark 6.9. (a) The uniqueness part of the previous theorem amounts to
a well-known fact: if ). p0 crem(A°) = 0 for ¢ = {cao Facens € £7°(A°),
then ¢ = 0. Earlier proofs of this fact range from the rather complicated
[59] to the pleasantly elementary [39]. Our proof is similar to that in

Moo M1

A’(R24/A), A(R??/A)
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[39], and comes with a simple interpretation: the Fourier coefficients of
periodic operators are unique.

(b) If S € B’ is A-periodic and its Weyl symbol ag belongs to the space
A(R* /A) (i.e. its symplectic Fourier coefficients are absolutely summa-
ble), then there exists some Pg € B such that S =), , a\(Ps). This
is [28, Thm.. 7.7.6], and follows from applying the surjectivity in part
(a) of Lemma [6.2 to ag.

6.1. Poisson summation formula for trace class operators. When
S € T the periodization ), ., a\(S) converges in B’ by Proposition 5.8
and by Theorem [6.8] there exists {cyo} € £°°(A°) such that

Doan(8) = 3 exe ™ENA(N).
AEA A°€A°

If S € B, we know from Theorem that cyo is given by the samples of
Fw(S). However, even if S € T \ B, we know from the Riemann-Lebesgue
lemma ([B.12)) that Fy(S) € Co(R?*?). Hence the samples of Fyy(S) are still
well-defined, and we will use a continuity argument to show that cyo =

Fw(S)(A°) also when S € T\ B.

Theorem 6.10 (Poisson summation formula for trace class operators). Let
S eT. Then

]_ 230 .\ O °
Do aa(S) = 1 Do Fw(S)N)e N R(x),
AEA A€A
with weak™® convergence of both sums in B'.

Proof. Let {S,}nen C B be a sequence converging to S in the norm of T
using Lemma By Theorem [6.6], we have for each n € N that

(6.3) S (S, = ﬁ S Fin(Sa)(A)emNom(x°).

AEA AoEN®
By Proposition 5.8, the left hand side of (6.3]) converges to Y, , ax(S) in
B’ as n — oo. Then note that

[Fw (S)|ae — Fw (Sn)laclleeaey = | Fw (S = Sn)laclleeaey < IS — Shll7

by (BI2), hence the samples Fy (S, )[ae converge to Fy (S)[pe in £°(A°)
as n — oo. Combining this with the continuity statement in Theorem [6.8],
we see that the right hand side of (€3] converges in the weak* topology of
B’ to ﬁ > yeens Fw (S)(A°)e ™Aoo (A°) as n — co. As the limits of both
sides of (6.3) must be equal, the result follows. O

6.2. The twisted Wiener’s lemma. The results in the previous section
supplement the theory of the Fourier transform of operators, as introduced
by Werner in [64], by showing that periodic operators have a Fourier series
expansion. A classic result for Fourier series of functions is Wiener’s lemma:
if a periodic function is invertible and has an absolutely convergent Fourier
series, then its inverse has an absolutely convergent Fourier series. The same
holds for operators, by a result due to Grochenig and Leinert [38]. Recall
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that v is a submultiplicative, symmetric GRS-weight — the GRS condition
is crucial for this result.

Theorem 6.11. Assume that S = Y .cp0 Crem(A°) for some sequence
{cxo Froene € LL(A°) and that S is invertible on L*(R?). Then

S7TH=Y aper(\)
AO
for some sequence {axo }roens € £1(A°).

This has consequences for Gabor g-frames generated by an operator S €

Bugw-

Corollary 6.12. Assume that S € Bygy generates a Gabor g-frame over a
lattice . Then &g = 3" 0o @rem(X°) for a sequence {aye }roens € C5(A°).

Proof. &g is invertible on L?(RY) as S generates a Gabor g-frame. By the
Janssen representation in Theorem we can apply Theorem [6.11] to &g.
O

6.3. Wexler-Raz and some conditions for Gabor g-frames. Recall
that two operators S, T € HS generate dual Gabor g-frames if S and T
generate Gabor g-frames and

Z ax(S*T) =1  for any ¢ € L*(RY).
AEA

A characterization of dual Gabor g-frames is given by a version of the
Wexler-Raz biorthogonality conditions from [28]. We extend the result in
[28] to Hilbert Schmidt operators.

Theorem 6.13 (Wexler-Raz biorthogonality). Let S, T € HS such that S
and T satisfy the upper g-frame bound in (5.1]). Then

(6.4) Za,\(S*T)Q/J = for any ¢ € L*(RY)

A€A
if and only if
(6.5) Fw(S*T)(A°) = |A|dreo  for A° € A°.

Proof. Our assumption on S and T ensures that DgCrtp = >, an (S*T)¢
defines a bounded operator on L?(R%). Since S, T € HS, we have S*T € T
and by Proposition [6.10)

Za)\(S*T) = ﬁ Z F (S*T)(N)e ™o (\°).

AEA A°eA°

Equation (6.4]) states that the left hand side is the identity operator 7(0),
and the uniqueness part of Theorem implies that this is true if and only

if (6.5) holds.
U
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Note that under the assumptions of Theorem [6.13 both S* and T' gen-
erate Gabor g-frames by Proposition 5.3l As first noted in [2§], the theorem
reproduces the familiar Wexler-Raz biorthogonality conditions for Gabor
frames.

Example 6.14. Consider two sets of N functions {¢,}2_;, {vn}Y, C
L*(R?). As in Example (.4, we associate an operator to each of these sys-
tems:

N N
S =6 ¢, T=) &®n,
n=1 n=1

where {£,}Y_, is an orthonormal system in L?(IR%). Assume that the multi-
window Gabor systems generated by {#,}2_, and {¢,}2_, are Bessel sys-
tems, i.e.

ZZ Vo, bW S [ll7>  for any ¢ € L*(RY),

n=1 \€A

and the same inequality for ,. It is a simple exercise to show that this
condition implies that S and T satisfy the upper g-frame bound, so Theorem
6. 13 applies.

Note that S*T = S ¢,@1,,, and Fiy (S*T)(2) = €™ SN Vi dn(2)
by (BI0). We also find using (3.9) that

S (ST = 3 Ve nNw(N)on  for € L2(RY)
AEA AEA
Hence Theorem says that
n=> Vun\r(N¢n forne L*(RY)
AEA

if and only if
N
D Vi dn(X) = [Aldrep  for X° € A°.

This is the usual version of the Wexler-Raz biorthogonality conditions for
multi-window Gabor frames.

We note some simple consequences of Theorem (.13

Corollary 6.15. (a) Let S € B. If there exists some T € B such that
Fw (S*T)(0) # 0 and Fyw (S*T)(X°) =0 for \° # 0, then S generates a
Gabor g-frame.

(b) Let S € B. If there exist ¢, € M (R?) such that

Vo(S™)(X%) = [Adxen  for A° € A°,

then S generates a Gabor g-frame.
(c) If S € B satisfies N° N {z/ — 2" : 2/, 2" € supp(Fw(S))} = {0}, then S
generates a tight Gabor g-frame.
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Proof. (a) Define T = %T. Then S,T € B, so S, T satisfy the upper

(b)
()

S*T)(0
g-frame bound in (IEEI) b;f( )Corollary (.9 Hence Theorem applies
to give that S, T generate dual Gabor g-frames, and the result follows
from Proposition
Let T =19 ® ¢. Then S*T = (S*Y) ® ¢. Since Fy ((S*Y) ® ¢)(z,w) =
eV (S*)(x, w) by (B.I0), the result follows from part (a).
It is well-known (see [54] 28]) that

Fu(8'8)(2) = | Fw(S)(z = #)Fw(S)(#)emo) a2,

R2d
where the right hand side is the so-called twisted convolution of Fy (S*)
with Fy (S). (BI1) we get

Fur(5%8)(2) = /R Fa®F A Fw(S) () e

One easily deduces that a necessary condition for Fy (S*S)(z) to be
non-zero is that z = 2/ — 2", where both 2, 2" € supp(Fw (.5)), hence the
condition in the statement ensures that Fy (S*S)(A°) = 0 for A° # 0. In

addition, Fyy(S*S)(0) = tr(S*S) = ||S||3,s > 0. Therefore S = ﬂS

. 1S1l3es
satisfies o
S an(§ 8y = v
AEA
for any ¢ € L?(R?%) by Theorem [6.6, which implies that
S 2
S an(s sy = s,
AEA
U

Remark 6.16. (a) The condition in part (c¢) above can be satisfied if S

is an underspread operator (as defined by Kozek [49, 50, 51]), with
supp(Fw(S)) C Bg(0) for some small R > 0, where Br(0) C R*
is the ball of radius R centered at 0. In this case {2/ — 2" : 2/,2" €
supp(Fw(5))} C Ba2r(0), so by picking sufficiently small R the condi-
tion in the corollary can be satisfied. Such S may easily be constructed,
for instance by picking a smooth bump function f € M?!(R?*?) sup-
ported in Br(0) — since Fyy is bijective from B to M!(R??), there exists
some S € B with Fi(S) = f. By a result of Janssen [46] this simple
construction will never work for Gabor frames: there is no rank-one op-
erator S = 1) ® ¢ such that Fy (S)(z,w) = €™ “Vy1h(x,w) has compact
support.

If A is a separable lattice A = aZ? x BZ% for a, B € R, then A° = %Zd X
L7:4. 1t follows from the Janssen representation that if Fy (S*S) (% a) =
0 whenever 0 # m € Z¢, then the g-frame operator is simply the multi-
plication operator

W(t) — (?15 3" Fw(s°S) (o, g) e%m-t/a) b(t).

nczd
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If S is a rank-one operator ¢ ® ¢, this can be achieved by picking com-
pactly supported ¢ — this leads to the painless nonorthogonal expansions
of [14].

The Wexler-Raz conditions sometimes allow us to deduce that S and T'
generate dual Gabor g-frames, or, when S = T, that S generates a tight
Gabor g-frame. The Janssen representation also implies the following test
for deciding when S € B generates a (not necessarily tight) Gabor g-frame.

Proposition 6.17. Let S € B, and assume that Y 2, yocpo [Fw (S™S)(A°)] <
1S|3,s- Then S generates a Gabor g-frame.

Proof. By the Janssen representation and the fact that Fy (S*S)(0) =
tr(5*5) = HSH%{S >0,

Z Fuw(S78)(A°)e ™ Xor(X°)

AC€A°
*S O e o
— HSH'HS [+ Z ‘FW(S )( )677'('@)\1-)\“}7_‘_()\0) ’
Al osioane ISNs
::A

so Gg has a bounded inverse on L?(R?) if and only if A has a bounded
inverse. As

A= Tloany < S TESNI g
0#£NEAC ||S||H3

by assumption, the Neumann theorem [37, Thm. A.3] implies that A has a
bounded inverse on L?(R%). O

Remark 6.18. When S = ¢ ® ¢ for some ¢ € M*(RY), the proposition
above becomes a well-known result for Gabor frames. To our knowledge the
first appearance of this special case in the literature is [63, Thm. 4.1.1].

Corollary 6.19. Let 0 # S € B and A a lattice. There exists N € N such
that S generates a Gabor g-frame over the lattice %A.

Proof. Since ) \ocp [Fw (5*5)(A°)| < 0o by Theorem B8, there exists K €
N with

Z | Fiw (S*S)(A)] < [|S]ls-

[A°|>K
Let N € N be the smallest integer such that |[A°| > K/N for any 0 # \° €
A°, and consider the lattice I' = %A. Then I'° = NA° C A°. By definition,
the non-zero elements 7° € I'° are all of the form +v° = NA°. In particular,
they satisfy |[v°| > K and 7° € A°. Therefore

S IFw (SO < D 1Fw (S )M < 1S l5ss:
0#y°€Te |Ae|>K

hence S generates a Gabor g-frame with respect to I' = %A by Proposition
6.17. 0
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7. GABOR G-FRAMES AND MODULATION SPACES

It is a well-known fact that if a function ¢ € M} (R?) generates a Gabor
frame, then the 2 (A)-norm of the coefficients {V1)(A) }rea is an equivalent
norm to [|1)| e . To extend this result to Gabor g-frames, we will need to
introduce some appropriate Banach spaces. Once this is done, our proofs
will mainly proceed by reducing the statement for Gabor g-frames to the
statement for Gabor frames, which may be found in the standard reference
[37].

For p € [1,00] and a v-moderate weight m we define the space (2, (A; L?)
to be the Banach space of sequences {¥y}aen C L2(RY) such that

1/p
{oat e, aiz2) = (Z Hi/},\HiQm()\)p) < 00.

AEA

For p = oo the sum is replaced by a supremum in the usual way. For m =1
we write (P (A; L?) = (P(A; L?). The dual space of ¢ (A; L?) for p < oo is
f’l’//m(A; L?) with

(71) <{¢)\}7 {1/})‘}>€f,/m(A;L2),ﬁfn(A;L2) = Z <¢>\7 wA>L2

AEA

for {¢xr}ren € E’fl/m(A; L?), {thr}ren € €2 (A; L?). Tt is clear from the defini-
tions that finite sequences {1} ea (meaning that 1, # 0 for finitely many
A) are dense in (P (A; L?) for p < oo and weak*-dense in (5°(A; L?).

Remark 7.1. The norm [[{#x} ||, a;r2) equals [[{m(A) - ¥x}[r(a,L2), Where
LP(A, L?) is a vector-valued LP-space with A equipped with counting mea-
sure. Since m(A) > 0 for any A € A, we may immediately translate re-
sults from the theory of vector-valued LP-spaces, see Chapter 1 of [42], into
statements about (2, (A; L?). In particular, they are Banach spaces and the
duality (7)) follows from [42] Prop. 1.3.3].

We have already met the space (?(A; L?), and seen that C is bounded
from L%(R?) into ¢*(A; L?) when S generates a Gabor g-frame. The next
result shows that this result can be generalized to other p and m when

S € Bygo-

Theorem 7.2. If S € B,g, and p € [1,00], then the analysis operator Cyg is
bounded from MF (R?) to (%, (A; L?) with operator norm ||Cs||yz e a2y S
158y, where the implicit constant is independent of p and m.

Proof. Let
L)

neN
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be a decomposition as in part (a) of Proposition .1l Then

laa(S)b]| 2 = (me&” ® w<A>¢>£?>> W
neN L2
< V@] - [Im ()] 2
neN
=Y Ve 16Vl < S IV,ew)] - 160,
neN neN

where the last inequality uses M} (R?) — L2?(RY). Then assume that p < oo,
and use the inequality above and the triangle inequality for ¢2 (A) to get

1/p
<Z||0éx ) lfm (A >p>
) P 1/p
S (Z (ng)w [los! HM1> m(A)p>

AeEA \neN
= [ {16 aa
neN b (A)
< Ve (V)] - [l }
_neZNH{| ¢53>¢( - llonllary xeAller (a)
_ (M {v (X }
n%”% arz || Ve ¥ (V)] realle )

Sl Y N6 162 Nar: by Lemma B3

neN

The norm inequality ||Cs||op S [|5]|8,s. then follows from part (b) of Propo-
sition [£.1]. For p = 0o, we use Lemma to find that for any A € A

laa(S)ellzz - m(A) S D V@] -m(A) - 68|

neN
< 1l 3162 st 108 lary
neN
U
Theorem 7.3. If S € Byg, andp € [1,00], then the synthesis operator Dg is
bounded from (2, (A; L?) to MP,(RY), with operator norm || Dg||e, a.r2)nz S
15185, independent of p and m. For {i\}rea € €7,(A; L?), the expansion

s({ta}) =) an(S)w
Y

converges unconditionally in MP (R?) for p < oo and in the weak* topology
fMlo;’v(Rd) for p = occ.



38 E. SKRETTINGLAND

Proof. First assume that p < oo, and let {1, }aea be a finite sequence. Using
Proposition A1l we write S = > qbsll) ® ¢SL2). Then one finds using (3.9])

that
Ds({£a}) =D > Von(Nr(N)g
AeA neN
= Z Z V&lﬂﬁ,\()\)”()\)(?gf)
neN AeA

Interchanging the order of summation is allowed as the finiteness of the
sum over )\ implies absolute convergence in MP (R%): by parts (c) and (e)
of Proposition

7N lasz, £ v 62 llars
and by Cauchy—Schwarz and M} (RY) — L*(R%)

(7.2) V,ma(A = [, 1N | S oAl el as-

Hence the absolute convergence follows by

SOSN8

neN AeA
SN sl el - v(A) - 162 [ar:

neN AeA
= (Z ||¢1(11)||M1}||¢£3)HM,}> (Z ||%||L2v(,\)>
neN AEA
< Q.

Now apply the MP -norm to our expression for Dg({1»}). When passing to
the second line, we use [37, Thm. 12.2.4], which is the Gabor frame version
of the statement we are proving, and the implicit constant is independent
of p and m.

IDs({ws Pl < D213 Viowea()m(\) e

neN || AeA ME,

S D 162 1V, 00 Hlep, )
neN

<SP a2 an I 0all 2 Hlep, ) by @2
neN

= [{a e, aizey Y 162 [ar 168 11 ass-

neN

Since finite sequences are dense in (2, (A; L?), this shows that Dg extends to
a bounded operator (2, (A; L?) — MP (R?) and || Dsl|e, a.12)5 0z, S ”S”Bv@)v
follows from part (b) of Proposition .1l The same proof works for p =

when replacing the sum with a supremum. For the unconditional conver-
gence for p < oo, let J C A be a finite subset and let {1y }ren € 2, (A; L?).
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Then
IDs({a}) = > an(S)allhp may = IDs({¥ahren — {ahres)

AeJ
5 ”{wA})\GA - {wA}AEJ”%n(A;L%

= > lleallfm(\)

AEA\J

Asthesum ), [[¢a]|72m ()P converges by assumption, the estimate above
shows that for any € > 0 we can find a finite subset J. C A such that
[Ds({ta}) = Xoaes an(S)Unll}p < € whenever J. C J. It follows that
Y xea @a(S*)Yy converges to DS({w)\}) in the sense that the net of partial
sums converges, which implies unconditional convergence [37, Prop. 5.3.1].
If p = oo, let ¢ € M} (R?). Then

Z| an(S™)n, >M°° Ml‘

AEA

= Z | (x, an(S)P) ;2| by Prop. A1l (c)

AEA

< Z||’I7Z)>\||L2 || A(S)®||L2v(N) by Cauchy-Schwarz
A€A

< [{adless, i) HCS(@H%(A,L?)
S H{ales, i) [1S1lB.s, 191lazy - by Theorem [L2

Hence the sum ), , (aa(S )w,\,¢)Moo an converges absolutely for ¢ €
M(RY). O

When p < 00, {thr}ren € £, (A; L?) and ¢ € Mp ., (R?), one finds that

(6. D5 D)ty = <¢>, Zak<s*m>

AEA 1/
- Z SBL2Y MP, ME,
AEA /m
= (ax(S)p, )2 by Prop. B (c)
AEA

< ( ) {1/})\})\610 L (AL2), 00, (AL2)

In the same way, when {¢\}ren € El/m(A; L*) and ¢ € MP (R?), one shows
that

<DS<{1/})\})7 ¢>Mf;var€z = <{w>\}7 CS<¢>>f§);m(A;L2)7f§)ﬂ(A;L2) .

These calculations and the fact that Banach space adjoints are weak™-
to-weak*-continuous imply the following result.
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Corollary 7.4. Let p < oo. The analysis operator
Cs: MY (RY) = &, (A; L)
1s the Banach space adjoint of the synthesis operator
Dg : (7 (A; L) — MP (RY).

Similarly, the synthesis operator Dg : E’l’/m(A; L?) — Mp/ (RY) is the Ba-

nach space adjoint of the analysis opemtor Cs : MP(R?) — (P (A; L?). In

particular, both Cyg : Mf/m(Rd) — E’l’/m(A; L*) and Dg : E’l’/m(A; L*) —
Mf/m(Rd) are weak*-to-weak*-continuous.

Using the Janssen representation, we deduced in Corollary [6.12] that if
S € B,g, generates a Gabor g—frame then 6_1 has a representation

651 = | Z >\o7T

A°eA°

for some sequence {cyo } € £1(A°). Since 7()\°) is bounded on any modulation
space MP (R?) by Proposition 3.2, we find that &3' extends to a bounded
operator on any modulation space by

165 ¢l < I Z |exe[[lm(A*) ¢l g,

ACEA°
S Y el @l = 11 IH{exs Hleae)-
A°EA°

Then recall that the canonical dual Gabor g-frame is generated by the
operator S 651. The next result shows that .S 651 also satisfies the assump-
tions of Theorems and

Proposition 7.5. If S € B,g, generates a Gabor g-frame, then S&3' €
Bygo-

Proof. Let
5= Yo 0,

neN

be a decomposition of S from Proposition Bl For ¢ € L?(R%), this implies
that

S&5' =Y (&5, ¢y, oV

neN
=> (0, 65" .Y,
neN

where we have used that 651 is positive and therefore self-adjoint. Hence

561 Z(bl) ® (&3 ¢2))

neN
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and this decomposition converges absolutely in B,g, since

D 16 @ (65 05,6, = D N0 s 1656 |y

neN neN
S 2 N6 a9 sy < o0
neN
by the aforementioned boundedness of &3' : M} (R?) — M} (R?). O

Corollary 7.6. Assume that S € B,g, generates a Gabor g-frame. For any
Y € MP (RY), the expansions

Y= DsCyg1th = > an(S)ar(SS5" ) = Y an(5°565 )y,

AEA A€A
Y= Dgg1Csth = > an((S&" = a\(65'5"9)
AEA A€A

converge unconditionally in MP (R?) for p < oo and in the weak* topology
fo/ov(Rd) for p = occ.

Proof. We prove the result for DSCSG?, the same proof works for DsesglCS-
From the previous proposition, we know that S, S&3' € B,g,. In particular
we know from Theorem [7.3] that Dg is bounded from 2, (A; L?) to MP (R?),
and that Cgg-1 is bounded from MP (RY) to (P (A; L?). Hence DsCgg-t
is bounded on MP (RY). If p < oo, then the expansions in the statement
converge unconditionally by Theorem We know that DSCSG? is the
identity operator on L?(R?) from Section 5.2.1] and as M}(R?) C L*(R?) is
dense in MP (R?) by Proposition it follows that DSCG? is the identity
operator on MP (R?), so the expansions converge to ).

For p = oo the last part of the argument must be slightly modified:
M}(R?) is only weak*-dense in M2°(RY), so to conclude that DsCgg1 is
the identity operator on M2°(RY) we need to use that DsCgg1 s weak*-
to-weak*-continuous on M2°(R?) by Corollary [7.4. O

We are now ready to prove one of our main results, namely that Gabor
g-frames generated by S € B,g, define equivalent norms for modulation
spaces. By picking S as in Examples 0.4 and [R5, we recover results for
Gabor frames [26], 37, 27] and localization operators [22, 23].

Corollary 7.7. Assume that S € Byg, generates a Gabor g-frame. There
exist constants C, D depending on v and A such that for any 1 < p < o0
and v-moderate weight m we have

1/p
Cllvllaz < (Z lex (S ||L2m(/\)”> < D|[¢||arz,,

AEA
and ¢ € M, ' (R?) belongs to MP,(R?Y) if and only if

S lax(S)[Zm(AP < oc.

AEA
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For p = oo the sum is replaced by a supremum in the usual way.

Proof. By Theorem [.2] we have

1/p
(Z ||04A(S)||’£2m(/\)”> = 1Cs¥llez,a5z2) S 1Yz,

AEA
as Cg is bounded. On the other hand, Corollary says that

1/p
[¥llaeg, = 1Dz Cstdllam, S NCsll e, ase2) = <Z ||a)\(S)||I£2m()\)p> )
AEA

where we have used that Dgg-1 (A L?) — MP(RY) is bounded by
Proposition [Z.5 and Theorem [7.3

Finally, if >y, [laa(S)[[5.m(A)P < oo, then Cs(v)) € €2, (A;L?). As
Dgg-1 is bounded (A L?) — MP(RY), its follows from 1) = Dgg1Cstp
that ¢ € MP (RY). O

Remark 7.8. In this section we have assumed S € B,g,, but the result
also holds for operators S € T that can be written

§=> oo

neN

where ) ||¢512)||M3 < oo and {gbg)}neN is orthonormal in L?(R?). The
proofs of Theorems [Z.2] and [Z.3] still work, with upper bound ) H(bg) || a2
for the operator norms of C's and Dy (in the original proofs we use ”(bg) Iz <
H(bg)H M1, using H(bg)H 2 = 1 instead leads to this modified result). Since

S*S =3 en ¢53’ ® <;5§) € B, we can still use the Janssen representation to
get that &' is bounded on M} (R?), and the proof of Proposition [7.5 shows
that
585 = 3" o) 0 6502
neN

hence S 6;1 is of the same form. The proofs of the corollaries above still
work without change. In particular, this shows that our treatment of multi-
window Gabor frames in Example [5.4] is compatible with the theory of this
section.

7.1. Alternative characterization of Gabor g-frames and multi-
window Gabor frames of eigenfunctions. The norm equivalences in
Corollary [[.7] were proved for localization operators in [22, 23]. This section
is mainly a reinterpretation and slight extension of the results in [23] in
terms of Gabor g-frames — the main result is Theorem [[.12] which shows
that a surprising characterization of Gabor frames from [39] holds for Gabor
g-frames. We first need to understand the singular value decomposition of
operators in B,g,. The following is due to [23] when S is a localization op-
erator, and our proof is a slight modification of their proof to allow general

S € Bygo-
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Lemma 7.9. Assume that S € Byg,. There exist Ny € NU {oo} orthonor-
mal systems {E, 100, {on}h°, in L*(RY) and a sequence {s,}"°, € (' of
positive numbers with

No
(7.3) S = Z S$nén ® ©n
n=1

as an operator on L*(RY). Furthermore, ©,,&, € MYR?), and for A\ € A
the expansion

(7.4) an (S = Z sn (¥, W()‘)Spn>Mi>7val m(A)&n

n=1

holds even for ) € M°° (Rd), with convergence of the sum in L*(RY).

Proof. The existence of {£,}"%,, {@, }2°, and {s,}.°, with these properties
is the singular value decomposition from Section 3.2 To see that &, €
M, (R?), note that Proposition B says that S : M, (R?) — M;(R?). From
(T3) one obtains that M!(R%) > Sy, = s,&,, Wthh forces &, € M}(R?)
when s, # 0. Since S* € B,g, by Proposition .1, the same argument as
above gives that M} (RY) 3 S*¢, = s,pn, s0 0, € M} (RY).

We prove the expansion (4] for A = 0, without loss of generality. If
¥ € M3, (R?), we know from Proposition LI that Sy € My (R?) C L*(R?).
Thus we may find v € L?(R?) such that

No
S = (Sv, &)z &n +7,
n=1

where v L &, for each n < Ny. The sum converges in L?(R?) as S¢ € L*(R%)
and the set {, 01 is orthonormal. By Proposition 1], we get

(S, &) 2 = (99, Eadars, aap = (V5 S™€ndargs ary = Sn (s Pdars aa

hence we have shown
No

S@Z) = Z Sn <¢, @n)Mf?v,Mq} gn + 7,

n=1

and it simply remains to show that v = 0. Note that ||v||7. = (S¢,7) ;..
As is shown in the proof of [23, Cor. 7], we can pick a sequence {1}, y

in L?(R?) that converges to 1 in the weak* topology of My, (R%). Then
(Svi,7) 2 = 0, since (C3) shows that St; can be expanded in terms of
the &,, and ~ is orthogonal to each &,. However, S maps weak™*-convergent
sequences in Mf;’v(Rd) into norm convergent sequences in M!(R?), hence

Sip; — St in L*(R?) and

0= (S¢i, 72 = (5S¢, 7)1z = 1Vl
which completes the proof. Il
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Remark 7.10. The singular value decomposition in Lemma should be
compared to the decomposition from Proposition LIl There is one clear
advantage to the singular value decomposition S = Zgil Snén ® pp, namely
that the systems {¢, 2[21 and {gpn}nNil are orthonormal. The disadvantage
of the singular value decomposition is that, unlike the decomposition from
Proposition [4.1] it does not necessarily converge absolutely in the norm of
B,sv- In other words, we cannot guarantee that ZnNil Snllénllart lnllar <
oo. This was recently proved in [2], solving a problem first posed by Hans
Feichtinger.

The following result is used in the proof of [23] Lem. 9] for localization
operators S. Our proof is a slight modification of the proof in [23] to allow
general S € B.

Proposition 7.11. Assume that S € B and let {p,}2°, be as in Lemma
[7.9. If Cs : M>®(RY) — (>(A; L?) is injective, then there is some N < Ny
such that {o,}Y_, € MY(R?) generate a multi-window Gabor frame.

Proof. Assume that, for any N < Ny, {p,}»_, does not generate a multi-
window Gabor frame. Consider the set

Wy = {n € M>(R’) : (1, 7(A)n) pyoo = 0 for any A € A,n=1,...,N.}

By [23, Lem. 3], Wy is a non-trivial subspace of M*°(R?), and by [23] Lem.
10], the intersection of all Wy for N < Nj is a non-trivial subspace of
M>(R%). Let n be a non-zero element from this intersection, meaning that

(1, T(A)pn) proo apr = 0 for any A € A, n < No.

By (4), we have that ay(S)n = nNil Sn <71a7T(>\)<Pn>Moo,M1 (A&, = 0
for any A € A, since (1, 1(A\)@n) 1y ar = 0 for n < Ny. This means that
Csn = 0. Thus n = 0, which contradicts our assumption. Hence there is an
N < Ny such that {p,})_, generates a multi-window Gabor frame. u

For Gabor frames, the following theorem is one of the main results of
[39], and the reader who has consulted the proof of Proposition [.TT] may
have noted that the Gabor frame-version of the statement is the key to the
proof of that proposition.

Theorem 7.12. Let S € B. S generates a Gabor g-frame if and only if
Cs : M (RY) — £°(A; L?) is injective.
Proof. It S generates a Gabor g-frame, D SG;ICS is the identity operator on

M (R?) by Corollary [Z.8], hence Cy is injective. Then assume that Cg is
injective. Since S € B, Corollary says that the upper g-frame bound in
(5.1)) is satisfied. For the lower bound, Lemma [7.9 and Proposition [.11] say

that S = ZnNil $n&n @ @n, where {@,}N_| generate a multi-window Gabor
frame for some N < N,. Note that

loa(S)WIIZ2 = (an(S)e, an(S)1) 2 = (an(S™ )0, ¥) 1 -
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By the decomposition S = ZnNil S$nén @ @, and orthonormality of {£,}0°
we get
No

ax(SS) =D s2r(Nen @ 7(N)en,

n=1

hence

AEA AeA \n=1

=> 3 2V, u(\))

AeA n=1

>3 si Ve (WP

AN n=1
2 1vls,

since {©,})_; generate a multi-window Gabor frame and s, > 0 for n <
N. O

D llan(S)dlza =) <Z SiV¢n¢(A)W(A)¢n,w>

7.2. Localization operators and time-frequency partitions. In [22]
23], the methods from the previous section were used to prove the norm
equivalence in Corollary [7 for the localization operators A; in Example
5.5, i.e. assuming 0 # ¢ € M}(R?) and h € LL(R??) a non-negative function
satisfying

A<y h(z—A)<B  forall z € R
AEA
for some A’, B’ > 0. Their proof consists of applying Proposition [Z.I1] to ob-
tain multi-window Gabor frames of eigenfunctions of localization operators
to reduce the statement to the fact that multi-window Gabor frames give
equivalent norms for M? (R%). Since inserting p = 2 and m = 1 in Corollary
[[.7] gives the Gabor g-frame inequality, this means in particular that these
localization operators generate Gabor g-frames.

Remark 7.13. Obtaining multi-window Gabor frames consisting of eigen-
functions of localization operators is itself an interesting result. Dorfler and
Romero [24] use techniques from [60] to obtain frames consisting of eigen-
functions of localization operators in more general settings. If S = AY_,

then ay(S) = A% 0., 10 this sense, applying a corresponds to covering R?d
by shifts of 2, and the results of [24] consider much more general coverings

of R?? when S is a localization operator.

In order to apply the machinery of Section [7] to localization operators
A7, we need to show that A} € Byg,. The next proposition shows that this
is true if we assume the stronger condition h € L,(R*).

Proposition 7.14. Let p € M}(R?) and h € L, (R*). Then Af € Byg,.
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Proof. Tt is a straightforward calculation to check that the kernel of A} is

baple.) = [ BT (@) OL_eTip) ) dd,
For each t and &, the function

MeTyp(x)M_¢Tip(w) = ((t,§)p @ n(t, —€)P) (z,w)
belongs to M, by ([I) and part (e) of Proposition B2} with
(¢, &) @ m(t, —€)Blap = Im(t, ) llantllm(t, =Bl < v(t, €)%l eIz,

where we have used that v is symmetric in each coordinate. Hence

L I8 (e )o@ e ~09) s, e

is bounded from above by

el [ Ine©lote,)? dude
and this last integral converges by assumption. It follows that the integral
[ 1. ey w it ~eyp) dr
R

is a convergent Bochner integral in M}, (R??), thus k ae € M., (R*). O

The setting S = A allows us to interpret many objects and results for
Gabor g-frames in a natural way, in particular when h = xq € Ll (R24)
is the characteristic function of some compact 2 C R??. Since one has the
well-known inversion formula

Y= Vou(2)m(2)p dz  whenever ||¢|2 =1,

R2d

one interprets
A2 = /Q Va(2)n(2) da

as the part of ¢ that "lives in € in the time-frequency plane” [12]. For
brevity, we call AZ 1) the Q-component of 1. Since a\(A?,) = A%(XQ), we
see that ay (A%, )Y is the A\ + Q-component of ¢, where A +Q = {A + 2 :
z € Q}. The corresponding analysis operator

CAggQ (V) = {A%(Xﬂ)w}AeA

therefore analyzes 1 by considering its A 4+ {2-components as A\ varies over
A.

When AY actually generates a Gabor g-frame, Corollary [L.7] says that
summability conditions on the L2 norm of the A + Q-components of 1) pre-
cisely captures the modulation space norms of 1), as first proved by [22, 23].
Furthermore, Corollary shows us how 1 may be reconstructed from its
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A+ Q-components. By that result, there exists some R := A;‘C’Q6;‘%Q € By
such that

(75) v =" an(®) (4%, ¥) -

AEA

with unconditional convergence in whatever modulation space MP, (R?),
p < oo, that 1 belongs to. By Remark 5.2 there is also a Cohen’s class
distribution associated with A7, namely

Qag, W) = 145,y

This Cohen’s class distributions has an obvious interpretation: || A7, \¥[7.
measures the size of the z+{2-component of 1. By (5.2]) one has the equality

A A AR

This is a continuous version of the Gabor g-frame inequality (5.]) for local-
ization operators, in the same way that Moyal’s identity is the continuous
version of the Gabor frame inequalities.

It should be remarked that one usually associates a different Cohen’s
class distribution (independently of ) with localization operators AY_,
namely the spectrogram |V,1(2)|? [565, Example 8.1].

Remark 7.15. (a) Let us clarify the relation between our results and those
of [23]. As mentioned, Corollary [[.7 was proved in [23] for localization
operators A7 satisfying the conditions in Example [5.5] without the no-
tion of Gabor g-frames. The statements in Section [[.Il may all be de-
duced from proofs in [23], and we have merely reinterpreted them as
natural statements about Gabor g-frames. Proposition [Z.14] says that if
we assume h € L!,(R*) — a stronger condition than h € L}(R?%) as
assumed in [23] — then A satisfies the assumptions for the other results
in Section [1 In particular, we get the inversion formula (7.3)).

(b) The discussion above generalizes without change to other Gabor g-
frames
{arS}aen, but the natural interpretation of ||a,(S)]|3, above does not
necessarily hold when S is not a localization operator.

8. SINGULAR VALUE DECOMPOSITION AND MULTI-WINDOW GABOR
FRAMES

From the very first paper published on g-frames [62], it has been known
that g-frames correspond to ordinary frames when a basis is chosen for the
Hilbert spaces involved: if {4;}ie; C L£(L?) and {&, }nen is an orthonormal
basis of L?(R?), then {4;}icr is g-frame if and only if {A?&, biernen is a
frame for L*(R?)[62, Thm. 3.1]. Gabor g-frames must therefore be related
to frames in L?(R?), and we will now make this connection explicit. By the
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singular value decomposition, any S € HS may be expanded as

neN

where {&, }nen is an orthonormal basis for L*(R%) and Y, . [[¢nll72 < oo.
For ¢ € L?(R%) we find using (3.9) that

lan(S)¥ Iz = <ZVn Néns 3 Ve 0 NT(N)ém >

= Z Vs b\ Vo 0O (7 (A& T (A)m) 12
— Z V(N[

By comparing this with the definition (5.I]) of a Gabor g-frame, we see that
S generates a Gabor g-frame if and only if there exist A, B > 0 such that

Az <3 Ve, b WP < Bllll. for any ¢ € LA(R?),

AeA neN

in other words, if and only if the functions {¢,}, .y generate a multi-window
Gabor frame with countably many windows. Combining this with Propo-
sition [Z.T1], we obtain the following result on multi-window Gabor frames
with countably many generators.

Theorem 8.1. Assume that {¢,}, .y C M'(R?) such that Y, |lenllar <
00. If {¢n},en generates a multi-window Gabor frame for L*(R?), i.e. there
exist A, B > 0 such that

(81)  Apllze <Y Ve bW < Blllge  for any v € LARY),

AeA neN

then there exists N € N such that {cpn}gzl generates a multi-window Gabor
frame for L?(R%).

Proof. Let {&,},,cy be an orthonormal basis for L*(R%) such that [|&,[[an <
C for some C' > 0 — for instance a Wilson basis [37, Prop. 12.3.8]. Then let

Sszn@)gon.

neN

By our assumptions ) |l¢nllar < 0o and ||§,][an < C, this sum con-
verges absolutely in B. Hence S € B. By the arguments preceding this
theorem, (8.1 ensures that S generates a Gabor g-frame. Hence Theorem
and Proposition [T givel the existence of N € N such that {cpn}gzl
generates a multi-window Gabor frame for L*(R?). O

3Proposition [C.11] assumes that ¢, come from the singular value decomposition, but
this is not used in the proof besides using Lemma [7.9] to ensure that the decomposition
into rank-one operators converges.
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Remark 8.2. The fact that Gabor g-frames correspond to multi-window
Gabor frames with countably many generators, suggests that the duality
theory of Gabor g-frames (in the sense of Ron-Shen duality, see [37]) is
covered by the approach in [44], where multi-window Gabor frames with
countably many generators are considered.
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