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Abstract

In some designs of power systems for marine ves-
sels, large-size or medium-size Diesel engine(s) is(are)
used to drive one synchronous machine to generate
electricity, and the main propeller, simultaneously,
through a gear box. Such systems are subject to distur-
bances that may affect performance and fuel consump-
tion. The most important disturbances occur due to the
propeller torque, and load demand on the electric net-
work. In this work, a simplified state-space model is
suggested for such systems based on well known mod-
els of each component. The model considers the dy-
namics of the shaft, Diesel engine, and synchronous
machine with the propeller in their simplest models.
The output voltage and torque coefficient were mod-
eled as uncertain parameters. Then, exploiting feed-
back linearization, two controllers were suggested for
the proposed model to regulate the rotational speed of
the shaft. Firstly, by pole placement. The second is a
robust controller by mixed H2/H∞ synthesis. The re-
sults of the simulations of the proposed controller are
presented and compared.

1. INTRODUCTION
The power systems on marine vessels take many

configurations and designs according to their purposes,
and size. Companies in the field contend for designing
and manufacturing better systems regarding efficiency,
reliability, fuel saving, and environmental friendliness.
The Diesel engine is most commonly used due to its ef-
ficiency, and low cost [1]. The propellers are driven
either electrically (by a motor of any type), or me-
chanically (e.g. a Diesel engine) [2], [3]. In both

∗This work was sponsored by Norwegian Research Council and
SINTEF Fisheries and Aquaculture through the ImproVEDO-project

†M. Tuffaha is with the Department of Engineering Cybernetics,
Faculty of Information Technology, Mathematics and Electrical Engi-
neering, Norwegian University of Science and Technology, NO-7491
Trondheim, Norway mutaz.Tuffaha@itk.ntnu.no

‡J. T. Gravdahl is with the Department of Engineer-
ing Cybernetics, Faculty of Information Technology, Math-
ematics and Electrical Engineering, Norwegian University
of Science and Technology, NO-7491 Trondheim, Norway
jan.tommy.gravdahl@itk.ntnu.no

Figure 1: Schematic of the main network of the power
systems on board subject of research.

cases, Diesel engines are needed aboard to drive syn-
chronous machines to generate electricity. Lately, the
control of Diesel Generating Set (Genset) has become
one of the most important and indispensable topics in
the field. The authors in [4] noted that the air dynam-
ics of the turbo-charger may lead to undesired oscilla-
tions in the speed of the prime mover in power plants
driven by Diesel engines. Hence, they suggested an
adaptive controller to remedy these oscillatory dynam-
ics [4]. Spurred by environmental reasons and the urge
to save fuel, some systems, that have been developed for
marine vessels recently, comprise propellers that can be
driven mechanically and/or electrically. Such designs
exploit large or medium-size diesel engine(s) that can
drive both the main propeller, and synchronous machine
as shown in Fig. 1. The synchronous machine in such
designs works either as a motor or as a generator. When
the machine is driven by the electric power from the
bus as a motor, it is described as Power-Take-In (PTI),
whereas when it is driven by the mechanical power pro-
duced by the diesel engine to generate electric power, it
is described as Power-Take-Out (PTO). Hence, the sys-
tem operate in several modes, and can be considered as
a Hybrid system.

To the authors best knowledge, systems like the one
in Fig. 1 have not been treated in the control literature
as one system due to its complexity. The complexity



of the system arises from the fact that the propeller can
be driven electrically, or mechanically. Most of the au-
thors in this arena treat the two cases separately. For
example, the authors in [5], and [6] proposed two dif-
ferent approaches to tackle the problem of controlling
the Genset, but both of the works considered the pro-
peller as part of the load since it is driven electrically.
Our target, as a future work, is to put a model for this
hybrid system in all modes of operation, then, design a
supervisory power generation controller. However, as a
first step, a simplified model is proposed for the above
system in this work. Inasmuch as the system described
is complicated, the following assumptions were made:

1. The synchronous machine is working in one mode,
PTO.

2. The Diesel-engine is medium-size.

3. Low-level controllers are used to regulate the pro-
peller torque, and output voltage of the generator.

Then, well known simplified models of each compo-
nent of the system described were combined. The fre-
quency converter is not included in the model as it is
presumed that regulating the shaft speed of the syn-
chronous machine guarantees that the fluctuations in
frequency could be handled by the low level controllers
of the converter. The output voltage and torque coeffi-
cient were modeled as uncertain parameters. Then, due
to its ability to handle disturbances, feedback lineariza-
tion was exploited to design two different controllers for
the proposed model to regulate the shaft speed. A con-
troller by using the regular pole placement technique
was proposed. Then, a mixed H2/H∞ controller was
designed for its robustness against uncertainties, based
on the strategy proposed in [7]. Simulations of the pro-
posed model were performed with the two control tech-
niques for comparison purposes.
The proposed model is developed in the next section. In
the third section, the feedback linearization is applied to
get a control law by pole placement. Then, the robust
controller is presented. Section V presents the results of
the simulations performed. Finally, some conclusions
are drawn in the last section.

2. MATHEMATICAL MODEL
The shafts of the propeller, synchronous machine,

and diesel engine are geared to each other, so before de-
scribing the mathematical model, let us define the no-
tation used for the gearing effect. First, let RXY denote
the gear ratio between gear X and gear Y , such that:

RXY =
ΩX

ΩY
, (1)

where Ω is the rotational speed in rad/sec. Note that
RXY = 1

RY X
. Since the shafts are geared to each other,

the rotational speeds can be related, according to (1),

as:
ΩP = RPMΩM (2a)
ΩE = REMΩM, (2b)

where the subscripts M, P, and E denote the machine,
propeller, and diesel engine, respectively. The torque
applied to (obtained from) any shaft will affect the an-
gular acceleration of the other two shafts. Let Q be
the torque applied or obtained. Let the sub subscript
denote the side, e.g., QEM denote the engine torque as
seen from the machine side, then:

QEM = REMQEE , (3)
and for simplicity, let QEE be denoted by QE .
2.1. Shaft Dynamics

The main diesel engine drives both the syn-
chronous machine and the propeller. The torque applied
by the engine on the shaft will accelerate all the shafts.
Besides, there will be a counter torque on the propeller
shaft, and the synchronous machine. Hence, the engine
main shaft dynamics can be written as:

QE = RMEJMΩ̇M +RPEJPΩ̇P +QME
+QPE +Q f

= R2
MEJMΩ̇E +R2

PEJPΩ̇E +RMEQM
+RPEQP +Q f

= (R2
MEJM +R2

PEJP)Ω̇E +RMEQM
+RPEQP +Q f , (4)

where JM is the moment of inertia of the machine and
its shaft, JP is the moment of inertia of the propeller,
and its shaft. Q f is the frictional torque. Alternatively,
the dynamics of the engine shaft can be transferred to
the machine side to get:
(JM +R2

PMJP)Ω̇M = REMQE −QM−RPMQP−Q f
(5)

2.2. Synchronous Machine Model
The synchronous generator model, in per unit

(p.u.) notation, and in dq-frame, can be stated as [8]:

ψd =−Xd id +XFd iF (6a)
ψq =−Xqiq (6b)
ψF = XF iF −XFd id , (6c)

and
0 = ωMψq +ud (7a)
0 =−ωMψd +uq (7b)

ψ̇F = ω0(−RF iF +uF), (7c)
where ψd , ψq are the d−, and q−axis components of
the stator flux linkages, respectively. ud , and uq are the
d−, and q−axis components of the terminal voltage.
id , and iq are the d−, and q−axis components of the
stator current. iF , ψF and uF are the field circuit cur-
rent, flux linkage, and voltage, respectively. Xd , and Xq
are the d−, and q−axis components of the stator self
inductance. XF , and RF are the field circuit self induc-
tance, and resistance, respectively. XFd is the mutual in-
ductance between the field circuit and stator windings.



Moreover, ωM is the rotational speed of the rotor in p.u.,
which is given by:

ωM =
ΩM

ΩMbase

, (8)

where ΩMbase =
ω0

(p/2) , with p the number of poles, and
the nominal frequency ω0 = 2π f0, as given in Table
1. Note that from (8), the p.u. values of the rotational
speeds are equal since:

ωM =
ΩM

ΩMbase

=
RMPΩP

RMPΩPbase

= ωP

=
RMEΩE

RMEΩEbase

= ωE ,

where the base quantities are given in Table 2. Hence,
from here on ωM = ωP = ωE = ω .
It is worth noting, that damper windings, and stator re-
sistance are neglected in (6), and (7), and so is stator
flux dynamics (i.e., ψ̇d = ψ̇q = 0). After some alge-
braic simplifications, The equations (6), and (7) can be
rearranged to give:

ψ̇F = ω0

[
1

τF

(
−Xd

X ′d
ψF +

XFd

X ′d

uq

ω

)
+uF

]
, (9)

where τF = XF
RF

is a time constant and X ′d = Xd −
X2

Fd
XF

.
The electromagnetic torque obtained from the machine
in p.u. is given by (see [8]):

QM = ψd iq−ψqid , (10)
which can be rewritten by using (6), and (7) as:

QM =

(
1

Xq
− 1

X ′d

)
uqud

ω2 +
XFd

XF X ′d

udψF

ω
. (11)

From here on Q denotes the torque in p.u., instead of
the previous notation of Q. Let δ = ( p

2 )ΩMt −ω0t +
δ0 be the angle between the rotor and a synchronously
rotating reference as depicted in Fig. 2, then:

δ̇ = ω0(ωM−1). (12)
Let U be the terminal voltage of the stator of the
synchronous machine, then the terminal voltages in
dq-frame would be, ud = U sinδ , and uq = U cosδ .
Thus,(9), and (11) can be rewritten as:

ψ̇F =
ω0

τF X ′d

(
−XdψF +XFd

U cosδ

ω

)
+ω0uF , (13)

and

QM =

(
1

Xq
− 1

X ′d

)
U2 sin(2δ )

2ω2 +
XFd

XF X ′d

UψF sinδ

ω
.

(14)

2.3. Propeller Model

The propeller torque depends on the size and type
of the propeller, and the operational mode of the vessel.
The models can be complicated if more than one oper-
ational mode is considered. The propeller torque of the
fixed pitch propeller (FPP) is modeled by [2], [3], and

Figure 2: dq-frame in the synchronous machine and the
angles involved.

[9] as:
QP = ρD5KQn2

P (15)

where nP = ΩP
2π

is the rotational speed in rev/s, ρ is the
density of water in Kg/m3, D is the propeller diameter in
m, and KQ is the dimensionless propeller torque coeffi-
cient. The coefficient KQ depends on the advance ratio
(J), which in turn depends on the advance speed (ua).
Many models have been suggested in literature to model
the torque coefficient KQ and describe its dependence
on J, and ua, see e.g. [2], and [3]. In this work, we
suggest considering KQ as an uncertain parameter. To
justify, propeller torque is usually controlled by multi-
level controllers that are beyond the scope of this work.
Our target is to investigate the ability to regulate the ro-
tational speed of the described system regardless of the
propeller torque variation. Thus, accepting the afore-
mentioned argument, the model above can be described,
in p.u., as:

QP =
ρD5

QPbase

KQn2
P

=
ρD5

4π2QPbase

KQΩ
2
P. (16)

Inserting (1), and (2) in the above, one can get:
QP =CQP KQω

2, (17)

where, CQP =
ρD5Ω 2

Pbase
4π2QPbase

is a constant, and the base quan-

tities are as given in Table 2.
2.4. Diesel Engine Model

Many mathematical models have been suggested
for the diesel engines. The models vary in their com-
plexity according to the size and properties of the en-
gine, the purpose of the model, and the kind of the con-
trollers used. Because they were interested in the air dy-
namics of the turbo-charger, the authors in [4] suggested



a sixth order model for the Diesel engine, turbo-charger
and generator shaft, in which they used a first order
model for the fuel actuator, and a time delay to repre-
sent the engine itself. Similarly, the following model
was used in [10]:

Q̇E =
1
τE

(−QE +KuuDE(t− τD)), (18)

where, τE is a time constant, uDE is the input signal to
control the fuel actuator, and τD is the time delay. In the
interest of keeping the model simple, and inspired by
the work in [5], we neglect the combustion delay and
assume that the dynamics of the fuel actuator consti-
tutes the essential dynamics of the engine. Thus, divid-
ing by QEbase given in Table 2, the model above can be
described in p.u. system as [5]:

Q̇E =
1
τE

(−QE +K′uuDE), (19)

where K′u =
Ku

QEbase
.

2.5. Frictional Torque
The main contributions to the frictional torque on

the system are experienced in the side of the syn-
chronous machine and the side of the propeller. Hence,
the frictional torque can be modeled in its simplest
form as a combination of two components. Linear
viscous torque on the propeller shaft (see [9] for fur-
ther details on frictional torque), and damping torque
in the synchronous machine to compensate for neglect-
ing the damper windings and their effect on the electri-
cal torque produced by the machine as suggested in [8].
Thus, the frictional torque in p.u. can be written as:

Q f = K f ω +KD(ω−1), (20)
where K f is the propeller linear friction coefficient, and
KD is the damping torque coefficient of the synchronous
machine, taking in consideration the conversion to p.u.
system.
2.6. Final Model

Dividing the model in (5) by QMbase , and by using
the base quantities given in Table 2, the models in (13),
(17), (19), and (20) can be grouped with the model in
(5) in one complete state-space model as follows:

δ̇ = ω0(ω−1)

ω̇ =
1

2HT

(
QE −QM−QP−Q f

)
ψ̇F = −ω0

τF

Xd

X ′d
ψF +

ω0

τF

XFd

X ′d

U cosδ

ω
+ω0uF

Q̇E =
1
τE

(
−QE +K′uuDE

)
, (21)

where HT is the p.u. inertia constant given by:

HT =
1
2

(JM +R2
PMJP)Ω

2
Mbase

Sbase
=

1
2
(JM +R2

PMJP)ΩMbase

QMbase

.

(22)
The model as given above has two input controls (u f ,
and uDE ). Usually, the output voltage U , and the pro-
peller torque coefficient KQ are considered as outputs

and controllers are designed to regulate them. In this
work, U and KQ are modeled as uncertain parameters
grouped in the vector θθθ = [θ1,θ2]

T = [U,KQ]
T . The

output of interest is the difference between the rota-
tional speed and the nominal speed (y1 =ω−1), and the
main objective of the proposed controller is to regulate
the shaft speed, under the disturbance imposed by the
output voltage and the propeller torque coefficient. Ac-
tually, regulating the shaft speed of the system is impor-
tant in order to regulate the frequency of the electrical
output of the machine, since the output frequency de-
pends on the rotational speed. Further, it was assumed
that low level controllers can take care of small devia-
tions in output frequency.
Since we are modeling the output voltage as uncertain
parameter, we consider the flux linkage as another out-
put (y2 =ψF ), because it is related to the output voltage.
Further, this assumption makes the system a square 2x2
MIMO system. Thus, the rotational speed ω , and flux
linkage ψF were assumed measurable. Let the vector
x = [x1,x2,x3,x4]

T = [δ ,ω,ψF ,QE ]
T be the state vec-

tor. Let, also, u = [u1,u2]
T = [uF ,uDE ]

T be the input
vector. Then, the model in (21) can be rewritten as:

ẋ = f(x,θθθ)+g1(x,θθθ)u1 +g2(x,θθθ)u2,
y1 = h1(x)
y2 = h2(x) (23)

where,

f(x,θθθ)=

 f1(x,θθθ)
f2(x,θθθ)
f3(x,θθθ)
f4(x,θθθ)

=


ω0(x2−1)

1
2HT

(
x4−QM−QP−Q f

)
−ω0

τF

Xd
X ′d

x3 +
ω0
τF

XFd
X ′d

θ1 cosx1
x2

− 1
τE

x4

 ,
where QM , QP, and Q f are as given in (14), (17), and
(20) respectively. Moreover,

g1(x,θθθ) =

 0
0

ω0
0

 , g2(x,θθθ) =


0
0
0
K′u
τE

 ,
and

h1(x) = x2−1, h2(x) = x3.

3. FEEDBACK LINEARIZATION

The uncertain parameters, in general, induce dis-
turbances on the dynamical systems. The author in [11]
discussed in detail the so-called disturbance decoupling
problem, in which he discussed the conditions required
to make ”the feedback control law render an output y in-
dependent of some disturbance d [11]”. Let us assume,
for this section, that the uncertain parameter θθθ is fixed.
The model in (23) has a relative degree two with respect
to output y1, i.e., r1 = 2. It also has relative degree one
with respect to output y2, i.e., r2 = 1. Following the pro-
cedure in [11], define the characteristic matrix βββ (x,θθθ)



as:

βββ =

[
Lg1L f h1 Lg2L f h1
Lg1L0

f h2 Lg2L0
f h2

]
=

[
ω0

∂ f2
∂x3

K′u
τE

∂ f2
∂x4

ω0 0

]
.

(24)
Then, according to [11], since the matrix βββ is nonsingu-
lar, a diffeomorphism (η ,z) = T (x,θθθ) exists (see Ap-
pendix. A), and is given by:

[
z
η

]
=


z(1)1
z(1)2
z(2)1
η

=

 h1(x)
L f h1
h2(x)

φ(x,θθθ)

 . (25)

This transformation is used to linearize the system in
(21). The dynamics of the new states with this transfor-
mation can be stated as:

[
ż
η̇

]
=


ż(1)1
ż(1)2
ż(2)1
η̇

=


z2

L2
f h1 +β1(x,θθθ)u

L f h2 +β2(x,θθθ)u
φ̇(x,θθθ)

 (26)

where β1(x,θθθ) is the first row of βββ (x,θθθ), and so on.
Moreover, the outputs are:

y1 = z(1)1
y2 = z(2)1 . (27)

By this transformation, the new model is split into two
parts; external part (z), and internal part (η) (see [11],
and [12]). The idea now is to choose a function φ(x,θθθ)
such that the internal dynamics are independent of the
control input, because this makes the stability of the sys-
tem easier to be obtained as will be explained later, oth-
erwise more complicated techniques would be required.
So, letting the internal dynamics be:

φ(x,θθθ) =
sinx1

x2
, (28)

makes the internal dynamics η̇ independent of the con-
trol input. Let the derivative of η be expressed as a func-
tion of the new variables, i.e., η̇ = φ̇(η ,z) = χ(η ,z).
The zero dynamics is defined as the internal dynamics
around the zero of the linearized system, that is to say:

η̇ = χ(η ,ze), (29)
where ze is the equilibrium point of the external dynam-
ics, which can be assumed, without loss of generality,
zero. Then, according to [12], and [11] the origin of
the system in (26) is asymptotically stable if the ori-
gin of (29) is asymptotically stable (see lemma 13.1 in
[12] and the proof therein). Straight forward calcula-
tions show that the zero dynamics is, actually, asymp-
totically stable. Thus, the concern is directed now to the
external dynamics only, which can be rewritten as:

ż(1)1 = z(1)2
żr = ααα(z,η)+βββ (x,θθθ)u, (30)

where zr = [z(1)r1 ,z(2)r2 ]T = [z(1)2 ,z(2)1 ]T , and ααα(z,η) is
given by:

ααα(z,η) =

[
Lr1

f h1

Lr2
f h2

]
=

[
L2

f h1
L f h2

]
. (31)

If the feedback control u is chosen such that:
u = βββ

−1(v−ααα(z,η)), (32)
where v = [v1,v2]

T is an auxiliary stabilizing input con-
trol, then the external dynamics can be written as two
subsystems like follows:

ż(1)1 = z(1)2
ż(1)2 = v1, ż(2)1 = v2, (33)

which is linear and controllable. Then, one can find a
control law:

v = Kpz, (34)
that stabilizes the system in (33) by pole placement, for
example.

4. ROBUST CONTROL

Although feedback linearization provides a good
tool to deal with disturbances through disturbance de-
coupling, the disturbance induced by nonlinear uncer-
tain parameters can be problematic. Firstly, the diffeo-
morphism T (x,θθθ) does not provide exact linearization.
Further, the equilibrium point varies due to its depen-
dence on the parameters (see xe in Appendix. B). The
authors in [7] suggested an elegant way to tackle these
problems by mixed H2/H∞ synthesis. The authors in
[7] proved that if the uncertain parameter has a nomi-
nal value θθθ 000, and the function f(x,θθθ) can be linearized
about θθθ 000 as:

f(x,θθθ) = f0(x,θθθ 000)+ f∆ (x,θθθ), (35)
where f0(x,θθθ) is calculated at θθθ 000, then the external dy-
namics in (26) can be rewritten, by the control law in
(32) (calculated at the nominal values), as [7]:

ż(1)1 = z(1)2 +L f∆ h1

ż(1)2 = L f∆ L f0h1 + v1

ż(2)1 = L f∆ h2 + v2. (36)

Now, let z = [z(1)1 ,z(1)2 ,z(2)1 ]T , v = [v1,v2], and y =

[y1,y2]
T . Then, by using Taylor expansion for the non-

linear disturbances in (36) and by collecting all the non-
linear terms resulting from the expansion in the matrix
Ã(θθθ ,z), the authors in [7] proved that if the nonlinear
perturbations are bounded such that:

‖Ãi‖2 ≤ ‖Wdi d̃i‖2, ‖d̃i‖2 ≤ 1, ∀i ∈ {1,2,3}, (37)

where Ãi is the ith row of the matrix, d̃i ∈L2[0,∞), and
Wdi are linear weights. Then, the model in (36) can be
rewritten as [7]:

ż = A(θθθ)z+Wd d̃+B(θθθ)v, (38)
where Wd = diag(Wd1 ,Wd2 ,Wd3), and d̃ = [d̃1, d̃2, d̃3]

T .
Mimicking the procedure above, one can obtain



f∆ (x,θθθ) to be:

f∆ (x,θθθ)=


0

−1
2HT

[ ∂QM
∂θ1
|θ1=θ01

∆θ1 +
∂QP
∂θ2
|θ2=θ02

∆θ2]
ω0
τF

XFd
X ′d

cosx1
x2

∆θ1

0

 ,

A =

 D1∆θ1 +2CQP ∆θ2 1 D2∆θ1

D̃1∆θ1 +C̃QP ∆θ2 0 D̃2∆θ1
D3∆θ1 0 0

 , (39)

and

B(θθθ) =

 0 0
1 0
0 1

 , C =

[
1 0 0
0 0 1

]
, (40)

where ∆θ1 = θ1−θ01 and so on, the parameters D1, D2,
D3, D̃1, D̃2, and C̃QP are as given in Appendix. B.
Finally, following the procedure to design a mixed
H2/H∞ controller (see e.g., [7]), define:

ż = A(θθθ)z+Wd d̃+B(θθθ)v
Z∞ = E1z+F11d̃+F12v
Z2 = E2z+F22v. (41)

Now a feedback law
v = Kmz, (42)

that stabilizes the system in (41), can be obtained by
using the Linear Matrix Inequality (LMI) toolbox in
MATLAB. This control law aims to minimize the com-
bined objective of ‖.‖2, and ‖.‖∞ of the transfer func-
tions of the disturbance to the defined output signals Z2,
and Z∞. Straight-forward calculations from (32) show
that the control law u can be written as:

u =

[
0 1

ω0
2HT τE

K′u
− τE XFdθ1

K′uXF X ′d

sinx1
x2

][
v1−L2

f0h1
v2−L f0h2

]
. (43)

5. SIMULATIONS AND RESULTS
The parameters used in the simulations are listed in

Tables 1 and 2. By using the values listed in the tables,
one can obtain CQP = 16.4, and HT = 0.7305s2. The
system in (21) was simulated in MATLAB/SIMULINK.
Both control gains were found, Kp in (34) was found
by pole placement, and Km in (42) was found by the
mixed H2/H∞ synthesis technique in (41) by using the
LMI toolbox. Actually, high gains are required to sta-
bilize the slow dynamics. To elucidate, the control law
u in (43) cancels the nonlinear terms and stabilizes the
states, but the inertia constant Ht is large compared to
the diesel engine time constant τE , so high gains are re-
quired. Hence, the weighting matrices Wd ,E1, E2, F11,
F12, and F22 in (41) were chosen to be:

Wd =

 1 0 0
0 2 0
0 0 2.5

 ,E1 =E2 =

 0.005 0 0
0 1.5 0
0 0 2.85

 ,
F11 =

 0.1 0 0
0 0.2 0
0 0 0.5

 ,F12 = F22 =

 0 0
0 0
1 1

 ,

Table 1: The Parameters

Electrical Mechanical
Quantity Value Quantity Value
Xd (p.u.) 2 ρ (Kg/m3) 1000
X ′d (p.u.) 0.25 D (m) 3.0
Xq (p.u.) 1 τE (s) 0.01

XFd (p.u.) 1.8 K′u (p.u.) 1
XF (p.u.) 2.1 K f (p.u.) 0.1

τF (s) 3.0 KD (p.u.) 155
ω0 (rad/s) 377 JM (Kg.m2) 270

p 6 JP (Kg.m2) 300

Table 2: The Base Quantities

Quantity Expression Value
ΩMbase (rad/s) ω0/(

p
2 ) 125.66

ΩEbase (rad/s) 80
ΩPbase (rad/s) 20

Ubase (V) 360
Ibase (A) 5555

Sbase (kVA) 3
2UbaseIbase 3000

QMbase (kN.m) Sbase
ΩMbase

23.9

QEbase (kN.m) Sbase
ΩEbase

37.5

QPbase (kN.m) Sbase
ΩPbase

150

and the gain Km was obtained to be:

Km =

[
−4.3905 −0.0141 0.3769
4.3905 0.0141 −0.3769

]
×106,

For the gain Kp, if the gain is not high enough the con-
trol law can not stabilize the system. On the other hand,
raising the control gain could lead to excessive control
action. The best results were found when the poles were
placed at -180, -260, and -130 for the three states of the
linearized model in (33). The gain Kp was obtained to
be:

Kp =

[
−46800 −440 0

0 0 −130

]
.

The control law was applied to the model with arbitrary
initial values twice, one with the gain Kp, and one with
the gain Km for comparison. The nominal values of
the uncertain parameters were assumed θ01 = 1, and
θ02 = 0.008. The simulations were run in two cases
assumed for the uncertainties of the parameters θ1, and
θ2 as shown in Table3. The trajectories of the output
signals ψF , and ω are shown in Fig. 3 and Fig. 4 for
cases one and two, respectively. We can see from Fig.
3 that both output trajectories reach the equilibrium by
both control gains, because the uncertainties assumed in
this case are not large. On the other hand, Fig. 4 shows
that control gain obtained from H2/H∞ synthesis (Km)
drives the output to the steady state more quickly than



Table 3: The Uncertain parameters

∆θ1 ∆θ2
Case I 2% 5%
Case II 20% 50%

(a)

(b)

Figure 3: Comparison of the output trajectories: (a) The
field circuit flux (ψF ), and (b) Rotational speed (ω), ob-
tained by the two strategies: H2/H∞ synthesis (solid),
and pole placement (dashed) when the the uncertainties
of the two parameters ∆θ1 = 2%, and ∆θ2 = 5%.

the other gain Kp, for the same chosen poles. One can
advocate that changing the gain Kp may give better re-
sults. The problem with the former argument is that the
gain Kp should be varied for every range of uncertain-
ties. Whereas, the gain Km could stabilize the system
for different uncertainty ranges. Because the propeller
torque coefficient KQ, which was modeled as uncertain
parameter, varies significantly in reality due to several
factors such as weather condition, ship speed and sea
condition, H2/H∞ robust controller is recommended for
this model.

(a)

(b)

Figure 4: Comparison of the output trajectories: (a) The
field circuit flux (ψF ), and (b) Rotational speed (ω), ob-
tained by the two strategies: H2/H∞ synthesis (solid),
and pole placement (dashed) when the the uncertainties
of the two parameters ∆θ1 = 20%, and ∆θ2 = 50%.

6. FUTURE WORK
In this work, we concentrated on the operation of

the described system in one mode, PTO. It is of inter-
est to apply the proposed controllers on the system in
the other mode, i.e., PTI. Then, a hybrid control strat-
egy can be applied to smoothen the transition between
the modes, and/or decide the optimal mode of operation
regarding fuel consumption. Also, work on making less
restrictive assumptions in the modeling is ongoing.
7. CONCLUSIONS

In this paper, a model was proposed for Gensets,
that comprise a medium-size diesel engine driving a
synchronous machine to generate electric power, and
a propeller, simultaneously. The output voltage of the
synchronous machine, and the propeller torque coeffi-
cient were modeled as uncertain parameters. A feed-
back linearization was performed. Then, two nonlinear



control laws were proposed to regulate the shaft rota-
tional speed, by pole placement, and by mixed H2/H∞

synthesis. The simulations showed that the proposed
controllers could stabilize the shaft speed. In addition,
we showed that the mixed H2/H∞ controller could sta-
bilize the shaft speed more quickly than the pole place-
ment controller, regardless of how much the output volt-
age and/or the propeller torque coefficient may vary.
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[5] J. F. Hansen, A. K. Ådnanes, and T. I. Fossen,
”Mathematical Modeling of Diesel-Electric Propul-
sion Systems for Marine Vessels,” Mathematical
and Computer Modeling of Dynamical Systems,
vol. 7, no. 1, pp. 1-33, 2001.

[6] M. L. Huang, ”Robust Control Research of Chaos
Phenomenon for Diesel-Generator Set on Parallel
Connection,” Applications of Nonlinear Control,
Intec., 2012.

[7] S. N. Kolavennu, S. Palanki, and J. C. Cockburn,
”Robust controller design for multivariable non-
linear systems via multi-model H2/H∞ synthesis,”
Chemical Engineering Science, vol. 56, pp. 4339-
4349, 2001.

[8] P. Kundur, Power System Stability And Control,
McGraw-Hill, 1994.

[9] L. Pivano, T. A. Johansen, Ø. N. Smogeli, and T.
I. Fossen, ”Nonlinear Thrust Controller for Marine
Propellers in Four-Quadrant Operations,” Proceed-
ings of the American Control Conference, pp. 900-
905, 2007.

[10] M. Torres, and L. A. C. Lopes, ”Inverter-
Based Diesel Generator Emulator for the Study of
Frequency Variations in a Laboratory-Scale Au-
tonomous Power System,” Energy and Power En-
gineering (EPE), vol. 5, pp. 274-283, 2013.

[11] A. Isidori, Nonlinear Control Systems, Springer-
Verlag, Berlin, 2nd edition, 1989.

[12] H. K. Khalil, Nonlinear Systems, Prentice Hall,
New Jersey, 3rd edition, 2002.

A. Transformation
The transformation T−1(z,η) was found to be:

T−1(z,η)=



arcsin(η(z(1)1 +1))
z(1)1 +1

z(2)1
CQP θ2(z

(1)
1 +1)2 +(K f +KD)z

(1)
1 + ...

K f +( 1
Xq
− 1

X ′d
)θ 2

1 η

√
1

(z(1)1 +1)2
−η2 + ...

2HT z(1)2 + XFd
XF X ′d

θ1z(2)1 η


.

B. Parameters
The parameters D1, D2, D3, D̃1, D̃2, and C̃QP are as

follows:

D1 =
θ01η0

HT

√
1−η2

0

(
1

Xq
− 1

X ′d
)

D2 = − XFdη0

2HT XF X ′d
D3 = − ω0XFd

τF X ′d
√

1−η2
0

D̃1 =
−1
2HT

(K f +KD)D1

D̃2 =
−1
2HT

(K f +KD)D2

C̃QP =
−1
HT

(K f +KD)CQP

η0 =
sin(xe1)

xe2

,

where xe is the equilibrium point given by:

xe =


1
2 arcsin

( −2(K f +CQP θ2)

θ 2
1

[
( 1

Xq−
1

X ′d
)+(

XFd
XF

)2 1
Xd X ′d

])±nπ

1
XFd
Xd

θ1 cos(xe1)

0

 .


