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Abstract— Neural networks are expressive function approima-
tors that can be employed for state estimation in control
problems. However, control systems with machine learning in
the loop often lack stability proofs and performance guarantees,
which are crucial for safety-critical applications. In this work,
a feedback controller using a feedforward neural network of
arbitrary size to estimate unknown dynamics is suggested. The
controller is designed for solving a general trajectory tracking
problem for a broad class of two-dimensional nonlinear systems.
The controller is proven to stabilize the closed-loop system, such
that it is input-to-state and finite-gain Lp-stable from the neural
network estimation error to the tracking error. Furthermore,
the controller is proven to make the tracking error globally and
exponentially converge to a ball centered at the origin. When
the neural network estimate is updated discretely, or the state
measurements are affected by bounded noise, the convergence
bound is shown to be dependent on the Lipschitz constant of the
neural network estimator. In light of this, we demonstrate how
regularization techniques can be beneficial when utilizing deep
learning in control. Experiments on simulated data confirm the
theoretical results.

I. INTRODUCTION

For the last three decades, researchers have been eager to
utilize the enormous amounts of information that exists after
years of collecting sensor data for process monitoring and
control purposes [1]. In the field of machine learning, several
data-hungry approaches have benefitted greatly from the
data and inexpensive computing power that have become
available. In particular, the subfield of machine learning
known as deep learning, which is concerned with large black-
box models called deep neural networks (DNNs), or simply
neural networks, has grown. Deep learning algorithms have
been suggested and successfully implemented for natural lan-
guage processing, object classification, and solving simulated
continuous control tasks, among other things [2]–[4].

A challenge with assuring safety in systems using DNNs is
that the internal workings of the networks are generally hard
to analyze, and their behavior is challenging to predict. This
is exemplified by DNNs’ well known weakness to adversarial
attacks [5]. However, masures can be taken to increase the
robustness of DNN predictions, for instance by applying
suitable regularization techniques [6], [7].

Lately, there has been an increasing initiative to combine
control theory and machine learning in order to bring rig-
orous mathematical proofs and reasoning based on physics
into data-based methods. Many have proposed ways to
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incorporate learning into the popular model predictive control
scheme, for instance, to achieve stability with pre-learned
models, and safe exploration for online model learning [8],
[9]. Lyapunov theory has been applied in learning systems
to ensure safe exploration in reinforcement learning settings,
as done by Berkenkamp et al. [10]. Richards et al. use a
particular class of DNNs, dubbed Lyapunov neural networks,
to estimate safe sets for dynamical systems [11]. Others
have let the notion of closed-loop stability inspire new DNN
architectures [12]–[14].

In [15], stability and convergence in a drone path-following
problem are proven for a controller where a DNN learns
unknown dynamics. They claim to be the first to provide
stability guarantees for a DNN-based feedback controller
that can utilize arbitrarily large networks. This last work has
inspired the learning controller that is proposed here.

This work contributes to the understanding of how data-
driven learning and control theory can be safely and pro-
ductively combined by proposing a controller that gives the
closed-loop system attractive stability traits, and provably
bounds the error in a trajectory tracking problem. The
controller incorporates a feedforward DNN of arbitrary size
for estimating unknown model dynamics, and makes the
closed-loop system input-to-state and finite-gain Lp-stable
from the DNN estimation error to the tracking error. In
particular, the Lipschitz constant of the DNN is proven to
influence the robustness of the controller, showing that the
regularization technique known as spectral normalization can
be useful when using DNNs as estimators in control.

II. BACKGROUND THEORY

In this work, ‖·‖ denotes the 2-norm.

A. Feedforward neural networks

The simplest form of a neural network is called a feedforward
network (FFN). A FFN takes an input x and maps it to an
output ŷ= f (x;θ), where θ denotes the network parameters.
The mapping can be seen as L nonlinear mappings applied
in succession. Each nonlinear mapping is referred to as a
layer.

The output of layer i, ui, is computed as follows

ui = ai(W i ·ui−1 +bi), (1)

where W i is the weight matrix, bi is the bias, and ai

is the activation function. Often, in regression problems,
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the last layer has no activation, so that the output is not
restricted.

A DNN is trained by computing its output on a set of
data points xi and comparing the network outputs ŷi to the
corresponding ground truth points yi. The weights and biases
of the network are usually adjusted with gradient descent
methods applied to an objective function that measures the
distance between the network predictions and the ground
truth.

B. The Lipschitz constant

The Lipschitz condition is given by ‖ f (s1)− f (s2)‖ ≤
Λ‖s1− s2‖, where Λ > 0. If this condition holds for all s1,
s2 in a neighborhood of some point s0, the function f is said
to be Lipschitz continuous in this neighborhood. Every Λ

that satisfies the Lipschitz condition in some neighborhood,
is called a Lipschitz constant of f in that neighborhood.
The smallest Lipschitz constant gives a bound on how much
the output of f can change, given some change in the
input [16].

C. Naive upper bound on the Lipschitz constant of feed
forward networks

Consider the FFN layer from (1). The typical DNN activation
functions, sigmoid, ReLU, and tanh, are all Lipschitz contin-
uous with derivatives that are contained in the interval [0,1].
Using this, it is easily proven that the norm of the derivative
of a layer with respect to its input is upper bounded by the
norm of the layer weight matrix:

∥∥∥ ∂ui

∂ui−1

∥∥∥≤ ∥∥W i
∥∥.

If
∥∥∥ ∂ f

∂x

∥∥∥ ≤ Λ, then Λ is a Lipschitz constant for f , where
f : Rn→Rm [16]. Further, two transformations g and h with
Lipschitz constants Λg and Λh form a Lipschitz continuous
composition g◦h with Lipschitz constant ΛgΛh [16].

From this we can conclude that the FFN layer (1) has a
Lipschitz constant Λi =

∥∥W i
∥∥, and that a FFN with L layers

is Lipschitz continuous in its input space with a naive upper
bound on the Lipschitz constant given by

ΛU =
L

∏
i=1

∥∥W i∥∥ . (2)

D. Spectral normalization

Spectral normalization, as suggested in [6], can be applied
to fix the naive upper bound on the Lipschitz constant of a
FFN to some chosen value γ > 0.

The 2-norm, also called the spectral norm, of a matrix is
equal to the largest singular value σmax of the matrix. Hence,
the naive upper bound (2) is simply a product of the largest
singular values of the layer weight matrices of the FFN.
Normalizing the weight matrices by their largest singular
value results in a spectral norm equal to one,

W̄ =
W

σmax(W )
⇒‖W̄‖= 1.

If all weight matrices are normalized, the Lipschitz constant
of a FFN with L layers is upper bounded by 1, in accordance
with (2). By multiplying each normalized weight matrix by
γ

1
L , the upper bound on the Lipschitz constant becomes

γ:

ΛU =
L

∏
i=1

∥∥∥∥ W i

σmax(W i)

∥∥∥∥γ
1
L = γ.

Thus, by normalizing and multiplying all weight matrices
by γ

1
L during training, the upper bound γ on the Lispchitz

constant of the FFN becomes a hyperparameter that can
be freely chosen. The largest singular values of the weight
matrices can be estimated using the power iteration method,
as suggested in [6].

E. Robustness of regularized neural networks

A DNN d̂(·), with Lipschitz constant Λ, estimates a function
d(·) which is Lipschitz continuous with Lipschitz constant
L. Let ε̂ be the largest estimation error on some test set,
observed at test sample x̂. When the DNN is presented with
a new, unseen observation x̃, the estimation error satisfies the
following:

∥∥d(x̃)− d̂(x̃)
∥∥=

∥∥d(x̃)−d(x̂)+d(x̂)+ d̂(x̂)− d̂(x̂)− d̂(x̃)
∥∥

≤ ‖d(x̃)−d(x̂)‖+
∥∥d(x̂)− d̂(x̂)

∥∥
+
∥∥d̂(x̂)− d̂(x̃)

∥∥
≤ (L+Λ)‖x̃− x̂‖+ ε̂.

Hence, a DNN with a smaller Lipschitz constant gives a
stronger guarantee in terms of robustness to pertubations in
the input data. This is assuming the decrease in Lipschitz
constant does not hamper the accuracy of the network.
Decreasing Λ makes the DNN less flexible, as the variance
is reduced, and the bias increased, which might contribute
to an increase of ε̂ .

III. STABLE NEURAL NETWORK CONTROLLERS

A. Trajectory tracking problem

Consider all systems of the form

ẋ1 = c11x1 + c12x2

ẋ2 = d(x,u)+bu,
(3)

where c11, c12 and b are known constants, and
d(x,u) : R2×R→ R is a continuous, unknown, nonlinear
mapping. The objective is to make x1(t) follow the trajectory
xr

1(t). It is assumed that xr
1(t) is twice continuously

differentiable, and that its derivatives are known.

If ẋ2 can be measured, data points
[
xT (ti) u(ti)

]
and corre-

sponding ground truth points d(x(ti),u(ti)) can be gathered,
as bu(ti) is known. A FFN that makes an estimate d̂(x,u) of
d(x,u) can then be trained on the resulting dataset.
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B. Feedback controller

Making x1 track xr
1(t) is equivalent to driving z1 = x1−xr

1(t)
to zero. We define the reference value xr

2(t) as

xr
2(t) =−

1
c12

(c11x1− ẋr
1(t)+Γz1),

such that the composite variable z2 is

z2 = x2− xr
2(t) =

1
c12

(ż1 +Γz1),

where Γ is a freely chosen parameter.

It follows that the dynamics of z =
[
z1 z2

]T can be written
as

ż = Az+B(u− 1
b
[−d(x,u)+ ẋr

2(t)]), (4)

where

A =

[
−Γ c12
0 0

]
, B =

[
0
b

]
.

Equation (4) is a form of error dynamics of (3), when the
objective is trajectory tracking of xr

1(t). The pair (A,B) is
controllable for all c12 6= 0.

Let d̂(x,u) be the output of a DNN estimating d(x,u) by
mapping the states and input to a real number. Define the es-
timation error of the DNN at time t as d̃(t) = d(x(t),u(t))−
d̂(x(t),u(t)). Assuming that new estimates are continuously
available, the controller

u =−Kz− 1
b

[
d̂(x(t),u(t))− ẋr

2(t)
]
, K =

[
k1 k2

]
, (5)

where k1 and k2 are scalar gains, is proposed. Applying this
controller to (4) yields the closed-loop dynamics

ż = (A−BK)z+

[
0
1

]
d̃(t). (6)

Even though the forward pass of a DNN is relatively quick,
the assumption that the controller in (5) can be updated con-
tinuously might be violated. Therefore, the scenario where
a new estimate can only be made every ∆tmax seconds is
considered. This results in the controller

u(t) =−Kz(t)− 1
b
[d̂(x(t−∆t),u(t−∆t))− ẋr

2(t)], (7)

where ∆t ≤ ∆tmax is the time since the last estimate was
made. It is assumed that the linear term of the controller
can be updated continuously. Applying (7) to (4) yields the
perturbed system

ż = (A−BK)z+

[
0
1

]
w(t), (8)

where w(t) = d (x(t),u(t))− d̂ (x(t−∆t),u(t−∆t)).

C. Stability properties

The stability and convergence properties of the closed-loop
systems (6) and (8) are summarized in the two following
theorems. The validity of assumption 1) in Theorem 1 is
discussed in Section VI.

Theorem 1 (Closed-loop stability and convergence of (6).)
Assume that

1) The error of the DNN estimate is bounded:
∥∥d̃(t)

∥∥≤ ε .
2) The DNN estimate of the unknown dynamics can be

updated continuously.

Let the input u of (3) be given by the continuous DNN
controller (5), where K and Γ satisfy (9).

k1 =−
c12

b
, Γ > 0, Γk2 >

c2
12
b

(9)

Then, the resulting closed-loop system (6) is input-to-state
and finite-gain Lp-stable from d̃(t) to z(t).

The error norm converges globally and exponentially to a
ball centered at the origin:

lim
t→∞
‖z(t)‖ ≤

∣∣∣ ε

λ

∣∣∣ , (10)

where λ denotes the least negative eigenvalue of A−BK.

Further, if the measurements of x are affected by some
additive bounded noise qx = [q1 q2]

T satisfying |q1| ≤ qm
1 ,

|q2| ≤ qm
2 , the error norm converges to

lim
t→∞
‖z(t)‖ ≤

∣∣∣∣ 1
λ
(Λ‖qx‖+Bq + ε)

∣∣∣∣ (11)

where Λ is the Lipschitz constant of the DNN estimator and
Bq = |c12 +

bk2+1
c12

(c11 +Γ)|qm
1 + |k2b|qm

2 .

Theorem 2 (Closed-loop convergence of (8).)
Assume that

1) The error of the DNN estimate is bounded: d̃ ≤ ε .
2) The change in the system state and input is bounded:
‖x(t)−x(t−∆t)‖ ≤ ρx, ‖u(t)−u(t−∆t)‖ ≤ ρu for
some small time-step ∆t ≤ ∆tmax.

Let u be given by the discretely updated DNN controller (7)
where K and Γ satisfy (9). Then, the resulting closed-loop
system (8) is input-to-state and finite-gain Lp-stable from
w(t) to z(t).

The error norm converges globally and exponentially to an
error-ball centered at the origin:
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lim
t→∞
‖z(t)‖ ≤

∣∣∣∣ (Λ(ρx +ρu)+ ε)

λ

∣∣∣∣ . (12)

Further, if the measurements of x are affected by some
additive bounded noise, the error norm converges to

lim
t→∞
‖z(t)‖ ≤

∣∣∣∣ 1
λ
(Λ(ρx +ρ

u +‖qx‖)+Bq + ε)

∣∣∣∣ . (13)

IV. PROOF OF THEOREM 1 AND 2

It is sufficient to only prove Theorem 2, as Theorem 1 is just
the special case when ∆tmax = 0.

When K and Γ are chosen such that (9) is satisfied, A−BK is
real symmetric negative definite, and hence, its eigenvalues
are real and negative. The perturbation term in (8) satis-
fies

‖w(t)‖=
∥∥d(x(t),u(t))− d̂(x(t−∆t),u(t−∆t))

∥∥
≤
∥∥d(x(t),u(t))− d̂(x(t),u(t))

∥∥
+
∥∥d̂(x(t),u(t))− d̂(x(t−∆t),u(t−∆t))

∥∥
≤ ε +Λ‖x(t)−x(t−∆t)‖+Λ‖u(t)−u(t−∆t)‖

‖w(t)‖ ≤ ε +Λ(ρx +ρ
u).

Define the Lyapunov function V = 1
2z

Tz. Then

V̇ = zT (A−BK)z+zT [0 1
]T w(t)

≤ λzTz+‖z‖(Λ(ρx +ρ
u)+ ε)

V̇ ≤ 2λV +
√

2V (Λ(ρx +ρ
u)+ ε).

Now, let W =
√

V = 1√
2
‖z‖, so that

Ẇ =
V̇

2
√

V
≤ λW +

Λ(ρx +ρu)+ ε√
2

. (14)

With initial condition z(t0) = z0, the solution to the differ-
ential inequality (14) is

W (t)≤ 1√
2
(‖z0‖+ Λ(ρx+ρu)+ε

λ
)eλ (t−t0)− Λ(ρx+ρu)+ε√

2λ
.

As d
dt ‖z‖ =

√
2Ẇ , it can be concluded by the comparison

lemma, Lemma 3.4 from [16], that

‖z(t)‖ ≤ ‖z0‖eλ (t−t0)+
Λ(ρx +ρu)+ ε

λ
(eλ (t−t0)−1), (15)

which proves that limt→∞ ‖z(t)‖ ≤ |(Λ(ρx +ρu)+ ε)/λ |.
As (15) holds, it must also be true that

‖z(t)‖ ≤ ‖z0‖eλ (t−t0)− e
λ
,

where e=Λ(ρx+ρu)+ε . The function γ(e)=−e/λ belongs
to class K , and β (‖z0‖ , t−t0)= ‖z0‖eλ (t−t0) to class K L .
As e = supt0≤τ≤t ‖w(τ)‖, system (6) is input-to-state stable
from w(t) to z(t) by Definition 4.7 from [16].

The system also satisfies all criteria of Theorem 5.1
from [16] and is therefore finite-gain Lp stable from w(t) to
z(t).

Assume the measurement of x is affected by additive noise
qx =

[
q1 q2

]T , where |q1| ≤ qm
1 and |q2| ≤ qm

2 . The noisy
input is

u(x+qx) =−Kz− 1
b
(d̂(x+qx,u)− ẋr

2)−
c12

b
q1

− (k2 +
1
b
)(

1
c12

(c11 +Γ)q1 +q2)+
1
b

q2,

and it follows that

V̇ ≤ λzTz+‖z‖(Λ‖qx‖+Bq +Λ(ρx +ρ
u)+ ε),

and, by the same reasoning as earlier, (13) holds.

V. SIMULATIONS AND RESULTS

Two simulations are conducted on a mass-spring-damper sys-
tem (MSD) to test the controllers (5) and (7). The controllers
and the test system were implemented in MATLAB with
Simulink, while the deep learning was done in Python 3.6
using Keras [17]–[19].

A. Experiment setup

The MSD dynamics are described by

ẋ1 = x2

ẋ2 =
b
m

u− 1
m

cdx2−
1
m

csx1 +d(x,u),

where d(x,u) = sin(u)(sin(x1) + sin(x2)) is considered an
unknown disturbing force. For this system, the DNN con-
troller (5) is given by

u =−Kz− m
b
[d̂(x(t),u(t))− 1

m
cdx2−

1
m

csx1− ẋr
2(t)].

The MSD is simulated 500 times for 20 s while a PID
controller attempts to make x1 track a randomly generated
sine wave. The period and amplitude of the sine waves
are uniformly sampled from the intervals [1, 50] and [0, 5],
respectively. The simulation is sampled at 10 Hz, so 100000
data points (x(t),u(t)) with corresponding ground truth
points d(x(t),u(t)) are available for learning. 25% are set
aside for testing, and 15% are used for validation during
training.
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Three FFNs are trained on this data. All have four tanh-
activated layers of size 32, 16, 8 and 1. Spectral normaliza-
tion is applied to two of the networks, dubbed SpectNorm
10 and SpectNorm 1, restricting their Lipschitz constants to
below 10 and 1, respectively. The network without regular-
ization is called FFN. All networks are trained with a mean
squared error (MSE) loss for 1600 epochs using the Adam
optimizer with batch size 32 and learning rate 0.001.

The controllers were tested on 500 trajectory tracking
episodes lasting 20 s, where the objective is to track randomly
generated sine waves. Zero mean noise generated by a trun-
cated normal distribution is added to the measurements of x.
The distribution is truncated at one standard deviation ±σ .
Two simulated experiments are conducted: In Experiment
1 the DNN estimates are calculated every 0.01 s, which
is considered as continuously. In Experiment 2, the DNN
estimates are only calculated every second.

B. Results

The performance of the controllers are summarized in Ta-
bles I and II, and visualized in Figure 1. Here, the expected
estimation error is calculated by computing the empirical
average over the 500 test episodes. The controller without
an estimator (d̂ = 0 always) is also tested on the MSD
for comparison. A representative example of the controller
behaviors is shown in Figure 2, and the expected error norm
and tracking error over the 500 test episodes is shown in
Figure 3.

Figure 3 shows the empirical mean of the error norms with
error bands and bars that are two standard deviations wide.
FFN has both the lowest expected error and the lowest
standard deviation, which indicates consistent performance,
even though it has the highest convergence bound. When
noise is introduced, as visualized in Figures 1 and 4, the
behavior of SpectNorm 1 changes less than that of FFN and
SpectNorm 10 from the noiseless case.

In order to estimate the convergence bounds (11) and (13),
ε was set to be the largest prediction error each FFN makes
on the test data. The upper bound on the rate of change
in state and input ρx and ρu were set to be the largest
observed difference between consecutive controller updates
in Experiment 2.

The results confirm that the convergence bounds (11) and
(13) apply in practice. The controllers outperform the
pure feedback controller that does not compensate for
the unknown dynamics, even when the DNN estimate is
rarely updated, and the state measurements are affected by
noise.

VI. DISCUSSION

Figure 1 illustrates how SpectNorm 1 is relatively less
affected by the switch from continuous and discrete operation
than the other two controllers. It is also relatively less af-
fected by measuring noise. However, its expected prediction

SpectNorm1 SpectNorm10 FFN None
0.000
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0.050

0.075

0.100

0.125

0.150

0.175

0.200

E
{|
z 1
|}

Experiment 1 | Experiment 2

σ = 0 σ = 0.1 σ = 0.25

Fig. 1: A visualization of the data from Tables I and II. The left
part of each bar presents the results from Experiment 1, while the
right presents results from Experiment 2.

−1
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1
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(t

)
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time (s)

−1

0

1

x
2
(t

)

SpectNorm 1 SpectNorm 10 FFN None

Fig. 2: Example behaviour of the controllers on a random test ex-
ample without noise. The black stapled lines indicate the reference
values xr

1(t) and xr
2(t).

error is the highest, and as exemplified in Figure 2, Spect-
Norm 1 is outperformed by the two other DNN controllers
when no measuring noise is present. This illustrates the bias-
variance tradeoff which is always present when applying
regularization techniques.

SpectNorm 10 and FFN perform very similarly, as is clear
from the results in Tables I and II. Yet, the convergence
bound of SpectNorm 10 is dramatically lower than that of
FFN, and hence, Spectnorm 10 might be preferable as it
gives stronger robustness guarantees.

The experiments reveal that the convergence bounds are quite
conservative and that a lower bound does not necessarily
imply better performance overall. Nonetheless, the experi-
ments indicate that a lower Lipschitz constant reduces the
relative effect of rarely updating the DNN estimate, as well
as the controller’s sensitivity to measuring noise. Hence,
regularization schemes that lower the Lipschitz constant of
a DNN can be beneficial when tackling noisy data.
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TABLE I: Experiment 1: Expected mean error and retrospective convergence bounds when the DNN estimate is updated continuously.

Noise limit σ = 0 σ = 0.1 σ = 0.25
DNN estimator E{|z1|} E{‖z‖} Bound E{|z1|} E{‖z‖} Bound E{|z1|} E{‖z‖} Bound
None 0.159 0.325 0.170 0.355 0.209 0.455
FFN 0.102 0.179 2.020 0.135 0.264 12.467 0.195 0.417 28.143
SpectNorm 10 0.105 0.187 1.606 0.136 0.266 3.154 0.195 0.417 5.474
SpectNorm 1 0.136 0.269 1.855 0.151 0.308 2.801 0.201 0.434 4.219

TABLE II: Experiment 2: Expected mean error and retrospective convergence bounds when the DNN estimate is updated every second.

Noise limit σ = 0 σ = 0.1 σ = 0.25
DNN estimator E{|z1|} E{‖z‖} Bound E{|z1|} E{‖z‖} Bound E{|z1|} E{‖z‖} Bound
FFN 0.131 0.265 24.744 0.152 0.318 72.124 0.208 0.458 137.852
SpectNorm 10 0.129 0.259 3.509 0.149 0.310 7.422 0.205 0.450 13.250
SpectNorm 1 0.139 0.279 2.226 0.153 0.315 3.286 0.202 0.436 5.081
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Fig. 3: The expected error of each controller at every time-step of
the test episodes. The colored lines represent the absolute error in
the first state, while the stapled lines are the mean squared error of
the state vector. The error bands and bars represent one standard
deviation above and below the mean. No measurement noise is
present.
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Fig. 4: The expected error of each controller at every time-step of
the test episodes. The colored lines represent the absolute error in
the first state, while the stapled lines are the mean squared error of
the state vector. The error bands and bars represent one standard
deviation above and below the mean. Here, the noise standard
deviation and truncation point is σ = 0.1.

One of the cornerstone results of this work is the bounded-
ness of the estimation error, which was assumed in both The-
orem 1 and Theorem 2. In the experiments, it was assumed
that ε could be approximated by the maximum prediction
error on the test set. This assumption is reasonable when the
samples in the test are representative of the data the estimator
will encounter during operation. However, if the test set is
small, or gathered from operation in a limited area of the
state space, this approximation might be optimistic.

Another challenge is the assumptions made in Theorem 2
that the convergence bounds are dependent on the maximum
rate of change of the state and input. It is relatively common
to assume that the input change is bounded, but for the state
change to be upper bounded, it must be required that the
dynamics are bounded as well. This does not hold globally
when parts of the dynamics are, for instance, linear or
polynomial. If applying this controller, one must be certain
that either, the update rate of the DNN estimate is faster than
the system dynamics, or the dynamics are bounded.

A significant advantage of using this controller for trajectory
tracking is that ẋ2 can be measured at a high sampling
rate with an accelerometer. From these measurements, it is
possible to get ground truth values of the unkown dynamics,
by utilizing d(x,u) = bu− ẋ2. This real life data would
undoubtedly be affected by measuring noise, which is not
considered in the training data in this work. However, it
is it reasonable to believe that regularization by spectral
normalizaion will be beneficial when measuring noise is
present, as it prevents overfitting.

In addition to measuring noise, it is probable that we
would have imprecice knowledge of b when working with a
physical system. This would have to be taken into account,
as it would affect the current stability analysis.

VII. CONCLUSION AND FURTHER WORK

This work attempts to further the sound unification of data-
driven methods and traditional control theory.

A feedback controller with a neural network estimating
unknown dynamics is suggested. The controller is proven to
stabilize the closed-loop error dynamics of a wide class of
two-dimensional systems in a trajectory tracking problem.
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Moreover, the controller globally and exponentially drives
the error to a ball centered at the origin. A specific upper
bound on the radius of the error ball is found. Measuring
noise and the update rate of the neural network estimate
influence the size of the convergence bound. So does the
Lipschitz constant of the neural network, and we therefore
argue that the regularization approach known as spectral nor-
malization can be beneficial when utilizing neural networks
for control.

Simulations of a mass-spring-damper system affected by an
unknown input nonlinearity confirm the theoretical findings.
Experiments show that the Lipschitz constant influences the
noise rejection capabilities of the controller, as well as its
ability to handle a low update rate of the neural network
estimate. The experiments also demonstrate the tradeoff
between bias and variance when restricting the Lipschitz
constant; a lower Lipschitz constant bound allows for less
flexibility and might affect network accuracy.

In this work, only two-dimensional systems in strict-feedback
form are considered. In further work, we recommend investi-
gating how the proofs given here can be extended to a wider
class of systems. Also, imprecisely known input gains is a
phenomenon that will likely be present when working with
physical systems. Therefore, considering this in the stability
analysis would be an advantageous extension of the current
work.
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