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Time is the most precious resource that we have at hand.





Summary
MassiveMIMO is a core technology for 5G cellular networks, that matured from
a concept to commercial implementations over the last decade. It uses large-scale
antenna systems to provide unprecedented access to the spatial domain of the ra-
dio propagation environment. This allows to exchange information with multi-
ple users in the same time-frequency resource.

The work, summarised in this thesis, focuses on the performance of base stations
with finite size antenna arrays. Specifically the service for non-average users is
considered. To that extend, complete statistical distributions of the precoded
or combined channel are used to describe the full performance range. The pro-
vided methods describe how the remaining small-scale fading can be quantified
and compensated for. Moreover, an analysis of the gain gap between broadcast
of synchronisation information and user-oriented traffic is provided. Even corre-
lation between antenna elements based on their position, orientation and prop-
agation environment can be considered. The results of this thesis enable insight-
ful performance trade-offs of massive MIMO base stations in real world deploy-
ments.
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dexedwith subscripts, e.g. oi, [o]i, [o]ij and oij . Square brackets are usedwhere it
is not clear if different vectors andmatrices or their elements are referenced.
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1 Introduction to Massive MIMO
Any sufficiently advanced technology is

indistinguishable frommagic.

Arthur C. Clarke

Wireless communication stands at the core of modern society. It enables hu-
mankind to access and exchange information anytime, everywhere and even be-
yond the limits our home planet. Services like terrestrial radio, satellite television,
mobile telephony, instant messaging or remote control of rovers on other plan-
ets are just a few examples that require wireless technology. Guglielmo Marconi
demonstrated in 1901 successfully the first transatlantic transmission, showcasing
the potential of the technology. Meanwhile, the wireless community has pro-
vided several advancements and breakthroughs resulting in today’s omnipresence
of applications. Together, Academia, industry and standardisation bodies drive
the development, documentation and coordination of wireless technology for-
ward. E.g. the Wi-Fi Alliance takes care of the 802.11 standards for wireless lo-
cal area network (WLAN) [1] and the 3rdGeneration Partnership Project (3GPP)
coordinates the standards related to cellular networks like: Global System forMo-
bileCommunications (GSM),LongTermEvolution (LTE) and 5G[2].

This thesis focuses onmassive multiple-input multiple-output (MIMO) base sta-
tions (BSs)with finite size large-scale antenna system (LSAS). Themain goal is the
description ofmethods for the analysis of single users that current systems neglect
by optimising the average performance. To that extend, necessary background in-
formation is provided in the following introductory chapter. The next sections
discuss general cellular network centric performance measures and highlight dif-
ferences of applications that are not human-centric. A general system model is
provided, allowing for a stochastic description of the signal-to-noise ratio (SNR).
This basis is used to explain the core features of massive MIMO, namely channel
hardening and favourable propagation.
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1 Introduction toMassiveMIMO

An important peculiarity of wireless communications is the shared medium. In-
terference can arise unintentionally byother services operating over the same spec-
trum or intentionally to jam a wireless system. The the signal-to-interference-
plus-noise ratio (SINR)captures thedeteriorationof the SNR.

Driving factors for the advancements of cellular systems have been performance
improvements of energy and spectral efficiency, coverage, reliability and interfer-
ence suppression. Information theoryprovides the Shannon-Hartley theorem for
the capacity of a single-input single-output (SISO) link in additivewhiteGaussian
noise (AWGN) [3]:

Capacity
[
bit
s

]
= Bandwidth [Hz]× log2 (1 + SNR) . (1.1)

The channel capacity is the maximum rate at which information can be trans-
mitted without error. The equation provides multiple insights: Increasing the
spectral bandwidth provides more capacity than improvements of the SNR or
SINR.This is one reasonwhy higher carrier frequencies are being used inmodern
systems. More spectral bandwidth can be allocated to each user, which increases
the capacity if the SINR is kept constant. Furthermore, increased pathloss helps
to reduce interference to unintended users. Normalising the achieved rate with
the bandwidth of the system leads to the spectral efficiency with unit bit/(sHz).
This measure describes how efficiently a Hertz of bandwidth is used to transfer
information. One way of improving the spectral efficiency of a transmission is
the usage of higher order modulation schemes. Fig. 1.1 compares uncoded binary
phase shift keying (BPSK) and multiple uncoded quadrature amplitude modu-
lations (QAMs) with the capacity bound, showing that a better SNR allows for
more complicated modulation schemes.

The data rate can be increased beyond the single link limit, if MIMO techniques
are used. Multiple antennas enable the parallel transmission of information, if the
spatial branches are orthogonal. This allows to extend the capacity in Eqn. (1.1)
to the sum capacity:

Sum Capacity
[
bit
s

]
=

∑
orthogonal
branches

Branch Capacity
[
bit
s

]
. (1.2)
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Figure 1.1: The limiting spectral efficiency of the capacity bound is compared with the
minimum SNR of different uncoded modulation schemes to achieve a bit error rate
(BER) of 1× 10−4.

Basically,MIMOenables spatialmultiplexing if the radio channel in combination
with the antenna systemsprovides enoughdegrees of freedom.

The evolutionary step ofmassiveMIMOis the change of perspective froma single
link between two stations, to a cellular system where a BS serves multiple users
in parallel. Multiple antennas on one side of a MIMO link belong to multiple
physically separated users to exploit the spatial selectivity of the radio channel.
Thereby, the cell throughput is increased, servingmultiple users in the same time-
frequency resource.

Throughput plays a major role for the revenue of a cellular network operator,
since telephony and Short Messaging Service (SMS) have become part of flat rate
tariffs. The income is mainly connected to the combined data traffic provided to
customers and network costs scale with spectral bandwidth due to license costs
and the deployment density of cells. Unfortunately, aspects like coverage or fair
distribution of resources in a cell are not directly connected to the revenue. They
aremoredifficult to assess continuously andharder to explain to a customer.
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1 Introduction toMassiveMIMO

In addition, a recent preprint is challenging the usefulness of wireless physical
layer research [4]. The authors, based on econometric methodologies, assess that
improvements of cellular networks havemainly beenmade through densification
and increased spectrum usage. A much smaller impact on overall system perfor-
mance is coming from advancements in academic research.

Both observations illuminate a central issue, throughput centric research is not
necessarily improving cellular networks to a large extent. Moreover, a focus on
throughput has the tendency tomainly improve the performance of users that are
already sufficiently served. In contrast, the analysis of the (instantaneous) perfor-
mance of individual single users, provided in this thesis, helps to evaluate users
that are not covered by current systems concerned with improving the average
performance. This analysis requires the full distribution of massiveMIMO radio
channels andnotonly their expectation capturedby the SNR.

1.1 Applications

Assuming that all the implementation details of massive MIMO are sorted out
andmultiple users can be served at the same time, then additional use cases can be
supported by fifth generationmobile networks (5G) cellular networks or applica-
tion specific systems. The 5G standardisation process has focused particularly on
[5]:

• enhanced mobile broadband (eMBB),
• massive machine-type communication (mMTC),
• ultra-reliable low-latency communication (URLLC).

eMBB is the use case that extends the standard capabilities of cellular networks
for (human) mobile users by increasing peak data-rates per terminal, such that
applications like augmented reality can be realised. This is in a sense the evolution
of 4G systems with the same user group in mind.

Wireless communication for different users groups is at the centre of the other
two focus areas. mMTCprovides connectivity betweenmachines for the internet
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1.2 SystemModel

of things (IoT) [6] or wireless sensor network (WSN) [7]. Some applications,
especially in safety critical areas, require URLLC.

All applications have different requirements with respect to data traffic pattern,
uplink and downlink rates or latency. A WSNmight report sensor data in a reg-
ular interval (weather station data) or event based (forest fire detection), but has
the tendency to be uplink focused and might not even need a downlink in ex-
treme cases. An IoT network, especially in industrial contexts, might combine
the acquisition of sensor data with optimisation and control of production pro-
cess parameters, which balances up- and downlink traffic. MassiveMIMO can be
a key factor in all threementioned domains, butwillmost likely havemore impact
on mMTC by increasing the number of served users per area due to favourable
propagation and URLLC by increasing the robustness of each individual link
by channel hardening. Especially for the implementation of URLLC, massive
MIMO appears to be the most promising technology today.

1.2 System Model

This section will introduce a system model to describe the wireless communi-
cation between a single user and a BS. The system model is the foundation to
understand different aspects of massive MIMO and LSAS. The classic time di-
vision duplex (TDD) case, where uplink and downlink are sharing the same fre-
quency band [8], is considered. This allows to use pilot symbols in the uplink
to estimate the channel efficiently for reciprocity based precoding in the down-
link.

A complex valued symbol x is transmitted and the BS provides spatial realisations
forM elements of a LSAS in either up- or downlink. The transmitted symbol
potentially spreads overN delay taps at the receiver. Stacking theN delay taps for
each antenna elementm results in a complex valued vectorgwhereMN elements
are used to describe the radio propagation. The depicted massive MIMO system
is outlined in Fig. 1.2.
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1 Introduction toMassiveMIMO

base
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N -tap
channels

user

...

...
1

m

M

√
βH

Figure 1.2:AmassiveMIMOBSwithM antenna elements interacts with a user through
M N -tap channels. The user can only observe the precoded effective channel H after
superposition by the radio propagation environment under consideration of large-scale
fading and path loss β.

The uplink- and downlink-case have a similar input-output relation for the re-
ceived symbol y:

yUL = wT (gx+ e) =
√
βwThx+wTe =

√
βHx+wTe, (1.3a)

yDL = gTwx+ e =
√
βhTwx+ e =

√
βHx+ e, (1.3b)

where the contributing noise sources, covered by e and e, differ. The channel co-
efficients ing can be split into a large-scale fading andpath loss coefficient

√
β and

a small-scale fading vectorh, so that the effective channelH = wThdescribes the
small-scale fading effects including the combination or precoding strategy. The
effective channelH is an important abstraction to describe the input-output rela-
tion from the perspective of a user, where the complex interaction of each branch
with the propagation environment is reduced to a single coefficient. In the uplink
case, the weight vectorw is combining the noise of every branch non-coherently,
whereas in the downlink case the weights only interact with the transmit sym-
bol. Moreover, the downlink weight vector influences the actual transmit power.
Therefore, it has to adhere to restrictions of the element or BS output power (de-
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1.3 Signal to Noise Ratio

tails are presented in [C1]). The uplink noise vector e captures the AWGNof the
different branches. The downlink noise term e corrupts the combined symbol
at the user. Inter-symbol-interference (ISI) is not modelled in the introduction,
since it has no significant impact on systems discussed in this thesis [J1]. Still, the
more involvedmulti-user case is described in the delay domain for themodel used
in [C1].

1.3 Signal to Noise Ratio

Inspection of the systemmodel in the previous section shows that the SNRof the
link between user and BS depends on the following factors:

• the power P of the transmit symbol,
• the attenuation due to large-scale fading β,
• the noise terms e and e,
• and the statistics of the effective channel power gainQ = |H|2.

To isolate the effect of small scale fading, a reference SNR for a local area is de-
fined:

SNRref = β
P

σ2
e

. (1.4)

The reference SNR depends on the large-scale fading and propagation loss β, the
BS or user transmit power P and the noise variance σ2

e . The transmit power in
the uplink is purely depending on the symbols:

PUL = E
{
|x|2
}
, (1.5)

whereas theBS transmit power alsodependson thenormof theweight vector:

PDL = ∥w∥22 E
{
|x|2
}
. (1.6)
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1 Introduction toMassiveMIMO

The SNR expression in uplink and downlink, considering independent identi-
cally distributed (iid) noise for theBS antenna elements, results in:

SNRUL =
Ex
{∣∣√βHx∣∣2}

Ee

{
|wTe|2

} = β
E
{
|x|2
}

σ2
e

|H|2

∥w∥22
= β

PUL

σ2
e

|H|2

∥w∥22
, (1.7a)

SNRDL =
Ex
{∣∣√βHx∣∣2}
Ee
{
|e|2
} = β

E
{
|x|2
}

σ2
e

|H|2 = β
PDL

σ2
e

|H|2

∥w∥22
. (1.7b)

Both equations show the same structure:

SNR = SNRref
|H|2

∥w∥22
= SNRrefSNRH (1.8)

where the only difference is the dependence of the BS output power on theweight
vector. This highlights thatH is the effective channel coefficient, which can be
formed by applying weights according tomaximum ratio combining (MRC) [9],
maximumratio transmission (MRT) [10], time reversal (TR) [11],π orother strate-
gies. There are additional strategies like zero-forcing (ZF) or mimimum mean
square error (MMSE) that takemulti user interference (MUI) into account. That
means that the weight vectorw is chosen not only considering the channel vector
of the intendeduser, but the channel vectors of otherusers too.

For the focus of this thesis, orthogonality between users needs to be provided by
other measures than interference suppression, since every interference suppres-
sion strategy compromises the signal of the intended user. One of thosemeasures
is favourable propagation, an aspect of massive MIMOwhich will be introduced
later. Scheduling over timeslots can orthogonalise the remaining users that have
too similar channel vectors.

Many of the named combination and precoding strategies are based on the conju-
gate of the channel element togetherwith somecommonnormalisation c:

w =
h∗

c
. (1.9)
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1.4 Fading Distributions

Evaluating SNRH for those weights gives:

SNRH =
|H|2

∥w∥22
=
|wh|2

∥w∥22
=

∣∣1
c
hHh

∣∣2
1

|c|2 ∥h∥
2
2

= ∥h∥22 . (1.10)

This shows that SNRH is invariant to a normalisation applied to theweight vector
for a large group of strategies. It solely depends on the quadratic form of the
channel vector. Moreover, conjugate weights are optimal, since all contributing
branches are phase aligned before summation.

1.4 Fading Distributions

This section introduces distributions to describe the individual random small-
scale fading of every branch. These are building blocks of the effective channel
power gain. Hence, the instantaneous SNR will fluctuate randomly and can be
characterisedwith adistributionbasedon thebranchdistributions.

Classic line of sight (LOS) and non-line of sight (NLOS) scenarios are associated
with Rayleigh and Rician fading, respectively. For the former, a large number of
independent plane waves impinges on an antenna element from multiple direc-
tions. For the latter, an additional deterministic plane wave is superimposed with
the continuum of indpenden plane waves. The deterministic wave can arise from
LOS propagation or a specular reflection, whereas all other plane waves belong
to the diffuse scattering part of the channel. The large number of plane waves
allows to apply the central limit theorem, which means that the superposition of
all plane waves gives rise to a complex normal distribution of the channel coeffi-
cient. The deterministic plane wave is associated with the mean µ and the diffuse
channel with the variance σ2 of that distribution:

h ∼ CN
(
µ, σ2

)
. (1.11)

The probability density function (PDF) fCN (h) is [12]:

fCN (h) =
1

πσ2
exp
(
−(h− µ)∗(h− µ)

σ2

)
. (1.12)
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1 Introduction toMassiveMIMO

Since sorting complex numbers is ambiguous, a general cumulative distribution
function (CDF) can not be provided.

For the envelope |h|, the PDF fRice is [13]:

fRice(|h|) =
2 |h|
σ2

exp

(
−|h|

2 + |µ|2

σ2

)
I0
(
2 |h| |µ|
σ2

)
, (1.13)

with I0 being the zeroth order modified Bessel function of the first kind. Using
the quadratic form |h|2 simplifies the envelope PDF further:

fRice2(|h|
2) =

1

σ2
exp

(
−|h|

2 + |µ|2

σ2

)
I0
(
2 |h| |µ|
σ2

)
. (1.14)

TheCDFof the quadratic formcanbe expressed compactlywith the complemen-
taryMarcumQ-functionPa(x, y) [14] as defined in (8.5), such that:

FRice2(|h|
2) = P1

(
|µ|2

σ2
,
|h|2

σ2

)
= FRice(|h|). (1.15)

The CDF of the quadratic form and the envelope are similar, only the argument
of the function differs. Setting µ = 0 allows to express PDFs and CDFs for the
Rayleigh case:

fRayleigh(|h|) =
2 |h|
σ2

exp

(
−|h|

2

σ2

)
, (1.16)

fRayleigh2(|h|) =
1

σ2
exp

(
−|h|

2

σ2

)
, (1.17)

FRayleigh2(|h|
2) = 1− exp

(
−|h|

2

σ2

)
= FRayleigh(|h|). (1.18)

The quadratic form distribution of Rician fading belongs to the class of non-
centralGammadistributionsγρ(α, β). ThePDFsof thequadratic formofRician

12
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Figure 1.3: The CDFs of Rayleigh (µ = 0) and Rician fading channels are shown.
A growing deterministic component in the radio propagation environment reduces the
probability of low effective channel gains.

fading is a particularisation with index ρ = 1, scale α = σ2 and non-centrality
parameter β = |µ|2 /σ2.

γρ(α, β) has the general PDF fγ [15, Eqn. (1.47’)]:

fγ(x) =

 1
α
exp
(
− x
α
− β

) (
x
αµ

) 1
2
(ρ−1)

Iρ−1

(
2
√

xµ
α

)
x > 0

0 x ≤ 0
(1.19)

and corresponding CDF Fγ [C4]:

Fγ(x) = Pρ

(
β,
x

α

)
. (1.20)

For Rayleigh fading, γρ (α, β = 0) is fully described by the better known (cen-
tral) Gamma distribution Γ(ρ, α).

The envelope and quadratic form can be expressed in decibel, which counter-
acts the differences of the CDFs by the decibel scaling for powers and envelopes.
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1 Introduction toMassiveMIMO

Fig. 1.3 shows a few CDFs for the effective channel of a single antenna single tap
link with variance normalisation. This reflects the scenario where deterministic
components with varying power are blocked by the environment and the diffuse
propagation is fixed. A strong deterministic component increases the steepness
of the CDF and reduces the probability of low SNR.

1.5 Massive MIMO

MassiveMIMOhas been conceptualised [16], experimentally tested and commer-
cially implemented in the 2010s [8], [17], [18]. The general idea is to increase the
number of antenna elements at the BS to exploit the spatial diversity of the radio
channel. The concept diverged from standard MIMO and considers a cellular
network, where multiple spatially distributed users are considered as one end of
the communication system. This approach exploits that the radio channel differs
between distant users. Having multiple antennas per user and favourable propa-
gation, these radio channels orthogonalise. Multiple users can use the same time-
frequency resource in parallel. Additionally, each and every radio channel to spe-
cific users is subject to channel hardening, which reduces the variability of the
effective channel.

Central to the performance improvements of massive MIMO is the scalability
of BS antenna elements. If TDD is used, then increasing the number of ele-
ments has no overhead penalty on the uplink channel estimation, because ll an-
tenna elements receive pilot signals in parallel. Relying on channel reciprocity, the
channel changing negligibly between up- and downlink, channel hardening and
favourable propagation arise even for finite array sizes. Their aspects are described
in the next subsections.

1.5.1 Channel Hardening

Channel hardening is best introduced in a Rayleigh fading scenario with inde-
pendent antenna elements. More complex cases are discussed in later parts of this
thesis. Let a random vector h ∼ CNM(0, I) describe the small-scale fading in

14



1.5 MassiveMIMO

the propagation environment. Moreover, h includes the array gain of a BS with
M antenna elements:

E{SNRH} = E
{
∥h∥22

}
= E

{
M∑
m=1

|[h]m|
2

}
=

M∑
m=1

E
{
|[h]m|

2} =M.

(1.21)
The last equation shows a decomposition of SNRH into a sum over independent
quadratic forms, such that:

∥h∥22 ∼ γM(1, 0) = Γ(M, 1). (1.22)

A widely used measure of channel hardening is described in [19, Eqn. (2.17)],
where the squared coefficient of variation of the effective channel is supposed to
go towards zero for a growing number of antennas:

V
{
∥h∥2

}(
E
{
∥h∥2

})2 . (1.23)

The authors noted that a value of 10−2 is sufficient to obtain channel hardening.
For the independent Rayleigh fading scenario, variance andmean of Γ(M, 1) are
readily available to evaluate the measure as: 1/M . Hence, channel hardening
could be achieved by 100 antenna elements.

In this thesis, alternative measures of channel hardening are provided, namely a
fading margin [C3] and a local diversity measure [C4]. For the sake of the in-
troduction, only the fading margin is covered in the next paragraph, because a
more detailed discussion of bothmeasures is provided in sec. 3.1. The fadingmar-
gin describes the amount of power needed to overcome the remaining small-scale
fading of the effective channel and provides a link budget motivated insight into
massiveMIMOBS design. Fig. 1.4 shows the result for the independent Rayleigh
scenario, so that 99.9 % of the channel realisations are above the target threshold
(median of the uncompensated fading channel). A growing BS antenna array has
diminishing returns, since the curve flattens out. E.g. 64 independent branches
provide a fading margin of 1.8 dB. Doubling the number of antenna elements
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Figure 1.4: The fadingmargin to compensate 99.9 % of the channel realisations is shown
for a BS with a growing number of antenna elements. About 50 independent elements
provide a fading margin reduction to 2 dB for the chosen target outage.

improves the margin by 0.6 dB to 1.2 dB. Hence, there is little benefit to be ex-
pected from increasing the number of antenna elements beyond an application
dependent point.

1.5.2 Favourable Propagation

SincemassiveMIMOusually assumes orthogonal pilots in the uplink, favourable
propagation can be seen as a feature of downlink transmissions. Basically, MUI is
reduced the more antenna elements a BS is equipped with, since all the transmit
signals have to be superimposed constructively at the intended user. This reduces
the probability of constructive superposition at unintended users. Favourable
propagation can be quantified considering two channel vectorsh1 andh2 by [19,
Eqn. (2.19)]:
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V

 hH
1h2√
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{
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}
E
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∥h2∥22

}
 . (1.24)

This variance goes towards zero for an increasingnumberofBS antenna elements.

Since this thesis focuses on the single user performance, favourable propagation
has not beendiscussed in detail in the attachedpublications. Nonetheless, a struc-
tural similar measure to the achievable synchronisation gain [C2] can be used to
quantify favourable propagation with a link budget perspective in mind. A leak-
age coefficientL:

L =
wT

1h2

∥w1∥2 ∥h2∥2
(1.25)

where the weight vectorw1 targets the intended user and the channel vector h2

covers the propagation to an unintended user gives an input-output relation of
the remaining interference. Geometrically, L describes the Euclidean angle be-
tween two complex valued vectors [20].

To demonstrate the behaviour of favourable propagation, two uncorrelated users
suspect toRayleigh fadingoverM independent antenna elements

h1,h2 ∼ CNM(0, I) (1.26)

are considered. With the conjugate precoder (Eqn. (1.9)), the leakage coefficient
becomes:

L =

∑M
m=1 [h

∗
1]m [h2]m√

∥h∗
1∥

2
2 ∥h2∥22

. (1.27)

The structure of the equation shows a sum over independent complex Double
Gaussians [21] normalised by the square-root over the product of two non-central
Gamma distributions. Hence, distribution functions for L are not simple and
Monte Carlo simulations of L generate the ECDFs for Fig. 1.5. The Fig. shows
the complementary ECDF to highlight when the leakage power gain exceeds a
certain threshold. Increasing the number of antennas reduces this probability and
the expectation of the quadratic form of the leakage coefficient takes the form of
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Figure 1.5:Complementary empirical cumulative distribution functions (ECDFs) of the
leakage power gain between an intended and an unintended user are shown for (nor-
malised) conjugated precoding. The leakage power gain is reduced for a larger number
of antenna elements due to favourable propagation.

Eqn. (1.24). Evaluating this expectation for the described scenario shows a scaling
of 1/M for the leakage power gain.

This is the ideal scaling for conjugate precoding without correlation between the
twousers aswell as the antenna elements of theBS array. Hence, it canbe expected
that the leakage in real world scenarios scales slower towards zero. As mentioned
earlier, precoding strategies like ZF andMMSE can reduce the leakage power gain
to improve the SINRof unintended users, but it will compromise the SNRof the
intended user.
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2 Research Overview

Deep in the human unconscious is a
pervasive need for a logical universe that

makes sense. But the real universe is always
one step beyond logic.

Frank Herbert

This chapter gives a selection of topics in massiveMIMO that are adjacent to the
focus of this thesis. The field has developed fast over the last decade and a database
query with the search termmassiveMIMO returns more than 1400 publications
per year for the period from 2017 to 2020 (see Fig. 2.1). Hence, this chapter can
only give a broad overview over the development of the field.

The general concept of massive MIMO [16] has been summarised in a few mag-
azine style publications [22], [23]. Furthermore, two books have been published
that give a general introduction with focus on network aspects [19], [24]. An in-
terestingway of discussing aspects and areas ofmisunderstanding is provided by a
manuscript aboutmyths surroundingmassiveMIMOsystems [25].

Massive MIMO was introduced under the assumption of TDD. Unfortunately,
legacymobile networks operatewithdifferentup- anddownlink frequencybands.
To support frequency division duplex (FDD) operation, channel reciprocity has
to be sacrificed and it is still an open question, how to exploit spatial diversity
properly. Finding efficient solutions would ease upgrades of legacy cellular net-
works. To overcome the lack of reciprocity, channel state information (CSI) feed-
back allows to focus the downlink towards each individual user. It consumes extra
resources and trades channel estimate accuracy and data-throughput off. This so-
lution is less desirable than theTDDapproach as it ultimately limits the scaling of
BS antenna elements. At least slowmobility scenarios can be served, since slower
channel evolutionmight require fewerCSI feedback resources.
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Figure 2.1:Number of publications per year according to theWeb of Science Core Col-
lection for the specified search term (query date 2021-11-17).

An alternative solution is based on enhanced predictionmethods at the BS. Prop-
agation paths are extrapolated, with high resolution methods, from uplink chan-
nel estimates to predict the downlink [26]. Hence, CSI feedback can be avoided.
According to the authors, the penalty is between 1 dB to 3 dB for a well calibrated
BS and favourable propagation.

There has been an attempt to standardise requirements for amassiveMIMO cel-
lular network in a more recent summary from 2020 [8]. The network should
have:

• at least two synchronous TDD cells,
• a BS with at least 64 antenna elements and digital transceivers per element,
• at least 8 users per cell with linear combining and precoding to exploit the
spatial properties of the channel and

• more than one BS antenna per active user.

This definition is in line with the original description of massive MIMO [16]
and highlights where differences between theoretical systems and practical imple-
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mentations might sacrifice performance. Furthermore, the authors indicate that
full consideration of spatial correlation is a necessity for the development of the
field.

In 2019 it was declared that massiveMIMO is a mature technology [18]. The first
commercial actors had started selling their BSs equippedwith LSAS. The authors
identified 5promisingdirections for the research community:

• extremely large aperture arrays (ELAA)
• holographic massive MIMO,
• six-dimensional positioning,
• large-scale MIMO radar and
• intelligent massive MIMO.

The proposed research directions cover recent developments in massive MIMO
and will be outlined in the remainder of the section.

The ELAA regime describes systems beyond LSAS size. An ELAA has larger
physical extents and/or an increased number of array elements to ensure spatial
non-stationarity of the radio channel. The array can be envisioned as e.g. a com-
plete building facade with many antennas, distributed systems [27] or cell-free
massiveMIMO [28], where the network side array elements are distributed freely
throughout a region. In cell-free massive MIMO is a user only communicating
with elements providing strong radio channels, which should keep the number
of interacting elements low, but requires practical backhaul coordination strate-
gies. The wide spatial distribution of antenna elements is the core difference to
LSAS, opening up tomitigate large-scale fading effects arising from shadowing or
blockage. The large extent of the antenna array requires additionally that the far-
field and near-field aspects are taken into account. There is a difference between
the far-field of an antenna element and thewhole array. TheBjörnson distance has
been introduced for a hypothetical uniform rectangular array (URA)with square
aperture elements [29], to describe the distance where amplitude variations orig-
inating from a spherical wave become negligible over the array. The Fraunhofer
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array distance describes the point where the phase variations over the array disap-
pear and is in general larger than the Björnson distance. It is possible to construc-
tively superimpose the incoming wave by correcting for the phase in the region
between Björnson and Fraunhofer array distance, since it is locally plane for each
antenna element.

TheholographicmassiveMIMOconcept considers the integrationof a largenum-
ber of antenna elements into a limited spatially continuous aperture. This ap-
proach deviates from the classic λ/2 antenna array design and needs to embrace
mutual coupling between elements. Especially meta-materials might be the en-
abler to build systems which are called large intelligent surfaces or reconfigurable
intelligent surface (RIS). A recent survey [30] sees potential to improve the SNR
withRIS even in the sub-10GHz regime, but they point out that supportingmea-
surements are lacking.

Six-dimensional positioning is supposed to provide the orientation in addition
to an accurate location (< 10m) of a user in space. With LSASs and enough
bandwidth, direct and reflected propagation paths can be resolved to provide ad-
ditional spatial resolution in a cell. Moreover, higher frequency bands require
more directional antenna elements and potentially arrays at the user in addition.
Hence, the orientation of a terminal can be derived from precise angular resolu-
tion. Using a massive MIMO BS for joint communication and sensing opens up
for radar applications [31].

The last research direction is combining the developments in artificial intelligence
(AI) andmachine learning (ML)with signal processing challenges related toLSAS.
The term of intelligent massive MIMO has been coined. Especially the large
amount of data arising from observing the channel with many antenna elements
over larger bandwidths provides a rich information source. A possible applica-
tion is channel charting [32], where the high-dimensional CSI is processed in a
way that generates two-dimensional channel charts (a pseudo-map that is sup-
posed to preserve the local spatial geometry). The approach can use processed
CSI frommultiple BS too [33]. The channel chart might allow to locate users rel-
ative to each other, opening up for geometrically motivated scheduling to ensure
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favourable propagation. Furthermore, ML methods can be used to replace esti-
mators in specific signal processing algorithms. E.g. successive interference can-
cellation (SIC) can integrate a data-driven learning algorithm [34] to gain robust-
ness against non-linearities of channels and noise corruption.

2.1 Channel Models for Massive MIMO

The fading distributions in chapter 1 are building blocks of stochastic channel
models and provide one abstraction of real-world wave propagation. This thesis
makes heavyuse of them tomodel the individual links between auser and antenna
elements of a massive MIMOBS. In general, channel models can be divided into
three general categories:

• stochastic channel models,
• deterministic channel models and
• recorded CSI.

All those models have been explored to describe SISO systems, where one end
of the link is potentially mobile. For massive MIMO those models can be con-
structed aswell, dependenton the systemaspect that is ofmost interest.

Stochastic models, containing the most prominent Rayleigh and Rician fading
channel, are not location-specific. Originally, the Rician distribution was de-
scribed in the 1940s to consider a sinusoidal component in addition to random
noise [35]. It can be used to describe a deterministic plane wave in a mixture of a
large number of other plane waves that capture the diffuse part of the radio prop-
agation. If the deterministic component disappears, then Rayleigh fading is the
model of choice. Both fadingmodels are still in active use, which can be seen from
their relevance in current publications (see Fig. 2.1). They are used in this thesis
due to their versatility andcompactmathematical description.

Geometry-based stochastic channel models (GSCMs) are used where spatial con-
sistency is required. Scatterers and clusters are stochastically generated to pro-
duce channel coefficients with the statistics of a specific environment type. The
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COST 2100 MIMO channel model [36] has been extended by considering visi-
bility regions at the BS [37], elevation angles, polarisation and closely spaced users
[38] and other aspects to the COST 2100 model with massive MIMO extensions
[39]. In comparison to measurement data, channel hardening is more accurately
described with this model than iid complex normal models [40]. Additionally,
there are attempts to extend the Quasi Deterministic Radio Channel Generator
(QuaDRiGa) [41] (an extension of theWINNERchannelmodels) to account for
aspects of massive MIMO [42].

Deterministic channel models are based on evaluations of Maxwell equation ap-
proximations (e.g. by ray tracing or ray bouncing) to calculate channel coeffi-
cients. This approach requires an accurate description of the propagation envi-
ronment (e.g. geometry and electro-magnetic properties of the materials) to gen-
erate site-specificmodels. A ray-based channelmodel has been used to analyse e.g.
a dense urban scenario [43].

Recorded CSI is the basis for the last category of channel models. Physical ob-
servations of radio waves are used to investigate site-specific propagation. Large
amounts of data have to be handled, whereas stochastic models require only few
parameters and random processes to generate channels. Especially for test cases
and channel emulation is a recorded CSI model valuable.

In summary, channel models vary in accuracy, complexity and site-specificity.
Pure stochasticmodels tend to have lower accuracy, lower complexity and no site-
specificity. Recorded CSI has higher accuracy, high data acquisition complexity
and no generality. The development process of new or adjusted models can be
seen as a data reduction and generalisation process. It starts with observing phys-
ical propagation environments and ends with a few parameters that capture the
essence of a class of propagation environments.

2.2 Measurement Datasets

Every theory and every model should be evaluated against real-world measure-
ments. Either to validate the theory, to check the accuracy of themodel or to anal-
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yse which model assumptions have been violated. The latter is a necessary step to
alignmodels with the evolution of practical implementations. From an engineer-
ing perspective, it is important to know which aspects of the physical world can
be neglected without compromising some uncertainty requirement. There is a
trade-offbetween accuracy, applicability and complexity ofmodels.

One important aspect of massive MIMO is the parallelism of the observations at
the BS. Therefore, to acquire relevant CSI, the channel response should be col-
lected in a synchronised parallel manner. Virtual massive MIMOmeasurements,
where sequential SISO observations are used to characterise the channel, neglect
that aspect and are therefore mainly relevant for low (environmental) mobility
cases. The effort of parallel data collection is more complicated and requires ad-
ditional hardware and personnel. Fortunately for the research community, mul-
tiple datasets from different groups have been made publicly available during the
last few years. The following non-exhaustive list shows some available massive
MIMO sub-6GHz datasets:

• indoor and outdoor datasets1 (UHF, 2.4GHz, 5 GHz, up to 104 antenna
elements, up to 8 users) [44]

• indoor-outdoor dataset2 (2.6GHz, co-located vs distributed antenna array,
up to 64 antenna elements, up to 12 users) [45]

• outdoor dataset3 (2.6GHz, two distributed 32 antenna arrays, sequential
placement of user pairs) [46]

• indoor dataset4 (2.6GHz, two distributed 32 antenna arrays, sequential
placement of user pairs) [47]

• dense indoor datasets5 (2.6GHz, uniform linear array (ULA), URA and
distributed antenna arrays, sequential users) [48]–[50]

1https://renew.rice.edu/datasets.html
2https://github.com/networkedsystems/MaMIMO_IndoorOutdoorExperiment
3https://github.com/networkedsystems/MaMIMO_outdoor_expermient-
4https://github.com/networkedsystems/MaMIMO_indoor
5https://homes.esat.kuleuven.be/~sdebast/measurements/measurements_

index.html
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• outdoor dataset6 (ULA, URA, 860MHz) [51]

In addition, we have collected indoor CSI in December 2017 with a 64 antenna
elements array in four frequency bands between 1 GHz and 5GHz. This dataset
has been the basis for the work in [J1], [R1] focusing on the comparison of the
four frequency bands. The work in [C3] is using indoor datasets for 2.4GHz
and 5GHz from Rice University [44] for its case study. Moreover, we have used
the dense datasets from [48]–[50] which provide user positions on a 5mm grid
to get a better understanding of spatial properties of real massive MIMO chan-
nels.

6https://dramco.be/massive-mimo/measurement-selector/#Sub-GHz
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Gedanken ohne Inhalt sind leer,
Anschauungen ohne Begriffe sind blind.
(Thoughts without content are empty,
intuitions without concepts are blind.)

Immanuel Kant

The following chapter gives an overview over the research work that we have per-
formed at the Norwegian University of Science and Technology (NTNU) be-
tween 2017 and 2021. Studying the foundations of massive MIMO leads to quite
a few questions if you are having a background in antennas, propagation and ran-
dom arrays. The squared coefficient of variation asmeasure of channel hardening
might be practical to determine the asymptotic behaviour ofmassiveMIMO, but
for finite system size and design trade-offs other measures might be more prac-
tical. Hence, our first central question is: How to characterise channel harden-
ing?. The finite aspect of practical systems leads naturally to a second general
question: How many antenna elements are sensible?. A third general question
arises from theuser-centric perspective:Whatare the statistics of the effective chan-
nel?.

There is no definite answer to any of the questions besides a cautious it depends.
Our publications provideways to tackle those questions for some cases and canbe
grouped into three parts related to LSAS formassiveMIMO:

1. measurements,
2. system practicalities
3. and theoretical considerations.

The first publication [J1] provides results of an indoor measurement campaign
with theReconfigurableRadioNetworkPlatform(ReRaNP).Themeasureddata
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indicates similar behaviour of the radio channel between 1GHz and 5GHz. Even
in the relative simple environment did some users experience a loss of over-the-
air synchronisation for some positions. This observation gave rise to the analysis
in [C2], describing the achievable synchronisation gain and the implications of a
growing number of antenna elements at the BS. Other groups have used cables
to synchronise users and BS in some measurement campaigns to circumvent the
issue.

Furthermore, [J1] paved the path towards research on system practicalities and
led to the analysis of a π scheme [C1], which is realisable with reasonable excess
power for LSAS. Moreover, fading margins were derived in [C3] to describe the
effect of channel hardening from a system perspective, in contrast to the com-
monly used squared coefficient of variation [19, Eqn. (2.17)] of the effective chan-
nel gain.

In parallel to covering some system practicalities of massive MIMO in our pub-
lications, we worked on the commission of ReRaNP. The goal was the usage of
128 antenna elements as BS array and simultaneous CSI acquisition to investigate
industrial IoT scenarios. Multiple challenges along the way delayed the deploy-
ment of the testbed. Small antenna elements and low-loss coaxial cables provide a
challenge on themechanical stability of their connection. and proper verification
of simultaneous data acquisition, handling a large complex systemwith little per-
sonell is tedious. The final factor preventing in-housemeasurements was the out-
break of the coronavirus disease, which stopped the planned experimental work
completely. Fortunately, we changed the direction of the thesis work already in
summer 2020 evenwithout knowinghow the pandemicwould evolve. Moreover,
more research groups have started to make their measurement data available for
external analysis. Hence, theoretical work can be tested against real world date
without conducting measurements locally.

Themore theoretical orientation resulted in a descriptionof local diversity [C4], a
measure to describe the robustness of radio links requiring ultra-reliability. Addi-
tionally, we worked on the statistics of correlatedRician fading in [J2], to provide
a general description of the effective channel gain. The last manuscript was born
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from our observations in [C3], [R1], that none of the measurements showed per-
formance anywhere close to the diversity predicted by a number of uncorrelated
taps times the number of antenna elements. We had used correlation as a po-
tential source of performance degradation as argument and needed a framework
that can incorporate the complexity of real world systems (non-isotropic anten-
nas, random antenna positions and orientations, non-omni-directional propaga-
tion) into a Rician fading environment, providing a compact and clear tool to
analyse scenarios beyond uncorrelated models.

In the following, the three overarching questions are discussed in the light of the
results from [J1], [J2], [C1], [C2], [C3], [C4], followedby individual summaries of
the manuscripts of this thesis. The chapter concludes with potential future work
andcondensed answers of the central questions for considered cases.

3.1 How to characterise channel hardening?

As introduced in subsection 1.5.1, channel hardening is a property of the effective
channel, which becomes more deterministic the more antennas a BS is equipped
with. Ultimately, small-scale fading can be mitigated in a radio propagation envi-
ronment providing enough spatial degrees of freedom. This qualitative descrip-
tion needs to be translated into some quantitativemeasure to be useful for perfor-
mance evaluation and design of BSs. The common squared coefficient of varia-
tion as figure of merit has the downside that it is hard to put into context of a link
budget. Furthermore, channel hardening provides no binary decision boundary,
since a fully deterministic effective channel only arises asymptotically.

In Eqn. (7.1) [C3] we introduced a fading margin, which is based on the inverse
CDFQ(p) of the effective channel for probability p:

FM(p) = 10 log10

(
Q(0.5)

Q(p)

)
. (3.1)

This measure is invariant to the array gain because it is normalised by the median
of distribution. It describes the amount of excess power needed to move the out-
age probability from 50% to the target probability. Ultimate channel hardening
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would be achieved, if all outage probabilities result in a fadingmargin of 0 dB, i.e.
the effective channel does not suffer from small-scale fading. The measure is well
suited to give insights into the trade-off between BS antenna array size and excess
power to counteract the effective channel gain fluctuations.

For example, a single antenna link at an outage probability of 10−3 has a fading
margin of 28.4 dB. For 8 uncorrelated antennas is the fading margin reduced to
5.9 dB and 32 antenna elements require 2.6 dB excess power to close the gap. A
squared coefficient of variation of 10−2 (an ad-hoc sufficient condition for channel
hardening in [19]) would relate to a fadingmargin of 1.4 dB at an outage probabil-
ity of 10−3. The fadingmargin is a localmeasure of channel hardeningwith respect
to theCDF, since it is evaluated at a specificoutageprobability.

In addition to the fading margin, we have introduced the local diversityD(Q) of
the effective channel power gainQ = |H|2 in Eqn. (8.8) [C4]. This measure re-
lates channel hardening to the slopeof the effective channelCDF:

D(Q) = d

d10Q/10
10 log10 (F (Q)) = Q

f(Q)
F (Q)

, (3.2)

as a local measure related to an outage probability. The derivative is scaled such
that a local diversity of one coincideswith a slope of 10 dBper decade outage prob-
ability, which is the slope of a single degree of freedom Rayleigh fading channel.
ForQ → 0 converges the local diversity to the classic diversity. The local diversity
can be plotted as function of the outage probability to highlight that the classic
diversity is misleading for LSAS. Low tail approximations of the effective channel
CDF do not describe the behaviour in the operational regime of a BS in the ultra-
reliability (UR)-relevant region. The local diversity as measure of channel hard-
ening provides a connection to physical degrees of freedom.

3.2 How many antenna elements are sensible?

After exposure to the early work on massive MIMO, we have always wondered
where the sweet spot for the number of antenna elements is. In the following

30



3.2 How many antenna elements are sensible?

discussion, an antenna element is synonymous with a full transceiver chain.1 The
general trade-off is the exchange of some system performance improvement for
an increasing number of antenna elements (hardware cost).

Extremely large aperture arrays are explored as potential extension to massive
MIMO with the number of antenna elements growing beyond 1000 elements
[18], to exploit the spatial non-stationarity of the radio propagation environment.
At the timeofwriting, thesenumbers of synchronised antenna elements arepurely
theoretical. Implementation challenges for extremely large aperture arrays are re-
lated to synchronisation, joint processing,mechanical properties and energy bud-
get. In the adjacent field of radio astronomy is the SquareKilometreArray (SKA),
an extremely large radio telescope, comparable to a receive only wide-band BS.
They use random phased arrays consisting of 256 antenna elements [A5] and use
multiple stations todistribute over aquartermillionof antenna elements.

Returning to cellular networks, is it worthwhile to build such large installations
or is it a wasteful use of resources? We have been considering the single user per-
formance throughout our contributions and find that it is not worthwhile to use
more than 32 antenna elements per user due to diminishing returns. Further-
more, not all 32 elements contribute equally to the systemperformance.

The diminishing returns for a growing number of antennas in our indoor mea-
surements [J1] have not been evaluated explicitly. Nonetheless, inspection of Fig.
4.8 shows that the interquartile range (IQR) of the normalised effective power
for 1, 4, 16 and 64 antenna elements is about 12 dB, 7 dB, 4 dB and less than 2 dB,
respectively. Furthermore, the reduction of the effective delay spread (temporal
focusing in the effective channel) in Fig. 4.10 is getting smaller for larger number
of antenna elements. Already 16 antenna elements are enough to confinemost of
the realisations to a single delay bin. Additionally, the power variations per an-
tenna element have almost converged for the TR and π strategy for 16 antenna
elements (see Fig. 5.1) [C1], since the realisations of the π normalisation are close
to an expectation of

√
M . The empirical fading margins at an outage probability

1Ericsson is marketing BS solutions with a variable number of transmitter and receiver chains
being connected to a potentially larger number of antenna elements [52].
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of 10−3 show small improvements beyond 32 antenna elements in the narrow- as
well as wide-band case (see Tab. 7.2) [C3].

All observations and theoretical discussions in this thesis indicate that a single
user is well served with 16 to 32 antenna elements. Additional elements, at least in
compact arrays, provide little improvements in combating small-scale fadingwith
channel hardening. Considering the gain gap between the synchronisation gain
and the user-centric gain in addition [C2], shows that smaller BS are preferable, to
avoid complex beam sweeping strategies for full cell coverage.

3.3 What are the statistics of the effective channel?

We have based all our antenna element statistics on Rayleigh or Rician fading.
This is a reasonable assumption for many radio propagation scenarios with vary-
ing deterministic and diffuse parts. The corresponding antenna element channel
coefficient h can be described by a complex normal distribution. Different ef-
fective channels have been discussed for different purposes in this thesis, but all
are based on combinations of the element coefficients from multiple antennas
and/or delay taps. Antennas and delay taps can be seen as interchangable sources
of diversity.

In [C1], we are introducing a maximum diversity channel which is based on L
diversity branches in iid Rayleigh fading:

h ∼ CN L(0, cI), (3.3)

where c is some common scaling of the element distributions. This gives rise to
the effective channel power gain following aGammadistribution:

Q = ∥h∥22 ∼ Γ(L, c). (3.4)

The effective channel for the combined uplink in [C3] reuses the iidRayleigh fad-
ingmaximumdiversity channelwith the correspondingGammadistribution.

In [C4] is the effective channel based on uncorrelated Rician fading, which re-
quires a generalised or non-central Gamma distribution. The last contribution
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[J2] handles correlatedRician fading, basedonapproximationsof a complexGaus-
sian quadratic form (CGQF) to describe the distribution functions in a com-
pact fashion. Moreover, we provide a physically motivated parametrisation of
the mean and covariance of the complex normal random vector to describe the
correlated diversity branch statistics.

The effective channel in [C2] is slightly different to the (non-central) Gamma
type results, because the strongest synchronisation channel is of interest. The
relevant statistic is found by comparison of effective channel gains for different
precoding weights, resulting in multiple beams illuminating the radio channel.
The best synchronisation gain, results from the beam that is closest to the target
user channel. Therefore, it can be solved as a selection combing problem with
order statistics [53], [54]. For iid Rayleigh fading and Fourier or Hadamard beam
sweepingmatrices, exponential distributions describe the channel illuminated by
different beams. Choosing the strongest channel gives a CDF based on the L-th
power of the CDF of the individual L beams.

As a summary, the flow chart in Fig. 3.1 shows an overview over the different
relevant distributions arising from complex normal random vectors, highlighting
which forms have been used in the different manuscripts.

3.4 Summaries of Included Papers

3.4.1 Paper J1

G.Ghiaasi, J. Abraham, E. Eide, andT. Ekman, “EffectiveChannelHardening in
an Indoor Multiband Scenario”, International Journal of Wireless Information
Networks, vol. 26, no. 4, Jul. 2019. doi: 10 . 1007 / s10776 - 019 - 00438 -
7

This paper reports the results of the first measurement campaign conducted in
December 2017withReRaNP, theNTNUmassiveMIMOtestbed. CSI has been
collected with a 64 antenna element BS from 40 user positions over four differ-
ent 20MHz frequency bands between 1GHz and 5GHz. The capabilities of the
testbed are further described in the article.
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Figure 3.1: The relationship between a complex normal random vector h and different
envelope as well as power distributions is shown in this flowchart. The distributions that
have been used in the different manuscripts attached to this thesis are referenced.
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The collected CSI captures an indoor scenario where antennas had been oriented
so that NLOS conditions were excited. The power delay profiles (PDPs) are sim-
ilar for all considered frequency bands and show that most power is confined in
a 1 µs window. Furthermore, channel hardening was investigated with ECDFs
of normalised subcarrier powers. They show a variability between −4 dB to 2 dB
with 64 antenna elements, which is a huge improvement over the single antenna
case.

A convenient side-effect of time-reversal precoding is temporal compression in
the downlink. The delay spread of the effective channel is reduced to less than
the duration of a single tap (50 ns for the system parameters) when all 64 antenna
elements are used. This allows simple receivers without complex equalisation at
the user side, which is convenient for WSN and IoT applications. The effective
delay spread is reduced by increasing the number of BS antennas, but has dimin-
ishing returns.

In addition, we argue that coherence bandwidth is an unusable measure for the
effective channel, by deriving a lower bound for a rectangular PDP (a maximum
diversity example). The central tap of the effective channel PDP grows propor-
tional to the number of antenna elements, whilst the remaining taps are roughly
constant. This is based on coherent addition of the channel coefficient for the
zero-delay tap and non-coherent addition for the rest of the effective PDP.Hence,
for a growing number of BS antennas is the effective PDP converging towards
a Dirac delta function, which can be seen as convergence towards flat-fading in
the frequency domain. As a consequence, the frequency correlation function is
bounded below by M

M+1
for the effective channel based on an environment with

rectangular PDP.

3.4.2 Paper C1

J. Abraham andT. Ekman, “Power Inversion of theMassiveMIMOChannel”, in
Proceedings of the 2019 Symposium on Information Theory and Signal Processing
in the Benelux (SITB2019), arXiv:1905.07555, Gent, Belgium: Werkgemeenschap
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Informatie- en Communicatietheorie (WIC) & IEEE Benelux Signal Processing
Chapter, May 2019, pp. 3–7

This paper considers the behaviour of the effective downlink channel in the delay
domain forWSNs and sensor nodes with a single tap receiver. Time reversal is ap-
plied as precoder and different normalisation strategies are introduced. They in-
fluence the signal fluctuation at thewireless sensor. In addition, the output power
at each BS antenna element and the sumoutput power of the BS are affected. The
former is of interest for the system designer and the latter is of interest from a reg-
ulatory perspective. Channel hardening reduces the effect of small scale fading.
Hence, the necessary excess power to achieve power inversion is falling into a rea-
sonable range and we quantify it. With perfect CSI, small scale fading could be
completely eliminated.

To analyse the three different powers, we model the limiting maximum diversity
case by using iidRayleigh distributed channel coefficients for all delay taps at each
antenna element. This choice describes a rectangular PDP observed with an un-
correlated BS antenna array. The precoderweights follow theTRprinciple, using
the reversed and complex conjugated tapped delay line channel. Three different
normalisation strategies are presented:

(a) classic TR (keeping the BS output power fixed),
(b) power inversion (PI) (keeping the received power at the node fixed)
(c) and distributed time reversal (DTR).

The latter strategy normalises the precoding weights based on statistical informa-
tion and avoids continuous feedback of channel estimates, which the two former
options would require.

Importantly, the antenna element output power converges to the distribution of
the DTR strategy for a growing number of antennas, a Gamma distribution pa-
rameterised by the number of taps. PI fixes the received power at the user by using
more transmit power at the antenna elements to compensate for weak channel
realisations. Under the iid Rayleigh fading assumption, some of the powers (see
Tab. 3.1) can be described with Gamma distributions.
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Table 3.1: Analytical distributions are available for some powers in dependence of the
normalisation scheme.

Normalisation Element Power BS Power Recieved Power

Classic TR const. ∼ Γ(MN, 1
MN

)
Distributed TR ∼ Γ(N, 1

N
) ∼ Γ(MN, 1

MN
) ∼ Γ2(MN, 1

MN
)

Power Inversion const.

E.g., aBSwith 16 antenna elements and a rich rectangular four tap channel has ide-
ally 64 degrees of freedom that provide channel hardening. Allowing for 0.5 dB
of excess power on each antenna element in 10−4 cases allows for power inversion.
This results in an excess sumpowerof 2.2 dB in 10−4 cases for theBS.

In summary, the power inversion strategy allows to eliminate small scale fading in
exchange for some excess power at the BS. Amore robust downlink, only depend-
ing on large scale fading toWSN nodes, can be provided.

3.4.3 Paper C2

J. Abraham and T. Ekman, “Achievable Synchronisation Gain In Uncalibrated
Large Scale Antenna Systems”, in 2020 14th EuropeanConference onAntennas and
Propagation (EuCAP), Mar. 2020, pp. 1–5. doi: 10 . 23919 / EuCAP48036 .
2020.9136063

This paper examines the initial synchronisation of a user with the BS before chan-
nel reciprocity can be exploited throughmassiveMIMO.The user directed gain is
bigger than the synchronisation gain, leaving a gain gap that should be considered
in the system design. This gap influences the cell coverage area for initial access
to the network, where timing and configuration information have to be acquired
by the user. This issue can be reduced by beam sweeping, an open-loop beam
forming strategy demonstrated with the Argos testbed [55]. Other measurement
campaigns avoided the issue by using cabled synchronisation of the user terminals
(e.g. [17]).
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Weanalyse the gain gap of different beam sweeping strategies analytically and pro-
vide closed form solutions for uncorrelated Rayleigh fading. The Rician case is
more involved and was analysed with representative simulations to allow a com-
parison. The gain gap is calculated based on the Hermitian angles [20] between
the beams provided by a beam sweepingmatrix and a randomflat fading channel.
Order statistics [53] provide the means to find the distribution for the best beams
with respect to the fading channel.

We have restricted our analysis to an ULA with λ/2 spacing and three represen-
tative orthogonal beam sweeping matrices:

(a) the identity matrix (sweeping through each BS antenna element individu-
ally),

(b) the Fourier matrix (array factor achieving beams)
(c) and the Hadamard matrix (split beams).

If the array is uncalibrated, then each signal branch is subject to an additional
random phase. In this case, the actual choice of the beam sweeping matrix does
not matter and the system behaves as if it was Rayleigh fading independently of
a specular component being present. This is due to the random mixing of the
specular component, giving non-coherent addition.

A Fourier matrix is advantageous in Rician fading in the calibrated case, since it
achieves the full array factor. The orthogonality requirement of the beam sweep-
ingmatrix can be relaxed, which allows to scanmore directions with the full array
gain. A trade-off between sweep duration and probability that the beam is close
to the channel vector of an actual user can be achieved.

The behaviour for a growing number of base station antennas is shown for the
median gain gap and synchronisation gain in Fig. 3.2. There are diminishing re-
turns for the synchronisation gain if theBS output power is fixed. A 1000 antenna
element BS achieves relative to a single antenna BS only 8.6 dB sync gain with an
orthogonal beam sweeping strategy. The gain gap is −21.4 dB with respect to the
maximum array factor gain.
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Figure 3.2: The median gain gap and sync gain are shown for a growing number of an-
tenna elements suspect to Rayleigh fading and the BS output power is normalised to
unity. The sync gain is relative to a single antenna BS and demonstrates that even 1000
antenna elements do provide less than 10 dB extra gain. The gain gap shows that the sync
signal is more than 20 dB weaker than the user directed gain for the same BS and orthog-
onal beam sweeping.

Toensure proper cell coverage of synchronisation signals, broadcast capabilities of
LSAS have to be considered. A straightforward orthogonal beam sweeping strat-
egy can reduce the penalty of lackingCSI.More advanced synchronisation strate-
gies have tobedeveloped, if ELAAare tobedeployed successfully.

3.4.4 Paper C3

J. Abraham and T. Ekman, “Fading Margins for Large-Scale Antenna Systems”,
in ICC 2021 - IEEE International Conference on Communications, Montreal, QC,
Canada: IEEE, Jun. 2021, pp. 1–5. doi: 10.1109/ICC42927.2021.9500328.
arXiv: 2102.09903

This paper introduces a fading margin as a practical figure of merit for chan-
nel hardening at a specific outage probability. It gives the amount of extra BS
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power which is needed to move the outage probability from 50% to the target
outage probability. This measure gives better insight into the trade-offs from
a system perspective than the more common squared coefficient of variation in
Eqn. (1.23).

We reuse an uncorrelated maximum diversity Rayleigh channel and TR precod-
ing to show the scaling of the fadingmargin under ideal conditions. E.g. 8 degrees
of freedom give a fading margin of 5.9 dB and 24 degrees of freedom give a fading
margin of 3.1 dB at an outage probability of 10−3. Additionally, measurement data
from Rice University [44] is used to study the empirical fading margin, compar-
ing narrow- and wide-band systems for up to 93 antenna elements. Four datasets
are evaluated to investigate the 2.4GHz and 5GHz band in LOS andNLOS con-
ditions. For all datasets, using the full 20MHz channel instead of a single subcar-
rier with 93 antenna elements provides less than 1.7 dB improvement of the fading
margin at an outage probability of 10−3. Even for a smaller subarray of 32 antenna
elements is the difference between narrow- and wide-band operation small. The
LOS 2.4GHz dataset shows about 12 degrees of freedom for a BSwith 93 antenna
elements operating in a 20MHz band.

The squared coefficient of variation is supposed to be below 10−2 to classify a ra-
dio channel as hard, which corresponds to 100 degrees of freedom. Hence, the
outage probabilities 10−2, 10−4 and 10−6 relate to the channel hardening thresh-
old fading margins 1.1 dB, 1.7 dB and 2.2 dB, respectively. These margins have not
been observed in the analysed datasets.

3.4.5 Paper C4

J. Abraham andT. Ekman, “LocalDiversity andUltra-ReliableAntennaArrays”,
in 2021 55th Asilomar Conference on Signals, Systems and Computers, Nov. 2021.
arXiv: 2108.00712, submitted and presented

This paper considers URLLC and highlights that massive MIMO can provide
improved link robustness due to channel hardening. The UR-relevant regime
spans a range of outage probabilities from 10−9 to 10−5. Reliable characterisation
of a non-parametric ECDF at a certain outage probability requires about twice
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the order of observations with respect to the inverse of the outage probability.
E.g. 1012 observations are needed for a reasonable accuracy at an outage of 10−6.
To ease the estimation burden, lower tail approximations have been proposed in
the literature, to describe the behaviour of systems at low outage probabilities
[56].

We demonstrate that lower tail approximations do not provide good insight into
the system behaviour of LSAS both for Rayleigh and Rician fading. The local
diversity is introduced toquantify thedeviation fromthe lower tail. It is ameasure
proportional to the steepness of the effective channel gain CDF and converges
to the classic diversity for outage probabilities going to zero. In short, the local
diversity D quantifies the steepness of the CDF in 10/D dB per decade, e.g. a
local diversity of 1 and 10 gives a steepness of 10 dB and 1 dB per decade outage
probability.

A narrow-band uncorrelated Rician channel was used to derive compact expres-
sions for the PDF, CDF and local diversity in terms of the complementary Mar-
cumQ-function. This is used to show that the lower tail approximation overesti-
mates the local diversity for situationswithmany antennas and lowK-factors. For
situations with high K-factors, the lower tail approximation underestimates the
local diversity, which shows superelevation over a certain range. Weprovide a sim-
ple scenario to demonstrate that distributed smaller BSs might provide better av-
erage channel gainwith similar local diversity than a larger co-locatedBS.

The discussion closes with a general argument. The collection of statistics per an-
tenna element might provide more accurate insight into UR-relevant statistics,
than operating directly on the effective channel gain. This idea is based on the
observation that the UR-relevant regime of the effective channel gain is mainly
characterised by events with higher probability for the individual antenna ele-
ments. The downside is the necessity to actively consider the correlation in the
LSAS to combine the element statistics properly.
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3.4.6 Paper J2

J. Abraham, P. Ramírez-Espinosa, and T. Ekman, “Statistics of the EffectiveMas-
siveMIMOChannel in CorrelatedRician Fading”, IEEEOpen Journal of Anten-
nas and Propagation, vol. 3, pp. 238–248, Jan. 2022. doi: 10 . 1109 / OJAP .
2022.3147015. arXiv: 2112.06692

This paper introduces a framework to describe a massive MIMO multi-tap Ri-
cian fading environment. The propagation from a user terminal is modelled as a
complex normal random vector, where each element describes the channel gain
for an antenna element in a delay tap. Correlation is considered by inclusion of
the power angular spectrum (PAS), the antenna element pattern as well as an-
tenna positions. This extends the common simplification of isotropic antenna
elements, with plane waves coming from all directions. The influence of varying
directivity and squinting angles between antenna elements with the same pattern
on correlation coefficients is demonstrated.

We provide accurate approximations of the effective channel gain for the CDF,
PDF and local diversity, based on a CGQF. The approximations have been im-
proved over those found in the literature, to allow for a larger number of vector
elements, so that LSAS can be described.

BSs with a ULA and a half-circle array are compared for different antenna ele-
mentdirectivities todemonstrate thepossibilities of the framework,. Theusage of
low directivity elements for BS with many antennas appears to be advantageous,
since the array factor is steerable and the antenna element factors are fixed. The
half-circle array BS provides a more even illumination of a region than the ULA,
but has lower maximum gain due to the slight squint between antenna elements.
Additionally, it captures less local diversity than the ULA, since fewer antenna
elements contribute significantly to the effective channel.

The generality of the framework opens up for the evaluation of many different
other scenarios, which can be quickly evaluated. The provided approximations
allow handling of different BS geometries and varying antenna element designs to
cover different use cases.
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3.5 Future Work

As indicated in chapter 2, the field of massive MIMO has evolved quickly during
the last few years and based on theoretical considerations, many promising con-
cepts have been suggested. There is a need to explore those concepts with demon-
strators and testbeds to find the challenges that practical implementations pose.
Investigating the detailsmight not be as prestigious as coming upwith revolution-
ary ideas, but allows to transfer the evolutionary and revolutionary research ideas
into reality. This is the challenging borderland on the interface between science
and engineering.

Future work should investigate the link between the medium complexity GSCM
and a simpler correlated complex normal random vector (CN -RV) model. Espe-
cially for systems with many spatial branches is the effective channel less sensitive
to variation of element channel coefficients. Thatmeans, estimation of all param-
eters of a GSCM might not be worth the effort to improve the model accuracy.
The exploration of CGQF for large random vectors could allow to find a more
compact representation of high-dimensional massive MIMO CSI. The decom-
position of the effective channel in Eqn. (9.27) exposes the impact of eigenvalues
of the spatial correlation structure, indicating that the eigenvalues and their dis-
tributions should be examined further.

Since the work in this thesis has been focusing on the single user performance,
favourable propagation has been handled in an introductory fashion only. Work
on distributions of the leakage coefficient can path the way to a framework de-
scribing the instantaneous interference in amassiveMIMO system and should be
considered in the future. Eventually, a stochastic description of the instantaneous
SINR can help to capture the big picture for LSAS.

For ELAA is the distinction between large-scale and small-scale fading unclear.
Each antenna element might belong to a different local area, which increases the
need to handle distributions of the channel coefficient, including large-scale fad-
ing aspects. Due to a larger number of contributing elements, effective channel
statisticsmight become tractable, considering that a central limit theorem for par-
tially correlated element statistics could exist. Moreover, (finite) random matrix
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theory (RMT) [57]–[59] explores some promising ideas that might give the right
tools to work with the statistics of ELAA.

3.6 Conclusion

This thesis provides methods for the analysis of finite massive MIMO systems.
Channel hardening can be described user-centric with a fading margin, to allow
link budget analysis. Moreover, the local diversity relates channel hardening to ef-
fective degrees of freedom under consideration of a target outage probability op-
erationpoint. Furthermore, channel hardening allowsπwith reasonable amounts
of excess power to compensate for the remaining small-scale fading.

A BS with 16 to 32 antenna elements can serve a single user properly, if the prop-
agation environment provides enough degrees of freedom. More antenna ele-
ments have diminishing returns for channel hardening and require advanced
strategies to overcome the gain gap between the synchronisation gain without
available CSI and the user-directed gain with CSI.

The effective channel power gain statistics have closed-form approximations for
correlated Rician fading, which simplify to exact expressions in the uncorrelated
case. Additionally, synchronisation gains can be described with order statistics to
analyse different beam sweeping strategies.

All provided methods of this thesis target massive MIMO aspects in real world
deployments. Special focus has been given to performance trade-offs relevant for
link budget considerations. Especially the correlation aware closed form approx-
imations of the PDF and CDF of the effective channel gain can give detailed in-
sight into the impact of base station design on the SNR distribution for single
users.
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Publications
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In the following, the manuscripts of two journal publications and four confer-
ence publications are reproduced from the original LATEX-sources to follow the
typography of the whole thesis. Minor modifications and improvements, where
necessary, are listed in front of each manuscript. Changes to text are further in-
dicated with bars in page columns.
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Changenotes
• Notation

– convolution symbol ∗ changed to ⋆
• hyphenation of large-scale and small-scale

4.1 Abstract

We evaluate channel hardening for a large-scale antenna system by means of in-
door channel measurements over four frequency bands, 1.472GHz, 2.6GHz,
3.82GHz and 4.16GHz. NTNU’s Reconfigurable Radio Network Platform has
been used to record the channel estimates for 40 radio links to a 64 element array
withwideband antennas in a rich scattering environment. We examinemetrics for
channel hardening, namely, the coherence bandwidth, the rms delay spread and
the normalized effective subcarrier power, for the effective channel perceived by a
single user after precoding and superposition in the downlink. We describe these
metrics analytically and demonstrate them with measured data in order to char-
acterize the rate of hardening of the effective channel as the number of antenna
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elements at the base station increases. Themetrics allow for direct insight into the
benefits of channel hardeningwith respect to radio systemrequirements.

4.2 Introduction

Massive MIMO systems are envisioned as a key feature of the next generation
of communication systems which provide large sum capacity as well as spectral
and energy efficiency, while simultaneously serving multiple users. Some of the
theoretical properties [22], [25], [60] have been empirically shown through re-
centmeasurement campaigns [61]–[63]. In these analyses, keeping the number of
users 10 folds less thannumberofBS antennas is considered goodpractice.

The large-scale antenna systems are being investigated as contenders forWSNs to
offer mass connectivity with high reliability in 5G paradigm. In these systems, a
BS equippedwith a large number of antennas serves a very large number of sensor
nodes such as ships, automobiles, trains, engines and robots, which are categor-
ically referred to as user equipments (UEs). As many of these applications are
safety critical, the robustness of the wireless communication links is vital. Chan-
nel hardening could be exploited, in order to establish reliable links between BS
and UEs. By definition, the channel hardens when by increasing the number of
BS antennas, the deviation of the gain of the perceived channel at each UE de-
creases and the channel gain valuebecomesdeterministic [64].

From a radio system perspective, the desirability of channel hardening at sensor
nodes is twofold: The signals traveling from theBS to each singleUE are precoded
at the antenna elements and filtered by the physical channel and then will super-
pose and formwhat is referred to as effective channel. When the effective channel
hardens, it is as if the propagation happened through a quasi-deterministic flat-
fading equivalent channel by averaging out the small fading effects, as a result
forming a reliable link from the BS to the UE. Considering channel hardening
in the delay domain, complex equalization and estimation at the UE side can be
avoided because the effective channel collapses to a single tap due to the delay dis-
persion being smaller then the delay tap resolution.

50



4.2 Introduction

In [65], [66], the authors have looked at channel hardening for the subcarriers
using MRC in the uplink (UL). The standard deviation is used to examine the
dispersion of the channel. Alternatively, the work in [67] formulates the concept
of an effective (equivalent) received channel at a single UE by using time-reversal
precoding. Here, the measured channels between the UE and the BS are used to
examine temporal focusing by using the delay spread and the strongest tap power
distribution. In [68] themeasured channels between a 128 antennaBS and 36UEs
have been used to evaluate the rootmean square (rms) delay spread of the effective
combined channel for three common linear precoding schemes.

In this paper, we refer to the perceived channel at a single user in the downlink
(DL) as an effective channel. This is the channel formed by precoding, propaga-
tion and superposition of signals from each BS antenna element. A calibration of
the transmitter and receiver chains at the BS is necessary, such that the reciprocity
assumption holds [69].

Channel hardening is considered from two points of view: firstly, as a property
that causes the effective channel transfer function (CTF) between the UE and
the BS to becomemore deterministic, secondly as a property to focus the received
signal in the delay domain as the number of BS antennas increases. We illustrate
these properties in the effective channel in order to determine howmany antennas
are sufficient to achieve a certain level of channel hardening. Thiswill allow for the
remaining BS antennas to be considered as contributors to achieve a multi-user
system by using the remaining degrees of freedom to orthogonalize the effective
channels.

We base our analysis on a channel dependent precoding which weights the signal
at the antenna elements and relies on exploiting channel reciprocity in the DL
to form a matched filter combination when observed by the UE. The aim of the
precoding is to guarantee the best average SNR at the UE under the assumption
that the CSI of the channel is perfectly known and no co-channel interference
exists.

We formulate the normalized effective subcarrier power in order to examine the
flatness of the effective channel at the UE. Additionally, the coherence band-
width as well as the effective delay spread are analyzed. All threemetrics have been
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characterizedwithmeasurement data at 4 frequency bands: 1.472GHz, 2.6GHz,
3.82GHz and 4.16GHz. These constitute the commonly considered frequency
range for 5GandWSNsystems andhighlightpotential frequencydependencies.

This manuscript is organized as follows: in Section 4.3 the measurement cam-
paign which was carried out in an indoor area with industrial profile forming
a quasi-static scenario is reviewed. The acquired data corresponds to 40 spatial
sample points characterizing UL channels to a 64 element array in the above-
mentioned frequency bands. The details of this campaign are reported in [R1].
In Section 4.4, the concept of the effective channel is introduced and the mea-
sured channel data is used to analytically form the effective channels. The met-
rics of hardening are described and evaluated in section 4.5. We show that coher-
ence bandwidth ceases to be a practical measure for effective channel evaluation.
Lastly, the conclusions are presented in Section 4.6.

4.3 Measurement Description

The investigation reported in this paper is based on the measured data acquired
during a campaign carriedout at theNTNUinDecember 2017using theReRaNP.
The details of the UEs and the BS including channel estimate acquisition are de-
scribed in [R1].

4.3.1 Measurement Setup

For our BS, we used two modules of the NTNUmassive MIMO testbed with 32
National Instruments (NI) USRP-2943R devices. Two RF chains exist in each
Universal Software Radio Peripheral (USRP) unit, as a result we have 64 radio
chains at the BS. These units are controlled by one CPU which is running the
NI LabVIEW Communications MIMO Application Framework. They form a
TDD systemwith a LTE-like physical layer with 20MHz operational bandwidth
[70]. To implement the UEs, the radio chains of 4 NI USRP-2953R units were
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Table 4.1:Massive MIMOTestbed Parameters

Parameter Value

# of BS antennas 64 used
# of UEs 8
Center Frequency 1.2 GHz to 6GHz
Bandwidth of Operation 20MHz
Baseband Sampling Rate 30.72MS/s
Subcarrier Spacing 15 kHz
# of Subcarriers 1200
FFT size 2048
Frame Duration 10ms
Subframe Duration 1ms
Slot Duration 0.5ms
TDD periodicity 1ms

controled through NI LabVIEW Communications MIMO Application Frame-
work inMobile configuration. The key parameters of the system are summarized
in Table 4.1.

The BS antenna array and UE are equipped with wide-band log-periodic dipole
arrays (LPDAs) covering the frequency band between 1.3 GHz to 6.0GHz. The
linearly polarized LPDA element has been designed to provide a half power beam
width (HPBW)of approximately 110° in theH-plane and 70° in the E-plane giving
a directive gain of 6 dBi when used as a single element. Each UE is equipped with
one LPDA antenna element in vertical polarization, whilst the BS is equipped
with 4 subarrays each containing 32 LPDA elements in an equally spaced 4x8
rectangular configuration as illustrated in Fig. 4.1. The antennas in the arrays
are mounted with an element spacing of 110mm on a common ground plane. As
shown in Fig. 4.1 the antenna elements have interleaved polarization such that
each element has a neighbor with orthogonal polarization. This reduces the mu-
tual coupling effects between the elements to a minimum, hence the effect on
the input impedance and radiation pattern for the elements are minimized. 64
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Figure 4.1: Frontal view of the antenna element configuration. Only vertically oriented
elements were used for the reported measurement campaign.

vertically polarized elements were terminated at the BS whilst the other 64 hori-
zontally polarized elements were left open. The configuration is depicted in Fig.
4.1.

4.3.2 Measurement Scenario

The measurement campaign was carried out in an indoor space with industrial
profile in presence of glass, stone and metal reflecting surfaces. As depicted in
Fig. 4.2 the BS was set up at the balcony at the end of the long hall while the
cart containing the 8 UEs was placed on a wheeled cart at around 15 meter dis-
tance from the BS. The antennas of the UEs are positioned in a semi-circle con-
figuration as shown in Fig. 4.3. They are directed away from the BS to suppress
the LOS links and to ensure reflected links are more accentuated. The approxi-
mate distance between the UE cart and the main reflectors at the end of the hall
is around 30m. As shown in the campaign photos in Fig. 4.3 and Fig. 4.4, there
exist many reflecting surfaces, such as concrete walls, window glasses, metal lamp
posts and metal bars (at the end of the hallway) which form a rich scattering en-
vironment. For each frequency band, the UE cart was positioned along 5 pre-
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marked locations within 1m diameter to obtain more sampling points of the en-
vironment.

4.3.3 Channel Estimate Acquisition

The systemhasM antennas on theBS side,KUEs anduses orthogonal frequency
division multiplexing (OFDM) with 1200 usable subcarriers distributed over a
20MHz band. Each user k transmits pilot symbols on a unique set ofF subcarri-
ers (in total 100 subcarriers for each UE) during the channel estimate acquisition
to ensure orthogonality between the pilot symbols. These symbols are used to es-
timate the channel coefficientGmk[f ], withm, k and f as BS antenna index, user
index and subcarrier index, respectively, by a least-squaresmethod.

A received symbol Y BS
mf in the UL can be written as

Y BS
m [f ] =

∑
K

Gmk[f ]X
UE
k [f ] +Nm[f ] (4.1)

whereXUE
k [f ] is the transmit symbol andNm[f ] thenoise at the receiver. Further-

more, the channel coefficient is divided into a large-scale fading and shadowing
factor (

√
βk) and a small-scale fading factorHmk[f ]:

Gmk[f ] =
√
βkHmk[f ]. (4.2)

IfGmk[f ] is distributed according to a complex normal variable with zero mean
and variance βk, that isGmk[f ] ∼ CN (0, βk)), thenHmk[f ] ∼ CN (0, 1). The
complex CTF coefficient Hmk[f ] is used in the rest of the manuscript to anal-
yse properties of channel hardening. The delay domain representation is readily
available via an inverse discrete Fourier transform (IDFT) along the frequency
axis

hmk[n] = IDFT
f
{Hmk[f ]} (4.3)

where n denotes the delay bin. This representation corresponds directly to a
tapped delay line.
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Figure 4.2: Top down sketch of the scenario. The base station (BS) is placed on a bal-
cony indicated with blue color. The user equipments (UEs) were placed at a distance of
approximately 15m with antenna orientation away from the BS subarrays.

Figure 4.3: Positioning of the base station on the balcony and the user equipment cart.
The antennas are pointing away form the balcony to illuminate non-line of sight links.
Five physical locations in the black square were measured for each frequency band.
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4.3 Measurement Description

Figure 4.4:Overview of themeasurement scenario from the base station balcony as seen
by the antenna array.

4.3.4 Measurement Results

To represent themeasured radio environment and to highlight the variations over
the frequency range, we present one single CTF per frequency band in Fig. 4.5.
Each CTF, normalized to its average power, demonstrates significant fading be-
low −10 dB, as expected for a rich scattering environment.

Fig. 4.6 represents normalized power delay profiles for all measured SISO chan-
nels by averaging over the realizations for all UEs and BS antennas. The channel
confines most of the power in a delay window of 1 µs. Furthermore, 5 to 6 multi
path components (MPCs) are clearly resolved for the observation bandwidth of
the user. The response outside of a ±1 µs window of the effective channel is con-
sidered to contain measurement noise and is therefore discarded. Additionally,
artifacts of the IDFT at the delay border and noise contributions are hereby re-
duced.
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Figure 4.5: Selected transfer functions of uplink channels between a single user and a
single base station antenna are shown. Some subcarriers experience severe fading of more
then 10 dB.
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Figure 4.6: Power delay profiles for the four frequency bands are shown. They were
estimated by averaging over all base station antennas, users and measurement locations
in a small area. Observed differences between the frequency bands are small. Hence,
the small-scale fading behaviour is not changing considerably between 1472MHz and
4160MHz in the reported scenario.
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Figure 4.7: Conceptual massiveMIMOTDD operation. Subfigure (a): Pilot signalling
in the uplink to estimate Hmk[f ] at the base station. Subfigure (b): Precoded downlink
transmission with superposition at the user, who experiences the effective channel.

4.4 Effective Channel Concept

In TDDmassive MIMO systems, the UL channels between BS and UEs are esti-
mated at the BS by using a set of orthogonal pilot symbols sent by each UE and
received at each antenna element in the arrays, as depicted in Fig.4.7a. Given reci-
procity holds for the transmitter and receiver chains in the coherence bandwidth
of the system, these channel estimates denoted by Hmk[f ] are used to calculate
the precoding weights at each antenna element. If no co-channel interference is
assumed, the system can be considered as a multiple-input single-output (MISO)
system and the effective channel perceived at the UE is formed by superposition
of these individual channels. In other words, the UE, unaware of any beam form-
ing or precoding, observes a DL SISO channel from the BS which is the effective
channel.

As shown in Fig. 4.7b, from theUE’s perspective, all the signals from the BS form
an effective channel according to Eq. (4.4).
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4 J1 – Effective Channel Hardening

In our specific analysis, weighted sums of SISOCTF coefficients with freely cho-
senweightsWmk[f ] areused to formthe effective channelCTFcoefficientsHk[f ],

Hk[f ] =
∑
M

Wmk[f ]Hmk[f ]. (4.4)

Therefore is the received signal at user k in the DL

Y UE
k [f ] =

√
βkHk[f ]X

BS
k [f ]

+
√
βk
∑
M

Hmk[f ]
K∑
l ̸=k

Wml[f ]X
BS
l [f ] +Nk[f ], (4.5)

where Y UE
k [f ] is the received DL signal at user k and the DL symbol to user k

is XBS
l [f ]. The second term constitutes the multiuser interference and Nk[f ] is

the additive noise at user k. To illustrate the properties of the effective channel
we choose the weights to be the complex conjugate of the CTF coefficients with a
normalization of

√
M to impose an average power constraint

Wmk[f ] =
H∗
mk[f ]√
M

. (4.6)

This differs fromMRT,

WMRT
mk [f ] =

H∗
mk[f ]√∑

M |Hmk[f ]|2
(4.7)

where the normalization is an instantaneous power constraint over the array [10].
For largeM the difference disappears as

∑
M |Hmk[f ]|2 ≈ ME{|Hmk[f ]|2} =

M due to the self averaging property of the large array. The chosen normalization
for thematched filtering doesmaximize the average SNR in theDL and simplifies
the time domain analysis in Sections 4.5.1 and 4.5.2 as it directly transfers to time
reversal precoding.

We take different subsets over theM base station antennas, in order to form sev-
eral effective channels and use them to determine how the different metrics be-
have for increasingnumberof antennas in the following section.
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4.5 Channel HardeningMetrics

4.5 Channel Hardening Metrics

In the frequency domain, channel hardening is regarded as flat fading of the ef-
fective CTF over a large bandwidth. In the delay domain the channel hardening
implies that the strong contributions of the effective channel impulse response
(CIR) are confined to a single delay tap, with reliable tap power for most real-
izations. Since the rms delay spread of the effective CIR determines the neces-
sity for an equalizer in the UE design, with sufficient channel hardening, the
UE receiver could be simplified. The next three subsections describe the figures
of merit for characterizing channel hardening in both delay and frequency do-
mains.

4.5.1 Power Variation of the Effective Channel

Characterizing power variations between different subcarriers of the effective
channel is a metric to assess the flatness of the CTF over the observed bandwidth.
To allow for comparison between BS antenna subsets with different cardinality,
the subcarrier power needs to be normalized by the expectation of its distribution,
namelyE

{
|Hk[f ]|2

}
=M +1. The details of this derivation can be seen in Ap-

pendix4.A.Thenormalizedpower in the frequencydomain is then

Qk[f ] =
|Hk[f ]|2

M + 1
. (4.8)

The distribution ofQk[f ] allows to characterize the power level fluctuations in
the DL a narrow band receiver (RX) will see over the frequency range. Hence, it
allows to draw conclusions about the amount of fading that the link budget needs
to take into account.

Fig. 4.8 shows the empirical CDFs ofQk[f ]. The combinations are formed from
1, 4, 16 and 64 antenna elements over all measured frequency bands, with chan-
nels drawn from similar subsets of consecutive close antenna elements in the sub-
arrays. The observed statistics of the channel is practically the same in the range
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Figure 4.8: Empirical cumulative distribution functions for the normalized effective
subcarrier power are shown. Fading has a lesser impact the higher the number of used
BS antennas in the DL. Combination of 64 transmit signals at the receiver reduce the
fading to less then 2 dB in 90% of the realisations for all four frequency bands.
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4.5 Channel HardeningMetrics

1.5 GHz to 4.2GHz. Furthermore, the variation of Qk[f ] reduces with increas-
ingM . Considering the link budget, channel hardening would reduce the fad-
ing to 2 dB for 90% of the observed effective channels with 64 antennas at the
BS.

4.5.2 Effective PDP and Coherence Bandwidth

In this section, first we derive an analytical form for the effective PDP as a func-
tion of the PDPof theUL channels. Weights given by Eq. (4.6) are used to imple-
ment time reversal precoding in the DL. The frequency correlation is calculated
as the Fourier transform of the effective PDP, then coherence bandwidth can be
obtained as a metric for evaluation of the effective channel.

Under the assumption of independent and equally distributed channels for user
k at all antenna elements, the channel can be described as complex normal dis-
tributed hmk[n] ∼ CN (0, pk[n]) where pk[n] = E

{
|hmk[n]|2

}
is the PDP for

all the channels from user k to the array. With the normalization of path loss and
large-scale fading the average channel gain is

∑
pk[n] = 1. The use of theweights

fromEq. (4.6) in Eq. (4.4) corresponds to applying thematched filter in the time
domain,

wmk[n] = h∗m[−n]/
√
M, (4.9)

which is time-reversal precoding [67]. The normalization keeps the average out-
put power from the array independent ofM when theseweights are used in a pre-
coding filter. An instantaneous power constraint would give the normalization

with
√∑

M

∑
n |hmk[n]|

2, which for largeM approximately is
√
M as∑

M

∑
n

|hmk[n]|2 ≈ME{|hmk[n]|2} =M (4.10)

The effective channel in the delay domain becomes

hk[n] =
∑
M

wmk[n] ⋆ hmk[n]. (4.11)
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Figure 4.9: The effective PDPs of an original square PDPs and the Fourier related fre-
quency correlation functions are shown in (a), (b), (c) and (d), (e), (f), respectively. The
effective channels has a scaling behaviour of the PDP for different numbers of antennas.
The increasing peak in the PDP for largerM corresponds to an increasing lower bound
on the frequency correlation, which approaches flat fading for largeM .

Thecorresponding effectivePDP is derived inAppendix4.B and is given as

pk[n] = pk[−n] ⋆ pk[n] + δnM. (4.12)

The temporal focusing is visualized in Fig. 4.9 a-c. It can be seen that the ratio of
the amount of energy at the zero delay tap to the amount of energy at non-zero
taps increases as the number of combined elements grows. The frequency correla-
tion function for all the channels for user k is denotedRk[∆f ] and is the Fourier
transform of the PDP pk[n] [71]. The correlation functionRk[∆f ] for the effec-
tive channelhk[n] is hence the Fourier transformof pk[n]. The PDP pk[n] consist
of two terms. The convolution pk[−n] ⋆ pk[n] corresponds in the frequency do-
main to the absolute square of the frequency correlation, that is |Rk[∆f ]|2. The
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4.5 Channel HardeningMetrics

peak δnM in Eq. (4.12) at zero lag corresponds to an offset for all frequencies.
Hence, with a normalization so thatRk[0] = 1we obtain

Rk[∆f ] =
|Rk[∆f ]|2 +M

1 +M
. (4.13)

The link between the PDP and the frequency correlation is illustrated in Fig. 4.9.
Because the correlation functionRk[∆f ] is bounded as 0 ≤ |Rk[∆f ]|2 ≤ 1, the
effective frequency correlation becomes bounded as

1

1 + 1/M
≤ Rk[∆f ] ≤ 1. (4.14)

The large offset caused by the matched filtering limits the variability of the fre-
quency correlation function. Even with just one antenna, matched filtering re-
duces themaximum range ofRk[∆f ] to 3 dB as illustrated in Fig.0 4.9e. For four
antennas it is 1 dB and for 8 antennas it is 0.5 dB. Hence, the common 3 dB co-
herence bandwidth measure can not be applied for the effective channel using
matched filtering, as the coherence bandwidth will become the whole bandwidth
when using two or more antennas. The channel hardening is here seen as the re-
duction in frequency selectivity, which results in a coherence bandwidth equal to
almost the full bandwidth. Using an instantaneous power constraint would even
further reduce the variability.

As the variability of the frequency responseHk[f ] reduces withM the coherence
bandwidth will increase simply because all the subcarriers will have just minor
differences in amplitude around a dominating average.

4.5.3 The Effective Delay Spread

The effectivePDPp[n]will have an effectivedelay spread givenby

τ̂rms = ∆τ

√∑∞
n=−∞ n2p[n]∑∞
n=−∞ p[n]

, (4.15)
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where∆τ is the duration between samples. To be able to study the variability of
temporal focusing of the matched filtering for the realizations we use the instan-
taneous delay spread, adapted from [72],

τ̂ irmsk = ∆τ

√√√√∑∞
n=−∞ n2 |hk[n]|2∑∞
n=−∞ |hk[n]|

2 , (4.16)

where the expectations in Eq. (4.15) are exchanged with realizations. Channel
hardening manifests as a reduction in variability whereas temporal focusing re-
sults in an over all reduction of this measure. Fig. 4.10 shows the empirical CDF
of the instantaneous rms delay spread for all channel realizations. Both the value
and the variability of τ̂ irmsk reduce withM . For largeM this will make it possible
to have low complexity receivers in the DL as the channel effectively becomes a
single tap channel.

The ratio between the effective delay spread τ̂rms and the delay spreadbefore com-
bining τrms, derived in Appendix 4.C, can be expressed as a function of the num-
ber of antennasM as

τ̂rms
τrms

=

√
2

1 +M
. (4.17)

For a single antenna the matched filtering does not change the delay spread. Fig.
4.11 shows the ratio τ̂rms/τrms for the empirical delay spread from the measure-
ments together with the ratio given by Eq. (4.17). The delay spread converges
slower to a single tap than the coherence bandwidth approaches the full band-
width when increasing the number of combined antennas. Using 7 antennas will
halve the delay spread whereas 16 antennas reduce it by approximately a third and
32 by a fourth.

The observed channel hardening is the focusing of the signal in the delay domain
resulting in a smaller delay spread. In addition, the variability of the delay spread
in the realizations reduce with increasing numbers of combined antennas as seen
in Fig. 4.10.
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Figure 4.10: Empirical CDFs for the effective delay spread. Both the mean as well as the
variance are decreasing for an increasing number of antennas, demonstrating temporal
focusing and channel hardening. A base station with 64 antennas could shrink the delay
spread to fit into a single delay bin allowing for a simplified receiver at the user side.
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Figure 4.11: The ratio of effective delay spread and the delay spread of the channel as a
function of antennas used for combining is shown. The theoretical scaling is drawnwith
a black line (Eq. (4.17)). A system with 8 antennas at the base station could reduce the
delay spread by a factor of two and the effect has diminishing returns for larger systems.

4.6 Conclusion

Measured data from a quasi-static indoor radio environment over four frequency
bands in the range from 1.4GHz to 4.2GHz are used to study channel harden-
ing properties in massive MIMO when using time-reversal precoding. The mea-
surements contain 40 single user realizations against a 64 element antenna ar-
ray BS to elucidate channel hardening in both the delay and the frequency do-
main. The observed statistical properties for the channels are practically the same
over the studied frequency bands. The coherence bandwidth is demonstrated
to have limited merit as a measure for the effective DL channel. The rms delay
spread and the normalized subcarrier power of the effective radio channel are de-
scribed as physically motivated figures of merit for low complexity single tap re-
ceivers.
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4.A Expectation of the Effective Channel Power in the Frequency Domain

4.A Expectation of the Effective Channel Power in the
Frequency Domain

Taking the small-scale coefficients Hm[f ] ∼ CN (0, 1) from a user to antenna
m on subcarrier f and normalizing the matched filter weightsWm[f ] with

√
M

allowsus towrite the effective channelwith droppeduser dependency inEq. (4.4)
as follows:

H[f ] =
∑
M

Wm[f ]Hm[f ] =
1√
M

∑
M

H∗
m[f ]Hm[f ]

=
1√
M

∑
M

|Hm[f ]|2 . (4.18)

As E{|Hm[f ]
2|} = 1 and E

{
|Hm[f ]|4

}
= 2 for a complex circular Gaussian

variable with unit variance [73], using the Kronecker delta function δij , the effec-
tive channel power is obtained as

E
{
|H[f ]|2

}
=

1

M

M∑
m=1

M∑
l=1

E
{
|Hm[f ]|2 |Hl[f ]|2

}
=

1

M

M∑
m=1

M∑
l=1

[
(1− δml)E

{
|Hm[f ]|2

}
E
{
|Hl[f ]|2

}
+δml E

{
|Hm[f ]|4

} ]

=
1

M

M∑
m=1

M∑
l=1

(1− δml) + 2δml

=
1

M

M∑
m=1

M∑
l=1

(1 + δml) =
1

M

(
M2 +M

)
=M + 1. (4.19)

Hence, the expectation of the effective channel power and the SNR in the DL
scales withM + 1, if the weights are normalized with

√
M .
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4.B Power Delay Profile of the Effective Channel

Examining the single user case the user index is neglected. The channel from UE
to antennam is given ashm ∼ CN (0, p[n]), wherep[n] is the power delay profile
assumed the same over the whole array. The average channel gain is one, that is∑∞

n=0 p[n] = 1.With the matched filtering wm[n] = h∗m[−n]/
√
M the PDP

for an effective channel is the expectation of the absolute square of the effective
channel impulse response,

p[n] = E
{
|h[n]|2

}
= E

 1

M

∣∣∣∣∣
M∑
m=1

h∗m[−n] ⋆ hm[n]

∣∣∣∣∣
2
 (4.20)

As the channels hm[n] are causal, the matched filtering of channelm, that is the
convolution, can be expressed as

hm[n] = wm[n] ⋆ hm[n] =
h∗m[−n]√

M
⋆ hm[n]

=
1√
M

∞∑
ν=−∞

h∗m[−ν]hm[n− ν]

=
1√
M

0∑
ν=−∞

h∗m[−ν]hm[n− ν] =
1√
M

∞∑
ν=0

h∗m[ν]hm[n+ ν].

(4.21)

Here hm[n] is the effective channel for a single antennam after matched filtering.
The expectation is

E{hm[n]} =
1√
M

∞∑
ν=0

E{h∗m[ν]hm[n+ ν]}︸ ︷︷ ︸
δnp[ν]

=
δn√
M

(4.22)
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where we use that the sum power in the PDP is one and the corresponding effec-
tive PDP for antennam is

pm[n] = E
{
|hm[n]|2

}
=E

 1

M

∣∣∣∣∣
∞∑
ν=0

h∗m[ν]⋆hm[n+ν]

∣∣∣∣∣
2


=
1

M

∞∑
ν=0

∞∑
µ=0

E{h∗m[ν]hm[n+ ν]hm[µ]h
∗
m[n+ µ]} . (4.23)

The expectation in the sum can be broken down in four terms, each a combina-
tion of n = 0, n ̸= 0 and ν = µ, ν ̸= µ. Using δij and the unit impulse δi to
separate the terms we obtain

E{h∗m[ν]hm[n+ ν]hm[µ]h
∗
m[n+ µ]} =

(1− δn)(1− δνµ) · 0 + δn(1− δνµ)E
{
|hm[ν]|2

}︸ ︷︷ ︸
p[ν]

E
{
|hm[µ]|2

}︸ ︷︷ ︸
p[µ]

+ (1− δn)δνµ E
{
|hm[ν]|2

}︸ ︷︷ ︸
p[ν]

E
{
|hm[n+ ν]|2

}︸ ︷︷ ︸
p[n+ν]

+δnδνµ E
{
|hm[ν]|4

}︸ ︷︷ ︸
2p2[ν]

(4.24)

Using theWSSUSmodel, taps corresponding to different delays are independent
and hence the first term is zero. Gathering the terms containing either δνµ or δn
in Eq. (4.24) the expectation becomes

E{h∗m[ν]hm[n+ ν]hm[µ]h
∗
m[n+ µ]}

= δνµp[ν]p[n+ ν] + δnp[ν]p[µ] (4.25)

Using this inEq. (4.23) the effectivePDPfor channelm is obtained as

pm[n] =
1

M

∞∑
ν=0

∞∑
µ=0

(δνµp[ν]p[n+ ν] + δnp[ν]p[µ])

=
1

M

∞∑
ν=0

p[ν]p[n+ ν] +
δn
M

∞∑
ν=0

p[ν]︸ ︷︷ ︸
1

∞∑
µ=0

p[µ]︸ ︷︷ ︸
1

=
1

M
(p[−n] ⋆ p[n] + δn) (4.26)
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Using Eq. (4.22) the expectation of the effective channel is

E{h[n]} = E

{
M∑
m=1

hm[n]

}
=
√
Mδn (4.27)

The effective PDP after combining is

p[n] = E


∣∣∣∣∣
M∑
m=1

hm[n]

∣∣∣∣∣
2
 =

M∑
m=1

M∑
l=1

E{hm[n]h∗l [n]} (4.28)

Approaching the expectation in the samemanner as inEq. (4.24)weobtain

E{hm[n]h∗l [n]} = (1− δn)(1− δml) · 0
+ δn(1− δml)E{hm[0]}︸ ︷︷ ︸

1/
√
M

E{hl[0]}︸ ︷︷ ︸
1/

√
M

+δml E
{
|hm[n]|2

}︸ ︷︷ ︸
pm[n]

(4.29)

whichwhen introduced inEq. (4.28) togetherwithEq. (4.26) result in

p[n] =
M∑
m=1

M∑
l=1

(
δmlpm[n] +

δn(1− δml)
M

)

=
M∑
m=1

pm[n] + (M − 1) δn

= p[−n] ⋆ p[n] +Mδn. (4.30)

The effective PDP has the shape of the convolution of the underlying PDP with
it’s reverse with an additionalMδn peak in the middle, formed by the coherent
summing. The gain of the effective PDP is

∞∑
n=−∞

p[n] =
∞∑

n=−∞

∞∑
ν=0

p[ν]p[n+ν] +M
∞∑

n=−∞

δn

=
∞∑
ν=0

p[ν]︸ ︷︷ ︸
=1

∞∑
n=−∞

p[n+ ν]︸ ︷︷ ︸
=1

+M = 1 +M (4.31)
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Of special interest is the center tap p[0] which is obtained from Eq. (4.29) and
that can be bounded as

M < p[0] =
∞∑
ν=0

p2[ν] +M ≤ 1 +M. (4.32)

where we use that all the terms in the sum are either zero or positive and that
p2[n] ≤ p[n] ≤ 1.

4.C Delay Spread of the Effective Channel

As the effective PDP is symmetric around zero the average delay is zero. The
squareddelay spread for the effective channel is therefore givenby

τ̂ 2rms = ∆τ 2
∑∞

n=−∞ n2p[n]∑∞
n=−∞ p[n]

=
∆τ 2

M + 1

∞∑
n=−∞

n2p[−n] ⋆ p[n] (4.33)

where we insert the result from Eq. (4.29) and use Eq. (4.30). The delay spread
of the channels is given by

τ̄ = ∆τ

∑∞
n=0 np[n]∑∞
n=0 p[n]

= ∆τ
∞∑
n=0

np[n] (4.34)

τ 2rms = ∆τ 2
∑∞

n=0 n
2p[n]∑∞

n=−∞ p[n]
− τ̄ 2 = ∆τ 2

∞∑
n=0

n2p[n]− τ̄ 2 (4.35)

For notational convenience we set ∆τ = 1 and henceforth express the average
delay anddelay spread in samples. The effective delay spread can thenbe expressed
as

τ̂ 2rms =
1

M + 1

∞∑
n=−∞

n2

∞∑
ν=0

p[ν]p[n+ν]

[
µ= n+ ν]=

1

M + 1

∞∑
ν=0

p[ν]
∞∑

µ=−∞

(µ− ν)2p[µ], (4.36)
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where a variable substitution in the second equality make it possible to separate
the sums. The second sum can be evaluated as

∞∑
µ=0

(µ− ν)2p[µ] =
∞∑

µ=−∞

µ2p[µ]︸ ︷︷ ︸
τ2rms−τ̄2

−2ν
∞∑

µ=−∞

µp[µ]︸ ︷︷ ︸
τ̄

+ν2
∞∑

µ=−∞

p[µ]︸ ︷︷ ︸
=1

(4.37)

which introduced back in Eq. (4.36) and performing the same type of evaluation
of the sum as above result in

τ̂ 2rms =
1

M + 1

∞∑
ν=0

p[ν]
(
τ 2rms − τ̄ 2 − 2ντ̄ + ν2

)
=

2τ 2rms
M + 1

(4.38)

The ratio of the delay spread between the original channels and the effective chan-
nel after MRC orMRT is hence

τ̂rms
τrms

=

√
2

1 +M
. (4.39)

With a single antenna andmatchedfiltering thedelay spread is unaffected.
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5.1 Abstract

Channel hardening characterises the diminishing influence of small scale fading
on large scale antenna systems. The effective massive MIMO time domain chan-
nel is introduced and applied to a maximum diversity channel with rectangular
power delay profile. This model bounds channel hardening and allows a proper
interpretation from a radio design perspective. The reduced variability of the ef-
fective channel enables power inversion to obtain a downlink channel that only
depends on the large scale fading properties.
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5.2 Introduction

WSN are of increasing interest to industry and governments for surveillance of
different environments. Large scale antenna systems (such as massive MIMO BS
[23]) could become a leading technology to provide a robust single hop data link
for thousands of sensor nodes. They make it possible to move complexity from
the sensors to the BS to increase the lifetime of each node. Channel hardening
and favourable propagation allow the simplification of the node transceiver de-
sign and a reduction of their output power. An alternative approach are mesh
networks, but they suffer from uneven power usage for nodes close to the data
gateway.

Even though a single radio channel can experience small and large scale fading
(here pathloss and shadowing), it is highly unlikely that all antenna elements ex-
perience a fading dip at the same time. Thus, large scale antenna systems can ex-
ploit spatial diversity to compensate for small scale fading. Furthermore, the array
gain can overcome some large scale fading.

This paper formulates an effective massive MIMO channel in the time domain,
to describe the small scale fading in the downlink with a relative power measure.
A similar approach in the frequency domain was chosen by the authors to in-
vestigate the behaviour of rms delay spread under channel hardening [R1]. The
effective channel can directly be used to bound the fading margin and adheres to
the philosophy that a receiver requires first and foremost a signal level above or at a
minimal threshold. Both centralised anddistributednormalisations of time rever-
sal precoding and their influence on the remaining small scale fading are studied.
In addition, focus is placed on the relative antenna element and BS power. The
former is defining the required dynamic range of the BS transmitters. The latter
is mainly of regulatory interest, but confines the overall power consumption of
the BS in addition.

The next section describes the effective massive MIMO channel with considera-
tion of time reversal precoding, normalisation and relative power measures. The
following section shows the distributions for the relative power measures of a

76



5.3 The EffectiveMassiveMIMOChannel

maximum diversity channel to give a best case bound of channel hardening. Af-
terwards, the results are applied to a four tap channel to demonstrate the ideal
theoretical behaviour of large scale antenna systems with a growing number of
transmitters. The last section summarises the findings and discusses necessary
steps to realise time reversal power inversion for robust large scale antenna system
WSNs.

5.3 The Effective Massive MIMO Channel

The complex valued input-output relation at time index n for downlink signal
xl[n] intended for user l and signal yk[n] received by user k in a K user system
withM antennas at the BS is described by

yk[n] =
√
βk

K∑
l=1

(
M∑
m=1

hmk[n] ⋆ wml[n]

)
︸ ︷︷ ︸

hkl[n]

⋆ xl[n] + ek[n]

=
√
βkhkk[n] ⋆ xk[n]︸ ︷︷ ︸

signal

+
√
βk

K∑
l=1
l ̸=k

hkl[n] ⋆ xl[n]

︸ ︷︷ ︸
multi-user interference

+ ek[n]︸︷︷︸
noise

(5.1)

where βk, ek are large scale fading coefficient and noise, hmk[n] and wml[n] are
small scale fading channel impulse response for user k and precoding filter for
user l transmitted from antennam. The ⋆ denotes the convolution between two
signals. Here βk normalises the channel impulse response as

E

{
N∑
n=1

|hmk[n]|2
}

= 1 (5.2)

with E{·} denoting the expectation. Intrinsically, βk is a global variable for all
SISO channels from a user to theM BS antennas.
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5 C1 – Power Inversion

The effective channels hkl[n] are formed by the superposition of all signals from
the BS at the user k. The intended effective channel is hkk[n], whereas all other
effective channels contribute to multi-user interference.

5.3.1 Time Reversal

MRT, ZF and linearMMSE [10], [74] are the commonly used frequency domain
linear precoding schemes in large scale antenna systems. MRT optimises the sig-
nal to noise ratio of a single user, ignoring MUI. ZF optimises the signal to in-
terference ratio by suppressingMUI, ignoring the SNR of the intended user and
the linearMMSE precoder has a control parameter to achieve a trade off between
MRT and ZF.

Both ZF andMMSE require a matrix inversion operation of the multi user chan-
nel to calculate the precoding weights. The matrix inversion introduces the re-
quirement of centralised weight calculations and is a computational heavy oper-
ation. It is our understanding that favourable propagation and user scheduling
can alleviate the WSN in a heavily loaded large scale antenna system for WSN.
Therefore, MRT will be the inspiration for the considered precoding scheme in
the remainder of this paper.

MRTisusually applied to each sub-carrier of anOFDMsystemandclosely related
to TR [60]. Following the TR idea, the precoder weights can be calculated from
the uplink channel with generic single user normalisation cl

wml[n] =
h∗ml[−n]

cl
(5.3)

where ∗ denotes the complex conjugate. This approach reverses the channel im-
pulse response to focus energy at the user in both space and time [11], partly re-
ducing interference at other places. The importance of the effective zero delay tap
hkk[0] becomes apparent by investigation of the sum over convolutions in Eqn.
(5.1). It is the main contributor to the effective channel due to the coherent addi-
tion of the underlying SISO channel taps. Solving the convolutions for zero delay
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5.3 The EffectiveMassiveMIMOChannel

results in

hkk[0] =
1

ck

M∑
m=1

N∑
n=1

|hmk[n]|2. (5.4)

This result describes the radio propagation between the BS and the user in a com-
pressed form and captures the usable signal power for a single tap receiver. The re-
maining variability ofhkk[0] is due to theuncompensated small scale fading.

5.3.2 Powers

At the BS, both the relative antenna element transmit power PAnt,R
mk and the rel-

ative BS transmit power P BS,R
k are random variables of interest. The former is

describing howmuch the output power of each antenna is influenced by the pre-
coding weights:

PAnt,R
mk =M

N∑
n=1

|wmk[n]|2 . (5.5)

The distribution ofPAnt,R
mk characterises howmuch each transmitter at the BS has

to cope with fluctuations of the antenna element output power. Furthermore,
P BS,R
k sums over all squared weights of a specific user to see the impact on the

whole BS:

P BS,R
k =

M∑
m=1

N∑
n=1

|wmk[n]|2 . (5.6)

At the user, the relative effective received power captures the array gain normalised
power fluctuation for a single tap receiver

PRX,R
k =

1

M
|hkk[0]|2 . (5.7)

Thesefluctuationsdescribe the remaining small scale fading andherebyhowmuch
spatial diversity is exploited by the precoding.
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5.3.3 Normalisations

The three relative powers of interest are influenced by the choice of cl in Eqn.
(5.3). To implement a normalisation reminiscent to MMRT, the normalisation
constant has to be calculated by

cTRl =

√√√√ M∑
m=1

N∑
n=1

|hml[n]|2. (5.8)

This scales each realisation of the precoding weights with the current state of
the channel and ensures unit gain per user over the whole BS. Unfortunately, it
requires a centralised weight calculation. However, the double sum can be re-
placed by its expectation, leading to a decentralised strategy. The inner sum fol-
lows Eqn. (5.2) with expectation one and the outer sum is self-averaging over val-
ues fluctuating around one. Eventually, a DTR normalisation can be obtained
as:

cDTRl =

√√√√E

{
M∑
m=1

N∑
n=1

|hml[n]|2
}

=
√
M. (5.9)

A third normalisation can be chosen to apply more power to a weaker channel
realisation. This PI approach is centralised and has similarity with channel inver-
sion [75], but avoids a matrix inversion operation:

cPIl =
1√
M

M∑
m=1

N∑
n=1

|hml[n]|2. (5.10)

PI is prohibitive for single antenna systems, because it could lead to an extreme
peak-to-average power (PAP) on the antenna element. Nevertheless, it will be
shown that finite large scale antenna systems can provide enough diversity to re-
duce the PAP to a viable amount.

The coefficients are following cPIl ≥ cTRl ≥ cDTRl , if the channel realisation is
weaker than the expectation

∑M
m=1

∑N
n=1 |hml[n]|2 <

√
M . Hence, PI is invert-

ing the behaviour of TR andDTRwhere less power is transmitted if the channel
realisation is weak.
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5.4 Maximum Diversity Channel

Abound for channel hardening is found using an ideal maximum diversity chan-
nel. The corresponding PDP is modelled with a rectangular shape and indepen-
dent identically distributedRayleigh taps, sincemaximumdiversity is achieved for
a diffuse scattering environment if all diversity branches behave the same. The co-
efficients are therefore following a zeromean circular symmetric complex normal
(CN ) distribution and we set the variance to 1/N for aN tap channel to adhere
to the assumption in Eqn. (5.2).

For DTR, PAnt,R
mk is a scaled sum of squares of hmk[n] and each squared channel

coefficent follows an exponential distribution. The scaling compensates for cDTRl

such that the result is distributed according to a Gamma distribution with shape
N and scale 1/N (Γ(N, 1/N)), since theN addends are independent identically
distributed randomvariables ofGamma type (Γ(1, 1/N)) [76], [77].

Thedistributions for theother twonormalisationsdiverge fromΓ(N, 1/N) since
each realisation of the normalisation coefficient varies from

√
M . The variance

of TR will be smaller than 1/N since less power is applied for weaker channels.
The opposite is true for DTR because more power is applied for weaker chan-
nels.

ForDTRandM independent realisations of the channel coefficents overN delay
taps follows P BS,R

k Γ(MN, 1/(MN)). TR leads to a constant of one and PI has
a higher variance of the relative BS transmit power due to the uncertainty of cPIl
around

√
M .

The remaining small scale fading for a user is captured by the variation of PRX,R
k .

PI enforces a valueof one,whilstTR leads to adistributionbyΓ(MN, 1/(MN)).
For DTR the result follows the square of Γ(MN, 1/(MN)) being a generalised
Gamma distribution [78]. A summary of expectations and variances for the dif-
ferent powers is given in Tab. 5.1 showing the scaling properties with respect to
the number of tapsN and the number of BS antennasM .

Naturally, the power fluctuations per antenna element are only dependent on the
length of the channel, whereas the relative BS transmit and the relative received
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5 C1 – Power Inversion

Table 5.1: Summary of expectations (E{·}) and variances (V{·}) for the relative antenna
transmit power PAnt,R

mk , the relative base station transmit power P BS,R
k and the relative

effective received power PRX,R
k for a maximum diversity channel withN tap normalised

rectangular power delay profile for aM antenna base station. The values are given for the
different time reversal normalisations.

PAnt,R
mk P BS,R

k PRX,R
k

DTR TR PI DTR TR PI DTR TR PI

E{·} 1 1 ≥ 1 1 1 ≥ 1 1 + 1
MN 1 1

V{·} 1
N ≤ 1

N ≥ 1
N

1
MN 0 ≥ 1

MN
4

MN + 10
M2N2 + 6

MN3
1

MN 0

power depend on the number the BS antennas providing diversity. We want to
point the duality between BS antenna elements and channel taps in the effective
channel out. Even for non-ideal channels, both can provide diversity to compen-
sate for small scale fading.

5.5 Simulation

To validate the derived distributions and to demonstrate the impact of the differ-
ent normalisations on the relative powers simulations were conducted. Realisa-
tions of hmk[n] were drawn from CN(0, 1/N) to apply post processing accord-
ing to Eqns. (5.5), (5.6) and (5.7). This allows the generation of empirical CDFs
and empirical complementary cumulative distribution function (CCDF) to sim-
ulate the behaviour of the maximum diversity channel for different finite large
scale antenna system sizes.

An ensemble of one million realisations with N = 4 is used for demonstration
purposes and the results forM = 4 andM = 16 are presented in Fig. 5.1. The
CCDFs of the first row show the distribution of relative antenna element output
power due to the realisations of the channel coefficients. As expected, TR and
PI require less and more excess power (with respect to a reference at 0 dB) than
DTR, respectively. The differences to DTR are vanishing for growingM , since
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cTRl and cPIl are converging to cDTRl =
√
M due to the self-averaging properties

of the large scale antenna system.

TheCCDFofPAnt,R
k can formoderately sizedfinite large scale antenna systemsbe

predicted from the distribution of the channel coefficients. ForM = 16 do the
requirements forPI andMRTvary less then0.5 dBwith respect toDTR.

The next row in Fig. 5.1 shows the CCDFs for the relative BS transmit power.
Both, DTR and PI require more excess sum power then TR, but the difference
is reduced for largerM . It is important to note that the reduction comes from
averaging over multiple realisations of antenna output powers. Hence, the unit
normalisation of TR is giving no insight into how the antenna element output
powers are behaving. It only ensures that the sum over all antenna elements be-
comes one for the specific user.

The bottom row in Fig. 5.1 shows the CDFs for the relative received power at a
user. The distributions describe the remaining small scale fading directly. PI com-
pensates it completely whilst TR and DTR reduce it’s severity. DTR is prone to
a doubling in dB with respect to TR but opens up for distributed weight calcu-
lations. The trade-off between distributed and centralised weight calculation is
directly accessible from the distribution ofPRX,R

k . Furthermore, the results show
how much the channel hardening is exploited by the different time reversal nor-
malisations.

Fig. 5.2 shows how the empirical CCDFs and CDFs behave at a probability of
10−4 for growingM andN = 4. Channel hardening leads to fast convergence
of the relative antenna element power to 6 dB, no matter the chosen normalisa-
tion. In addition, the relative power of the whole BS is converging towards the
TR constant of 0 dB. The penalty of excess power between PI and DTR is van-
ishing around 32 antenna elements. Finally, small scale fading has a diminishing
effect for TR and DTR. In summary, the figure shows the trade-offs for a four
tap maximum diversity channel. If small scale fading is supposed to be mitigated
completely, then PI could be used if a slight excess in output power from each
antenna is acceptable. Each transmitter for a 32 antenna system would have to
supply about 0.2 dBmore excess power then TR, leading to an increased BS out-
put power of 1.5 dB in less then 10−4 cases.
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Figure 5.1: Empirical CCDFs are shown for the single antennas and the base station to
highlight the excessive relative output power probabilities of a maximum diversity chan-
nel with a four tap rectangular power delay profile. The bottom row shows the empirical
CDFs for the relative effective received power showing the remaining effects of small scale
fading on the effective channel. Different normalisation coefficients are used for the time
reversal weights: TR, DTR and PI.
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Figure 5.2: For the same simulation scenario as in Fig. 5.1 are relative power levels dis-
played. PAnt,R

mk and P BS,R
k represent the antenna element and the whole base station, re-

spectively. The displayed values are exceeded with a probability of 10−4. Additionally,
relative power levels at the receiver PRX,R

k fall short of the shown value with the same
probability.

The simulatedfindings encourage to incorporate realistic PDPs for comparison to
the ideal maximumdiversity channel. Additionally, measurements could provide
the realisations for the empirical CCDFs andCDFs in realistic environments. Ul-
timately, fully synchronised uplink and downlink measurements should be con-
ducted to verify that PI can completely compensate for small scale fadingwithout
exceeding a certain PAP requirement.

5.6 Conclusion

This paper considers the effective massive MIMO channel in the time domain
to analyse the severity of small scale fading for an ideal maximum diversity chan-
nel. This approach bounds the remaining small scale fading and shows the ex-
ploitation of channel hardening. Time reversal precoding with different normal-

85



5 C1 – Power Inversion

isations is described and the impact on relative transmitter power, sum BS power
and effective received power for a single tap receiver is demonstrated. Further-
more, distributions for the relative powers with DTR normalisation are given.
They can be used to bound the remaining small scale fading for system design
purposes.

For large scale antenna systems, the actual normalisation coefficient has little im-
pact on the relative excess transmit power requirement for each BS antenna el-
ement, but influences the excess sum BS power. The latter is merely of regula-
tory interest and depends on the averaging time window given by the authori-
ties, since each single transmitter needs to fulfil it’s PAP requirements nonethe-
less.

A time reversal precoder can allow for either distributed (DTR) or centralised
(TR and PI) weight calculations. DTR relaxes the requirements on inter BS com-
munication, since all fast weight calculations can be done locally at each antenna
element. However, additional power needs to be spent to guarantee a specified
downlinkperformance as the remaining small scale fading is larger than forTR.

If the system design allows for centralised weight calculation, then PI can be cho-
sen over TR to compensate for the remaining small scale fading. The penalty is
a slightly fluctuating relative BS power to realise a fixed relative received power
at the user, whilst the requirements for the relative transmitter power increases
negligibly.

The present study suggests that PI is realisable for environments with sufficient
spatial diversity. An ideal 16 antenna system observing a maximum diversity four
tap channel provides 64 degrees of freedom and the penalty for increasing the
robustness of the link is as small as 0.5 dB excess power per antenna element in
10−4 cases. The overall BS power has an expectation of around one and exceeds
it in less then 10−4 cases by 2.2 dB. The BS excess power is mainly of regulatory
interest because the BS has to provide similar transmitters for all presented nor-
malisations. Eventually, the resulting effective downlink channel can compensate
for small scale fading, leaving the system engineer to consider large scale fading for
the design of WSNs.
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6.1 Abstract

Large scale antenna systems are used to exploit spatial multiplexing gains in mas-
sive MIMO systems. To realise those gains, channel state information has to be
acquired at a base station. However, an initial control channel has to be provided
to synchronise time and frequency at the user. This control channel should be
undirected to cover the base stations operational area and can therefore not ex-
ploit the coherent array gain without additional strategies. Beam sweeping has
been proposed to provide increased spatial coverage. Its performance for large
scale antenna systems in Rayleigh and Rician fading environments is analysed.
Even an orthogonal basis of antenna weights for full spatial coverage can not pro-
vide the full array gain. The results quantify the gap between achievable syn-
chronisation and full array gain for uncorrelated antennas. Closed form solu-
tions for the distribution of the gain gap under Rayleigh fading conditions are
derived.

6.2 Introduction

Large scale antenna systems are an integral part of massive MIMO base stations
(BS). By scaling the number of BS antennas up, both channel hardening and
favourable propagation can be exploited, leading to increased spectral efficiency
and robustness of the radio channel [23].

Most massive MIMO studies assume at least implicitly that the BS receives some
potentially noisy uplink pilots to estimate the radio channel. Relying on reci-
procity, just theN users (UEs) of the system have to transmit pilots to allow the
estimation of the fullN ×M radio channel matrix, whereM is the number of
BS antennas. This approach provides the possibility of scalingM without impact
on the channel estimation process for a constant number of simultaneous UEs.
Precoding with linear methods allows to exploit the array gain under favourable
propagation conditions.

Unfortunately, each participating UE has to synchronise to a BS at some point to
acquire at least frequency and timing information. Even random access protocols
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are relying on an initial synchronisation signal (e.g. [79]). This signal needs to
be broadcast over the whole intended coverage area of the BS. There will be a gap
between theUEfocused channel gainwithperfect channel state information (CSI)
and the synchronisation gain of the broadcast channel without CSI. The gain gap
is, for a fixed BS sum power, growing linearly with the number of antennas at the
BS [55].

To overcome the gain gap, single high power beacon signals could be consid-
ered. Unfortunately, this solution is not scalable for large scale antenna systems
as it would require M times the single element power. For spatially restricted
measurements, synchronisation between BS and UEs can be provided by cable
[17].

Real world deployments require over-the-air synchronisation. The Argos testbed
implemented anopen-loopbeamforming strategy to increase the synchronisation
gain [55]. This method employs multiple beam pattern to scan the full channel
subspace spanned by the BS antennas. The scanning increases the probability
that a UE is illuminated by at least one beam pattern to receive synchronisation
information. Additional time for the subspace scan is traded for increased syn-
chronisation gain.

The following manuscript provides a theoretical analysis of beam sweeping in
large scale antenna systems for bothRayleigh andRician fading channelswithun-
correlated antenna elements. Section 6.3 introduces the radio channel, followed
by the description of the statistical framework in section 6.4. A comparison of
different numbers of BS antennas is provided in section 6.5 and the impact of
array calibration is afterwards discussed in section 6.6.

6.3 Prerequisites

6.3.1 Performance Measures

Assuming a single carrier flat fading channel allows us tomodel the radio channel
towards theM BS antenna elements as a complex vectorH of lengthM . This
channel is excited by the conjugate transpose of a transmit weights vectorW of
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Figure 6.1: Power coupling for different angles between the antenna weight vector and
the radio channel vector. 45° and 60° lead to −3 dB and −6 dB, respectively.

lengthM and theHermitian angle [20]α between both vectors describes the cou-
pling of the envelope signal:

cosα =
|WHH|
∥W ∥2 ∥H∥2

. (6.1)

The power coupling A = cos2 α follows subsequently and describes the gap
between the full array gain and the potentiallymismatched excitation of the chan-
nel. Fig. 6.1 shows thepower coupling as a functionof the angleα.

6.3.2 Radio Channel Model

ARician channel is used tomodel a broad class of radio environments. This chan-
nel model superimposes a specular and diffuse component. The specular compo-
nent is a single, on the BS array impinging, deterministic plane wave with power
P̄ . The diffuse component has an expected power P̃ . Both powers are set into
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relationship by theK-factorK = P̄/P̃ ranging from 0 (no specular component,
Rayleigh case) to infinity (no diffuse component, single planar wave). The sum
power P̄ + P̃ is set to unity without loss of generality. Thereby, the channel
model is decoupled from large scale fading to highlight small scale fading proper-
ties.

The specular componentwithwave vectork leads to a deterministic phase change
over the arraywith positionmatrix r = [r1, r2, . . . , rM ]Twhere each rm describes
the position of one element. Hence the phase shifts for the specular component
can be collected in the vector H̄ with elements:

H̄m = exp (−jrmk) . (6.2)

Thediffuse component is describedby a complexnormal distribution

H̃m ∼ CN (0, 1) . (6.3)

Furthermore, cabling and transmitter hardware might introduce an additional
element dependent phase shift φm. Specifically, uncalibrated arrays will exhibit
some random φm.

The resulting radio channel coefficient for each antennamwhere themixture be-
tween specular anddiffuse component is controlledby theK-factor follows:

Hm =

(√
K

1 +K
H̄m +

√
1

1 +K
H̃m

)
exp (−jφm) . (6.4)

The amplitude of each element inH is Rician distributed with probability den-
sity function (PDF) [13]:

fA(x) =
2x

P̃
exp
(
−x

2 + P̄

P̃

)
I0

(
2x
√
P̄

P̃

)
x >= 0 (6.5)

where I0 is the modified Bessel function of the first kind. The PDF of the power
gain is accordingly:

fP(x) =
1

2
√
x
fA(
√
x) (6.6)
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The Rayleigh case (K = 0 ⇒ P̄ = 0, P̃ = 1) leads to the simplified equa-
tions:

fA(x) = 2x exp
(
−x2

)
, fP(x) = exp (−x) (6.7)

with the latter taking the form of the PDF of a normalised exponential distribu-
tion. The corresponding cumulativedensity function (CDF) is:

F P(x) = 1− exp (−x) (6.8)

Eventually,H canbe seen as complexnormal randomvectorwith

H ∼ CN

(√
K

1 +K
exp (−j (rk +φ)) ,C

)
(6.9)

where the matrix r collects all M antenna element positions and the matrix C
describes their correlation. Taking C = 1

1+KI where I is theM × M identity
matrix describes a spatially uncorrelated diffuse component.

Considering a uniform linear array (ULA)with a progressive phase shift in depen-
dence of the incidence angle θ and element spacing of λ/2 between the elements
specialises Eqn. (6.2) to:

H̄m = exp (−jπm sin θ + φm) (6.10)

where the element dependent phase shift is considered.

6.3.3 Beam Sweeping Strategies

Maximum BS output power can be achieved by setting each single transmitter to
its maximum. This transmit strategy resembles the receive strategy of equal gain
combining. To allow for comparison of different numbers of antennas ||W ||
needs to be normalised to unity. Hence, |Wm| = 1/M and the phase of each
weight remains as free variable.

The simplest case is one fixed set of weights corresponding to a single beam pat-
tern. Better strategies involve B sets of weights to scan the M-dimensional sub-
space. AM×B beam sweepingmatrixB can be constructed by stacking column
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vectors that represent a distinct beam pattern each. A full scan of the subspace is
achieved withM orthogonal beam pattern. Having an orthogonal beam sweep-
ingmatrix gives a lowerbound for thepower coupling: minA = 1/M .1

Using the identity matrix I (one active antenna per weight vector) to construct
a beam sweeping matrix would lead to B = 1/MI. Unfortunately, this naive
strategy is sub-optimal since a singe element is power restricted to 1/M of the BS
sum power.

As a second option, Hadamard matrices, being orthogonal, can be employed to
scan the full subspace using the full BS sum power. This strategy has been used as
part of the Faros control channel design in theArgos testbed [55]. The last consid-
eredoption isweights basedon thediscrete Fourier transformmatrix.

Fig. 6.2 demonstrates the effect of Hadamard and Fourier weights on the beam
pattern of a 4 element ULA with λ/2 spacing. Both have the same broadside
and end-fire beam pattern but have differences for the intermediate ones. Fourier
weights sweep the intermediate beam pattern achieving the maximum array fac-
tor, since they correspond to progressive phase shifts over the array. In contrast,
Hadamard weights generate symmetric beams with respect to broadside, thereby
reducing the maximum gain of the main lobe.

6.4 Statistical Framework

The following section describes the framework to analyse the synchronisation
gain of the best beampattern for an uncorrelatedRayleigh andRice channel. The
beam sweepingmatrixB can be evaluated column-wise against the channel vector
H with

Sb =

∣∣∣∣ BH
b H

∥Bb∥2 E{∥H∥2}

∣∣∣∣2 = ∣∣∣∣BH
b H√
M

∣∣∣∣2 . (6.11)

1Consider aM -dimensional subspace where I spans an orthogonal basis and take a one vector.
The one vector projected on any column vector of I gives the minimal angle for any point in
that subspace, since its equal for all column vectors. Hence, minA = |< [1, 0, . . . , 0]T,1 >

|2/(
∥∥[1, 0, . . . , 0]T∥∥2

2
∥1∥22) = 1/M .
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Figure 6.2: Beam pattern for Hadamard and Fourier weights over a calibrated 4 element
ULA with λ/2 spacing.
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6.4 Statistical Framework

The expectation of the channel gain is E{∥H∥2} =
√
M , because each ele-

ment of H has unit expectation (P̄ + P̃ = 1). Furthermore, ∥Bb∥2 = 1∀b
for bothHadamard and Fourier weigths. The resulting synchronisation gain vec-
tor S = [S1,S2, . . . ,Sb]

T corresponds to the Hermitian angle αb for the b-th
beam pattern in Eqn. 6.1 as follows:

Sb =
∥H∥22
M

cos2 αb =
∥H∥22
M

Ab. (6.12)

Hence, Sb is influenced by the power coupling Ab and the in expectation nor-
malised magnitude between a distinct beam pattern and the radio channel H .
Finding the distribution of the largest element in S⃗ allows characterisation of
the statistical behaviour of the beam sweeping strategy for a given radio chan-
nel.

Describing the statistics of the best beam pattern for a specific channel resembles
a selection combining problem where each branch corresponds to a column vec-
tor of B. For selection combining, order statistics have been used to analyse the
behaviour of the best branch [53], [54].

Order statistics describe random variables after a sorting process. Classically, in-
dependent draws from the samedistribution are assumed, but the sameprinciples
can be applied to the elements of an independent and identically distributed (iid)
random vector. Sorting allB elements inS bymagnitudeS1:B ≤ S2:B ≤ · · · ≤
SB:B leads toSb:B describing the synchronisation gain of the b-th best beam pat-
tern. SB:B is characterised by the maximum order statistic with PDF fSB:B

and
can be obtained from the PDF fS and cumulative density function (CDF)FS of
the underlying iid element distributions [53]:

fSB:B
(x) = B [FS(x)]

B−1 fS(x). (6.13)

Eqn. (6.11) corresponds to anunderlyingmatrix vectorproduct that linearly trans-
forms the randomvectorH . Hence, the resulting vector is based on the following
distribution [12, Theorem 2.8]:

BHH ∼ CN

(√
K

1 +K
BH exp (−j (rk +φ)) ,BCBH

)
(6.14)
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6 C2 – Achievable Synchronisation Gain

For the normalisedHadamard and discrete Fourier transformmatrix,B is unitary.
Therefore, the correlation of the uncorrelated diffuse component is unaffected
under the linear transformation (B 1

1+KIB
H = 1

1+KI) and leads to:

BHH ∼ CN

(√
K

1 +K
BH exp (−j (rk +φ)) ,

1

1 +K
I

)
. (6.15)

The last relation simplifies even further inRayleigh fading conditions

BHH ∼ CN (0, I) (6.16)

and shows that the elements of S are still iid after transformation for the un-
correlated Rayleigh fading case. Taking Eqns. (6.7), (6.8) and applying Eqn.
(6.13) leads to the corresponding PDF and CDF for the order statistic of SL:L:

fSB:B
(x) = B [1− exp (−xM)]B−1 exp (−xM) (6.17)

FSB:B
(x) =

∫ xM

0

fSB:B
(x′)dx′ = [1− exp (−xM)]B . (6.18)

TheRician case ismore challenging fromadistributional point of view. Thenon-
zero nature of the mean of the complex normal random vector means that Eqn.
(6.13) can only be applied if√

K
1 +K

BH exp (−j (rk +φ)) = d1. (6.19)

The mean vector in Eqn. (6.15) needs to be a one vector scaled by a constant d.
This is generally not the case and different means lead to S not fullfilling the iid
condition for classic order statistics. The discussion of order statistics for non-
iid distributed random variables is out of scope for this study and needs to be
considered for the theoretical treatment of radio channelswith spatial correlation.
Nonetheless, to show the behaviour of beam sweeping strategies in uncorrelated
Rician fading, empirical CDFs are generatedwithMonteCarlo simulations. The
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6.5 Results

incidence angle θ is uniformly distributed between zero and 2π, such that it is
equally probable for a plane wave to arrive from all directions. Additionally, for
the uncalibrated array all φm are assumed to be uniformly distributed between
zero and 2π, whilst the calibrated array sets φm to 0.

6.5 Results

Having established that the synchronisation gain can be described by order statis-
tics, opens up for analysis of Rayleigh as well as Rice fading in both uncalibrated
and calibrated BS arrays.

6.5.1 Rayleigh Fading

Interpretion of Eqn. (6.16) allows insight into orthogonal beam sweeping in the
uncorrelated Rayleigh fading case. The specific choice of the beam sweeping ma-
trix is irrelevant as long as B is unitary. Furthermore, there is no difference be-
tween the calibrated and uncalibrated array case, as only diffuse scattering con-
tributes to the synchronisation channel.

Plotting Eqn. (6.18) for different BS sizes in Fig. 6.3 displays the behaviour of the
synchronisation gain for a growing number of antenna elements. In the upper
plot is the array factor the same as 0 dB. Hence, the gain gap between the UE di-
rected and the broadcast channel is highlighted. Even for a moderately sized 8 an-
tenna BS, the expectation of the gain gap increases to about 4.7 dB. Furthermore,
the gain gap is increasingwith a growingnumberofBS antennas.

The lower plot uses the element factor as 0 dB reference. Hence, an 8 element BS
will be illuminating the cell with about 4.3 dB gain over a single element BS if an
orthogonal beam sweeping scheme is employed. This gain is diminishing fast and
about 12500 BS antennas would lead to an expected gain of about 10 dB, if 12500
orthogonal beam pattern are illuminated.

Uncorrelated Rayleigh fading could arise in industrial internet of things environ-
ments. Here, the synchronisation gain is not of high importance since cell size
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Figure 6.3:CDFs of the best beampower coupling underRayleigh fading conditions for
an orthogonal beam sweeping strategy. The upper plot shows the couplingwith reference
to the maximum array factor and the lower plot includes the array factor to reference the
result to the element factor. The dot in the CDFs indicates the expectation.

stays constant and the spatial multiplexing gain of large scale antenna systems is
paramount. Furthermore, the lacking necessity of array calibration could reduce
the BS implementation costs.

6.5.2 Rician Fading

Resorting to Monte Carlo simulations for a 32 antenna BS with 100000 realisa-
tions gives insight into the gain gap behaviour for differentK-factors. The simu-
latedK-factor of−100 dB links the results back to theRayleigh case.
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Figure 6.4: Simulated empirical CDFs of the best beam power coupling under Rician
fading conditions for an orthogonal beam sweeping strategy and a calibrated antenna ar-
ray. The upper and lower plots the coupling with reference to the maximum array factor
for Hadamard and Fourier weights, respectively.

Calibrated Arrays

Having a calibrated array allows to steer the beam towards the direction of the
specular component, thereby reducing the gain gap. Fig. 6.4 shows that Fourier
weights are better suited to illuminate the Rician channel efficiently. Even for a
specular component being 10 dBweaker than the diffuse component, the gain gap
is reduced.

Hadamard weights for beam sweeping are a suboptimal choice for the Rician
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6 C2 – Achievable Synchronisation Gain

channel, sincemost beampatternhavemultiple coherentbeamswhereas forFourier
weights all beampatterns keep at least onebeamwithmaximumarray factor.

Uncalibrated Arrays

Considering uncalibrated arrays, it becomes impossible to illuminate the direc-
tion of the specular component, since the phases for coherent superposition are
unknown. Hence, themaximumorder statistic approaches, without dependence
on the K-factor, the Rayleigh solution depicted in Fig. 6.3. Fig. 6.5 shows the
simulation results for both Hadamard and Fourier weights. All of them coin-
cide with the result of the uncorrelated Rayleigh channel (K = −100 dB in Fig.
6.5). Again, the specific choice of the orthogonal beammatrix has no impact any
longer, since the coherent sums arebrokenupby the randomphases.

Small angular spread and Rician fading is more likely to appear in outdoor sce-
narios when the BS antenna is high above the ground. If the cell size is supposed
to grow due to the usage of large scale antenna systems, calibration of the array
becomes necessary and Fourier weights, offering improved pointing in space, give
better results. Otherwise, the gain gap grows equally fast as in an uncorrelated
Rayleigh fading environment.

6.6 Discussion

UEs need to acquire some synchronisation information from the BS before they
can transmit uplink pilots. This synchronisation channel will naturally diverge
from the channel that is subsequently estimated in the uplink. The resulting gain
gap increases with a growing number of BS antennas and limits the service area of
a cell.

Still, the synchronisationgain cangrowslightly if a full subspace scan is performed.
In Rayleigh fading environments, array calibration is unnecessary as long as the
diffuse power is undergoing a large angular spread with low antenna correlation.
InRician environments, the gain gap can be reduced by traditional beamforming
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Figure 6.5: Simulated empirical CDFs of the best beam power coupling under Rician
fading conditions for an orthogonal beam sweeping strategy and an uncalibrated antenna
array. Theupper and lowerplots the couplingwith reference to themaximumarray factor
for Hadamard and Fourier weights, respectively.

using Fourier weights. The penalty for an uncalibrated array is the unability to ex-
ploit the specular component to increase the synchronisation gain. The specular
component is mixed by the random phases and contributes as additional diffuse
Gaussian component for a large enough array size. Hence, the calculations for the
Rayleigh environment become valid again.

A correlated diffuse component of the radio channel correspond to some direc-
tionality. It is expected that a calibrated array becomes necessary to direct the
synchronisation signal controlled into the right direction. Fourier weights might
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6 C2 – Achievable Synchronisation Gain

lose their advantage over Hadamard weights if multiple directions are necessary
to optimally illuminate a UE position.

6.7 Conclusion

The gap between the synchronisation gain in a broadcast channel and the opti-
mally available array gain for a UE directed channel is growing with the number
of BS antennas. To alleviate the gain gap, beam sweeping can be used. In this
study, Hadamard and Fourier antenna weights have been considered for an ULA
to analyse the effect of BS antenna scaling.

Thederived analytical PDFandCDFof the synchronisationgain foruncorrelated
Rayleigh fading for any orthogonal beam sweepingmatrix can be directly used to
quantify the severity of the gain gap.

The gain gap in uncorrelated Rician fading can be reduced by usage of Fourier
weights if a calibrated array is available. Hadamard weights are less useful, since
they lead tobeampattern that donot realise the full array factor.

The synchronisation gain has been neglected in most massive MIMO consider-
ations and restricts the service area of a BS and subsequently the size of the BS
antenna array. Even for moderately sized systems, more thought should be spend
on the spatial coverage of the broadcast channel.
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• clarification of the median gain as reference in (7.1)
• normalisation enforces unit gain of the BS output power

7.1 Abstract

Mobile phone operators have begun the roll-out of 5G networks, deploying mas-
siveMIMO base stations. Commercial product ranges start with 16 independent
radio chains connected to a large-scale antenna system to exploit both channel
hardening and favourable propagation in order to obtain increased spectral effi-
ciency. In this work, the cumulative distribution function describing the gain for
large-scale antenna systems considering spatial and spectral diversity is evaluated
empirically in terms of a fading margin and compared to an analytical maximum
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diversity reference system. This allows for a simple investigation of the trade-off
between deployment size and exploitation of channel hardening. For the con-
sidered site-specificmeasurement data, little additional diversity is harvested with
systems larger than 32 antenna elements.

7.2 Introduction

MassiveMIMOhas seen a lot of development since its conceptual advent in 2010
[16]. During the last decade, both theoretical and experimental work have ex-
plored the limits of the approach. Nowadays, operators can acquire commercially
available base stations that implement someversionofmassiveMIMO.

A more contemporary view of massive MIMO including a proper definition of
a massive MIMO cellular network is provided in [8]. Additionally, the authors
highlight the fact that most literature has only considered spatially uncorrelated
radio channels due to mathematical tractability. Unfortunately, this approach
neglects important aspects of the physical reality, which can lead to misleading
conclusions.

Some attempts at building and using channel sounders and testbeds have been
made to measure radio channels in some specific environments, e.g. [61], [80].
Thiswork uses datasets of a largemeasurement campaign from2016 [44] for prac-
tical demonstration.

In the following manuscript, we will present the connection between a link bud-
get fading margin and channel hardening for an increasing number of antennas.
Only a single user is considered1 to investigate the best case without complication
caused by MUI. This explores an additional way of determining the scaling for
large-scale antenna systems in addition to thework in [C1], [19], [40].

First, an ECDF based fading margin is introduced, giving a measurement-based
figure ofmerit in standard radio engineering terms. Second, amaximumdiversity

1A single user implies a reduction to a MISO / single-input multiple-output (SIMO) system.
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7.3 FadingMargin

reference channel is formed with anN -tap PDP for independent base station an-
tennas in a single user setting. The final section presents an empirical procedure
to evaluate the obtained channel hardening (spatial and spectral diversity) which
both shows the actual scaling and highlights the difference to the uncorrelated
reference channel. Since the procedure shows the diminishing returns explicitly,
it allows to assess the useful amount of antenna elements from a diversity perspec-
tive at a specific site.

7.3 Fading Margin

The fading margin describes the excess amount of power that a link budget has
to provide to counteract fading events due to multipath propagation. It is in the
interest of the radio engineer to reduce the required excess power to optimise a
radio link. This reduction is beneficial due to energy savings and reduced system
interference.

Large-scale antenna systems with phase steered beams, as used bymassiveMIMO
systems, have multiple advantages compared to single antenna systems. The di-
rectional gain is increased due to the array factor, whereas fading is less severe due
to low probability that all antenna elements experience fading at the same time
(channel hardening). Moreover, inter-system interference (favourable propaga-
tion) as well as interference with other systems is reduced due to spatio-temporal
focusing of power.

To study the channel hardening scaling behaviour, we use a fadingmarginFM(p)
in logarithmic units for probability p, defined by

FM(p) = 10 log10

(
Q(0.5)

Q(p)

)
, (7.1)

where Q(p) is the quantile function or inverse CDF with corresponding CDF
F (x) such that:

Q(F (x)) = x. (7.2)
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Figure 7.1: The fading margin FM (p) is defined with help of the CDF of the channel
gain. This example visualises FM (p = 5× 10−3) = 12.1 dB covering the fading between
themedian effective channel gain atQ(0.5) and the target outage channel gain atQ(p =
5× 10−3).

Furthermore, this fading margin is invariant to the array factor, which allows for
comparison between different numbers of antenna elements. The connection
between this fading margin and the CDF of the gain is visualised in Fig. 7.1. The
steeper the CDF the smaller becomes the fading margin.

Other definitions of a fading margin have been used in the literature. The author
of [81] motivates a fading margin as the difference between a fading channel and
an additive white Gaussian noise channel, whereas [82] exchanges the median in
(7.1)with the expected value of the channel gain as reference to calculate the fading
margin. By using the median gain as reference in (7.1), a fading margin FM(p =
0.5) = 0 dB leads to half of the realisations falling short of and the other half
exceeding it. Furthermore, this fadingmargin can easily be extracted fromECDFs
and does not require any channel model. In case of a symmetrical underlying
fading distribution, both median and mean coincide.
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7.4 Channel Hardening

7.4 Channel Hardening

After showing the fading margin, this section uses a tapped delay line model for
the channel to explore channel hardening in both the spectral and spatial domain.
Time-reversal precoding [11] is applied to a maximum diversity reference chan-
nel.

Following an input-output description of a massive MIMO system in the down-
link [C1] and specialising it to the single user case gives:

y[n] =
√
β h[n] ⋆ x[n] + e[n] (7.3)

with symbols representing:

•
√
β - large-scale fading,

• h[n] - effective downlink channel,
• x[n] - transmitted signal,
• y[n] - received signal,
• e[n] - additive noise,
• n - time index.

The large-scale fading coefficient can be estimated with the sample mean from
raw channel measurements over a coherent block of base station antennas, chan-
nel taps and timestamps. The effective channel h[n] is constituted by the sum of
contributions from each antenna:

h[n] =
M∑
m=1

hm[n] ⋆ wm[n] (7.4)

convolving hm[n] andwm[n], being the uplink channel taps and precoding filter
for antennam, respectively. In this paper we consider the commonly used time
reversal weights for precoding, normalized to enforce unit gain of the base station
output power :

wm[n] =
h∗m[−n]√∑M

m=1

∑N
n=1 |hm[n]|2

, (7.5)
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whereM andN are the number of base station antennas and the number of taps
of the tapped delay line model, respectively.

Under the assumption of uncorrelated effective channel taps, the instantaneous
SINR is:

γ[n] =
|h[0]|2∑N

l=−N,l ̸=0 |h[l]|2 +
1
Γ

(7.6)

where Γ = βPx/Pe is the mean SNR for transmit power Px and noise power
Pe. The interference term consists only of ISI (derivation see appendix 7.A). For
a multiuser MIMO discussion, theMUI would need to be added to the denomi-
nator.

The instantaneous SINR is proportional with the numerator, showing the cen-
tral role of the zero-delay tap h[0] of the effective channel. The ISI is captured in
the off-centre taps of the effective channel in the denominator, as well as the noise
influencing themeanSNR.As expected, lowSNRwill lead to thenoise limitation
of the SINR,whilst highSNRgives the interference limited regime.

It should be noted that the off-centre taps add up non-coherently, whilst h[0] re-
sults from a coherent addition. Hence, the offset between them is growing with
an increasingnumberof independentbase station antennas [J1].

Solving the convolution in (7.4) for the zero-delay results in

h[0] =

√√√√ M∑
m=1

N∑
n=1

|hm[n]|2. (7.7)

Hence, both independent taps and antennas are increasing the instantaneous
SINR, where the number of taps is given by the propagation environment and
bandwidth,whereas thenumberof antennas canbe adjusted to improve the link.

To explore the scaling of the fading margin with respect to the number of anten-
nas, an artificial reference channel can be considered. The best case from a di-
versity perspective would be anN independent tap channel with equal mean tap
power (1/N ). This ensures unit gain and is in line with

√
β capturing large-scale
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fading. For a rich scattering environment, these channel taps can be modelled by
complex normal random variables with Rayleigh distributed amplitudes. Note,
thatN represents the spectral diversity of the radio environment.

Both independent taps and independent antennas contribute in the samemanner
toh[0]. The power gain |h[0]|2 of the zero-delay effective channel tap is a sumover
independent squared Rayleigh variables. Squared Rayleigh distributed random
variables are exponentially distributed and their sum is Gamma distributed [77]
with shapeMN (as each tapper antenna contributes) and scale1/N :

|h[0]|2 ∼ Γ(MN, 1/N). (7.8)

It follows that the squared zero-delay tap of the effective channel hasmeanM and
varianceM/N :

E
{
|h[0]|2

}
=M (7.9)

V
{
|h[0]|2

}
=
M

N
. (7.10)

We can show that the Gamma distribution fulfils the condition for channel hard-
ening by inserting it into [19, Eqn. (2.17)]. Evaluation of this squared coefficient
of variation:

V
{
|h[0]|2

}(
E
{
|h[0]|2

})2 =
1

NM
(7.11)

shows convergence towards zero for a growing number of antennas or channel
taps. The authors of [19] state that a squared coefficient of variation order of
10−2 or smaller is enough to obtain hardening in an uncorrelated setting. Hence,
the effective channel can exhibit channel hardening with 4 taps and 32 antenna
elements at the base station. Unfortunately, (7.11) is not offering an easily inter-
pretable quantification of channel hardening. This gap can be filled with the fad-
ingmargin approach, as shown in the rest of the manuscript.

Fig. 7.2 shows a few CDFs demonstrating the increasing steepness, giving a re-
duced fading margin, for growing number of antennas and taps. The two lines
corresponding toMN = 4 exhibit the same steepness anddiversity.
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Figure 7.2:Analytical CDFs for a few configurations of theN -tap reference channel and
an uncorrelatedM element antenna array. The colour indicates the number of antennas
and the line style the number of channel taps. Both spectral and spatial aspects contribute
to the steepness of the curve (diversity), but only antenna elements improve the array gain.
E.g. theM = 4,N = 1 configuration shows the same outage probability as theM = 1,
N = 4 configuration offset by the array gain.

Returning to the question how additional antennas in a large-scale antenna sys-
tem can improve the fading margin, Fig. 7.3 shows the fading margin (7.1) versus
degrees of freedom (MN ) for different probabilities. Taking a two tap channel
for a single antenna system as a reference, gives a fading margin of about 30.7 dB
to achieve an ultra-reliable outage probability of 10−6. Exploitation of channel
hardening with 10 and 30 independent antennas would reduce the required fad-
ing margin ideally to 5.6 dB and 3.0 dB, respectively. For later comparison to
measurement data, fading margins for 10−3 are tabulated in Table 7.1. It is ob-
vious that the addition of more antennas has diminishing effects on the fading
margin, whilst the array gain grows linearly. The latter comes at the price of in-
creased complexity for broadcast applications and user synchronisation, as we re-
cently discussed in [C2]. The presented improvement of the fading margin is the
best case result, since the model is based on independent antennas and uncor-
related channel taps for each antenna. Real world systems would not see those
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improvements to the full extent. Nonetheless, the qualitative behaviour helps to
assess how many antennas are needed to improve the fading margin at a specific
site.

To summarise, the behaviour of the fading margin caused by channel hardening
for a changing number of base station antennas can be modelled for a tapped de-
lay line massive MIMO channel. Applying time-reversal precoding and relating
the effective zero-delay channel coefficient to the instantaneous SINR in the low
average SNR regime under consideration of a rectangular reference channel, gives
the best case for the evolution of the fading margin. The actual fading margin in
real world systems needs to be higher than the best case, due to spatial correlation,
ISI and the reduced frequency diversity of non-rectangular non-Rayleigh chan-
nels. Still, the system designer gets valuable insight into the scaling behaviour for
base station antennas with respect to channel hardening.

7.5 Case Study

Considering that a large-scale antenna system at a specific site is supposed to be
optimised, how to analyse the potential impact on the fading margin based on
single antenna elementmeasurements? Ultimately, howmany independent radio
chains should the system support before the advantages are diminishing? The
general procedure for uncorrelated antennas is the following:

1. Take single antenna multi carrier measurements over the array, spanning
the largest deployable system on that site.

2. Estimate a large-scale fading coefficient
√
β for the base station and nor-

malise the measurement data accordingly.
3. Form an effective channel zero-delay tap h[0] for each antenna position to

determine the single element reference ECDF.
4. Form the effective channel for the array configurations in question.
5. Evaluate the different fadingmargins for the sub-arrays to get an indication

how large the optimised antenna array needs to be for a certain reliability
requirement.
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Figure 7.3: Analytical fading margins for three different probabilities for the rectangu-
larN -tap Rayleigh channel andM independent antenna elements withMN degrees of
freedom. Qualitatively, the first few degrees of freedom improve the fading margin mas-
sively while additional ones have a reduced impact.

Table 7.1: Analytical fading margins at a probability of 10−3 for the rectangular indepen-
dentN -tap Rayleigh channel andM independent antenna elements. Increasing the de-
grees of freedom has diminishing returns.

FM(10−3) M = 1 M = 2 M = 4 M = 8

N = 1 28.41 dB 15.68 dB 9.33 dB 5.9 dB
N = 2 15.68 dB 9.33 dB 5.9 dB 3.88 dB
N = 3 11.47 dB 7.09 dB 4.6 dB 3.08 dB
N = 4 9.33 dB 5.9 dB 3.88 dB 2.62 dB
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Table 7.2: Empirical fading margins for four different datasets [44] and different array
configurations. The improvement of the fadingmargin, due to usage of spectral diversity,
is diminishing for a growing antenna array.

FadingMargin FM (10−3)

Single Element Array (8 ele.) Array (32 ele.) Array (93 ele.)

Bandwidth narrow wide narrow wide narrow wide narrow wide
Dataset

RICE A 28.75 dB 9.97 dB 7.77 dB 5.21 dB 5.58 dB 4.67 dB 4.99 dB 4.4 dB
RICE B 29.27 dB 13.39 dB 10.39 dB 7.91 dB 8.84 dB 7.66 dB 7.54 dB 5.84 dB
RICE C 28.88 dB 10.46 dB 7.81 dB 5.17 dB 5.29 dB 4.05 dB 4.42 dB 3.61 dB
RICE D 28.97 dB 12.71 dB 8.85 dB 7.07 dB 6.20 dB 5.25 dB 5.79 dB 4.84 dB

Four datasets from [44] are used to showcase the outlined investigation in both
LOS and NLOS indoor environments, namely:

• RICE A2 - 2.4GHz - LOS environment,
• RICE B3 - 2.4GHz - NLOS environment,
• RICE C4 - 5 GHz - LOS environment,
• RICE D5 - 5 GHz - NLOS environment.

For eachdataset, a channel trace for user one is extracted, considering 14000 times-
tamps and 52 subcarriers over 20MHz bandwidth. A maximum of 93 antenna
elements is used, since antennas 17, 33 and 68 were providing much lower average
signals in some datasets.

Fig. 7.4 shows the ECDFs for the RICE A dataset. Considering single antenna
elements on single subcarriers, shows that the ECDF has the same slope and di-
versity as a single Rayleigh tap channel (Γ(1, 1)). The small offset in amplitude

2Dataset: ArgosCSI-96x8-2016-11-04-04-18-58_2.4GHz_continuous_mob_LOS
3Dataset: ArgosCSI-96x8-2016-11-04-05-57-41_2.4GHz_continuous_mob_NLOS
4Dataset: ArgosCSI-96x8-2016-11-03-06-10-35_5GHz_continuous_mobile_LOS
5Dataset: ArgosCSI-96x8-2016-11-03-04-36-53_5GHz_continuous_mob
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Figure 7.4: The ECDFs for the ’RICEA’ dataset (2.4GHz, continuous mobility of user
1, 14000 timestamps) showtheprobabilities of the coherent channel gain for fourdifferent
configurations. The single antenna narrowband configuration follows the behaviour of
a single tap Rayleigh channel very closely, whilst both full array configurations with 93
antennas fall even short of the single tap 93 antenna element model. This can be caused
by spatial correlation reducing the harvested spatial diversity.

for the lower tail might arise from the assumption that all timestamps for each an-
tenna and subcarrier belong to the same large-scale fading region.

Considering thewideband channel over single elements improves the fadingmar-
gin and shows a steeper slope for the lower tail of the distribution. Here, only
spectral diversity is exploited and the offset between narrow- andwideband shows
a large improvement of 18.78 dB at a probability of 10−3. The wideband channel
behaves similar to a reference channelwith 4 taps (Γ(4, 1/4)) with a slightly larger
offset.

Investigation of the full array for both cases shows that the spectral degrees of
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freedomplay a reduced role as the spatial degrees of freedomkick in. The full array
wideband and narrowband cases exhibit almost equally steep ECDFs. Hence, the
spectral diversity is consumed by the usage of spatial diversity. The ECDFs fall
short of the fadingmarginbehaviour for a 93 degrees of freedomreference channel
and are closer to 12 degrees of freedom. The loss in fading margin at probability
10−3 of 2.9 dB could be due to correlated antennas.

Table 7.2 tabulates the fadingmargins for the named cases and intermediate array
sizes. For the RICE A dataset, there is almost no improvement between 32 ele-
ment antenna arrays and the full 93 antenna array. (NB, the larger arrays provide
fewer realisations for theECDFs and shouldbe interpreted carefully.)

None of the four datasets are achieving the theoretical fadingmargin of 1.47 dB at
10−3 probability for 93 independent antenna elements and a single tap reference
channel. This indicates that the employed array is subject to non-diminishing
spatial correlation. The 5GHz traces show slightly better fading margins, most
likely due to the increased antenna element distance of about onewavelength and
lower antenna correlation.

The system improvements for a 93 element array over the 32 element arrays are
mainly due to an increased array gain and less due to increased channel harden-
ing. The trade-off between base station complexity and performance should take
this observation into account. For the particularly highlighted measurements,
distributing 32 antenna elements over the available array size appears to be a good
compromise between the number of radio chains and the exploitation of channel
hardening. A potential extension to the current work is the analysis of permu-
tations over the available antenna elements to give better performance than the
usage of smaller and dense sub-arrays.

7.6 Conclusion

This paper has provided a definition of an alternative fading margin and used it
to evaluate channel hardening in large-scale antenna systems. A reference chan-
nel based on a rectangular N -tap Rayleigh PDP demonstrates the ideal scaling
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behaviour for independent antenna elements under themost diverse channel con-
ditions. Measured channels of arrays can be easily used to evaluate site-specific di-
versity in both the spatial and spectral domain. This gives system designers a tool
to trade available diversity with system complexity by accounting for the number
of independent radio chains.

The 20MHz indoor channelmeasurements at 2.4GHz and 5GHz show little dif-
ference in the fading margin between narrow- and wideband channels for large-
scale antenna arrays. An analysis of channel hardening in a system with 32 (cor-
related) antenna elements shows almost the same performance as that of a 93 ele-
ment array. The fading margin shows diminishing returns with increasing num-
ber of antennas.

The investigation highlights that the diversity gains, measured using the fading
margin at specific sites, canbe evaluatedwith a relatively simpleprotocol.

7.A Instantaneous Effective Channel SINR

The instantaneous SINR for the effective channel γ[n]with respect to the average
SNR Γ = β Px

Pe
for powers Px = V{x[n]} and Pe = V{e[n]} as variance of the

transmit signal and noise signal, respectively, can be derived from (7.3) by taking
the expectation over both signals as in (7.12). Here, intended signal, ISI and noise
have been isolated for uncorrelated effective channel taps allowing to define the
SINR as in (7.13).

E
{
|y[n]|2

}
= E

{∣∣∣√β h[n] ⋆ x[n] + e[n]
∣∣∣2}

= β |h[0]|2 Px + β
N∑

l=−N,l ̸=0

|h[l]|2 Px + Pe (7.12)
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γ[n] =
β |h[0]|2 Px

β
∑N

l=−N,l ̸=0 |h[l]|
2 Px + Pe

=
Γ |h[0]|2

Γ
∑N

l=−N,l ̸=0 |h[l]|
2 + 1

=
|h[0]|2∑N

l=−N,l ̸=0 |h[l]|
2 + 1

Γ

. (7.13)
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8.1 Abstract

Ultra-reliable low-latency communication enables new use cases for mobile radio
networks. The ultra-reliability (UR) regime covers outage probabilities between
10−9 and 10−5, obtained under stringent latency requirements. Characterisation
of the UR-relevant statistics is difficult due to the rare nature of outage events,
but diversity defines the asymptotic behaviour of the small-scale fading distribu-
tions’ lower tail. The UR-relevant regime in large-scale antenna systems behaves
differently from the tail. We present the generalising local diversity at a certain
outage probability to show this difference clearly. For more than four indepen-
dent antenna elements, the classic diversity overestimates and underestimates the
slope of the cumulative density function for weak and strong deterministic chan-
nel components, respectively.

8.2 Introduction

Oneof the reoccurringpromises inboth 5Gand sixth generationmobile networks
(6G) specifications is URLLC. The URLLC requires an outage probability of
10−5 or better within a 1ms transmission period in 5G [83]. The authors of [56]
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8 C4 – Local Diversity

introduce the terminology ofUR-relevant statistics for outage probabilities below
10−5. It can be expected that the requirements for 6Gwill be evenmore stringent.
Hence, we will consider outage probabilities between 10−9 and 10−5 as the UR-
relevant regime.

Generally, the allowed latency can be used to retransmit a packet, if the original
message did not reach its destination. By decreasing the permitted latency, only
one-shot transmissions can ultimately fulfil the requirement because a retrans-
mission would take too long. This type of requirement is typical in control-loop
or event based applications, where the timing is critical. Alternatively, the age of
information [84] can used as a design metric, where the state of a system is ob-
served. Here, a non-successful transmission every now and thenmight be accept-
able, since the system can cope with intermittent link failure.

Small-scale fading is one of the main reasons for link-loss in rich scattering envi-
ronments. It can be counteracted with forward error correction (FEC), relying
on the assumption that fading events are short enough with respect to the coded
packet length. If the coherence time of the channel is longer than the latency re-
quirement, alternative measures have to be used to overcome small-scale fading.
Exploiting spatial diversity throughmassiveMIMO can improve the link robust-
ness due to channel hardening. This approach reduces the variation of the chan-
nel gain around its mean and hereby the outage probability. Recenctly, we have
suggested to use a fading margin to characterise channel hardening [C3]. It de-
scribes the required excess gain to provide a certain outage probability at a chosen
rate. Hence, the performance of an UR antenna array with varying number of
antenna elements can be quantified clearly.

An additional caveat for URLLC is power limitation of users. Especially battery
powered sensors in WSN should avoid retransmissions. In those cases, minimis-
ing the fadingmargin improves the energy efficiency and allows tomeetUR target
outage probabilities. Moreover, smaller fading margins reduce the interference
levels for users of the same system and systems that share the same spectrum re-
source.

This outlineswhy large antenna arrays are a technically viable solution for narrow-
bandURLLCwithout retransmission of packets. System level simulations based
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on a 3GPP channelmodel for a specific cell showpromising results for a coherence
interval based pilot strategy [85].

A fundamental question remains, howcanwe infer the systembehaviourof events
that barely ever happen? A neat approach is the characterisation of the lower tail
of the CDF as an intermediate solution between parametric channel models and
non-parametric models [86]. The lower tail of multiple common fading distri-
butions follows a power law [56], which gives the possibility to relax the model
assumption from a single distribution to a class of distributions. The power law
approximation requires two parameters: an offset and the log-log slope of the
CDF. E.g. the classic Rayleigh channel shows a well known slope of 10 dB per
decade in the lower tail.

Furthermore, the outage probability in detection problems [87] for high SNR
corresponds to the lower tail of the channel gain. Using the SNR emphasises
the variation introduced due to the small-scale fading channel and avoids a de-
pendency on a specific modulator and detector. Due to that correspondence, the
log-log slope in the asymptotic lower tail reveals the diversity of the radio channel.
We propose to evaluate the log-log slope at a specific probability, generalising it
to the local diversity. Hence, for outage probabilities converging to zero it attains
the classic diversity measure.

A dual slope behaviour in single antenna Rician fading channels with larger
K-factors has already been shown in [88]. For multi-antenna systems in both
Rayleigh and Rician fading, the outage probability slope in the UR-relevant
regime deviates from the classic diversity. Therefore, a power law approximation
of the lower tail can not provide an accurate description of the CDF for massive
MIMO systems.

Ourmain contribution is the local diversity to highlight that lower tail approxima-
tions do not cover the actual system behaviour in the UR-relevant regime. We mo-
tivate the usage of analytical tools to get insight into UR-relevant statistics in the
next section, because the number of necessary observations for a reliable empirical
approach is prohibitive for real world scenarios. An uncorrelated Rician multi-
antenna fading environment is introduced in section 8.4. It’s local diversity is de-
rived to relate the classical diversity to the UR-relevant regime. This measure can
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be seen as the relative error of a power law approximation based on the asymptotic
behaviour of the lower tail. Newcompact expressions for theCDF,PDFand local
diversity in terms of the complementaryMarcum-Q function are used to evaluate
them for large scale antenna systems. We provide a comparison of multi-antenna
systems in differentRician fading environmentswith respect to the fadingmargin
in section 8.5, to discuss the scaling behaviour. Furthermore, sampling strategies
to analyse the UR-relevant regime are outlined.

8.3 Predicting the Unpredictable?

Let us investigate ECDFs as non-parameteric model, to understand the value of
parametric analyticalmodels forUR-relevant statistics. Basically, theUR-relevant
regime covers the behaviour of rare events that barely ever happen and the fewer
assumptions necessary the more general is the solution. Howmany observations
are necessary to reliably estimate the UR-relevant statistics without prior knowl-
edge?

The Dvoretzky-Kiefer-Wolfowitz (DKW) inequality [89], [90] can be used to
bound an R-sample ECDF with respect to the true underlying CDF leading to
the error term ϵwith confidence ξ:

ϵ =

√
ln 2

1−ξ

2R
. (8.1)

This error term is characterising an error floor for the ECDF at low probabilities.
TakingR = 106 observations as example and aiming at a confidence of ξ = 99%
gives an error term of 1.6× 10−3. The resulting upper bound of the ECDF for a
true single-antenna Rayleigh fading channel is shown in Fig. 8.1. It can be seen
that the ECDF in the UR-relevant regime would be much smaller than the er-
ror floor, rendering empirical estimation of outage probabilities below 1.6× 10−3
practically useless.

The number of antenna elements in massive MIMO ranges from a few ten to a
few hundred, that can provide potentially correlated parallel observations of the
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Figure 8.1: The CDF of a Rayleigh fading channel and an upper bound for an ECDF is
shown. The error term in Eqn. (8.1) for a million observations and a confidence interval
of 99 % is used as example, showing that the estimation of outage probabilities below
1.6× 10−3 is unreliable.

radio channel. The remaining observations have to be gathered in a stationary
time-frequency window to belong to the same underlying CDF. This is very un-
likely in realistic scenarios, especially for high (environmental) mobility with lim-
ited temporal stationarity. Eventually, the characterisation of UR-relevant statis-
tics in the lower tail is prone to large estimation errors for non-parametricmodels.
Additionally, if energy efficient users are required, less spectrummay be used, re-
ducing the number of samples in the spectral domain. Hence, the spatial domain
sampling provided by an antenna array has to provide both the robustness of the
systemaswell as anumberof observations to estimate theCDF.

The large number of observations an obstacle even for simulations. Assuming
that outage probabilities of 10−6 with confidence of 99.9999 % are of interest, on
the order of 1013 observations have to be collected. Both, runtime and memory
requirements of Monte Carlo simulations become cumbersome to get reliable
results for the ECDF. Hence, only the analytic study of the UR-relevant regime
has the possibility to give insight into trade-offs, as long as themodel assumptions
are not violated.
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8.4 Rician Fading Channel Revisited

We will consider Rician fading channels with a Rician K-factor and a diffuse
power (gain) Pdif, following the parametrisation in [13]. The K-factor describes
the ratio between a deterministic component and the diffuse power of the radio
channel. Hence, the mean power gain is (K + 1)Pdif.

To takeM uncorrelated antennas at the base station into account, a complex ran-
dom vector with mean

√
KPdif [e

jφ1 , ejφ2 , · · · , ejφM ]T and covariance PdifI is
constructed:

h ∈ CM ∼ CN
(√
KPdif

[
ejφ1 , ejφ2 , · · · , ejφM

]T
, PdifI

)
. (8.2)

The phases φm represent the phase front of the deterministic component with
respect to the antennas and I is theM ×M identity matrix. For Rayleigh fad-
ing (K = 0), h is a circular-symmetric complex normal random vector h ∼
CN (0, PdifI).

The effective channelH for aMRCweight vectorw at the receiver results in:

H = wTh =
hHh√
∥h∥22

=

√√√√ M∑
m=1

|hm|2. (8.3)

The CDF F (Q;Pdif,K,M) of the effective power gainQ = |H|2 of this multi-
antenna Rician channel is compactly given by:

F (Q;Pdif,K,M) = PM

(
KM,

Q
Pdif

)
, (8.4)

wherePM(·) is the complementaryMarcumQ-function [14]withdefinition1:

Pµ(x, y) = x
1
2
(1−µ)

∫ y

0

t
1
2
(µ−1)e−t−x Iµ−1

(
2
√
xt
)
dt. (8.5)

1Note that this definition is a different variant of the implementation found in major numeric
computing environments, but the reference [14] provides a Fortran implementation together
with the numerical algorithm description.
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This power gain CDF is a generalised [78] or non-central gamma distribution
[15] arising from a sum over squared per-antenna channel coefficients in Eqn.
(8.3).

The distribution relates to a κ-µ envelope distribution [91], where the number of
independent antenna elements corresponds to µ clusters and theK-factor relates
to the ratio κ between dominant and scattered channel components for a mean
normalised to unity. The connection between a single antennaRayleigh channel,
the complementaryMarcumQ-function and the effective gain CDF to arrive at a
non-central gamma distribution is described in detail in the appendix 8.A and the
connection to the κ-µ envelope distribution follows directly from comparison of
the CDFs.

The mean effective power gain is:

E{Q} =M(K + 1)Pdif, (8.6)

which follows from addingM independent Rician channels with the same K-
factor and power in the diffuse component. Varying K-factors for different an-
tenna elements could be accounted for, by using the meanK-factor in the above
formulation. Both the K-factor and the number of antenna elementsM , have
similar influence on the mean of the distribution.

Fig. 8.2a shows a selection of CDFs that describe the behaviour of a single an-
tenna Rice channel. The channel gain is normalised with its mean to allow easier
comparison of the small-scale fading aspects for different K-factors. A stronger
deterministic component leads to a dual slope behaviour with a steeper gradient
closer to the median of the distribution. Nonetheless, the gradient converges to
10 dB per decade in the lower tail and is independent of the K-factor. The very
seldom cases occur only when the diffuse components can cancel the determinis-
tic component almost perfectly. For a K-factor of 10 dB, the gradient is steepest
in the region between −15 dB and 0 dB with respect to the mean. This indicates
that the lower tail approximation underestimates the channel behaviour for out-
age probabilities ranging from 10−4 to 0.5.
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Figure 8.2: The normalised single antenna Rician channel is displayed for different K-
factors. The normalisation enforces unit mean. Larger K-factors lead to a dual slope
CDF. The steeper slope corresponds to the superelevation of the local diversity.
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For sake of completeness is the corresponding PDF f(Q) of the effective power
gain given in the following equation.

f(Q;Pdif,K,M)

=


1
Pdif
e
− Q
Pdif

−K I0
(
2
√
K Q
Pdif

)
M = 1

1
Pdif

(
PM−1(KM, Q

Pdif
)− PM(KM, Q

Pdif
)
)

M > 1.
(8.7)

Here, I0(·) is the zero-order modified Bessel function of the first kind. For the
multi-antenna case, we can exploit the relation for derivatives of the complemen-
tary Marcum-Q function [14, Sec. 2.3].

8.4.1 Local Diversity

So far, the local diversity has only been introduced conceptually. Let us recall a
common rule of thumb: the outage probability of a single antenna Rayleigh fad-
ing channel scales with 10 dB per decade in the lower tail. Furthermore, we have
observed that a single antenna in narrowband Rician fading provides a diversity
of one, too.

Therefore, a slope of 10 dB per decade outage probability is used as reference and
we define the local diversity as derivative of the scaled logarithmic CDF of the
channel power gainQ in dB:

D(Q) = ∂

∂10Q/10
10 log10 (F (Q)) = Q

f(Q)
F (Q)

. (8.8)

This ensures a scaling of 10/D dBper decade outage probability locally atQ. E.g.
a local diversity of 10, 33 and 100 describes a slope of 1 dB, 0.3 dB and 0.1 dB per
decade outage probability, respectively. The classic diversity is attained by evalu-
ating the local diversity forQ → −∞ dB.

Resolving the differentiation in Eqn. (8.8) reveals the quotient between PDF
f(Q) and CDF F (Q), also known as inverse Mills’ ratio, multiplied with Q.
To study how well a lower tail approximation represents the behaviour of the ra-
dio channel in the UR-relevant region for Rician channels, we use Eqns. (8.7)
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Figure 8.3: The local diversity with respect to the probability of a single antenna Rician
channel for differentK-factors.

and (8.4) for the PDF and CDF of the effective power gain, respectively. The lo-
cal diversity for antenna arrays can be expressed in terms of the complementary
Marcum-Q function forM > 2:

D(Q;Pdif,K,M) =
Q
Pdif

(
PM−1(KM, Q

Pdif
)

PM(KM, Q
Pdif

)
− 1

)
. (8.9)

Fig. 8.2b presents the local diversity for a single antennaRician channel (M = 1).
LargerK-factors lead to a superelevated region before convergence to unity. The
local diversity quantifies the increased steepness of the CDFs in Fig. 8.2a. Fig.
8.3 plots the local diversity with respect to probability to interpret its behaviour
in the UR-relevant regime. The superelevation is pronounced in the region from
10−6 to 0.5 for a K-factor of 10 dB. All other K-factors have converged to a local
diversity of unity for probabilities smaller than 10−3.

This behaviour changes for larger arrays and is exemplified by the normalised local
diversity in Figs. 8.4a and 8.4b for a Rayleigh and Rician channel withK-factor
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8.4 Rician Fading Channel Revisited

10−9 10−8 10−7 10−6 10−5 10−4 10−3 10−2 10−1 100
0

0.2

0.4

0.6

0.8

1

Probability

N
or
m
.L

oc
al
D
iv
er
sit
yD

/
M

1 4 16 64

(a) Rayleigh Fading

10−9 10−8 10−7 10−6 10−5 10−4 10−3 10−2 10−1 100
0

1

2

3

4

Probability

N
or
m
.L

oc
al
D
iv
er
sit
yD

/
M

1 4 16 64

(b) Rician Fading (K = 10 dB)

Figure 8.4: Normalised local diversity for anM -antenna array with 1, 4, 16 or 64 ele-
ments. A tail approximation would underestimate the outage behaviour of the system
for larger arrays in Rayleigh fading and overestimate it in Rician fading.
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8 C4 – Local Diversity

Table 8.1: Normalised local diversityD/M evaluated at 10−6 probability. The different
coloured regions show where the asymptotic tail approximation holds (green), underes-
timates (red) or overestimates (blue) the slope in the UR-relevant regime.

K Number of Antennas (M )

[dB] 1 2 4 8 16 32 64 128

−∞ 1.00 1.00 0.99 0.92 0.80 0.65 0.50 0.38
0.0 1.00 1.00 1.00 0.97 0.87 0.72 0.57 0.43
3.0 1.00 1.00 1.07 1.13 1.03 0.86 0.67 0.51
6.0 1.00 1.07 1.48 1.56 1.38 1.12 0.86 0.64
10.0 1.09 2.66 3.07 2.77 2.25 1.74 1.31 0.96
20.0 23.39 19.02 14.68 10.99 8.08 5.86 4.22 3.02

10 dB, respectively. Tab. 8.1 summarises the results for a probability of 10−6 over
different K-factors and number of antennasM . The normalisation is achieved
by dividing the local diversity with the number of antennas. Hence, once the
normalised local diversity attains unity, the classic diversity ofM for large SNR is
achieved. Therefore, the normalised local diversity can be interpreted as relative
error between a lower tail approximation and the actual steepness of the effective
gain CDF at the chosen probability.

8.5 Discussion

8.5.1 Validity of Lower Tail Approximations

The relative error of diversity is provided in Tab. 8.1, revealing three different
connected regions. The first region (green) is covering small K-factors for small
systems, where the normalised local diversity is close to unity. A lower tail approx-
imationwill give reasonable results forUR-relevant statistics.

The second region (blue) belongs to Rayleigh fading and smallerK-factors for an
increasing number of antennas. In this case, the local diversity has not yet con-
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Table 8.2: Analytic fading margins in dB at 10−6 probability.

K Number of Antennas (M )

[dB] 1 2 4 8 16 32 64 128

−∞ 58.4 30.7 17.1 10.2 6.5 4.3 2.9 2.0
0.0 57.6 29.7 16.0 9.3 5.7 3.7 2.5 1.7
3.0 55.3 27.3 13.9 7.8 4.9 3.2 2.1 1.5
6.0 49.2 21.3 10.2 6.0 3.8 2.5 1.7 1.2
10.0 27.2 10.4 5.9 3.7 2.5 1.7 1.2 0.8
20.0 3.5 2.3 1.6 1.1 0.8 0.5 0.4 0.3

verged to unity and a lower tail approximation will overestimate the performance
accordingly. E.g. a 64 antenna element array in Rayleigh fading at a probability
of 10−6 will only provide the performance predicted by the asymptotic regime of a
32 antenna system. For large systems, only significant deterministic components
will provide superelevation in the region of interest.

The last region (red) belongs to largeK-factors, where the local diversity is larger
than the diversity, e.g. an environment with a K-factor of 10 dB and 4 anten-
nas presents a local diversity of 4 · 3.07 ≈ 12 in the superelevated probability
region. The superelevation moves towards smaller probabilities for an increasing
number of antennas. Overall, the deterministic component of aRician fading en-
vironment plays a role for everyK-factor for large antenna systems and a growing
K-factor increases the local diversity.

Tab. 8.1 demonstrates clearly that a low tail approximation is giving misleading
results for the effective channel gain of massive MIMO systems in Rayleigh and
Rician fading.

8.5.2 Array Deployment Strategies

In the following the impact of some array deployment strategies for URLLC ap-
plications is discussed. We relate the local diversity to the fading margin, another
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Figure 8.5: CDFs of a co-located 64 antenna base station withK-factor 0 dB (blue) and
the closest distributed 32 antenna base station (orange) withK-factor 6 dB. The stronger
deterministic component of the channel in the distributed base station case compensates
for the reduced number of antennas, resulting in a similar local diversity at 10−6, giving a
slight advantage with respect to the mean of the channel gain.

tangible figure of merit. The fading margin is describing the gap between the
median of the effective channel gain distribution and a target outage probability
[C3]. It has been evaluated for the same parameters as the normalised local di-
versity and the result is presented in Tab. 8.2. This complementary perspective
highlights the return on investment of extra power or antenna gain, to improve
the reliability of a system.

Regarding each column in the table shows, that every increase of the deterministic
component will reduce the margin, thereby improving the robustness of the sys-
tem. Hence, it is worthwhile to compare a larger co-located systemwith a smaller
K-factor to smaller spatially distributed deployments.

It can be assumed that a distributed deployment will have at least one subarray
closer to a user, giving a largerK-factor. As an example: a co-located uncorrelated
64 antenna base station in a Rician fading environment with K = 0 dB = 1
would require a fading margin of 2.5 dB at an outage probability for 10−6. The
mean of the effective channel gain is 64 ∗ (1+ 1)Pdif = 128Pdif. Instead, placing
two non-cooperating uncorrelated 32 antenna BSs into that environment, which
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reduces the length of the deterministic path to a half for a user, could increase the
K-factor by 6 dB. The closer base stations would then require a fading margin of
2.5 dB at an outage probability for 10−6. For this setting the mean gain would be
32 ∗ (4 + 1)Pdif = 160Pdif.

The CDFs of both deployments are shown in Fig. 8.5, where both slopes of have
not yet converged to the asymptotic behaviour of the lower tail in theUR-relevant
regime. In this toy example, distributed base stations requiring the same amount
of hardware would give equal fadingmargins and increase themean effective gain
compared to the co-located case. Hence, not only capacity improvements can be
achieved by densification of base stations, but UR-relevant statistics can improve
too without increasing the amount of deployed hardware.

In a more general situation, for fading environments with deterministic propa-
gation components, the number of antenna elements per base station influences
where the normalised local diversity shows superelevation. We notice further, in
a pure Rayleigh fading environment, increasing the number of base station an-
tennas gives diminishing returns (see Fig. 8.4a).

8.5.3 Inferring UR-relevant Statistics?

So, how can we infer the system behaviour of events that barely ever happen?
Given a limited number of measurable samples from each antenna element, how
could theUR-relevant statistics be analysed in realworld systems?

There are two basic approaches for UR antenna arrays:

Element Statistics

The first is based on collection of antenna element observations, estimation of
each distribution and careful modeling of correlation properties. Antenna ele-
ments that belong to the same local area could be lumped into a single distribu-
tion to make more samples available. Post-processing of the resulting distribu-
tions with combination strategies like selection combining (SC) or MRC result
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in a CDF to be evaluated in the UR-relevant regime. In case of SC, it is not nec-
essary to have a reliable estimate of the antenna element CDFs in that regime,
but rather in the regime resulting from theM -th root of the target outage prob-
ability. This follows from the maximum order statistic [54] for the strongest
constituent, being theM -th power of the element CDF. Since MRC will give
a better combined gain than SC, using a SC result allows to bound the system
behaviour in the UR-relevant regime based on reliable estimates of the element
CDFs.

Combined Statistics

The second approach implements a specific combination strategy, evaluating the
UR-relevant statistics directly. This includes intrinsically antenna correlation,
avoiding the necessity of explicit characterisation. Unfortunately, this strategy
requires prohibitively many observations. Even for the first approach a lot of
samples are necessary, but the antenna element observations do not need to be
observed in the UR-relevant regime directly, since this regime only matters for
the effective channel gain! Furthermore, the correlation is expected to depend to
a lesser extent on the combined channel stationarity, allowing them to be studied
in more detail with help of all antenna element observations.

8.5.4 Correlated Channels

Even though thismanuscript demonstrated a local diversity based analysis for un-
correlated systems, the same ideas can be transferred to correlated antenna arrays.
Analytic results can be derived from the effective channel gain PDF and CDF of
the correlated system, to avoid Monte Carlo simulations that depend on a large
amount of observations to provide reasonable insight.

8.6 Conclusion

Acquisition ofUR-relevant channel statistics is difficult to achieve in practical sit-
uations, because the number of required observations is tremendous. Ultimately,
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the spatial, spectral and temporal stationarity of the radio channel restricts the col-
lection of a sufficient number of observations. The approach of using the asymp-
totic lower tail behaviour, to avoid determination of a specific fading distribution,
can be used for small arrays up to four antennas in low K-factor Rician fading.
Systems that provide large diversity, require consideration of the local diversity
in the UR-relevant regime. There, the asymptotic behaviour applies to probabil-
ities beyond the UR-relevant regime only. Normalisation of the local diversity
with the number of antenna elements in an array gives a relative deviation from
the classic diversity. Furthermore, the local diversity opens up for performance
evaluation, where measurements of correlated antenna systems can be compared
to an uncorrelated optimum.

For fast and numerically stable calculations, the distribution functions and local
diversity of the effective gain of an uncorrelated antenna array in Rician fading
can be formulated on the basis of the complementaryMarcum-Q function. Eval-
uation of the fadingmargin and distributionmean reinforces that a dense deploy-
ment of smaller base stations with the potential for increased deterministic radio
channels is preferable over very large co-located systems, not only improving sys-
tem capacity but also robustness.

8.A CDF of the Effective Power Gain

The non-central gamma distribution has PDF wρ(x;α, µ) for index ρ, scale α,
and non-centrality µ [15, (1.47’)] for x ≥ 0:

wρ(x;α, µ) =
1

α
e−

x
α
−µ
(
x

αµ

) 1
2
(ρ−1)

Iρ−1

(
2

√
µx

α

)
. (8.10)

The corresponding CDFWρ(x;α, µ) can be directly related to the definition of
the complementary Marcum Q-function in Eqn. (8.5) by substitution of t = x′

α

in the integral relation between CDF and PDF:

Wρ(x;α, µ) =

∫ x

0

wρ(x
′;α, µ)dx′ = Pρ(µ,

x

α
). (8.11)
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The gain PDF f(Q;Pdif,K,M = 1) of a single antennaRician channel is readily
available by using the Rician envelope PDF from [13, (5.3.7)] applying the trans-
formation to the power PDF [13, (5.2.1)] and replacing the power term of the de-
terministic component [13, (5.3.8)], resulting in:

f(Q;Pdif,K,M = 1)

=
1

Pdif
exp
(
− Q
Pdif
−K

)
I0

(
2

√
K Q
Pdif

)
= w1(Q;Pdif,K). (8.12)

This PDF is a special case of the non-central gamma distribution PDF in Eqn.
(8.10) for index one, scale Pdif with non-centralityK.

ForM independent single antenna Rician channels with potentially differingK-
factorsKm∀m ∈ [1, · · · ,M ] the additive property of non-central gamma distri-
butions can be used to get the PDF of the effective channel gain. The addition
property allows to represent the sum of independent random variables with the
same scale, potentially varying index andnon-centrality as non-central gammadis-
tribution [15, (1.51)]. The generalisation of Eqn. (8.12) for anM antenna array fol-
lows anon-central gammadistributionof indexM andnon-centrality

∑M
m=1Km:

f(Q;Pdif,K,M) = wM

(
Q;Pdif,

M∑
m=1

Km

)
. (8.13)

Using Eqn. (8.11) gives the CDF of the effective channel gain based on the inverse
MarcumQ-function:

F (Q;Pdif,K,M) = PM

(
M∑
m=1

Km,
Q
Pdif

)
. (8.14)
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9.1 Abstract

Massive multiple-input multiple-output base stations use multiple spatial diver-
sity branches, which are often assumed to be uncorrelated in theoretical work.
Correlated branches are seldom considered since they are mathematically less
tractable. For correlated Rician fading, only the first- and second-order moments
have been explored. To describe propagation environments more accurately, full
distribution functions are needed.

Thismanuscript provides distribution functions for themaximum ratio combin-
ing effective channel, a quadratic form of a random complex normal channel vec-
tor. Its mean vector and covariance matrix are based on a plane wave model in-
corporating array geometry, antenna element pattern, power angular spectra and
power delay profiles. Closed-form approximations of the distribution functions
arepresented, to allow the fast evaluationofmany real-world scenarios.

The statistical framework is used to show that low-directivity antenna elements
provide better performance in angular constricted Rician fading with off-axis in-
cidence than high-directivity elements. Moreover, two base station array layouts
are compared, showing that a half-circle array illuminates a cellmore evenly than a
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9 J2 – Correlated Rician Fading

uniform linear array. With the full distribution functions available, performance
can be compared over the full range of received powers and not only based on the
average signal-to-noise ratio.

9.2 Introduction

In many massive MIMO systems, users are communicating over multiple sub-
carriers with a BS equipped with a LSAS. These systems provide not only better
performance for conventional cellular networks [18], but have benefits in internet
of things applications too [6], [92]. Time division duplex transmission is neces-
sary, if channel reciprocity should allow for simplified channel state information
acquisition. On one hand, the radio channel is often modeled with uncorrelated
antennas subject to narrow-band Rayleigh or Rician fading. On the other hand,
measurement campaigns provide evidence that the radio channel is correlated in
space, time and frequency. For massive MIMO systems, correlated Rician fading
has been considered in context of the spectral efficiency [93] and cell-free systems
[94], [95]. Those contexts only evaluate the first- and/or second-order behaviour
of correlated narrow-band Rician fading channels.

To fully cover wide-band correlated Rician fading in LSAS, this work describes
a CN -RV model with a non-trivial covariance matrix. The vector elements are
representing channel coefficients for antennas and delay taps, to allow the joint
consideration of the spatial and the delay domain. The covariance matrix allows
to model correlation between antenna elements for the same delay tap, different
delay taps of the same antenna element andmixtures where necessary. The spatial
domain is parameterised by antenna element positions and corresponding PASs,
whilst thedelaydomain is coveredbyPDPs. Themodel allows to consider correla-
tion between antennas as well as delay taps. Hence it incorporates aspects needed
to derive a physically motivated distribution for the effective channel power gain
arising from MRC. To that extent, the influence of incidence of a determinis-
tic channel component1, its magnitude and correlation of the diffuse channel on

1The deterministic channel component can originate from a line of sight component or a spec-
ular component.
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single user performance is presented. We provide (accurate approximate) PDFs
and CDFs for the effective channel gain. Moreover, the steepness of the effective
channel CDF is evaluated to investigate the local diversity [C4] in closed-form for
different outage probabilities.

Related to this work is the effective channel with selection combining for sev-
eral equally correlated fading distributions given in [96]. The capacity for corre-
lated Rayleigh MIMO channels has been derived by characterising distributions
of eigenvalues of the propagation environment [97]. For correlated Rician chan-
nels, the eigenvalue spread of the covariancematrix and the angle of the determin-
istic component vector with respect to the range space of the covariance matrix
are key quantities of performance metrics in [98]. Furthermore, they provide a
power and a Laguerre series expansion of the effective channel. Another power
series approximation of the narrow-band MRC effective channel signal-to-noise
ratio for antennas in a linear array is given in [88]. The ergodic capacity of MRC
for correlated Rician channels has been evaluated in [99], showing that a corre-
latedRician fading channel can improve over an uncorrelated channel under very
specific circumstances. For uncorrelated Rician fading, massive MIMO systems
have been analysed based on asymptotic expressions for the signal-to-interference-
plus-noise ratio in a multi-cell system [100]. For correlated Rician fading of a
multi-cell massive MIMO scenario, different channel estimators and their result-
ing CN -RV parameters have been derived in [93]. Channel hardening and spec-
tral efficiency in correlated Rician fading for cell-free massive MIMO has been
discussed in [94], [95]. A more generalised complex normal channel has been
considering a Weichselberger correlation model and was analysed with focus on
channel hardening and favourable propagation [101]. We observe, that the full
statistics of correlated Rician fading channels for LSAS have not been presented
so far, since they go beyond the first- and second-order statistic of the effective
channel gain.

Other correlation matrix models than the Weichselberger model have been pro-
posed in the literature. A constant correlationmatrix, where each pair of antennas
is equally correlated [102], provides a simplistic approximation. An exponential
correlation matrix, where the difference of antenna indices determines the corre-
lation coefficient [103], is a more realistic approximation for ULAs. A generalised
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correlationmatrixmodel, where the correlation coefficient is a function of the eu-
clidean distance between antenna elements, has been recently discussed in [104]
and canprovide approximations formore general array configurations like anuni-
form rectangular array. A more propagation motivated 3D local scattering model
with arbitrary geometry, considering the position of array elements and the angle
of arrival distribution of the diffuse radio channel, has been presented [19, sec.
7.3.2].

In this work, we add antenna element pattern explicitly to the 3D local scattering
model, to analyse the effect of loworhighdirectivity elements, that not necessarily
point into the same direction. The result is a physically meaningful parametrisa-
tion of the correlation matrix elements, whereas the aforementioned general We-
ichselberger model has a higher abstraction level based on eigenvalues and eigen-
bases. Moreover, this manuscript extends our work on the effective channel in
uncorrelated Rayleigh fading [J1]. Our main contribution is a method to obtain
the statistics of the effective massive MIMO channel in correlated Rician fading.
This is achievedbydescribing awide-bandmassiveMIMOsystemas anon-central
CN -RV (sec. 9.3). The effective channel gain is a CGQF for which an improved
accurate approximation of the PDF and CDF is provided via a confluent CGQF
(sec. 9.4). To utilise the CN -RV model, mean and covariance are characterised
consideringphysical properties of thepropagation environment (sec. 9.5):

• a 3D local scattering model under consideration of PASs,
• antenna pattern of arbitrarily positioned and oriented BS array elements
and

• PDPs with Rician fading taps.

The findings are used to compare BSs with a ULA or a half circle array for an-
tenna elements with varying directivity after verification of the CGQF method
with simulations (sec. 9.6).

Themanuscript is structured as follows: it introduces the correlated complex nor-
mal channel in sec. 9.3; provides the distribution functions of the effective chan-
nel gain in sec. 9.4; shows some examples for the spatial correlation in sec. 9.5;
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9.3 Correlated Complex Normal Channel

continues with simulations for different scenarios in sec. 9.6 and closes with dis-
cussion and conclusion in sec. 9.7 and sec. 9.8, respectively.

9.2.1 Notation

Avariable is represented as a scalar a, a vectora or amatrixA. Square brackets are
picking an element from a structure according to the subscript, e.g. [a]i is the i-th
element of vectora. The transpose andhermitian operator are (·)T and (·)H. The
expectation and variance of random variables are denoted with E{·} and V{·},
respectively. The symbols CN , χ2 and χ′2 designate the complex normal, cen-
tralχ-squared and non-centralχ-squared distribution, where e.g. a ∼ CN (0, 1)
means that a is distributed according to a central standard complex normal dis-
tribution. The angles of the spherical coordinate system are θ for the azimuth
(θ ∈ [0, 2π]) and ϕ the polar angle (ϕ ∈ [0, π]).

9.3 Correlated Complex Normal Channel

In this section, a correlated CN -RV h ∈ CMN ∼ CN (µ,Σ) is introduced to
model the end-to-end propagation between a user terminal and a BS withM an-
tenna elements observing a N -tap channel. We are going to describe the mean
vector µ ∈ CMN and covariance matrixΣ ∈ CMN×MN based on antenna ele-
ment locations rm and patternGm(θ, ϕ) for antenna elementm in conjunction
with the PASs pl,n(θ, ϕ)2, PDPs Sl,n and Rician K-factors Kl,n of the propaga-
tion environment. The index l describes a subarray which belongs to a local area
where the statistics are stationary during tap n and the propagation environment
is illuminated by a terminal with powerP . An overview of all constituents of the
model is given in Fig. 9.1. This model describes directly the observable channel
coefficients and received powers at the BS elements and highlights the impact of
BS array design on the effective channel gain.

2The term PAS is used here for both the PAS and the PDF of the PAS, because the PDP absorbs
the power scaling.
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Figure 9.1:The complexnormal randomvector channel parametersµ ∈ CMN andΣ ∈
CMN×MN are determinedby theM antenna elements (with individual antenna element
pattern Gm(θ, ϕ)) and physical properties of delay taps n (power delay profile (PDP)
Sl,n, Rice FactorKl,n and power angular spectrum (PAS) pl,n(θ, ϕ)) of the propagation
environment for antennas in potentially different local areas l.
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9.3.1 Propagation Environment

The antenna elementm, local area l and delay tap n will be omitted for ease of
notation in the following subsections unless they are necessary to distinguish be-
tween quantities.

The PDP coefficient S describes the user transmit power that is spread into a
delay tap. The corresponding Rician factor K further defines the quotient be-
tween the deterministic component h̄ and the diffuse component h̃ of that delay
tap.

The PAS p(θ, ϕ) is split into parts too, to represent the deterministic component
with the incidence angles θ̄ and ϕ̄ as

p̄(θ, ϕ) = δ
(
θ − θ̄

)
δ
(
ϕ− ϕ̄

)
(9.1)

and p̃(θ, ϕ) absorbing the diffuse component. Both, p̄(θ, ϕ) and p̃(θ, ϕ) are a
PDF.ThePASunder considerationof theK-factor cannowbedescribedby

p(θ, ϕ) =
Kp̄(θ, ϕ) + p̃(θ, ϕ)

K + 1
. (9.2)

9.3.2 Channel Realisations

ARician channel coefficent h can be composed by superposition of a plane wave
for the deterministic component h̄ and a large number of Z plane waves dis-
tributed according to thePAS to represent thediffuse component h̃:

h = h̄+ h̃. (9.3)

Thewavevectork of awavewith incidence angles θ andϕ at wavelengthλ is given
by

k(θ, ϕ) =
2π

λ

cos θ sinϕsin θ sinϕ
cosϕ

 . (9.4)
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This wave has phase φ at position r:

φ(θ, ϕ) = k(θ, ϕ) · r. (9.5)

The deterministic component h̄ is given by the PDP coefficient S, the RicianK-
factorK, the antenna elementpatternG(θ, ϕ) and thephase term:

h̄ =

√
S
K
K + 1

G(θ̄, ϕ̄) exp
(
jφ̄(θ̄, ϕ̄)

)
. (9.6)

Thediffuse component h̃ is composedwith a sumoverN planewaves:

h̃ =

√
S

K + 1

√
1

N

Z∑
z=1

√
G(θ̃n, ϕ̃n)az exp

(
jφ̃z(θ̃n, ϕ̃n)

)
(9.7)

with az being iid random magnitudes, drawn from a central standard complex
normal distribution. The exponential term describes the additional phase of the
incoming plane wave n due to antenna element position r for an incidence wave
vector kz .

9.3.3 Mean and Auto-Covariance

The channel realisations for allM antennas and all N taps are conditioned on
the propagation environment and antenna array properties as described for the
individual coefficient in (9.6) and (9.7). To capture the mean and covariance of
the correlated random vector, explicit mappings of indices i and j to antenna ele-
mentsmi,mj anddelay tapsni andnj arenecessary. Themapping follows

i = mi + (ni − 1)M (9.8)
j = mj + (nj − 1)M (9.9)

to consecutively identify each antenna-tap pair uniquely. Antenna elementsmi

andmj belong to the local areas li and lj , respectively.
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Themean vector element [µ]i is simply the realisation in (9.6) because all variables
are deterministic:

[µ]i = E{hmi,ni} = h̄mi,ni . (9.10)

Themain diagonal of the covariance matrixΣ consists of auto-covariances of the
realisations of the diffuse component in (9.7):

[Σ]i,i = V{hmi,ni} = E
{
h̃mi,nih̃

∗
mi,ni

}
=

S

K + 1

∫∫
Ω

|G(θ, ϕ)| p̃(θ, ϕ)dΩ. (9.11)

The second line of the last equation is a consequence for Z → ∞ and replace-
ment of the sum by integration over the full sphere surface Ω to account for all
directions of incident waves. Here, the pattern of antenna elementmi is weight-
ing the PAS.

9.3.4 Cross-Covariances and Correlations

The remaining entries of the covariance matrix depend on the correlation coeffi-
cient ρi,j between pairs of antennas and taps:

[Σ]i,j = ρi,j

√
[Σ]i,i [Σ]j,j. (9.12)

The correlation coefficient ρi,j is by definition:

ρi,j =
E
{
h̃mi,nih̃

∗
mj ,nj

}
√
E
{
h̃mi,nih̃

∗
mi,ni

}
E
{
h̃mj ,nj h̃

∗
mj ,nj

} , (9.13)

where only diffuse components have an influence on the covariance matrixΣ. In
the following, we will restrict our focus to radio channels exhibiting uncorrelated
scattering in the same local area (li = lj = l)

ρi,j = ρtmi,mjδ(li − lj)δ(ni − nj), (9.14)
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because our interest is focused on the influence of antenna element correlations.
The correlated scattering case is left for future investigation. It might arise from
antenna elements being spaced so far from each other, that the same scatterer in-
flueces different delay taps of those elements. The restriction here imposes a diag-
onal block structure on the covariance matrixΣ, where each blockΣt describes
the correlation between antenna elements for tap t.

The antenna correlation coefficient ρtmi,mj is shown in (9.16) and is an extension
of the 3D local scattering model [19, sec. 7.3.2] due to the consideration of an-
tenna element pattern. The local scattering model has an impact on the han-
dling of correlation between antennas in different local areas. We are assuming
that the local areas are distant enough, such that the incoming plane waves are
decorrelated. Each incident plane wave in local area l produces a direction de-
pendent phase shift ∆φmi,mj between antenna elements at positions rmi and
rmj :

∆φmi,mj(θ, ϕ) = k(θ, ϕ) ·
(
rmi − rmj

)
. (9.15)

The expectation over the sum of plane waves in (9.16) is replaced for Z →∞ by
an integration over the full sphereΩ in (9.17). The diffuse PASs p̃l,t(θ, ϕ) condi-
tions the incident plane waves and the integral incorporates antenna positions as
well as antenna element pattern. This allows to determine the missing elements
of the correlation matrix Σ required for a full characterisation of the CN -RV
h.

9.3.5 Summary

The CN -RV h ∼ CN (µ,Σ) is fully characterised based on antenna positions,
antenna pattern, PDPs, RicianK-factors, PASs. The dependencies of elements of
the mean vector and the covariance matrix are summarised in the following lines,
where antenna elements, delay taps and local areas are explicitly designated in the
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9.3 Correlated Complex Normal Channel
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9 J2 – Correlated Rician Fading

subscripts of the variables:

[µ]i ← Smi,ni ,Kmi,ni , Gmi(θ, ϕ), p̄li,ni(θ, ϕ), rmi , λ (9.18)
[Σ]i,i ← Smi,ni ,Kmi,ni , Gmi(θ, ϕ), p̃li,ni(θ, ϕ) (9.19)
ρi,j ←Gmi(θ, ϕ), Gmj(θ, ϕ), p̃li,ni(θ, ϕ), p̃lj ,nj(θ, ϕ),(

rmi − rmj
)
, λ (9.20)

[Σ]i,j ← Smi,ni , Smj ,nj ,Kmi,ni ,Kmj ,nj , Gmi(θ, ϕ),

Gmj(θ, ϕ), p̃li,ni(θ, ϕ), p̃lj ,nj(θ, ϕ),
(
rmi − rmj

)
,

λ (9.21)

The channel vector can be reshaped into aM ×N matrix andmultiplication of a
discrete Fourier transformmatrix from the right allows a transformation into the
frequency domain if needed. That common matrix form of the channel in both
delay and frequency domain does not allow to keep the individual correlations
between pairs of antennas and taps separate. The covariancematrixΣ of the CN -
RV has sizeMN ×MN and the covariance matrix of the matrix channel of size
M ×M is combining the individual tap correlations describing the covariance
between antennas over all taps.

9.4 Effective Channel Gain

This section will provide the PDF and CDF of the effective channel gain. This
is the channel gain after combining all branches (antenna elements and taps) at
the BS. We focus on the matched filter for the single user case, since it is the opti-
mal result for that specific user. Any other combination scheme under consider-
ation of multiple users will provide poorer performance to the intended user. To
leave no user in a multi-user setting behind, interference should be suppressed by
other means than interference suppressing combining. The effective channelH
for MRC is:

H = wTh =
hHh√
∥h∥22

=
√
hHh, (9.22)
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9.4 Effective Channel Gain

and the corresponding effective channel power gainQ:

Q = |H|2 = hHh (9.23)

is a CGQF of the channel vector and a coherent summation of all vector channel
elements.

Closed-form approximations of the PDF and CDF of CGQFs are derived in the
following. The general idea is based on the principles of the approximation of
real Gaussian quadratic forms [105], but using the moment-generating function
of the confluent non-central CGQF [106]. We have reformulated the recursion in
the approximation to reduce the growth rate of some auxiliary variables. This al-
lows to increase the approximation order, improving the accuracy of themethod,
enabling the analysis of LSAS. Furthermore, the local diversity [C4] is approxi-
mated based on the PDF and CDF of the confluent CGQFs.

9.4.1 Approximations of Statistics of Gaussian Quadratic Forms

The vector v ∼ CN (µ,Σ) is anN -element random vector, withµ andΣ char-
acterising the mean vector and positive definite covariance matrix of a multivari-
ate complex normal distribution, respectively. The vector has a quadratic form
Qwith positive semidefinite operator matrixA being:

Q = vHAv. (9.24)

This quadratic formhas the same structure as the effective channel in (9.22),where
v = h andA = I.

The vector v can be decomposed:

v = Lx+ µ = L (x+ µ̃) . (9.25)

such that x ∼ CNN(0, I) is an iid standard CN -RV. The matrix L provides
a mixing of the iid variables to introduce the correlation given by Σ (e.g. by
Cholesky decomposition Σ = LLH) and a transformation of the mean vector
µ̃ = L−1µ.
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9 J2 – Correlated Rician Fading

Rewriting thequadratic formwith thedecomposedvectorv results in:

Q = (x+ µ̃)HLHAL(x+ µ̃) (9.26)

which can be expressed in terms of eigenvalues λi of LHAL:

Q =
N∑
i

λi(xi + µ̃i)
∗(xi + µ̃i) =

N∑
i

λi |xi + µ̃i|2 . (9.27)

This reveals the structure of a sum of λi weighted non-central χ2 variables
(|xi + µ̃i|2 ∼ χ

′2
2

(
|µ̃i|2

)
). We observe that the effective channel gain of any cor-

related CN -RV can be rewritten as a sum of weighted independent non-central χ2

variables, where theweights are related to the covariancematrix.

Aclosed-formmoment-generating function exists for this structure [106]:

MQ(s) =
n∏
i=1

exp

(
|µ̃i|2 λis
1− λis

)
(1− λis)−1 , (9.28)

but can not be used to derive closed-forms of the corresponding PDF and CDF.
Nonetheless, using a slightly modified moment-generating function which con-
verges for approximation orderm → ∞ to the intended CGQF [105] gives the
following approximation for the PDF:

fQ(x) ≈MQ

(
1−m
x

)
(m− 1)m

xm+1(m− 1)!
Um

(
1−m
x

)
, (9.29)

as well as CDF

FQ(x) ≈MQ

(
1−m
x

)m−1∑
k=0

(m− 1)k

xkk!
Uk

(
1−m
x

)
, (9.30)

with auxiliary variables:

Uk(s) =
k−1∑
j=0

(
k − 1

j

)
Vk−1−j(s)Uj(s) (9.31)

Vt(s) = t!
n∑
i=1

λt+1
i

(t+ 1) |µ̃i|2 − λis+ 1

(1− λis)t+2 . (9.32)
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9.4 Effective Channel Gain

The variableUk(s) can be calculated by recursion and builds on gt(s). Both aux-
iliary variables grow fast and overflow a floating point number, when the approx-
imation orderm grows large. Detection of the overflow allows to gracefully iden-
tify themaximumapproximationorder,where results are still valid.

To improve the numerical properties of the approximation, we reformulate the
auxiliary variables in (9.31) and (9.32). The growth rate can be reduced by redis-
tributing the fast growing faculty terms k! and t! as follows:

Ũk(s) = (−s)kUk(s)
k!

(9.33)

Ṽt(s) = (−s)t Vt−1(s)

(t− 1)!
. (9.34)

This eliminates thebinomial in (9.31) andgives themodified auxiliary variables:

Ũk(s) =
1

k

k−1∑
j=0

Ṽk−j(s)Ũj(s), (9.35)

Ṽt(s) = (−s)t
n∑
i

λti
t |µ̃i|2 − λis+ 1

(1− λis)t+1 . (9.36)

Additionally, the approximationsof thePDFandCDFare simplified to:

fQ(x) ≈
m

x
MQ

(
1−m
x

)
Ũm

(
1−m
x

)
, (9.37)

FQ(x) ≈MQ

(
1−m
x

)m−1∑
k=0

Ũk

(
1−m
x

)
. (9.38)

and the local diversityD [C4] of a quadratic form follows:

D(x) = x
fQ(x)

FQ(x)
≈ m

Ũm(
1−m
x

)∑m−1
k=0 Ũk(

1−m
x

)
. (9.39)

This form allows to calculate the local diversity as a byproduct of the PDF calcu-
lation.
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9 J2 – Correlated Rician Fading

9.5 Examples of Spatial Correlation

This section demonstrates the effect of different PAS, as well as antenna pattern,
on the spatial correlation between antenna elements. Wewill show the differences
to the classic case of isotropic antennas in Rayleigh fading.

The spatial correlation is completely described by the covariance matrix Σ and
takes into account both, the PAS of the diffuse channel and the directivity of the
antenna elements. Here, we only consider uncorrelated scattering for simplicity,
but scenarios with correlation between multiple taps can be covered too. First,
different PAS (see Fig. 9.2) for ULAswith omni-directional antenna elements are
presented and their influence on the correlation coefficients is analysed. Then,
antenna element patterns are added into the consideration.

9.5.1 Power Angular Spectra

Omni-directional Channels

The classicRayleigh channel is omni-directional in twodimensions and has a uni-
formPAS in azimuth restricted to a single polar angle ofϕ = π/2:

p(θ, ϕ) = p̃(θ, ϕ) =
1

2π
δ(ϕ− π

2
). (9.40)

However, aRayleigh fading envelope does not necessarily require the diffuse com-
ponent to be omni-directional. Evaluating the correlation coefficient for a uni-
formly spacedx-orientedULAwith∆d element spacing gives:

ρomni
i,j =

δ(ni − nj)
2π

∫ 2π

0

exp
(
j2π(mi −mj)

∆d

λ
cos θ

)
dθ (9.41)

= δ(ni − nj)J0
(
2π(mi −mj)

∆d

λ

)
, (9.42)

where the δ-function ensures uncorrelated taps and J0(·) is the zero-order Bessel
function of the first kind.
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9.5 Examples of Spatial Correlation

The Rice channel needs to account for theK-factor in addition, but the correla-
tion properties stay the same and ρomni

i,j provides the correlation coefficient. The
corresponding PAS, where the available channel power has been normalised, has
the following PDF [13, Sec. 6.4.4]:

p(θ, ϕ) =
1

2π(K + 1)

[
1 + 2πKδ(θ − θ̄)

]
δ(ϕ− π

2
), (9.43)

where the angle θ̄ defines the direction of the incoming wave responsible for the
deterministic part of the channel.

Sector Channel

It is more common in outdoor propagation scenarios with elevated BS, that the
diffuse part is restricted to a sector with an opening angle ψ, We are continuing
with two-dimensional propagation coming from the horizon and define the sec-
tor PAS as:

p̃(θ, ϕ) = δ(ϕ− π

2
)

{
1
ψ

with θ̃0 − ψ
2
≤ θ ≤ θ̃0 +

ψ
2

0 otherwise
(9.44)

where θ̃0 is the directional centre of the diffuse part.

The correlation coefficient resulting from propagation from a uniform diffuse
sector impinging on a ULA is

ρunii,j =
δ(ni − nj)

ψ

∫ θ̃+ψ
2

θ̃−ψ
2

exp
(
j2π(mi −mj)

∆d

λ
cos θ

)
dθ. (9.45)

This integral can be solved numerically.

A tapered sector model can be achieved with a von Mises distribution3, to avoid
discontinuities in thePAS.ThePDFfor thediffuse channelPAS is:

p̃(θ, ϕ) = δ(ϕ)
exp
(
κ cos

(
θ − θ̃0

))
2πI0(κ)

, (9.46)

3The circular equivalent to the real Gaussian distribution.
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Figure 9.2: Power angular spectra for three different scenarios are shown, namely an om-
nidirectional channel (omni), an uniform sector channel (uni, α = 90°, θ̃0 = 90°) and a
vonMises channel (vM, κ = 5, θ̃0 = 90°).

where κ is a concentrationmeasure. The correlation coefficient can be calculated
by solving (9.17) numerically.

In Fig. 9.2 three different diffuse PAS are displayed. The corresponding corre-
lation function for two omni-directional elements separated in x-direction are
shown in Fig. 9.3. It is clear that the actual distribution of the PAS has a strong in-
fluence on the spatial correlation between antenna elements. Thewider the sector
of the diffuse component is, the slower is the decay of the correlation coefficient
magnitude.

9.5.2 Antenna Element Pattern

The actually observable diffuse part of the channel depends not only on the direc-
tion of the incoming diffuse waves, but on the antenna element pattern in addi-
tion. For simplicity,we are continuingwith the specialisation to two-dimensions.
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Figure 9.3: The correlation between two omni-directional antenna elements spaced at a
distance in x-direction is shown for the three different PASs in Fig. 9.2.

The directivity D of each antenna element is described by the shape of the an-
tenna pattern F (θ, ϕ) and the maximum directivityD0:

D(θ, ϕ) = D0F (θ, ϕ). (9.47)

A generic uni-directional two-dimensional antenna pattern can be modeled as a
cosine to thepowerof ζ [107],whereθ0 fixes the azimuth angle forD0:

F (θ, ϕ) =

{
cosζ(θ − θ0)δ(ϕ− π

2
) θ0 − π

2
≤ θ ≤ θ0 +

π
2

0 elsewhere.
(9.48)

The higher ζ is, the more directional the antenna pattern. The half power beam
width can be derived by evaluating F (θ, ϕ) = 1/2:

θHPBW = 2 arccos

(
ζ

√
1

2

)
. (9.49)

The maximum directivity with respect to an isotropic source can be evaluated
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Figure 9.4: Directivity of the uni-directional generic cosζ(θ − θ0) antenna element for
θ0 = 90°

by:

D0 =
4π∫∫

Ω
F (θ, ϕ)dΩ

. (9.50)

The pattern for different ζ is shown in Fig. 9.4 and the maximum directivity and
half power beam width are presented in Table 9.1.

The antenna gain in section 9.3 is connected to the directivity via the antenna
efficiency ϵ:

G(θ, ϕ) = ηD(θ, ϕ) (9.51)

For the generic cosζ(θ−θ0), the correlation coefficient in (9.17) can be simplified

Table 9.1: Properties of the generic uni-directional cosζ(θ − θ0) antenna element

ζ 0 2 5 11 20 45

D0 [dB] 1.0 4.1 5.7 7.3 8.6 10.3
θHPBW (180°) 90° 59° 40° 30° 20°
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9.6 Simulations

ρtmi,mj =
D0

4π

∫ min(θ0i+
π
2
,θ0j+

π
2 )

max(θ0i−
π
2
,θ0j−

π
2 )

√
cosζ(θ − θ0i) cosζ(θ − θ0j)

exp
(
j∆φmi,mj(θ,

π

2
)
)
dθ (9.52)
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Figure 9.5: The correlation between two antenna elements spaced at a distance of 0.5 λ
is shown for different squint angles.

as shown in (9.52). Fig. 9.5 depicts the influence of the directivity of the antenna
elements on the correlation coefficient at an element spacing of λ/2. The more
directive the antenna elements are, the higher the correlation coefficient forULAs
(squint angle 0°). If the elements are squinting into different directions (e.g. if
they are distributed over an arc), then the behaviour changes and the correlation
falls off once both beams stop to overlap.

9.6 Simulations

In the following section, simulation results are presented, to verify the approxima-
tions due to the confluent CGQF. To illustrate the versatility of the method, we
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9 J2 – Correlated Rician Fading

Table 9.2:Overview over simulated scenarios with power angular spectrum for uncorre-
lated (uc), omnidirectional (omni) and vonMises channels.

Scenario Verification Array Configurations

Array Layout ULA half circle & ULA
# of AntennasM 32 32
# of TapsN 1 1
Ant. Element ζ 0 2 & 5 & 20
PAS uc & omni vonMises vonMises (aligned)
Rician FactorK 0 4 0 & 4
Determ. Dir. θ̄ 70° 30° & 60°
Concentration κ 5 5
Diffuse Dir. θ̃0 70° & 90° 30° & 60°

compare aULABSwith a half-circle BS layout for antenna elements with varying
directivity. This shall demonstrate how the introducedmodel allows a simple per-
formance evaluation of correlated Rician radio channels under consideration of
antenna element pattern, array layout and Rician fading channels. The different
scenarios are summarised in Table 9.2.

9.6.1 Verification

To verify that the analytic approximations provide accurate results, a number of
diffuse plane waves impinging on an ULA with isotropic antenna elements are
simulated. The 32 antenna element ULAwith λ/2 spacing in x-direction is situ-
ated in a single tap Rician fading environment withK-factor 4 for four different
PAS:

• uncorrelated
• omnidirectional diffuse scattering
• von Mises scattering aligned with deterministic component (κ = 5, θ̄ =

θ̃0 = 70°)
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9.6 Simulations

• von Mises scattering squinting with respect to the deterministic compo-
nent (κ = 5, θ̄ = 70°, θ̃0 = 90°)

The uncorrelated simulation adhering to (9.6) and (9.7) is generating indepen-
dent plane waves for each antenna element, whilst the other three simulations
have the same plane waves impinging on all elements. The empirical CDFs are
based on 1× 106 trials with 800 plane waves forming the diffuse channel accord-
ing to the PAS.

These verification settings cover wide-band results up to a certain number of taps
too, since both taps and antennas link to CN -RV elements. The multi-antenna
single-tap case allows for a fully populated correlationmatrix in our uncorrelated
scattering setting and is therefore more challenging than a single antenna 32 tap
scenario.

TheCDFs are shown in Fig. 9.6. Simulations and approximations give consistent
results for all cases. It is important to note, that uncorrelated antenna elements do
not in general provide the best results once the channel showsRician fading. It de-
pends on the superposition of the phases that the deterministic and diffuse com-
ponent cause on the antenna elements. A certain correlation between close an-
tenna elements improves the situation if the diffuse component is orthogonal to
the deterministic component. This reduces the probability that the diffuse com-
ponent acts destructively on the deterministic component, since they align over
close antenna elements. This effect is visible both, in comparison with the un-
correlated and omni-directional PAS and for the aligned and squinting vonMises
scattering. Nonetheless, for real scenarios it is highly probable the deterministic
and the diffuse component are aligned (e.g. von Mises aligned case), leading to a
loss of performance over the uncorrelated case.

The corresponding local diversity is presented in Fig. 9.7. The classic diversity
would be 32 for a BS with 32 uncorrelated antenna elements. The local diversity
at interesting outage probabilities is heavily depending on the PAS of the diffuse
component. Additionally, it is not predictable from the number of array elements
only [C4].
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Figure 9.6: Verification of the cumulative distribution functions (CDFs) approximated
by complex Gaussian quadratic forms for a 32 antenna element uniform linear array in
a single tap fading environment withK-factor 4. The empirical cumulative distribution
functions (ECDF) are generated from simulation results. Four different power angular
spectrum are evaluated: uncorrelated (uc), omni-directional (omni), von Mises aligned
(vM a) and vonMises squinting (vM s). The approximations provide accurate results for
the correlated and uncorrelated cases.
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Figure 9.7: The local diversity approximated by complexGaussian quadratic forms for a
32 antenna element uniform linear array in a single tap fading environmentwith isotropic
antenna pattern is shown for the four verification scenarios in Fig. 9.6.

9.6.2 Array Configurations

Here, we want to analyse the implications of two different BS array configura-
tions in aligned von Mises scattering from different angles with K-factors zero
and 4. An ULA is the reference configuration, since it is used abundantly for
theoretical discussions due to its mathematical tractability. Equipped with direc-
tional antenna elements it could model a BS mounted to a building edge fairly
well. As alternative, the elements will be distributed over a half circle to reduce
the extent in one direction, whilst increasing it into the other. Hence, with the
same directional elements, a wider sector will be illuminated more evenly, reduc-
ing themaximumgain into broadside direction. Both configurations are sketched
in Fig. 9.8.

Fig. 9.9 shows results for different von Mises PASs. Solid lines and dashed lines
indicate the ULA and half circle BS layout, respectively. In general, high directiv-
ity of the antenna elements is not giving advantages in the considered cases. The
reason is that the main direction of the elements has to match the direction of
the incoming waves, but it is not steerable. The penalty for higher gain elements
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Figure 9.8: Array configuration of the ULA (o) and half circle array (+).

is lower in the half circle arrangement, since at least a few antennas are pointing
towards a possible user.

For the low directivity elements, a deterministic channel component can be used
efficiently, since the array factor allows coherent combination. In the high di-
rectivity case, at least one element needs to be aligned. The more a user is re-
ceived towards the end-fire direction of the ULA, the better is the half circle con-
figuration in comparison. Eventually, the half circle BS provides a more evenly
distributed coverage and is less sensitive to the direction of the incoming waves.
Furthermore, in multi-user applications, different users are more likely to have
stronger contributions to different antenna element subsets of the half circle ar-
ray.

Fig. 9.10 presents the local diversities for the two BS under different fading con-
ditions. Only the low directivity case (ζ = 2) has been taken into account, to
allow for visual comparison of the influence of different PASs. Both, uncorre-
lated Rayleigh and Rician fading provide more local diversity than their coun-
terparts with constricted PAS. The half circle BS has always less local diversity
in comparison to the ULA BS. This is due to fewer antenna elements being illu-
minated by the diffuse component, that provides spatial diversity. A higher K-
factor provides a higher local diversity for all cases, since it becomesmore unlikely
that the diffuse component of the channel cancels the deterministic component
out.
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Figure 9.9: The plots show the effective channel for different directivities (colours),
power angular spectrums with concentration κ = 5 of a uniform linear array (ULA)
(solid lines), and half circle array (dashed lines). The ULA performance is more depen-
dent on broadside incidence of the waves, than the half circle array, especially for higher
directivity elements. In all shown scenarios (parameters given below the subfigures) is
lower directivity more beneficial and the half circle arrangement trades peak directivity
towards broadside with increased directivity towards the end-fire direction of the ULA.
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Figure 9.10: Local diversities are shown for the uniform linear array (solid line) and half
circle (dashed line) base station with low directivity elements (ζ = 2). The different
colours correspond to different vonMises power angular spectrumwith parameters given
in the legend for two differentK-factors. In general, the half circle BS has less local diver-
sity at a certain outage probability. Moreover, a higherK-factor gives higher local diver-
sity. All constricted cases of diffuse scattering provide less local diversity than the uncor-
related (uc) Rayleigh (solid black) channel.
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9.7 Discussion

The proposed correlated Rician model increases the realism and complexity of a
massive MIMO BS propagation analysis over simpler uncorrelated models. Ad-
ditionally, antenna array geometry, antenna element orientation and PASs have
been accounted for to determine the covariance matrix of the CN -RV, allowing
for evaluation of different BS designs for a given scenario. The parameters of the
CN -RV can alternatively be based on the simplified 3rd Generation Partnership
ProjectUrbanMicrocellmodel as described in [94] andourCGQFs approach still
gives the PDF and CDF of the effective channel. Furthermore, the method can
be generalised to handle e.g. power variation between antenna elements through
the operator matrix.

Covariance is sometimes elusive and hard to measure properly in the field. How-
ever, by inspection of the quadratic form in (9.27), it is clear, that the proper-
ties of the eigenvalues of the covariance matrix are of central relevance to cap-
ture the effect of correlation on the effective channel. Moreover, considering
universality in random matrix theory [58], the distribution of eigenvalues be-
haves asymptotically as if the matrix elements are Gaussian distributed. There-
fore, the CGQF results are less sensitive to the actual individual correlation coef-
ficients.

So far, we only demonstrated over-the-horizon propagation with the example
PASs. Nonetheless, the described framework allows for three-dimensional con-
siderations. The impact of incoming waves from different elevation angles de-
pends obviously on the weighting imposed by antenna element pattern and ar-
ray geometry. In general, additional local diversity is available, but the BS design
needs to take this into account to benefit from it. The proposed model is flexible
enough to allow BS performance comparisons for a combination of surface and
aerial users.
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9.8 Conclusion

A thorough way of handling correlated Rician fading for LSASs has been pre-
sented. The accurate approximations can be used to analyse the effective channel
of massive MIMO BSs. The framework allows consideration of inter-tap corre-
lation in addition to the outlined antenna correlations. Inter-tap correlation can
occur, e.g. if distributed antenna arrays are spaced further apart than the distance
related to the duration of a single tap.

The provided correlated CN -RV channel model is general and the K-factor pa-
rameterisation allows investigation ofRician andRayleigh fading at each antenna
and delay tapwith arbitrary correlation coefficients. Correlation coefficients have
been related to the PAS of the diffuse channel component and consider the an-
tenna element pattern in addition. A plane wave model provides the foundation
of the complex normal element statistics and the tractability of correlation co-
efficients. To capture near-field aspects that become more prominent for larger
apertures, future research should investigate the differences that a spherical wave
model would introduce.

Low-directivity antenna elements provide better overall systemperformance than
high-directivity elements, once the BS grows to a reasonable size. This is mainly
caused by being less prone to the direction of incoming waves, because the main
gain is coming from the steerable array factor and not the static element factor.
Arranging the elements in a half-circle illuminates a region more evenly than a
ULA, but reduces the peak gain for broad-side radiation. Moreover, the local di-
versity is reduced for the half-circle BS and a directional diffuse part since fewer
elements pick up significant energy, even though they are less correlated. A thor-
ough analysis of the systemperformancewould, in addition to thepresented chan-
nel properties, need to include hardware imperfections like phase noise and tim-
ing jitter.

The complete statistic of the effective channel gain for correlated Rician fading
channels is described through the provided PDF or CDF. This allows the investi-
gation of instantaneous metrics of the single user performance beyond the mean
and variance of the combined received signal.
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