
Output Maneuvering for Cartesian 3D Printer

Andreas Hanssen Moltumyr∗, Mathias Hauan Arbo, Jan Tommy Gravdahl
Department of Engineering Cybernetics

Norwegian University of Science and Technology (NTNU)
Trondheim, Norway

∗andreas.h.moltumyr@ntnu.no

Abstract— 3D printing, also known as additive manufactur-
ing, is a production technique that can create highly customized
parts and is therefore ideal for product prototyping and
customized orders. An important aspect of 3D printer systems
is the ability to accurately and precisely move the extruder
along a planned path, ensuring the production of parts with
low dimensional error. In this paper, output maneuvering
is considered for the purpose of steering the extruder of a
Cartesian 3D printer along a desired path. As slicing software
provides waypoints with minimal change in angle between the
line segments, a novel speed profile adjustment is introduced
which prioritizes maintaining the current along-path speed
when the angle between line segments is sufficiently low.
Through a design example, a nonlinear maneuvering controller
consisting of a geometric and a dynamic task is deduced.
Positive and negative aspects of applying output maneuvering
to additive manufacturing are discussed.

Index Terms— Output Maneuvering, 3D printing, Additive
Manufacturing, Non-linear control

I. INTRODUCTION

In order for a 3D printer or additive manufacturing system
to create highly customized parts with intended geometry,
the extruder will have to be accurately and precisely moved
around the print surface and the so-far-printed object. This
must be done for new layers to properly bond to the object
and to avoid collisions between the printer and the print.
Failure to do so will lead to faulty parts, and waste of time
and material. These failures may reduce the reliability of the
manufacturing method overall, rendering it more costly than
desired.

The most commonly available 3D printers use stepper
motors to accurately track a reference trajectory that has
been precomputed by a slicing software. This is a form of
trajectory tracking where the dynamic model of the printer
is not taken into account. Separating the path following and
the geometric path deviation into a geometric and a dynamic
task to be achieved by the motor controller allows for specific
control of the desired speed profile between any waypoints,
adhering to the physical limitations of the mechanical system
and the additive manufacturing process.

Aguiar et al. [1], [2] have shown that the two-task path-
following approach does not suffer from the same perfor-
mance limitations as reference-tracking in the case of non-
minimum phase systems, e.g. systems with flexible joint such
as printers with flexible timing belts. Model predictive con-
trol has been successfully applied to path-following problem
formulations in order to incorporate constraints on input and

state signals [3] and [4]. Output maneuvering, as described
by Skjetne et al. [5] is a form of path-following control
where a specific speed profile is followed between waypoints,
the method has been demonstrated with an adaptive control
method for a ship model [6].

In this paper, the method of output maneuvering has
been used to design a path-following controller for a simple
Cartesian 3D printer head. Through a design example, a
simple model of a Cartesian 3D printer is derived before
an output maneuvering controller is designed for the system
through Lyapunov analysis, a novel method is introduced
to adjust the speed profile according to the angle between
subsequent line segments of the model to only slow down
for sharp corners. Lastly, a simulation of the Cartesian 3D
printer with the derived controller is presented. The material
on output maneuvering presented in this paper builds on [5].

II. OUTPUT MANEUVERING

The goal of output maneuvering is for a time-dependent
vector y(t), e.g. the position of the extruder head, to track
some desired trajectory yd(t), e.g. the desired print path,
with high accuracy, while also satisfying some secondary
objective like a timing law, speed law or acceleration law.
This can be divided into two parts, a geometric task, and a
dynamic task.

The objective of the geometric task is to ensure that the
output converges to a path parametrized with θ. We need

lim
t→∞

∥∥y(t)− yd(θ(t))∥∥2 = 0. (1)

The secondary objective, namely the dynamic task should
make the output satisfy some dynamic behavior along the
path. A much used dynamic task that we will be using in the
following design example is speed assignment. With speed
assignment, we have the dynamic task

lim
t→∞

∣∣θ̇(t)− vs(θ(t), t)∣∣ = 0. (2)

III. THEORY

In this section, a design example of output maneuvering
for a Cartesian 3D printer is presented. In III-A a simple
model of a Cartesian manipulator is derived. In III-C an
output maneuvering controller will be designed through
Lyapunov analysis. Lastly, part IV presents the details of the
simulation, while part IV-C presents the simulation results
from tracing a multi-layered, triangle-shaped, trajectory.

x

y

z

x
y

z

Print
Surface

Nozzleqz

x

y

q

q

mN

mPS

mX

Fig. 1: Cartesian 3D printer model based on Prusa i3 [8].

A. 3D Printer Modelling

We use the Prusa i3 commercial 3D printer [8] as a basis
for the model of a Cartesian 3D printer system. In the Prusa
i3, the print surface is moved in the y direction relative to the
world coordinate system. The nozzle is moved in the x and z
direction relative to the world coordinate system. This gives
the nozzle the ability to move with three degrees of freedom
with respect to the print surface. In the Prusa i3, the linear
motion in the x and y directions are facilitated by timing
belts, each connected to one of four stepper motors. The
motion in z direction is facilitated by leadscrews connected
to the last two stepper motors, but for simplicity, we will
also model the linear motion in z direction with a timing
belt. In this study, we use regular DC motors as actuators
and not stepper motors, since they are simpler to model
with continuous transfer functions than stepper motors. It
could also be mentioned that the high torques produced by
stepper motors should not be necessary when positioning a
3D-printer nozzle since there are very little external forces
acting on the printer head compared to the forces required
for CNC applications like milling.

Ignoring the electrical dynamics of the DC motors we have
the following dynamic equations for the motors [7]:

Jmθ̈ +Bθ̇ =
Km

Ra
V − τload. (3)

Here, θ̇ and θ̈ are the angular velocity and acceleration of
the motor shaft, τload is the load torque on the motor shaft
from the timing belt, V is the motor input voltage. Jm is
the moment of inertia of the motor, shaft, and pulley gear.
B, Km and Ra are, respectively, the motor friction, torque
constant, and armature resistance.

Using that θ̇ = 1
r ẋ and τ = rF where ẋ is the linear

speed of the timing belt and r is the radius of the pulley
gear connecting the motor shaft to the timing belt and F is
the linear force experienced by the timing belt, we find a
linear motion variant of the differential equation (3).

Jm
r2
ẍ+

B

r2
ẋ =

Km

rRa
V − Fload. (4)

Choosing the displacement of each of the three timing
belts as generalized coordinates as shown in Fig. 1, the
Lagrangian, total kinetic, and potential energy of the system
can be expressed as

L = K − P, (5)

K =
1

2
mN q̇

2
x +

1

2
mPS q̇

2
y +

1

2
(mX +mN)q̇2z , (6)

P = g(mX +mN)qz, (7)

where mX , mN and mPS are the mass of the x-axis motor,
extruder system, and print surface, respectively. g is the
gravitational constant.

Applying the Euler-Lagrange equations of motion, we get

mN q̈x = Fx,load, (8)
mPS q̈y = Fy,load, (9)

(mN +mX)q̈z + (mN +mX)g = Fz,load. (10)

Adding the actuator dynamics from (4) for each dimension
and combine the terms, we get(

mN +
Jm
r2

)
q̈x +

B

r2
q̇x =

Km

rRa
Vx, (11)(

mPS +
Jm
r2

)
q̈y +

B

r2
q̇y =

Km

rRa
Vy, (12)(

mN+mX+
Jm
r2

)
q̈z+

B

r2
q̇z + (mN+mX)g =

Km

rRa
V ′z . (13)

Setting

V ′z = Vz +
rRa
Km

(mN +mX)g, (14)

we add a constant term to the control input in z-direction
to remove the effect of gravity when considering motion
control.

The dynamic equations for the Cartesian 3D printer can
then be expressed in matrix form as

M q̈ +Dq̇ = u, (15)

where q = [qx, qy, qz]
T ,

M =

mN + Jm
r2 0 0

0 mPS + Jm
r2 0

0 0 mN +mX + Jm
r2

 ,
(16)

D =

 Br2 0 0
0 B

r2 0
0 0 B

r2 ,

 , (17)

and

u = k1w =
Km

rRa
[Vx, Vy, Vz]

T
. (18)

Setting x1 = q and x2 = q̇ we can express (15) in the
following equivalent form

ẋ1 = x2, (19)

ẋ2 = −M−1Dx2 +M−1k1w. (20)

B. Piecewise Linear Path

In this paper, we will only consider the problem of
following piece-wise linear paths. This will in most cases
be sufficient since regular slicer software works on triangle
meshes and produces a sequence of points or a set of
connecting polylines. One way of representing a piecewise
linear path yd(θ) given a set of N + 1 points {p0, . . . ,pN}
is

yd(θ) = (pn − pn−1)
θ − θn−1
θn − θn−1

+ pn−1, (21)

for θ ∈ [θn−1, θn), n = 1, . . . , N . The first and second
derivative with respect to θ is

∂yd
∂θ

(θ) =
pn − pn−1
θn − θn−1

, (22)

∂2yd
∂θ2

(θ) = 0, (23)

for θ ∈ [θn−1, θn), n = 1, . . . , N .
If we choose θn − θn−1 = 1, the line segments have a

length of one in the parameter θ, and we can simplify (21)
and (22) to

yd(θ) = (pn − pn−1)(θ − θn−1) + pn−1 (24)

and
∂yd
∂θ

(θ) = pn − pn−1 (25)

respectively.

C. Output Maneuvering Lyapunov Design

We want to control nozzle position y = x1 and start by
defining error variables for position and velocity

z1 = y − yd(θ) = x1 − yd(θ), (26)
z2 = x2 −α1(x1, θ), (27)

where α1 is a virtual control input to be specified later. We
also define

ωs = vs(θ)− θ̇, (28)

an internal state in the to-be-designed controller, representing
the error between vs(θ), the speed assignment along the path
parameterized in θ, and the system’s propagation speed along
the path. Note that

ż1 = ẋ1 −
∂yd
∂θ

θ̇ = z2 +α1 +
∂yd
∂θ

(ωs − vs). (29)

We define the first Lyapunov control function

V1 =
1

2
zT1 P1z1. (30)

giving

V̇1 = zT1 P1ż1 (31)

= zT1 P1(z2 +α1 +
∂yd
∂θ

ωs −
∂yd
∂θ

vs). (32)

Choosing the virtual control input

α1 = A1z1 +
∂yd
∂θ

vs, (33)

where A1 is a Hurwitz matrix satisfying P1A1 + AT1 P1 =
−Q1 where P1 and Q1 are positive definite matrices. Defin-
ing a first tuning function τ1 = zT1 P1

∂yd

∂θ , we find that

V̇1 = zT1 P1z2 +
1

2
zT1 (P1A1 +AT1 P1)z1 (34)

+ zT1 P1
∂yd
∂θ

ωs, (35)

= −1

2
zT1 Q1z1 + z

T
1 P1z2 + τ1ωs. (36)

Define the second Lyapunov control function

V2 = V1 +
1

2
zT2 P2z2. (37)

Note that

α̇1 = A1ż1 +

(
∂2yd
∂θ2

vs +
∂yd
∂θ

∂vs
∂θ

)
θ̇ (38)

= A1x2 +

(
−A1

∂yd
∂θ

+
∂yd
∂θ

∂vs
∂θ

)
θ̇ (39)

= A1x2 +
∂α1

∂θ
θ̇. (40)

Also note that

ż2 = ẋ2 − α̇1 (41)

= −M−1Dx2 +M−1k1w −A1x2 −
∂α1

∂θ
θ̇. (42)

We find

V̇2 = V̇1 + z
T
2 P2ż2 (43)

= −1

2
zT1 Q1z1 + z

T
1 P1z2 + τ1ωs

+ zT2 P2

(
M−1k1w −M−1Dx2 (44)

−A1x2 +
∂α1

∂θ
(ωs − vs)

)
.

Choosing control input w as

w =
1

k1
M
(
A2z2 − P−12 P1z1

+M−1Dx2 +A1x2 +
∂α1

∂θ
vs

)
, (45)

where A2 is a Hurwitz matrix satisfying P2A2 + AT2 P2 =
−Q2 where P2 = PT2 and Q2 are positive definite matrices,
and define a second tuning function τ2 = zT2 P2

∂α1

∂θ . We find

V̇2 = −1

2
zT1 Q1z1 +

1

2
zT2
(
P2A2+A

T
2 P2

)
z2

+ τ1ωs+τ2ωs (46)

= −1

2
zT1 Q1z1 −

1

2
zT2 Q2z2 + (τ1 + τ2)ωs. (47)

Now define

z =
[
zT1 , z

T
2

]T
, b =

[
∂yTd
∂θ

,
∂αT1
∂θ

]T
, (48)

Q = diag (Q1, Q2) , P = diag (P1, P2) , (49)

and write (47) in compact form

V̇2 = −1

2
zTQz + zTPbωs. (50)

Output Maneuvering
Controller

Guidance
system

Extruder Positioning
system

(Cartesian 3D Printer)

yd,

vs,

θ

u

x1 2x,

∂
∂θ
yd

∂
∂θ

sv

Fig. 2: Output maneuvering controller structure.

In order to make (50) negative definite and the output
maneuvering controller asymptotically stable we have to
close the loop with a speed assignment update law. Following
the approach in [5], we apply the filtered-gradient update law.
Define the third, and final, Lyapunov control function

V = V2 +
1

2λµ1
ω2
s , (51)

and the speed law

ω̇s = −λ(ωs + µ1z
TPb). (52)

Here, µ1 > 0 is the gain coefficient of the gradient update
law, and λ > 0 is the cut-off frequency of a first order low-
pass filter used for the reduction of measurement noise.

We find

V̇ = V̇2 +
1

λµ1
ωsω̇s (53)

= −1

2
zTQz + zTPbωs −

1

µ1
ω2
s − zTPbωs (54)

= −1

2
zTQz − 1

µ1
ω2
s , (55)

which is negative definite, which renders the system input-
to-state stable.

We can now summarize the equations of the controller:

θ̇ = vs(θ)− ωs, (56)

ω̇s = −λωs − 2λµ1

(
zT1 P1

∂yd
∂θ

+ zT2 P2
∂α1

∂θ

)
, (57)

u =M
(
P−12 P1z1 −Kdz2

+ + (M−1D −Kp)x2 +
∂α1

∂θ
vs

)
, (58)

z1 = x1 − yd(θ), (59)
z2 = x2 −α1(θ), (60)

α1 = −Kpz1 +
∂yd
∂θ

vs, (61)

∂α1

∂θ
= Kp

∂yd
∂θ

+
∂yd
∂θ

∂vs
∂θ

. (62)

P1 and P2 can be found by choosing appropriate Q1, Q2,
A1 = −Kp and A2 = −Kd, and solve the Lyapunov
equation PiAi+ATi Pi = −Qi with respect to the coefficients
of the diagonal matrix Pi. The output maneuvering system
can be divided into three parts as shown in Fig. 2. The first
part is the guidance system which outputs information about
the path and the speed profile for a given θ. The second
part is the output maneuvering controller giving out control

signals to the mechanical system forcing it to move along the
path, while at the same time updating the guidance system on
how far the system has moved along the path. The last part is
the mechanical system, in this case, the extruder positioning
system.

D. Speed Assignment with speed reduction at sharp corners

A speed assignment function vs(θ), defining how fast the
controller should move along the path, must be defined. A
simple and effective speed assignment function enabling path
following with a constant speed ms is

vs,cs(θ) =
ms

‖pn − pn−1‖2
. (63)

This choice of vs,cs(θ) may, however, lead to large po-
sitional errors when the controller follows paths with sharp
corners. To increase the positional accuracy, a good strategy
is to reduce the speed. Here, we propose a speed assignment
function that reduces the positional error by reducing the
target speed only around sharp corners, while keeping a
constant target speed ms everywhere else.

A piece-wise linear path consists of several straight lines.
The two lines stretching between pn−1, pn and pn+1 create
an angle

αn =
180◦

π
cos−1

(
(∆n+1)

T∆n

‖∆n+1‖2 ‖∆n‖2

)
, (64)

varying between 0◦ and 180◦, where

∆n = pn − pn−1, n = 1, . . . , N. (65)

By dividing the area from 0◦ and 180◦ into three regions,
by defining a lower and upper angle αa, αb ∈ [0◦, 180◦], we
can categorize the different corners into three classes:

Non-sharp: No need to slow down : 0◦≤αn<αa,
Sharp: Reduce speed with increasing angle : αa≤αn≤αb,
Very Sharp: Heavy speed reduction : αb<αn≤180◦.

Fig. 3 shows the division into regions based on αa and
αb. Now, define the weighting/interpolation value kn for n =
1, . . . , N − 1 according to

kn =


0, 0◦ ≤ αn < αa,

αn − αa
αb − αa

, αa ≤ αn ≤ αb,

1, αb < αn ≤ 180◦.

(66)

In addition, define k0 = 1 and kN = 1, so that the speed
assignment begins and ends close to zero.

α

ααn
a

b

y (θ)d n-1 n

n+1

y (θ)d

y (θ)dk = 1n

k = 0n

0 < k < 1n

Fig. 3: Illustration showing the angle between two consec-
utive line segments, division into different regions based on
αa and αb and the value of kn for different αn.

We are now ready to define the speed assignment with
speed reduction at sharp corners,

vs(θ)=



ms

‖∆n‖2

(
kn−1h(θ−θn−1)+(1−kn−1)h

(
1
2

))
,

θ ∈
[
θn−1,

θn+θn−1

2

)
,

ms

‖∆n‖2

(
knh(θn − θ)+(1− kn)h

(
1
2

))
,

θ ∈
[
θn+θn−1

2 , θn

)
,

(67)

where

h(θ) =
1

π
tan−1

(
θ − a1
a2

)
+

1

2
, (68)

is a sigmoid-shaped function that goes from 0 to 1 with
increasing θ. The parameter a1 moves the transition area in
the θ direction, while a2 changes the shape of, or scales, the
transition area.

The partial derivative of the speed assignment with respect
to the path variable then becomes

∂vs
∂θ

(θ) =



ms

‖∆n‖2
kk−1a2

a22 + (θ − θn−1 − a1)2
,

θ ∈
[
θn−1,

θn+θn−1

2

)
,

ms

‖∆n‖2
−kna2

a22 + (θn − θ − a1)2
,

θ ∈
[
θn+θn−1

2 , θn

)
.

(69)

IV. SIMULATION

A. Parameters

The parameters in Tab. I were used for the Cartesian 3D
printer model (16, 17, 18, 20). The values does not represent
a real 3D printer system, but are used as an example.
Hence, some aspects of this model could be unrealistic. The
parameters of the controller are given in Tab. II.

B. Scenarios

The 3D model used for simulation can be seen in Fig. 5.
The model was specifically created with both sharp corners
and rounded curves of varying eccentricity. The model given
in the Standard tessellation language format (STL) was

TABLE I: Parameters of the Cartesian 3D printer model.

Parameter Value Unit

mN 0.4 kg
mX 0.2 kg
mPS 0.8 kg
Jm 5.0 · 10−6 kgm2

B 1.1 · 10−4 kgm2s−1rad−1

Ra 1 · 10−3 Ω
Km 1 · 10−4 Nm/A
r 0.01 m

TABLE II: Controller and speed profile parameters.

Parameter Value

Kp 500I
Kd 1667I
Q1 I
Q2 I
λ 30

Parameter Value

µ 1000
αa 5◦

αb 20◦

a1 0.05
a2 0.005

sliced using the open-source slicing software Slic3r [9],
with waypoints extracted using libslic3r. For comparison
of the behavior, three different controller scenarios were
investigated: a constant value speed profile, the sigmoidal
speed profile presented by Skjetne et al. [5], and the speed
reduction at sharp corners presented in III-D.

C. Simulation Result
Fig. 6 shows the result of path-following along ten 0.4 mm

layers of the test model. Fig. 7, 8 and 9 shows the cross-track
error, along-track error, speed profile and extruder speed
of the first layer in Fig. 6 for each of the three speed
profile scenarios, respectively. A comparison of max value
and integral of absolute error (IAE) of the cross-track error
is shown in Tab. III in addition to the total time spent to
print one layer.

The along-track error s and cross-track error e, as seen in
Fig. 4, are calculated as follows with ϕ the angle between
the print surface and the path coordinate systems.[

s
e

]
=

[
cosϕ sinϕ 0
− sinϕ cosϕ 0

]
z1 (70)

X1

yd

s

e

x

y
φ

Fig. 4: Cross-track and along-track error.

(a) Front view.

(b) Side view.

Fig. 5: Visualization of the STL model used in the simula-
tion.

Fig. 6: Simulation of path-following along ten 0.4 mm layers
of the test model shown in Fig. 5.

V. DISCUSSION AND FURTHER WORK

Comparing the cross-track and along-track error for each
of the three speed profile scenarios, we see that the error
in position can be reduced by using a speed assignment
that slows down at the transition from one line segment to
the next. In Fig. 7 we see that the controller with constant
speed assignment manages to keep a constant speed ms and
quickly drives the positional error to zero after switching
from one line segment to another. However, the greater the
angle between the line segments, the greater the positional
error will be when transitioning from one line segment to the
next. This positional error will also increase with increased
speed. Looking at the spikes in the middle of Fig. 7b, we see
the negative effect of the two 90 degree turns at the left end
of the model in Fig. 5a on the positional error. By reducing
the speed locally around the line segment transitions as is
done in the last two speed profile scenarios, the error in
position can be reduced.

Looking at Fig. 8 we see the simulation results of the
controller with the speed assignment from [5] that reduces
the speed at the start and end of each line segment. Looking
at Tab. III or comparing Fig. 8a and Fig. 7a, we see that
the speed profile from [5] reduces the overall magnitude
of the cross-track error significantly compared to the one

0 0.5 1 1.5 2

-0.03

-0.02

-0.01

0

0.01

0.14 0.16 0.18 0.2 0.22
-0.01

0

0.01

0.02

(a) Error

0 0.5 1 1.5 2

0

50

100

0.14 0.16 0.18 0.2 0.22
98

100

102

(b) Speed

Fig. 7: Constant speed scenario with ms = 0.1 m/s.

TABLE III: Comparison of cross-track error for the three
different speed profile scenarios considered.

Speed profile scenario ‖ · ‖∞ IAE Total time [s]

Constant speed 1.92 · 10−2 1.82 · 10−3 2.42
Reduction every transition 5.80 · 10−4 5.76 · 10−5 6.11
Reduction sharp corners 9.54 · 10−3 1.26 · 10−3 2.57

with constant speed. However, this start and stop scheme is
significantly slower, increasing the time it takes to complete
the path from 2.42 seconds to 6.11 seconds.

Finally, Fig. 9 shows the simulation results of using the
controller with the speed assignment presented in Section
III-D, where the speed at the line segment transitions is only
reduced if the angle is greater than some αa, in this case
αa = 5◦. Compared to Fig. 7a we see an overall reduction
in the cross-track and along-track error and a huge reduction
in the positional error at the two 90 degree turns. Also,
note that the time it takes to complete the path has not
increased substantially when compared to the time it took
with a constant speed assignment.

This shows, that the proposed speed assignment has the
potential to make a good trade-off between positional ac-
curacy when following the path and the total time it takes
to complete the path. Making it an interesting technique for
positioning control of the extruder in 3D printing.

A. Some caveats

A problem with the proposed speed profile and the way
the path have been parameterized with θi − θi−1 = 1, i =
0, . . . , N +1 is that the length of the transition area between
line segments changes with the length of the line segment.
This results in short line segments having fast transients
while long line segments having slow transients. This can

0 1 2 3 4 5 6

-10

-5

0

5

10
-4

(a) Error

0 1 2 3 4 5 6

0

50

100

(b) Speed

Fig. 8: Scenario with speed reduction at every line segment
transition.

be seen in Fig. 9b, looking at the speed reduction in the
middle of the diagram.

Another problem with this parameterization is that if we
were to discretize with a fixed step method we must ensure
that the step length is small enough relative to the shortest
line segment divided by the speed. If not, the steps in θ
conducted by the controller may exceed one, and thereby,
possibly skipping one or more line segments in the path,
resulting in the wrong path being followed. A possible
strategy to avoid these problems and make the overall method
more robust is to parameterize the path based on the length
of the path instead of having θi−θi−1 = 1, i = 0, . . . , N+1
for each segment. Another solution is to preprocess the
path, removing short lines and/or making the line segments
somewhat the same length. Path parameterization based on
path length will be an area for further investigation.

One drawback of the output maneuvering controller pre-
sented by Skjetne et al. [5] is that the errors z = z1, z2, z3
to be reduced is along the x, y and z axes of the print
surface and not relative to the movement along the path.
In other words, in the Lyapunov design, we do not look
at the cross-track and along-track error directly. This makes
it impossible to tune the cross-track error and along-track
error independently. Lyapunov design with a focus on a path
relative frame will be a topic for further investigation.

VI. CONCLUSION

This article demonstrates the output maneuvering con-
troller for path following in a Cartesian 3D printer. A
novel speed assignment based on the relative angle between
subsequent line segments of the print was presented. The
speed adjustment maintains a constant speed when there is

0 0.5 1 1.5 2 2.5

-0.01

-0.005

0

0.005

0.01

(a) Error

0 0.5 1 1.5 2 2.5

0

50

100

(b) Speed

Fig. 9: Results of scenario with speed reduction at sharp
corners. αa = 5◦, αb = 20◦.

little difference in the current to the new angle, but can slow
down completely when a sharp 90-degree corner occurs. The
method demonstrated a smaller cross-track error than when
a constant speed profile was used and not as much of a slow
down as when a stop-and-go profile was used.

VII. ACKNOWLEDGEMENTS

The work reported in this paper was based on activities
within centre for research based innovation SFI Manufac-
turing in Norway, and is partially funded by the Research
Council of Norway under contract number 237900.

REFERENCES

[1] A. P. Aguiar, J. P. Hespanha, and P. V. Kokotović, “Path-following for
nonminimum phase systems removes performance limitations”, IEEE
Trans. Automat. Contr., vol. 50, no. 2, pp. 234-239, Feb. 2005.

[2] A. P. Aguiar, J. P. Hespanha, and P. V. Kokotović, “Performance
limitations in reference tracking and path following for nonlinear
systems”, Automatica, vol. 44, no. 3, pp. 589-610, Mar. 2008.

[3] T. Faulwasser, B. Kern, and R. Findeisen, “Model predictive path-
following for constrained nonlinear systems”, in 48th IEEE Conference
on Decision and Control (CDC), Dec. 2009, pp. 8642–8647.

[4] T. Faulwasser and R. Findeisen, “Nonlinear Model Predictive Con-
trol for Constrained Output Path Following”, IEEE Transactions on
Automatic Control, vol. 61, no. 4, pp. 1026–1039, Apr. 2016.

[5] R. Skjetne, T. I. Fossen, and P. V. Kokotović, “Robust output maneu-
vering for a class of nonlinear system”, Automatica, vol. 40, no. 3,
pp. 373–383, Mar. 2004.

[6] R. Skjetne, T. I. Fossen, and P. V. Kokotović, “Adaptive maneuvering,
with experiments, for a model ship in a marine control laboratory”,
Automatica, vol. 41, no. 2, pp. 289-298, 2005.

[7] M. W. Spong and S. Hutchinson and M. Vidyasagar, Robot Modeling
and Control, Wiley, Hoboken, NJ, 2006.

[8] Prusa Research by Josef Prusa, “The Original Prusa I3 MK3S
3D Printer”, Accessed on: Nov. 20, 2020. [Online]. Available:
https://www.prusa3d.com/original-prusa-i3-mk3/

[9] Alessandro Ranellucci, “Slic3r”, Accessed on: Nov. 20, 2020. [On-
line]. Available: https://github.com/slic3r

