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Abstract
Autonomous transportation is an increasingly popular concept and is gradually becoming a reality. This transformation
also changes the way people travel. For example, the autonomous ferry is an emerging alternative for residents living in
coastal areas. To evaluate the safety of an autonomous ferry, a thorough safety review is necessary. This paper makes an
initial attempt by developing a model for performing a risk assessment of collisions between an autonomous ship with
manned vessels and applying this to a specific ferry operating in a canal. The safety barriers to prevent a collision are
identified, as well as the respective failure modes. A Bayesian belief network is employed to model the collision and to
quantitively assess the collision risk of the autonomous ferry. Relevant data are collected to perform a quantitative risk
analysis. By running the model, the likelihood of a collision is calculated. A sensitivity analysis is also performed to identify
the most contributing causes.
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Introduction

Influenced by the digitalization trend, a transformation
of the transport industry toward autonomous transport
has started. Autonomy can contribute to improved effi-
ciency, reduced costs, and preventing human errors.
This autonomy trend also applies to maritime trans-
port. It is believed that the conventional vessels that
transport passengers and goods across rivers, seas, or
oceans may be remotely controlled and eventually fully
autonomous.1

Autonomous passenger ferries have been proposed
in recent years. In 2016, the Norwegian University of
Science and Technology (NTNU) launched a research
project named Autoferry, the major goal of which is to
build the world’s first autonomous urban passenger
ferry that can be certified for passenger transportation.2

This ferry is designed to be operating in the Trondheim
canal in Norway with a capacity of 12 passengers.2

Attractive as the idea of autonomous ferries seems,
there is a fundamental question that needs to be
answered before approval and commissioning: Is it
safe? Even though human-related errors may be
reduced, which account for a significant number of
marine traffic accidents, new safety issues related to,
for example, the reliability of the technology and cyber-
security, arise.

To understand the risk associated with passenger
transportation by autonomous ferries, a risk analysis
must be performed. DNV GL3 released a position
paper, which briefly mentions the safety assurance of
autonomous and remotely controlled ships. The
Maritime Safety Committee (MSC) of the International
Maritime Organization (IMO)4 finalized the regulatory
scoping exercise on Maritime Autonomous Surface
Ships (MASS) in 2021. A Preliminary Hazard Analysis
(PHA) of a prototype named MilliAmpere of the
Autoferry concept has also been conducted.5 In the
PHA, five categories of hazard types and more than a
hundred hazardous events were identified. Among the
various potential hazards, the scenario ‘‘collision’’ is
considered to be the most serious accident. This article
aims to quantify the collision probability in the design
phase between an autonomous ship with other crossing
ships.
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A lot of literature covers probabilistic risk assess-
ment of ship-ship collisions. For instance, Zhang et al.6

proposed an approach for risk analysis of collisions
based on AIS data. Hänninen and Kujala7 presented a
BBN where the factors were based on DNV8 to assess
the causation probability of a collision of large passen-
ger ships affected by weather and human factors. These
articles are concerned about traditional ships with crew
onboard.

Recently, there has been an increasing number of
publications on risk assessment of various aspects of
autonomous ships, for example, Tam and Jones9 on
cyber-risk and Zhang et al.10 on human errors.

Among the articles about systematic risk analysis of
autonomous ships, Wrobel et al.11proposed a primary
generic BBN by brainstorming to qualitatively assess
the risk of collision, grounding, etc., of MASS. A
system-theoretic model is developed to assess the safety
of autonomous merchant vessels in Wróbel et al.12 Fan
et al.13 proposed a framework to identify four cate-
gories of Risk influencing factors (RIFs) contributing
to the navigational risk of MASS. Zhou et al.14

employed System-Theoretic Process Analysis (STPA)
to co-analyze the safety and security issues of autono-
mous ships. Chang et al.15 use Failure Modes and
Effects Analysis along with Evidence Reasoning and
Rule-based Bayesian Networks to reduce the uncertain-
ties in the risk assessment of MASS.

The ships discussed in all the above-mentioned liter-
ature refer to large ships navigating in open waters
instead of canals. Also, most articles performed quali-
tative risk analysis while the quantitative risk analysis
in the literature assumes a generic ship design, without
considering the real number of equipment or backups,
which could have considerable influence on the risk cal-
culation and causal analysis as well. Further, the scope
of the literature on risk analysis of MASS is general
rather than focusing on specific scenarios such as
groundings or collisions.

The objective of this paper is to propose a risk
model that combines BBN with a traffic-based model
proposed in Kristiansen16 to include the impact of traf-
fic on the collision risk of MASS. The autonomy level
(AL) of the vessel is assumed to be AL-4, which means
‘‘Human in the loop: operator/supervisory – decisions
and action are performed autonomously with human
supervision. High impact decisions are implemented in
a way to allow human operators to intercede and over-
ride them.’’17 The risk model is based on the real used
equipment of the prototype ferry model named
MilliAmpere. The application is for a ferry, but the
model considers the common components of the auton-
omy system of any autonomous ship, that is detection,
decision, and propulsion system as well as remote
supervision. The proposed model is applied to the
autonomous ferry crossing a canal in Trondheim to

show the likelihood of a collision between the ferry and
a manned vessel.

The rest of this paper is organized as follows. The
risk model for collisions is described in Section 2.
Section 3 presents the application of the proposed
model to the Autoferry case, including data collection
for parameters in these models, estimation of collision
probability by running the models, and sensitivity anal-
ysis that identifies the causes with the most significant
influence on the occurrence of a collision. In Section 4,
the results are briefly discussed. This is followed by
Section 5, where conclusions are reached.

Methodology

A general model for impact accidents has been pro-
posed by Kristiansen.16 According to Kristiansen,16 the
probability of an accident is obtained by the probabil-
ity of losing the vessel’s navigational control multiplied
by the impact probability. In the scenario of a collision
between a vessel and other crossing vessels, the impact
probability can be interpreted as the probability that
the vessel enters the area where it is exposed to collision
hazards with other crossing vessels.16 It is shown in
Kristiansen16 as follows:

Pa =Pc 3Pi ð1Þ

Where:
Pa=The probability of an accident per passage.
Pc=The probability of losing navigational control

of the vessel per passage.
Pi=Impact probability.
Therefore, to derive the probability of an accident,

two parts of the work need to be completed. The first
part is calculating Pc, as presented in section 2.1. The
second part is calculating Pi, as presented in the follow-
ing section 2.2. The BBN model that is developed is
related to Pc, while the calculation of Pi is in accor-
dance with the model proposed by Kristiansen.16

Probability of losing navigational control of the vessel

In Kristiansen,16 the probability of losing navigational
control of the vessel per passage is obtained based on
historical data from accidents. However, no data are
available for autonomous ferries because it is a novel
concept and has not operated in practice yet. To solve
this challenge, a BBN model is developed to quantify
the probability of losing navigational control. BBN is
chosen because it is recommended by Thieme et al.18 as
a suitable tool for the risk assessment of autonomous
vessels.

BBN is a directed acyclic graph made up of nodes
and arcs, where the arcs represent conditional
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dependencies between nodes. The joint probability
P(U), where U= {A1, ., An} is calculated as:

P Uð Þ=
Yn

i=1

P(AijPa Aið Þ) ð2Þ

Where Pa Aið Þ is the parent set of variable Ai and
P(AijPa Aið Þ) refers to the probability of P Aið Þ given
Pa Aið Þ.19

The BBN is shown in Figure 1. It should be men-
tioned that many nodes of this BBN are inspired by or
adapted from the position paper from DNV GL3 and
the PHA report.5 The team that performed the PHA
consists of more than 10 experts from various fields
such as risk assessment, ship design, sensor fusion,
cybernetics, etc.5

As the BBN shows, there are two barriers against the
loss of navigational control – the autonomous control
system and the remote control. Loss of control will only
occur when both barriers fail.

First of all, the obstacle detection system, decision
system on maneuvers, along with the electrical propul-
sion system constitute the autonomous ferry’s control
system. These subsystems must all function for the con-
trol system to work, that is, the detection system must
accurately detect the obstacles, the decision system

should subsequently decide on feasible actions, and the
propulsion system needs to successfully implement
these actions. Only if all of these are successful, the
autonomous ferry operates normally.

The full sensor suite consists of one radar, two lidars,
four IR cameras, and four optical cameras. This may
vary from one ship to another, but in this case, it is
based on theMilliampere.

The remote control is another safety barrier besides
the autonomous control. The supervisor in the onshore
control room can take control of the ferry when needed.
The BBN shows that the failure of remote control can
be caused by either failure of the communication sys-
tem, obstacle detection system, propulsion system, or
remote supervisors’ failures in intervention. It is noted
that the remote control will also rely on the same obsta-
cle detection and propulsion systems, as the autono-
mous control.

Looking further down in Figure 1, the detailed
causes that lead to the failures of the safety barriers are
presented, including environmental hazards, cyber
attacks, reliability of technical components, human
errors, and so on. Notably, the propulsion system is
composed of two thruster packs (diagonally distributed
thrusters), Thruster pack A and Thruster pack B. The
function of either thruster pack can make the propul-
sion system operate normally. In other words, only

Figure 1. The BBN for losing navigational control over an autonomous ferry.
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when two thruster packs fail at the same time will lead
to the failure of the propulsion system. Similarly, there
are backup linear actuators and battery banks.

Calculation of the impact probability

When the autonomous ferry is transferring passengers
in the canal, other vessels are also occasionally crossing
the passage of the ferry. As a result, collisions could
occur. According to Kristiansen,16 for the scenario of a
crossing collision, the expected collision frequency Fi

per passage can be calculated using the below equation:

Fi = B1 +L2ð ÞNm1

n2
+ L1 +B2ð ÞNm1

n1
ð3Þ

where
B1=Beam of crossing ship (m)
L1=Length of crossing ship (m)
n1 =Speed of crossing ships (knots)
B2=Mean beam of the subject ship (m)
L2=Mean length of the subject ship (m)
n2 =Mean speed of subject ship (knots)
Nm1=arrival frequency of crossing ships (ship/unit

of time)
It should be stated that the Pi in equation (1) can be

viewed as equal to Fi when Fi is low. For instance, if
the calculated Fi is 0.01 per passage of the ship, in other
words, one collision is expected when the ship crosses

the canal a hundred times, then the probability that a
collision will occur per passage of the ship is 0.01.

Application

The following section presents the application of the
model, with the various data needed to conduct a quan-
titative risk assessment of collision between the proto-
type autonomous ferry named MilliAmpere in the
Autoferry project and other crossing vessels in the
Trondheim canal. It should be stressed that the autono-
mous ferry has not operated in the canal yet but is sup-
posed to run during the summertime in Trondheim.
Thus, this application is a risk assessment at the design
stage.

Operation of the ferry

The autonomous ferry will operate in the Trondheim
canal, connecting Ravnkloa and Vestre Kanalkai, as
shown in Figure 2. The beam and length of the ferry are
3.5 and 8.45m, respectively. The mean speed is 3 knots
(approximately 1.5m/s).

It is assumed that the autonomous ferry will operate
from 8 am to 6 pm every day in the summer season. The
frequency of crossings is assumed to be every 10min,
meaning the ferry will depart from either side every
20min. The duration of each transfer, including loading
passengers, crossing the canal, docking, and unloading
passengers, will be approximately 1.5min. Based on

Figure 2. The designed operation course of the autonomous ferry in Trondheim.
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these assumptions, the total number of transfers of the
autonomous ferry in the summer month of June is
1800, and June is used in further analysis.

Traffic data

Other traffic in the canal plays an important role when
assessing collision risk. In general, the busier the canal
is (the more boats, canoes, paddles, kayaks, etc.), the
higher the risk will be. Thus, to gather knowledge and
data of the traffic in the area of the canal where the
autonomous ferry will operate, simple observation and
counting of the crossing traffic have been performed.

On 12th June 2019, Wednesday from 15:15 to 18:30,
there were in total 34 crossing boats observed. On 15th
June 2019, Saturday from 12:15 to 14:15, there were 58
crossings, which means that this was a much more
crowded day than Wednesday.

Based on the observed data, the approximate num-
ber of all kinds of boats that cross the course of the
autonomous ferry for a weekday in June 2019 from
8 am to 6pm can be estimated as

34

3:25h
3 10h=104:62 ð4Þ

It should be clarified that this is a simplified estimation
of the actual traffic based on the assumption that the
traffic is constantly distributed over the day. If time
allowed, the observation of the traffic in the full day
should have been carried out. Likewise, the estimated
number of boats on a Saturday or Sunday in June 2019
from 8 am to 6 pm is

58

2h
3 10h=290 ð5Þ

There are 20 weekdays and 10 weekend days in June
2019. Thus, the estimated number of total crossing
boats in the canal in June is as follows.

203 104:62+103 290 = 4992:31 ’ 4992 ð6Þ

Weather data

Data for harsh weather – large precipitation
(ø 7.6mm/h) and strong wind (Gusts’ speed ø 10m/s)
– during the operation period of the autonomous ferry
in June 2019 in Trondheim are retrieved from Yr20 and
shown in Table 1. These data are the inputs to the

harsh weather nodes in the BBN that affect the prob-
ability of losing control of the ferry. The limit for the
large precipitation (ø 7.6mm/h) is based on the cate-
gories of rain intensity.21 However, the actual precipita-
tion limit should be verified against the design limit of
the sensors onboard the ferry. The limit for strong wind
(Gusts’ speed ø 10m/s) is chosen based on the design
of the ferry. It should be clarified that the fog or dark-
ness are not considered as influencing factors in our
case because, in the practice of the operation of the
autonomous ferry in urban water channels, the fog
rarely can be so dense that the visibility is too limited
for the ferry to operate in such a short distance, that is
crossing a channel. Also, the ferry is designed to oper-
ate in the daytime of the summer season, therefore the
darkness is not taken into account.

Failure probabilities

One of the key challenges when performing a quantita-
tive risk assessment is the availability of failure data.
Little or no specific data for autonomous ships are
available. In this paper, a variety of data sources have
been searched. Where we have not been able to find
data from literature, expert opinion from the PHA
workshop5 has been used. In general, it is considered
that this gives conservative estimates. All the occur-
rence probabilities for the nodes in the BBN are sum-
marized in Table 2.

It should be stressed that the estimated probabilities
are quantified in terms of per passage of the autono-
mous ferry. It should also be mentioned that some data
sources do not completely correspond to the compo-
nents. The data source for IR camera, for instance,
refers to the failure frequency of IR cameras used for
fire detection, rather than that detect objects on water.
Better data sources may be available in future work,
but the current data are used as a basis for the first step
of a quantitative risk assessment.

Conditional probability tables

The next step is to quantify the conditional probability
tables (CPT). This is based on the PHA workshop. One
of the CPTs is presented in Table 3. This table shows
how large precipitation could disturb the successful
detection of the obstacles around the autonomous ferry.
The effect is represented by the CPT.

Impact probability

The expected collision frequency is calculated based on
equation (3). In our case, the beam of a crossing
vessel is averaged to be 8.5 ft (2.59m) while the
length is 26 ft (7.92m). The speed of crossing vessels is
4 knots. Further, the arrival frequency of crossing
vessels, based on the observation, is

4992 crossing vessels in June
30 days3 10 hours of operation per day =16:64vessels=hour. With
the data for the autonomous ferry, as presented in

Table 1. Weather data based on data recorded in June 2019.20

Month Duration of
precipitation
ø 7.6 mm/h

Duration of strong
wind (gusts’ speed
ø 10 m/s)

June 1 h 2 h

Guo et al. 5



section 3.1, the expected collision frequency per passage
of the autonomous ferry, Fi, is calculated to be 0.06. As
stated in section 2.2, the impact probability Pi is almost
equal to Fi, which is 0.06.

Running the BBN model

The BBN can now be run with the input data provided.
The model is implemented in the software GeNIe 2.3
developed by Bayes Fusion LLC (https://www.bayesfu-
sion.com/). The probability results for some key nodes
are retrieved and summarized in Table 4.

The collision frequency can subsequently be derived
by multiplying the probability of losing navigational
control (per passage) with the number of passages of
the autonomous ferry and the impact probability per

passage, which are from section 3.3. The results for
June 2019 at the Trondheim canal are as follows:

� Number of passages of the ferry 1800
� Impact probability per passage 0.06
� Probability of losing navigational control per pas-

sage 3.8 3 1025

Table 2. Failure probabilities of the nodes in the BBN.

Item No. of failures Failure
frequency
(per hour)

Failure frequency
(per passage)

Note Source

Linear actuator 560 per 109 h 5.60E-07 1.40E-08 Beurden-Amkreutz22

Thruster 1 per 8 years 3.42E-05 8.56E-07 From manufacturer
Radar 1 per 1275 h 7.84E-04 1.96E-05 Radar for weather

observations
Zrnic et al.23

Lidar 1 per 109 h 1.00E-05 2.50E-07 From manufacturer
Large precipitation
( ø 7.6 mm/h)

1 h over 300 h 3.33E-03 8.33E-05 Yr20

Strong wind (gusts’
speed ø 10m/s)

2 h over 300 h 6.67E-03 1.67E-04 Yr20

Autonomy computer 2 per 106 h 2.00E-06 5.00E-08 Data for control
logic unit

OREDA24

Cyber attack 1 per 1 year 2.28E-04 6.85E-06 PHA
DP computer 2 per 106 h 2.00E-06 5.00E-08 Data for control

logic unit
OREDA24

Backup control computer 2 per 106 h 2.00E-06 5.00E-08 Data for control
logic unit

OREDA24

Battery bank 1 per 125,000 h 8.00E-06 2.00E-07 Adams et al.25

Communication system with
the remote-control center

5 per 1 year 1.37E-03 3.42E-05 PHA

IR camera 1800 per 109 h 1.80E-06 4.50E-08 IR camera for
fire detection

Beurden-Amkreutz26

Optical cameras 1 per 100 years 2.28E-06 6.85E-08 PHA
Probability of failures in obstacle
detection by sensors

1.00E-05 Wilthil et al.27

Failure probability of
decision system
on maneuvers to avoid collisions

1.00E-04 PHA

Human errors in the remote
operator’s intervention

0.16 Type C – difficult
task

Williams28

Table 3. The CPT for obstacle detection by sensors.

Large precipitation Yes No
Cyber attack Yes No Yes No
All sensors Fail Work Fail Work Fail Work Fail Work
Obstacle detection failure 1 1 1 0.001 1 1 1 0.00001
Obstacle detection success 0 0 0 0.999 0 0 0 0.99999

Table 4. The occurrence probabilities for the accident
scenarios for June 2019 at the Trondheim canal.

Node Probability (per passage)

Failure of autonomous control 1.2 3 1024

Failure of remote control 0.16
Losing navigational control 3.8 3 1025

6 Proc IMechE Part O: J Risk and Reliability 00(0)
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� Probability of collision per passage 2.2 3 1026

� Collision frequency per month 0.0041

Sensitivity analysis

The sensitivity analysis is aimed at identifying the fac-
tors that contribute the most to the probability of los-
ing control and accordingly to propose risk reduction
measures. A sensitivity analysis also indicates where
more effort should be put on data collection. If a factor
contributes very little to the losing navigational control
probability, reducing the uncertainty will have little
impact on the uncertainty in the total result and is
therefore of limited value.

Figure 3 presents the results for the sensitivity analy-
sis with losing navigational control as the target. The
analysis is performed in GeNIe 2.3. As can be seen in
Figure 3, the result is most sensitive to the Failure of
the Remote supervisor’s intervention. At the same time,
the probability applied for this node (0.16) is uncertain
because it is a generic failure probability number refer-
ring to a complex task requiring a high level of compre-
hension and skill.28 Therefore, another sensitivity
tornado diagram is generated conditioned that the fail-
ure probability of the remote supervisor’s intervention
drops to 0.09. The results are shown in Figure 4.

It must be stressed that a very low value of
1.0 3 1025 has been applied for the obstacle detection
system. This is also an uncertain value and depends on
whether many so-called ‘‘false alarms’’ can be accepted.
If the probability of successfully detecting obstacles is
high, there will also be many false alarms, meaning that
the ferry stops when it does not have to. To study the
effect of the failure conditional probabilities of obstacle

detection system, another sensitivity tornado is gener-
ated by increasing the conditional probabilities by a
factor of 10, from 1.0 3 1025 under large precipitation
and 1.0 3 1023 without large precipitation to
1.0 3 1024 with large precipitation and 1.0 3 1022

without large precipitation per passage, respectively.
The results are shown in Figure 5.

Discussion

Discussion of the results

As can be seen from Section 3.7, the probability of a
collision between the autonomous ferry with crossing
vessels is about 2.2 3 1026 per passage. Specifically
speaking, the probability of losing navigational control
of the autonomous ferry is 3.8 3 1025 per passage.
Compared to the historical probability of losing navi-
gational control for manned ships of 2.0 3 1024 per
passage,16 the autonomous ferry seems to have a lower
collision risk. The probability that the autonomous
control system fails is 1.2 3 1024 per passage. This
indicates the reliable capability of collision avoidance
for an autonomous ferry.

Section 3.7 also shows that for the autonomous ferry
operating in a summer month like June 2019 in the
Trondheim canal, the estimated collision frequency is
0.0041. If it is assumed that the autonomous ferry oper-
ates 6months each year, the result corresponds to about
0.024 collisions per year. However, this result is conser-
vative because the actual number of collisions could be
lower considering that other vessels can also perform
evasive maneuvers while encountering the out-of-
control autonomous ferry. For instance, assuming that
the probability of failed evasive maneuvers attempts by

Figure 3. Sensitivity tornado diagram for losing navigational control.
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the crossing vessels is 0.1, then the collision frequency
of autonomous ferry drops to 0.0024, or one collision
every 400 years.

From Figure 3, it is interesting to note that the fail-
ures of remote supervisor’s intervention and decision
system are almost equally the most contributing factors

Figure 5. Sensitivity tornado diagram for losing navigational control while the failure probability of obstacle detection system
increases by nine times.

Figure 4. Sensitivity tornado diagram for losing navigational control while the failure probability of the remote supervisor’s
intervention is 0.09.

8 Proc IMechE Part O: J Risk and Reliability 00(0)



to the loss of navigational control. Apart from these
two, failure of obstacle detection and cyber attack also
make significant contributions to causing a collision.
Thus, to improve the reliability of the remote opera-
tion, to improve the successful obstacle detection
rate, and to enhance cyber security could be effective
measures to reduce the risk of losing navigational
control.

Figure 4 shows that the remote supervisor’s inter-
vention becomes the second most sensitive node when
the failure probability decreases to 0.09. Further, the
probability of losing navigational control is only about
20% smaller than the original probability, indicating it
is not as much affected by the failure probability of the
remote supervisor’s intervention.

Figure 5 shows that the probability of losing naviga-
tional control is about 3.4 times larger than the original
probability when the probability of obstacle detection
failures is increased by a factor of 10. This shows that
the failure probability of obstacle detection system can
affect the occurrence of losing navigational control of
the autonomous ferry to a large extent.

The strengths and weaknesses of the model

The strengths of the proposed model are as followings:
Instead of using a generic value for the probability of
losing vessel navigation control, this work develops a
BBN to calculate the specific probability. The BBN
covers the whole process of the autonomous control
system – detection, decision, and action – to avoid
potential collisions. Even though the detailed technical
units in the BBN, for instance, the kinds and number
of sensors, the configuration of thrusters, etc. are based
on the design of the autonomous ferry in the Autoferry
project, the BBN can still be easily adapted to another
autonomous ship design.

The weaknesses of the model lie in the following
aspects: First, the developed BBN may have not cap-
tured all the possible causes that lead to a collision.
Also, certain nodes in the BBN are not fully developed
but assigned probability numbers instead. For instance,
one reason why BBN often is preferred as a method for
modeling is that it is well suited for including human
and organizational factors. In this case, the only non-
technical node is ‘‘Remote supervisor’s intervention.’’
The reason for this is of course that the system primar-
ily is autonomous, not relying on any human interven-
tion. The remote supervisor node could have been
expanded further and there will also be human involve-
ment in the design and maintenance of the systems that
could have been included. However, finding data for
such nodes would have been difficult and at this stage,
we consider the applied level of detail to be sufficient.

Uncertainties of the data

Data for the failure modes, weather conditions, remote
control are collected where possible. The traffic in the
canal during 2 days is observed and recorded, providing
practical data while obtaining the impact probability.
However, there are also uncertainties in the failure fre-
quency data and CPTs, especially in those data based
on expert opinion in the PHA. The uncertainty associ-
ated with the autonomous system is primarily related
to the software that interprets the signals from the sen-
sors and decides whether there is an object that needs
to be acted upon. This can be further studied by inves-
tigating the mechanisms of such software. Lastly, a lon-
ger period of observation, for example 1month, of the
traffic in the canal will be more useful.

Fortunately, not all uncertainties in data will neces-
sarily substantially affect the result. By conducting a
sensitivity analysis, failure of decision system, failure of
obstacle detection, and cyber-attack are among the top
nodes that influence the resulting losing navigation con-
trol probability the most. In contrast, the uncertainties
of other nodes, for example large precipitation, only
have little impact on the probability of losing naviga-
tional control. Thus, the uncertainties of data for the
topmost sensitive nodes could be carefully investigated,
for example by fault tree analysis for these nodes, in
future work to reduce the uncertainties and conse-
quently improve the conciseness of the model.

Further, considering that the presented BBN in our
article can be extended and revised when we have experi-
mental data of the autonomous ferry, a structured
uncertainty assessment, such as the work by Pitchforth
and Mengersen,29 can be followed in future research.

Conclusions

In this paper, a generic model is developed for risk
assessment of autonomous ship2manned vessel(s) col-
lisions. This model is further populated with data to
perform a specific quantitative probabilistic estimation
of the collision for the future autonomous ferry in
Trondheim, Norway. The data is based on literature
and two PHA workshops with experts, which build a
realistic and theoretically convincing foundation of this
work. Results from the case study reveal that the colli-
sion of an autonomous ferry with other boats is rather
unlikely to occur. This justifies the robustness and
applicability of the proposed model. This model can be
modified and adapted to other autonomous ships based
on their specific configurations.

In the future, this work can be improved by identify-
ing more causes of a collision, both from literature and
by communication with experts in the field of autono-
mous ships, modeling the failure mechanisms of the

Guo et al. 9



critical causes in the BBN, and reducing the uncertain-
ties of the most sensitive nodes. These are also the key
directions for the authors’ ongoing research.
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Table A4. The CPTs for the thruster control and the propulsion system.

DP computer Fail Work Thruster pack A Fail Work

Backup control computer Fail Work Fail Work Thruster pack B Fail Work Fail Work
Thruster control fails 1 0 0 0 Propulsion system fails 1 0 0 0
Thruster control works 0 1 1 1 Propulsion system works 0 1 1 1

Table A1. The CPT for the thruster pack.

Linear actuator
pack

Fail Work

Battery
bank

Fail Work Fail Work

Thruster
control

Fail Work Fail Work Fail Work Fail Work

Strong wind Yes No Yes No Yes No Yes No Yes No Yes No Yes No Yes No
Thruster
pack fails

1 1 1 1 1 1 1 1 1 1 1 1 1 1 0.171 1.71e-06

Thruster
pack works

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.829 0.999998

Table A2. The CPT for all sensors.

Radar Fail Work
Lidars Fail Work Fail Work
IR
cameras

Fail Work Fail Work Fail Work Fail Work

Optical
cameras

Fail Work Fail Work Fail Work Fail Work Fail Work Fail Work Fail Work Fail Work

All sensors
fail

1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Not all
sensors fail

0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

Table A3. The CPTs for decision system on maneuvers and communication system with the remote control center.

Cyber attack Yes No Cyber attack Yes No

Decision system fails 1 0.0001 Communication system fails 1 3.42e-05
Decision system works 0 0.9999 Communication system works 0 0.99997
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