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Abstract. Boolean, free and monotone cumulants as well as re-
lations among them, have proven to be important in the study of
non-commutative probability theory. Quite notably, Boolean cumu-
lants were successfully used to study free infinite divisibility via the
Boolean Bercovici–Pata bijection. On the other hand, in recent years
the concept of infinitesimal non-commutative probability has been de-
veloped, together with the notion of infinitesimal cumulants which can
be useful in the context of combinatorial questions.

In this paper, we show that the known relations among free, Boolean
and monotone cumulants still hold in the infinitesimal framework.
Our approach is based on the use of algebra of Grassmann numbers.
Formulas involving infinitesimal cumulants can be obtained by apply-
ing a formal derivation to known formulas.

The relations between the various types of cumulants turn out to be
captured via the shuffle algebra approach to moment-cumulant re-
lations in non-commutative probability theory. In this formulation,
(free, Boolean and monotone) cumulants are represented as elements
of the Lie algebra of infinitesimal characters over a particular combi-
natorial Hopf algebra. The latter consists of the graded connected
double tensor algebra defined over a non-commutative probability
space and is neither commutative nor cocommutative. In this note
it is shown how the shuffle algebra approach naturally extends to the
notion of infinitesimal non-commutative probability space. The basic
step consists in replacing the base field as target space of linear Hopf
algebra maps by the algebra of Grassmann numbers defined over the
base field. We also consider the infinitesimal analog of the Boolean
Bercovici–Pata map.
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1 Introduction

Since Voiculescu introduced the theory of free probability [Voi85] together with
the corresponding notion of free independence, other kinds of non-commutative
probability theories have been studied, such as Boolean independence [SW97]
and monotone independence [Mur00]. A fundamental tool to attack problems in
free probability is the notion of free cumulants, introduced by Speicher [Spe94]
as a combinatorial way to study and use free independence. The analogue no-
tions of Boolean cumulants [SW97] and monotone cumulants [HS11b, HS11a]
have been developed, sharing many common features. In particular, the com-
binatorics of cumulants shows close analogies between the different types of
non-commutative probabilities. While free independence can be captured by
the lattice of non-crossing partitions, Boolean independence makes use of inter-
val partitions whereas monotone independence can be captured by monotone
non-crossing partitions.
Recently, in a series of papers, Ebrahimi-Fard and Patras [EFP15, EFP18,
EFP20, EFP19] have developed a group-theoretical framework for cumulants
in non-commutative probability. This approach is based on the identification
of a combinatorial word Hopf algebra, H , that is defined as an extension of
a given non-commutative probability space (A, ϕ). The coproduct splits into
two half-coproducts which provides H with the structure of unshuffle bialgebra
[Foi07]. This induces a splitting of the convolution product in the graded dual
H∗ into a sum of two products, denoted by ≺ and ≻, making (H∗,≺,≻) a non-
commutative shuffle algebra (or dendriform algebra), where the convolution
product is written as f ⋆ g = f ≻ g + f ≺ g. The half-shuffles together with
the convolution product define three exponential maps, exp⋆, E≺, E≻. Each
one of these maps establishes a bijection between the Lie algebra, g ⊂ H∗,
of infinitesimal characters and the group, G ⊂ H∗, of characters on H : if
G ∋ Φ : H → C is a character, then there exist unique infinitesimal characters
κ, β, ρ ∈ g mapping H to C such that

Φ = exp⋆(ρ) = E≺(κ) = E≻(β). (1)

These equations encode the combinatorial description of the monotone, free
and Boolean independences, respectively, given by the moment-cumulant
formulas [EFP15, EFP18]. More precisely, the corresponding multivariate
moment-cumulant formulas can be obtained by evaluating (1) in a word
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w = a1a2 · · ·an ∈ H :

mn(a1, a2, . . . , an) := Φ(a1a2 · · · an)

= E≺(κ)(w) =
∑

π∈NC(n)

rπ(a1, . . . , an)

= exp⋆(ρ)(w) =
∑

π∈NC(n)

1

τ(π)!
hπ(a1, . . . , an)

= E≻(β)(w) =
∑

I∈I(n)

bπ(a1, . . . , an),

where the free, monotone and Boolean cumulants are given as the images
of the corresponding infinitesimal Hopf algebra characters, that is, κ(w) =
rn(a1, a2, . . . , an), ρ(w) = hn(a1, a2, . . . , an) and β(w) = bn(a1, a2, . . . , an).
Here, NC(n) and I(n) denote the lattices of non-crossing respectively interval
set partitions of order n and bπ, hπ and rπ are defined multiplicatively with
respect to the blocks in the set partition π (see Notation 2.1 below).
Explicit relations among Boolean, free and monotone cumulants where stud-
ied in detail by Arizmendi et al [AHLV15]. These relations have proven to
be important in the study of non-commutative probability theory. For in-
stance, Boolean cumulants were successfully used to study free infinite divisi-
bility via the Boolean Bercovici–Pata bijection (see [BN08a], [BN08b], [BN09]).
From the shuffle algebra perspective, the authors in [EFP18] described these
relations between cumulants through relations between the three exponential
maps and their corresponding logarithms, using the shuffle adjoint operation
in the (pre-)Lie algebra of infinitesimal characters.

Variations and extensions of free probability have arisen from both theoret-
ical and applied problems. In this paper we are specifically concerned with
the notion of infinitesimal free probability, which was introduced in [BS12] and
[BGN03]. This framework consists of a triple (A, ϕ, ϕ′) where A is an algebra
and ϕ, ϕ′ are functionals. The term infinitesimal refers to the intuitive idea
that we can see ϕ′ as the derivative of a continuous family of distributions
converging to ϕ. This theory proved to be useful in studying certain random
matrices, specifically the asymptotics of finite-rank perturbations [Shl18] as
well as random matrix models with discrete spectrum [CHS15]. Regarding the
combinatorial perspective, Février and Nica [FN10] introduced the notion of in-
finitesimal free cumulants. The vanishing of mixed infinitesimal free cumulants
characterises infinitesimal freeness. The close analogy between free cumulants
and free infinitesimal cumulants becomes more transparent when combining ϕ

and ϕ′ into a C-linear functional ϕ̃ that takes values in the algebra G of Grass-
mann numbers rather than the complex numbers. The infinitesimal versions of
Boolean and monotone independence as well as the corresponding notions of
cumulants were introduced by Hasebe in the 2011 work [Has11]1.

1We would like to thank T. Hasebe for bringing this reference to our attention.
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In this paper we first revisit infinitesimal cumulants. To define this notion,
we start from an infinitesimal non-commutative probability space (A, ϕ, ϕ′),
and compute free {rn : An → C}n≥1, Boolean {bn : An → C}n≥1 and mono-
tone {hn : An → C}n≥1 functional cumulants together with the corresponding
moment-cumulant formulas. The idea then is to formally differentiate these
formulas to obtain the following relations:

ϕ′
n(a1, . . . , an) =

∑

π∈NC(n)

∂rπ(a1, . . . , an), (2)

ϕ′
n(a1, . . . , an) =

∑

π∈I(n)

∂bπ(a1, . . . , an), (3)

ϕ′
n(a1, . . . , an) =

∑

π∈NC(n)

1

τ(π)!
∂hπ(a1, . . . , an), (4)

where ∂rπ(a1, . . . , an), ∂bπ(a1, . . . , an) and ∂hπ(a1, . . . , an) are formal deriva-
tions (the precise definition is given in Notation 3.2 below). These formulas give
recursive definitions of infinitesimal free, Boolean and monotone cumulants.
With the use of C-linear functionals into G and Möbius inversion formula, ex-
plicit formulas can be obtained for infinitesimal free and Boolean cumulants
in terms of moments. We complement this approach by studying infinitesimal
cumulants from the shuffle algebra viewpoint. In this framework, we consider
Hopf algebra characters and infinitesimal2 characters with values in the com-
mutative algebra G. Previous results from [EFP15, EFP18] still hold in this
framework and the infinitesimal versions of the corresponding formulas are ob-
tained in purely algebraic terms.
The first result in this note shows that analogue relations among cumulants
still hold in the infinitesimal framework. We refer the reader to the Appendix
(Defs. A.1 and A.4) for the definition of non-crossing (irreducible) set partitions.

Theorem 1.1. Let NCirr(n) be the set of non-crossing irreducible set partitions
of order n. The following relations between infinitesimal cumulants b′, r′, h′ are
satisfied:

b′n(a1, . . . , an) =
∑

π∈NCirr(n)

∂rπ(a1, . . . , an) (5)

r′n(a1, . . . , an) =
∑

π∈NCirr(n)

(−1)|π|−1∂bπ(a1, . . . , an) (6)

b′n(a1, . . . , an) =
∑

π∈NCirr(n)

1

τ(π)!
∂hπ(a1, . . . , an) (7)

r′n(a1, . . . , an) =
∑

π∈NCirr(n)

(−1)|π|−1

τ(π)!
∂hπ(a1, . . . , an). (8)

2The reader may have noticed an apparent conflict of terminology regarding the use of

the term infinitesimal. However, the precise meaning will be clear from context.
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We show the statements of this theorem using both an intuitive and the shuffle
algebra approach. One of the main aims of this paper is to understand the
usefulness of the latter in studying combinatorial questions in non-commutative
probability using Hopf algebraic tools.
As an application, we propose an infinitesimal analog of the Boolean Bercovici–
Pata map at the algebraic level. Recall that this map assigns to each distri-
bution µ another distribution B(µ), such that rn(B(µ)) = bn(µ). On the other
hand, we can define an infinitesimal version of the main transform studied in
[BN08b] and prove that analogue results still hold. This is summarized in the
following theorem (the precise definitions and notations are given in Section 6).

Theorem 1.2. Given an infinitesimal law µ̃ and a real t ≥ 0, we can define
B̃t to be the function sending infinitesimal laws to infinitesimal laws, such that

B̃t(µ̃) =
(

µ̃⊞1+t
)⊎ 1

1+t

.

Then we have the following:

1. The maps {B̃t|t ≥ 0} satisfy that

B̃s ◦ B̃t = B̃s+t ∀s, t ≥ 0.

2. For all n, r̃n(B̃1(µ̃)) = b̃n(µ̃). This means that B̃1(µ̃) = B̃(µ̃) is the law
obtained from the infinitesimal Boolean Bercovici–Pata map.

In addition to the foregoing introductory section, the rest of the paper is divided
into five more sections. In Section 2 we review Boolean, free and monotone cu-
mulants, as well as the Hopf algebraic approach to the corresponding moment-
cumulant relations. In Section 3 we first review the notion of infinitesimal
non-commutative probability space together with infinitesimal cumulants. We
also study the infinitesimal Boolean cumulant multivariable series. In Section 4
we show how the shuffle algebra approach naturally extends to the infinitesimal
setting. Section 5 is devoted to the proof of Theorem 1.1. As an application we
prove Theorem 1.2 in Section 6. In an Appendix (Section A) we collect some
basics on set partitions and the different types of independences.
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2 Preliminaries

When it is not specified, all the objects (vector spaces, algebras, coalgebras, pre-
Lie algebras, etc.) will be taken over the field of complex numbers, denoted C.

2.1 Cumulants in non-commutative probability

A non-commutative probability space (ncps) is a pair (A, ϕ), where A is a unital
algebra over C and ϕ : A → C is a linear functional, such that ϕ(1A) = 1. The
n-th multivariate moment is the multilinear functional ϕn : An → C, such that
ϕn(a1, . . . , an) := ϕ(a1 ·A · · · ·A an) ∈ C, for elements a1, . . . , an ∈ A, where ·A
stands for the product in A.
In this framework we can define the notions of free, Boolean and monotone
independence (see Appendix A.2). The paper at hand is concerned with cu-
mulants, which are the major combinatorial tool to handle these three types of
independence. Let us first fix some notation.

Notation 2.1. Let π be an element in P(n), the set partitions of [n] :=
{1, . . . , n} (see Appendix). Given any family of multilinear functionals
{fm : Am → C}m≥1, we denote

fπ(a1, . . . , an) :=
∏

V ∈π

f|V |(aV ).

Here, V := {v1, . . . , vk} ∈ π is a block of π (where v1 < · · · < vk are in natural
order) and we define f|V |(aV ) := fk(av1 , . . . , avk).

Now we are ready to go over the definitions of free, Boolean and monotone
cumulants.

Definition 2.2. (Cumulants) Let (A, ϕ) be a ncps.

• Free cumulants form the family of multilinear functionals {rn : An →
C}n≥1 recursively defined by the following formula:

ϕn(a1, . . . , an) =
∑

π∈NC(n)

rπ(a1, . . . , an). (9)

• Boolean cumulants form the family of multilinear functionals {bn : An →
C}n≥1 recursively defined by the following formula:

ϕn(a1, . . . , an) =
∑

π∈I(n)

bπ(a1, . . . , an). (10)

• Monotone cumulants form the family of multilinear functionals
{hn : A

n → C}n≥1 recursively defined by the following formula:

ϕn(a1, . . . , an) =
∑

π∈NC(n)

1

τ(π)!
hπ(a1, . . . , an). (11)
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Remark 2.3. Cumulants are well defined since the right-hand sides of the
foregoing equations contain only one term of size n (rn, bn or hn) while the
other terms are monomials of cumulants of smaller sizes (though, the total
degree n is preserved). This defines a triangular system of equations to compute
cumulants to all orders.
We can invert the above equations giving free and Boolean cumulants directly
by the formulas

rn(a1, . . . , an) =
∑

σ∈NC(n)

Möb(σ, 1n)ϕσ(a1, . . . , an),

bn(a1, . . . , an) =
∑

σ∈I(n)

(−1)|σ|−1ϕσ(a1, . . . , an).

The reason why these formulas are equivalent to the previous definition is
due to Möbius inversion in the lattices of non-crossing and interval partitions,
respectively.

Another way in which we can relate moments with cumulants is via formal
power series. Let C〈z1, . . . , zk〉 denote the algebra of polynomials in non-
commuting indeterminates z1, . . . , zk, and let C〈〈z1, . . . , zk〉〉 be the set of
power series with complex coefficients in the non-commuting indeterminates
z1, . . . , zk. Now, fix a k-tuple of elements a = (a1, . . . , ak) from A and recall
that ϕ(1A) = 1. Then we can construct the multivariate moment series Ma

of a:

Ma(z1, . . . , zk) =

∞
∑

n=1

k
∑

i1,...,in=1

ϕn(ai1 , . . . , ain)zi1 · · · zin ∈ C〈〈z1, . . . , zk〉〉.

Analogously, we can construct the multivariate series, Ra, Ba, Ha in
C〈〈z1, . . . , zk〉〉, that have free, Boolean and monotone cumulants, respectively,
as coefficients, such that

Ra(z1, . . . , zk) =

∞
∑

n=1

k
∑

i1,...,in=1

rn(ai1 , . . . , ain)zi1 · · · zin ,

Ba(z1, . . . , zk) =
∞
∑

n=1

k
∑

i1,...,in=1

bn(ai1 , . . . , ain)zi1 · · · zin ,

Ha(z1, . . . , zk) =

∞
∑

n=1

k
∑

i1,...,in=1

hn(ai1 , . . . , ain)zi1 · · · zin .

It is known (see [NS06]) that the moment series Ma and the R-transform Ra

satisfy the relation

Ma(z1, . . . , zk) = Ra

(

z1(1+Ma(z1, . . . , zk)), . . . , zk(1+Ma(z1, . . . , zk))
)

. (12)
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Also, it can be seen that Ma and the η-series Ba (typically named ηa instead
of Ba) satisfy

Ma(z1, . . . , zk) = (1 +Ma(z1, . . . , zk))Ba(z1, . . . , zk). (13)

We are not aware of a direct relation between Ma and Ha, and we refer the
reader to Section 6 of [HS11a] for a discussion on this.
As mentioned before, explicit relations among Boolean, free and monotone
cumulants have been useful in the study of non-commutative probability theory.
In this paper we will focus on the following formulas that can be found in
[AHLV15]:

bn(a1, . . . , an) =
∑

π∈NCirr(n)

rπ(a1, . . . , an) (14)

rn(a1, . . . , an) =
∑

π∈NCirr(n)

(−1)|π|−1bπ(a1, . . . , an) (15)

bn(a1, . . . , an) =
∑

π∈NCirr(n)

1

τ(π)!
hπ(a1, . . . , an) (16)

rn(a1, . . . , an) =
∑

π∈NCirr(n)

(−1)|π|−1

τ(π)!
hπ(a1, . . . , an) (17)

We will also remark on the inverted multivariate relations of (16) and (17),
expressing monotone in terms of Boolean and free cumulants, respectively,
which were given in the recent work [CEFPP21].

2.2 Hopf–algebraic approach to non-commutative independence

Let (A, ϕ) be a ncps. We consider the framework of shuffle algebra for non-
commutative probability. Consider the tensor algebra T+(A) =

⊕

n>0 A
⊗n

and define the double tensor algebra

H := T (T+(A)) = C1⊕
⊕

n>0

T+(A)⊗n.

This is a graded connected non-commutative non-cocommutative Hopf algebra
with unit 1 and counit ε : H → C. The latter maps H+ :=

⊕

n>0 T+(A)⊗n

to zero and the unit 1 to one, i.e. ε(z1) = z ∈ C. Product and coproduct are
given as follows.
Product : Elements in T+(A) are written as words, i.e., w = a1 · · · ak := a1 ⊗
· · ·⊗ak. The length of a word, that is, its number of letters is denoted deg(w) =
k. The product in H is denoted using the bar-notation, that is, given words
w1, w2 ∈ T+(A), then their product is w1|w2 ∈ H . Hence, elements in H are
denoted by w1| · · · |wn, for words w1, . . . , wn ∈ T+(A).
Coproduct : We start with a canonically ordered subset S = {s1 < · · · < sm} ⊂
[n] := {1, . . . , n} and define for a1 · · ·an ∈ A⊗n the word aS = as1as2 · · ·asm .
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We denote by J1, . . . , Jk the interval components of [n]\S. Then, we define the
linear map ∆ : T+(A) → H ⊗H

a1 · · · an 7→ ∆(a1 · · · an) :=
∑

S⊆[n]

aS ⊗ aJ1 | · · · |aJk
(18)

and extend it multiplicatively to a map ∆ on all of H , where ∆(1) := 1 ⊗ 1.
This coproduct ∆ turns H into a graded connected non-commutative non-
cocommutative Hopf algebra [EFP15].
The coproduct (18) can be split into so-called left and right half-shuffle copro-
ducts, ∆≺ respectively ∆≻, such that

∆ = ∆≺ +∆≻.

More precisely,

∆≺(a1 · · ·an) =
∑

1∈S⊆[n]

aS ⊗ aJ1 | · · · |aJk
,

∆≻(a1 · · · an) =
∑

16∈S⊂[n]

aS ⊗ aJ1 | · · · |aJk
,

where a1 · · · an ∈ A⊗n. These maps are extended to H by defining for w1 ∈
T+(A) and w2 ∈ H

∆≺(w1|w2) := ∆≺(w1)∆(w2),

and similarly for ∆≻. It turns out that H together with ∆≺, ∆≻ becomes a
unital unshuffle bialgebra [EFP18, EFP19], a dual notion of non-commutative
shuffle algebra [Foi07].

Notation 2.4. We denote by H∗ := Hom(H,C) the graded dual space of
C-linear maps from H to C. It becomes a unital associative algebra when
equipped with the convolution product defined in terms of the coproduct (18)

f ⋆ g = mC(f ⊗ g)∆, (19)

for f, g ∈ Hom(H,C), where mC stands for the multiplication in C. The unit
is given by the Hopf algebra counit ε : H → C. We say that Φ ∈ Hom(H,C)
is a Hopf algebra character if Φ(1) = 1 and Φ is multiplicative with respect to
the product in H , i.e., Φ(w1|w2) = Φ(w1)Φ(w2). In the same way, we say that
κ ∈ Hom(H,C) is an infinitesimal character if κ(1) = 0 and κ(w1|w2) = 0 for
any w1, w2 ∈ H+.

One can show that the set G of characters forms a group with respect to the
convolution product (19). The inverse of an element in G is given by compo-
sition with the antipode of H . Moreover, the set g of infinitesimal characters
forms a Lie algebra. From the classical theory of Hopf algebras [Swe69], we
know that the exponential map with respect to the convolution product pro-
vides a set bijection between G and g.
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If we replace the coproduct ∆ in (19) by the half-shuffle coproducts, ∆≺ and
∆≻, we obtain two new linear maps

f ≺ g = mC(f ⊗ g)∆≺,

f ≻ g = mC(f ⊗ g)∆≻.

Neither of these two operations is associative. Indeed, they satisfy the so-called
shuffle identities:

(f ≺ g) ≺ h = f ≺ (g ⋆ h) (20)

(f ≻ g) ≺ h = f ≻ (g ≺ h) (21)

f ≻ (g ≻ h) = (f ⋆ g) ≻ h, (22)

such that the following theorem can be proven.

Theorem 2.5 (Proposition 6 in [EFP15]). (Hom(H,C),≺,≻) is a unital shuffle
algebra.

The three products, (⋆,≺,≻), defined on Hom(H,C), imply an intricate struc-
ture on the dual space of H . In general, given a unital shuffle algebra (D,≺,≻)
with associative product a ⋆ b = a ≺ b+ a ≻ b, for a, b ∈ D, we can define the
usual exponential map relative to the product ⋆ by

exp⋆(a) := 1D +
∑

n≥1

a⋆n

n!
.

In an analogous way, we define the half-shuffle exponential maps, E≺ and E≻,
by

E≺(a) := 1D +
∑

n≥1

a≺n, E≻(a) := 1D +
∑

n≥1

a≻n,

where a≺n := a ≺ (a≺n−1), a≺0 = 1D, and analogously for a≻n. These new
exponential-type maps have inverses with respect to the associative product ⋆,
given by

E−1
≺ (a) = E≻(−a), (23)

E−1
≻ (a) = E≺(−a). (24)

We return to the concrete example of shuffle algebra provided by (Hom(H,C),≺
,≻). First, we notice that the three exponential-type series, exp⋆, E≺ and E≻,
are indeed finite sums when evaluated on a word of finite length. It was shown
in [EFP15] that an interesting connection among these maps is provided by
the fact that the set G of characters is bijectively related with the set g of
infinitesimal characters via these three exponential maps. More precisely,

Theorem 2.6 ([EFP15]). For Φ a character, there exist a unique triple (κ, β, ρ)
of infinitesimal characters such that

Φ = exp⋆(ρ) = E≺(κ) = E≻(β). (25)
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In particular, we have that κ and β are the unique solutions of the half-shuffle
fixed point equations

Φ = ε+ κ ≺ Φ (26)

respectively
Φ = ε+Φ ≻ β. (27)

Conversely, given α ∈ g, then exp⋆(α), E≺(α) and E≻(α) are characters.

The link with non-commutative probability appears when we lift the linear
functional ϕ to the character Φ ∈ G, such that the n-th multivariate moment
Φ(w) := ϕn(a1, . . . , an), for w = a1 · · · an ∈ T+(A). It turns out that, for the
triple of infinitesimal characters given by the above theorem, κ ∈ g evaluated
in the word w = a1 · · · an ∈ T+(A) can be identified with the free cumu-
lant in the algebra elements a1, . . . , an. In the same way, β ∈ g corresponds
to Boolean cumulants and ρ ∈ g corresponds to monotone cumulants. More
specifically, we have that κ(w) = rn(a1, a2, . . . , an), β(w) = bn(a1, a2, . . . , an)
and ρ(w) = hn(a1, a2, . . . , an). In particular, these evaluations allow us to ob-
tain the corresponding free, Boolean and monotone moment-cumulant formulas
via shuffle algebra

E≺(κ)(a1 · · · an) =
∑

π∈NC(n)

rπ(a1, . . . , an) (28)

E≻(β)(a1 · · · an) =
∑

π∈I(n)

bπ(a1, . . . , an) (29)

exp⋆(ρ)(a1 · · · an) =
∑

π∈M(n)

1

|π|!
hπ(a1, . . . , an). (30)

There is a natural action of the group G on its Lie algebra g, i.e., for Ψ ∈ G

and α ∈ g the adjoint action

AdΨ(α) := Ψ−1 ⋆ α ⋆Ψ. (31)

Moreover, the shuffle structure permits to define another action, i.e., the shuffle
adjoint action

θΨ(α) := Ψ−1 ≻ α ≺ Ψ. (32)

One verifies that for Ψ ∈ G and α ∈ g, we have that θΨ(α) ∈ g. The shuffle
axioms (20)-(22) yield

θΨ ◦ θΦ(α) = Ψ−1 ≻ (Φ−1 ≻ α ≺ Φ) ≺ Ψ = θΦ⋆Ψ(α).

The fixed point equations (26) and (27) imply that κ ≺ Φ = Φ ≻ β which is
equivalent to the fundamental relation between free and Boolean cumulants

β = Φ−1 ≻ κ ≺ Φ = θΦ(κ). (33)

The combinatorial expression of the latter is given by the following result.
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Lemma 2.7 ([EFP19]). Let Φ be a character in G and α, κ, β be infinitesimal
characters in g such that Φ = E≺(κ) = E≻(β) (i.e., κ and β correspond to
the free and Boolean cumulant infinitesimal characters associated to Φ). For a
word w = a1 · · · an we have that

θΦ(α)(w) =
∑

1,n∈S⊆[n]

α(aS)Φ(aJS
[n]
) (34)

=
∑

π∈NCirr(n)

α|V1|(aV1)
∏

W∈π
W 6=V1

r|W |(aW ), (35)

and

θΦ−1(α)(w) =
∑

1,n∈S⊆[n]

α(aS)Φ
−1(aJS

[n]
) (36)

=
∑

π∈NCirr(n)

(−1)|π|−1α|V1|(aV1)
∏

W∈π
W 6=V1

b|W |(aW ), (37)

where V1 ∈ π ∈ NCirr(n) denotes the unique outer block with 1, n ∈ V1 ⊂ [n].

In particular, if we take α = κ in Equation (35), we obtain the relation between
free and Boolean cumulants (14). On the other hand, taking α = β in Equa-
tion (37), we obtain the converse relation (15) expressing Boolean cumulants
in terms of free cumulants.
Based on the shuffle adjoint action, we can define the following right action
of G on itself. Let Ψi = E≺(κi) ∈ G, κi ∈ g, i = 1, 2, 3

Ψ1 �⊢ Ψ2 := E≺(θΨ2(κ1)). (38)

Observe that the shuffle axioms (20)-(22) imply that

(Ψ1 �⊢ Ψ2) �⊢ Ψ3 = E≺(θΨ3 ◦ θΨ2(κ1))

= E≺(θΨ2⋆Ψ3(κ1))

= Ψ1 �⊢ (Ψ2 ⋆Ψ3).

It can be shown that the �⊢-action is the subordination operation, defined
by Lenczewski in [Len07] to describe the decomposition of the free additive
convolution. Indeed, we have that free additive convolution of Ψi = E≺(κi) ∈
G, κi ∈ g, i = 1, 2, is given by

Ψ1 ⊞Ψ2 = E≺(κ1 + κ2) = Ψ1 ⋆ (Ψ2 �⊢ Ψ1). (39)

Similarly for the Boolean case, i.e., for Ψi = E≻(βi) ∈ G, βi ∈ g, i = 1, 2, we
can define a left action of G on itself

Ψ1 �⊣ Ψ2 := E≻(θΨ−1
1
(β2)), (40)
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such that
Ψ1 ⊎Ψ2 = E≻(β1 + β2) = (Ψ2 �⊣ Ψ1) ⋆Ψ2. (41)

Note that the second equality in (39) (and also in (41)) is defined using (25). It
involves a rather non-trivial relation between the shuffle adjoint action and the
Baker–Campbell–Hausdorff formula [EFP19]. In fact, identity (25) permits to
write E≺(κ) = exp⋆(Ω′(κ)) and E≻(β) = exp⋆(−Ω′(−β)), where Ω′ : g → g is
the pre-Lie Magnus expansion, a highly non-linear transformation on the Lie
algebra g of infinitesimal characters

Ω′(κ) :=
∑

n≥0

Bn

n!
L
(n)
Ω′(κ)⊲(κ) = κ−

1

2
κ⊲κ+

1

4
(κ⊲κ)⊲κ+

1

12
κ⊲ (κ⊲κ)+ · · · .

Here the Bn are the Bernoulli numbers and the product

α⊲ β := α ≻ β − β ≺ α

satisfies the left pre-Lie relation

(α ⊲ β)⊲ γ − α⊲ (β ⊲ γ) = (β ⊲ α) ⊲ γ − β ⊲ (α ⊲ γ), (42)

where L
(n)
α⊲(β) := α⊲ (L

(n−1)
α⊲ (β)), L

(0)
α⊲(β) = β. Note that a pre-Lie algebra is

Lie admissible, i.e.

α⊲ β − β ⊲ α = [α, β] = α ⋆ β − β ⋆ α.

Hence, the Lie algebra g of infinitesimal characters is a pre-Lie algebra. The
compositional inverse of Ω′ is given by

W (κ) :=
eLκ⊲ − 1

Lκ
(κ) = κ+

∑

n>0

1

(n+ 1)!
L
(n)
κ⊲(κ).

The map Ω′ permits to relate Boolean and free cumulants with monotone
cumulants, as

exp⋆(Ω′(κ)) = exp⋆(−Ω′(−β)) = exp⋆(ρ). (43)

See [EFP18, EFP19] for more details and the recent work [CEFPP21] for ex-
plicit formulas deduced from (43), expressing monotone in terms of Boolean
and free cumulants.

3 Free, Boolean and monotone infinitesimal cumulants

In this section, we review the notion of infinitesimal free cumulants (following
[FN10]) and the analogue notions of infinitesimal Boolean and monotone cu-
mulants ([Has11]). To this end, the intuitive idea is to look at the definitions
that we already have in non-commutative probability and formally differentiate
the formulas to get a natural definition for the infinitesimal cumulants. We will
also check how these definitions are understood when we work with the algebra
of Grassmann numbers and C-linear maps, and how they lead to equivalent
definitions.
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3.1 Infinitesimal non-commutative probability spaces

We begin by extending our notion of ncps to include another linear functional.

Definition 3.1. An infinitesimal non-commutative probability space (incps) is
a triple (A, ϕ, ϕ′), where (A, ϕ) is a ncps and ϕ′ : A → C is a linear functional
satisfying ϕ′(1A) = 0.

The n-th multivariate infinitesimal moment is defined to be the multilinear
functional ϕ′

n : An → C satisfying ϕ′
n(a1, . . . , an) := ϕ′(a1 ·A · · · ·A an) ∈ C,

for a1, . . . , an ∈ A. Intuitively, we want to think of these infinitesimal mo-
ments, ϕ′

n, as being the formal differentiations of the usual moments ϕn. Thus,
formal differentiation of products of moments of the form ϕπ(a1, . . . , an) =
∏

W∈π ϕ|W |(aW ) with π ∈ P(n) should be the result of applying the Leibniz
rule:

∑

V ∈π

ϕ′
|V |(aV )

∏

W∈π
W 6=V

ϕ|W |(aW ).

Since this kind of expression will appear constantly, let us fix the notation (we
follow [Min18]).

Notation 3.2. Given π ∈ P(n) and a sequence of pairs (fn, f
′
n) of multilinear

maps fn, f
′
n : An → C we denote

∂fπ(a1, . . . , an) :=
∑

V ∈π

f ′
|V |(aV )

∏

W∈π
W 6=V

f|W |(aW ).

A nice way to formalize our previous intuitive considerations is by using the
notion of algebra of Grassmann numbers. As mastered in [FN10], this captures
the essence of incps in a way that resembles ncps, making it much easier to
handle these objects. The algebra of Grassmann numbers G = {z + ~w :
z, w ∈ C}, is defined as a 2-dimensional vector space over C with commutative
multiplication given by

(z1 + ~w1) · (z2 + ~w2) = z1z2 + ~(z1w2 + w1z2) ∀z1, w1, z2, w2 ∈ C,

where we formally have that ~2 = 0.
Now, the key idea in [FN10] is to keep track of the two functionals, ϕ and ϕ′,
and merge them into one single G-valued map

ϕ̃ := ϕ+ ~ϕ′.

We can equivalently think of infinitesimal non-commutative probability spaces
as pairs (A, ϕ̃) where A is a unital algebra over C and ϕ̃ : A → G is a C-linear
map with ϕ̃(1A) = 1. In general, we are going to use this idea of merging
whenever we have pairs of functionals, fn, f

′
n.
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Notation 3.3. Given two linear functionals fn, f
′
n : An → C, we will denote

by f̃n the C-linear map f̃n : An → G such that

f̃n(a1, . . . , an) := fn(a1, . . . , an) + ~f ′
n(a1, . . . , an).

As before, we will use the convention

f̃π(a1, . . . , an) :=
∏G

V ∈π

f̃|V |(aV ). (44)

As indicated, the product is in the algebra G.

Remark 3.4. A straightforward computation shows that f̃π = fπ + ~∂fπ.

3.2 Infinitesimal free cumulants

With both the notion of incps and the notation in place, we may consider cu-
mulants. The notion of infinitesimal free cumulants was introduced in [FN10].

Definition 3.5. [FN10] Let (A, ϕ, ϕ′) be an incps. The infinitesimal free
cumulants with respect to (A, ϕ, ϕ′) form the family of multilinear functionals
{r′n : An → C}n≥1 recursively defined by:

ϕ′
n(a1, . . . , an) =

∑

π∈NC(n)

∂rπ(a1, . . . , an) ∀n ≥ 1, a1, . . . , an ∈ A. (45)

Notice that this formula may be considered as a formal derivation of the free
moment-cumulant formula (9). Observe that for a fixed n, when π = 1n we
have that ∂r1n(a1, . . . , an) = r′n(a1, . . . , an), and this is the only place where
the term r′n appears on the right-hand side of (45) (if π ∈ P(n) and π 6= 1n,
then each block V ∈ π satisfies that |V | < n). This means that the infinitesimal
cumulants are well defined, since we can express the (unique) r′n in terms of
the previous cumulants {r′k : Ak → C}n−1

k=1 and the infinitesimal moments
{ϕ′

k : Ak → C}nk=1.

Remark 3.6. Now we can merge our free cumulants and infinitesimal free
cumulants into the G-valued free cumulants {r̃n}n≥1 (see Notation 3.3) which
are C-linear functions from An to G. Observe that from definitions (45) and
(9), we directly get the following formula relating ϕ̃n with r̃n:

ϕ̃n(a1, . . . , an) =
∑

σ∈NC(n)

r̃σ(a1, . . . , an), (46)

Thus, we could have also defined this function first, and then deduce the def-
inition of infinitesimal cumulants by using the relation that appears when we
just focus on the order-~ coefficient. On the other hand, we can use Möbius
inversion in the lattice of non-crossing partitions to invert (46) and thus obtain
a formula that expresses r̃ in terms of ϕ̃:
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r̃n(a1, . . . , an) =
∑

π∈NC(n)

Möb(π, 1n)ϕ̃π(a1, . . . , an). (47)

Hence, if we focus on the order-~ coefficient, we arrive at the following explicit
description (which may as well serve as the definition) of the infinitesimal free
cumulants in terms of the functionals ϕ and ϕ′:

r′n(a1, . . . , an) =
∑

π∈NC(n)

Möb(π, 1n)∂ϕπ(a1, . . . , an). (48)

Remark 3.7. A natural question is if it is possible to describe the multivariate
infinitesimal free moment-cumulant relations in terms of generating series. Re-
call that for the free moment-cumulant relation we already have Equation (12).
So, intuitively, a candidate relation could be its formal derivative, namely

M ′
a(z1, . . . , zk) = ∂

(

Ra

(

z1(1 +Ma(z1, . . . , zk)), . . . , zk(1 +Ma(z1, . . . , zk))
))

where on the left-hand side the symbol ∂ accounts for some sort of partial
derivative on formal power series with complex coefficients in non-commuting
indeterminates. The problem with this approach is that it requires a non-
commutative chain rule. The basic ways of making sense of combining non-
commutative differentiation and a chain rule do not work straightforwardly in
this case, namely, they do not produce a valid formula. In general, expressing
M ′

a in terms of Ma, Ra and R′
a appears to be a rather intricate problem of

which we do not know the solution. However, the shuffle algebra approach
provides an equivalent result. The reader is referred to Equation (60) and its
shuffle algebra solution (63) in Subsection 4.2 below.

3.3 Infinitesimal Boolean cumulants

We follow the ideas of the foregoing subsection to define infinitesimal Boolean
cumulants.

Definition 3.8. Let (A, ϕ, ϕ′) be an incps and let {bn : An → C}n≥1 be the
corresponding Boolean cumulant functionals. The infinitesimal Boolean cumu-
lants are the family of multilinear functionals {b′n : A

n → C}n≥1 recursively
defined by the infinitesimal moment–cumulant formula:

ϕ′
n(a1, . . . , an) =

∑

π∈I(n)

∂bπ(a1, . . . , an) ∀n ≥ 1, a1, . . . , an ∈ A. (49)

Remark 3.9. The same objects where defined by Takahiro Hasebe in the work
[Has11] under the name of differential cumulants, together with higher order
differential cumulants. The approach in the paper consists in considering formal
power series valued linear mappings ϕt : A → C[[t]] and to define the notion of
differential independence according to the usual rules for natural independence
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in the context of power series. Since in this paper we restrict our attention to
only first order differential cumulants, we opted for a simplified presentation
of this notions rather than the one used in [Has11]. We also remark that the
notion of infinitesimal Boolean independence is defined in [Has11] and it is
shown that it is equivalent to the vanishing of the mixed Boolean cumulants
and mixed infinitesimal Boolean cumulants (see Appendix A.2).

Remark 3.10. As before, we may consider b̃n : An → G. Then, equations (49)
and (10) directly imply the following formula relating ϕ̃n with b̃n:

ϕ̃n(a1, . . . , an) =
∑

σ∈I(n)

b̃σ(a1, . . . , an). (50)

As expected, by inverting (50) in the lattice of interval partitions, we can
express b̃n in terms of ϕ̃:

b̃n(a1, . . . , an) =
∑

π∈I(n)

(−1)|π|−1ϕ̃π(a1, . . . , an). (51)

Finally, if we just focus on the order-~ coefficient we get an equivalent definition
of infinitesimal Boolean cumulants. This formula has the advantage of provid-
ing an explicit description of the infinitesimal Boolean cumulants in terms of
the functionals ϕ and ϕ′:

b′n(a1, . . . , an) :=
∑

π∈I(n)

(−1)|π|−1∂ϕπ(a1, . . . , an). (52)

The particularly simple relation (13) between the multivariate moment and
Boolean cumulant generating series permits its extension to the infinitesimal
setting as it involves only the non-commutative product rule. For a tuple
a = (a1, . . . , ak) of elements in A, we introduce the multivariate infinitesimal
moment series of a:

M ′
a(z1, . . . , zk) =

∞
∑

n=1

k
∑

i1,...,in=1

ϕ′
n(ai1 , . . . , ain)zi1 · · · zin ,

where the {ϕ′
n}n≥1 are the infinitesimal moments, and the multivariate η′-

series of a is

B′
a(z1, . . . , zk) =

∞
∑

n=1

k
∑

i1,...,in=1

b′n(ai1 , . . . , ain)zi1 · · · zin ,

where the {b′n}n≥1 are the infinitesimal Boolean cumulants of ϕ̃.

Theorem 3.11. Let (A, ϕ, ϕ′) be an incps and consider a = (a1, . . . , ak) ∈ Ak.
Then we have the following relation:

M ′
a(z1, . . . , zk) = (1+Ma(z1, . . . , zk))B

′
a(z1, . . . , zk)(1+Ma(z1, . . . , zk)). (53)

Documenta Mathematica 26 (2021) 1145–1185



1162 A. Celestino, K. Ebrahimi-Fard, D. Perales

Proof. Note that (53) can be shown directly. Let us denote by I3
∅ (n) the set of

partitions of [n] into three interval blocks (S1, S2, S3), where we allow S1 and S3

to be the empty set. Then we can see that on both sides of the equation, the
coefficient of the monomial zi1 · · · zin is equal to

∑

(S1,S2,S3)∈I3
∅
(n)





∑

π1∈I(S1)

bπ1(aS1)



 b′|S2|
(aS2)





∑

π3∈I(S3)

bπ3(aS3)



 .

To see that this is the coefficient on the left-hand side, we use the in-
finitesimal Boolean moment-cumulant formula (49) and observe that the term
bπ1(aS1)b

′
|S2|

(aS2)bπ3(aS3) comes from the partition π = π1 ∪ {S2} ∪ π3 ∈ I(n)

with special block V = S2 (that gets the infinitesimal cumulant). The fact that
this sum is the coefficient on the right-hand side follows from multiplying the
three series and using the Boolean moment-cumulant formula (10).

The generating series (53) of Theorem 3.11 is equivalent to a recursive relation
involving the generating series Ma(z1, . . . , zk), M

′
a(z1, . . . , zk), Ba(z1, . . . , zk),

and B′
a(z1, . . . , zk).

Corollary 3.12. Let (A, ϕ, ϕ′) be an incps and consider a = (a1, . . . , ak) ∈
Ak. Then we have that:

M ′
a(z1, . . . , zk) = M ′

a(z1, . . . , zk)Ba(z1, . . . , zk)

+(1 +Ma(z1, . . . , zk))B
′
a(z1, . . . , zk). (54)

Proof. Using Ma(z1, . . . , zk) = (1+Ma(z1, . . . , zk))Ba(z1, . . . , zk), relation (53)
can be written as

M ′
a(z1, . . . , zk)(1 +Ma(z1, . . . , zk))

−1 = (1 +Ma(z1, . . . , zk))B
′
a(z1, . . . , zk).

A simple computation yields

M ′
a(z1, . . . , zk)(1 −Ba(z1, . . . , zk)) = (1 +Ma(z1, . . . , zk))B

′
a(z1, . . . , zk),

which implies relation (54).

We remark that at the level of comparing coefficients, relation (54) yields the
following

ϕ′
n(ai1 , . . . , ain) = b′n(ai1 , . . . , ain) +

n−1
∑

s=1

ϕ′
s(ai1 , . . . , ais)bn−s(ais+1 , . . . , ain)

+
n−1
∑

s=1

ϕs(ai1 , . . . , ais)b
′
n−s(ais+1 , . . . , ain).

Observe that this formula can be used to recursively compute the infinitesimal
moments.
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3.4 Infinitesimal monotone cumulants

The same ideas apply when defining infinitesimal monotone cumulants.

Definition 3.13. Let (A, ϕ, ϕ′) be an incps, let {hn : An → C}n≥1 be the
corresponding monotone cumulant functionals. The infinitesimal monotone
cumulants are the family of multilinear functionals {h′

n : A
n → C}n≥1 recur-

sively defined for all n ≥ 1 and a1, . . . , an ∈ A by the following formula:

ϕ′
n(a1, . . . , an) =

∑

(π,λ)∈M(n)

1

|π|!
∂hπ(a1, . . . , an). (55)

Remark 3.14. Analogous to the Boolean case, infinitesimal monotone cumu-
lants already appeared in [Has11] under the name of first order differential
cumulants (see Remark 3.9).

Remark 3.15. If we take h̃n = hn + ~h′
n (see Notation 3.3), Equations (55)

and (11) give us:

ϕ̃n(a1, . . . , an) =
∑

(π,λ)∈M(n)

1

|π|!
∂h̃π(a1, . . . , an). (56)

Thus, we could have also defined these functions first, and then deduce the
infinitesimal cumulants using the relation that appears when we just focus on
the order-~ coefficient.

We note in passing that in this work, we are only interested in G-valued C-
linear functionals. However, we could replace G with some other commutative
unital algebra C over C. For instance, following [Fev12, Has11] we may define
a higher order infinitesimal version of free, Boolean and monotone cumulants.
In this setting, (50) and (56) could be identified with the analog first order
infinitesimal cumulants introduced in [Fev12, Has11].

Remark 3.16. Similar to the infinitesimal free case, describing multivariate in-
finitesimal monotone moment-cumulant relations using generating series seems
to be rather intricate. We are not aware of such a result. However, the shuffle
algebra approach permits to describe an equivalent result. We refer the reader
to Equation (68) in Subsection 4.3.

4 Infinitesimal cumulants from the shuffle viewpoint

4.1 Extension to the commutative algebra G

We now consider the incps (A, ϕ, ϕ′) and the associated double tensor Hopf
algebra H = T (T+(A)) together with the character Φ : H → C in G defined in
terms of ϕ. Motivated by the previous section, we want to consider a C-linear
map Φ̃ : H → G ∈ Hom(H,G) defined by

Φ̃ = Φ + ~Φ′.
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Since we want to mimic the shuffle algebra approach to moment-cumulant
relations in terms of Φ̃, we need that this map is a character. More precisely,
given two elements w1, w2 ∈ H , then Φ̃(w1|w2) = Φ(w1|w2) + ~Φ′(w1|w2) and

Φ̃(w1)Φ̃(w2) = (Φ(w1) + ~Φ′(w1))(Φ(w2) + ~Φ′(w2))

= Φ(w1)Φ(w2) + ~

(

Φ(w1)Φ
′(w2) + Φ′(w1)Φ(w2)

)

.

More generally, we say that Φ′ has the Leibniz-type property if

Φ′(w1|w2| · · · |wk) =

k
∑

i=1









k
∏

j=1
j 6=i

Φ(wj)









Φ′(wi) (57)

for any elements w1, . . . , wk ∈ H . Hence, Φ̃ is multiplicative on H if and only
if Φ is character on H and Φ′ has the Leibniz-type property (57).
Thereby, we define Φ′ : H → C to be the linear extension of ϕ′ defined by
Φ′(w) := ϕ′(a1 ·A · · · ·A an) for w = a1 · · ·an and satisfying the Leibniz-type
property (57). This implies that Φ′(1) = 0. We then have that Φ̃ is multiplica-
tive, Φ̃(w1|w2) = Φ̃(w1)Φ̃(w2), and

Φ̃(1) = Φ(1) + ~Φ′(1) = 1G.

Hence, it is natural to consider the space Hom(H,G) of linear maps from H

into G. The main point here is that all the constructions and results that we
obtained for Hom(H,C) carry over to Hom(H,G). We remark that it is the
commutativity of G, which is central for this to work smoothly. In particular,
for f̃ , g̃ ∈ Hom(H,G), we have the shuffle algebra products

f̃ ⋆ g̃ = mG(f̃ ⊗ g̃)∆,

f̃ ≺ g̃ = mG(f̃ ⊗ g̃)∆≺,

f̃ ≻ g̃ = mG(f̃ ⊗ g̃)∆≻,

where mG stands for the multiplication in G. With these operations, we then
conclude that (Hom(H,G),≺,≻) is a unital shuffle algebra. From now on, if we
have an element f̃ ∈ Hom(H,G), we will refer as f, f ′ to the unique elements
in Hom(H,C) such that f̃ = f + ~f ′. Observe that for f̃ , g̃ ∈ Hom(H,G) and
∗ ∈ {⋆,≺,≻} we have that

f̃ ∗ g̃ = (f + ~f ′) ∗ (g + ~g′) = f ∗ g + ~(f ′ ∗ g + f ∗ g′).

Also, if f̃ is invertible in Hom(H,G) (with respect to the shuffle product ⋆),
then its inverse is given as follows

f̃−1 = f−1 − ~(f−1 ⋆ f ′ ⋆ f−1).
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In the following, we denote the group of characters in Hom(H,G) by G̃ and its
corresponding (pre-)Lie algebra of infinitesimal characters by g̃. We also use
the same definitions of characters and infinitesimal characters in Hom(H,G).
Hence, we will have the following version for the G-valued moment-cumulant
relations.

Proposition 4.1. Given a character Φ̃ in G̃, there exist unique infinitesimal
characters ρ̃, κ̃ and β̃ in g̃, such that Φ̃ = exp⋆(ρ̃) and

Φ̃ = ǫ̃+ κ̃ ≺ Φ̃, (58)

Φ̃ = ǫ̃+ Φ̃ ≻ β̃, (59)

where ǫ̃ ∈ Hom(H,G) is defined as ǫ̃(1) = 1G and ǫ̃(w) = 0 if w 6∈ H\C1.

Equations (58) and (59) are equivalent to the systems

Φ = ǫ+ κ ≺ Φ, Φ′ = κ′ ≺ Φ+ κ ≺ Φ′, (60)

Φ = ǫ+Φ ≻ β, Φ′ = Φ ≻ β′ +Φ′ ≻ β. (61)

Recall that Φ is a character and Φ′ satisfies a formal Leibniz rule (57). We can
show that ρ′, κ′ and β′ are infinitesimal characters on Hom(H,C).

4.2 Free and Boolean infinitesimal moment-cumulant relation in

the shuffle approach

In previous works, Ebrahimi-Fard and Patras showed that fixed point equa-
tions Φ = ǫ+ κ ≺ Φ and Φ = ǫ+Φ ≻ β are equivalent to the free and Boolean
cumulant-moment relations, respectively. We will see that the order-~ coeffi-
cients of Equations (58) and (59) correspond to the infinitesimal version of the
moment-cumulant relations.

Proposition 4.2. Let (A, ϕ, ϕ′) be an incps, and let Φ,Φ′ be the corresponding
extensions to linear maps H → C as above. Let Φ̃ = Φ+ ~Φ′ be a character in
Hom(H,G), and let κ̃ = κ+ ~κ′ and β̃ = β + ~β′ be the solutions of (58) and
(59), respectively. Then for every word w = a1 · · · an ∈ T+(A), we have that

κ′(w) = r′n(a1, . . . , an) and β′(w) = b′n(a1, . . . , an).

This means that the infinitesimal characters κ′ and β′ evaluated in a word w =
a1 · · · an actually identify with the infinitesimal free cumulants and infinitesimal
Boolean cumulants of (a1, . . . , an), respectively.

Proof. We will prove only the infinitesimal Boolean case. The proof is by
induction on n. The base case is obvious. For the inductive step, assume that
we have the result for words of length smaller than n. From the definition of
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∆≻ and (61) we obtain for the word w = a1 · · · an ∈ T+(A) that

ϕ′(a1 ·A · · · ·A an) = Φ′(w) = Φ ≻ β′(w) + Φ′ ≻ β(w)

=
∑

16∈S⊆[n]

Φ(aS)β
′(aSJ ) +

∑

16∈S⊆[n]

Φ′(aS)β(a
S
J )

=

n
∑

m=1

β′(a1 · · · am)Φ(am+1 · · · an) +
n−1
∑

m=1

β(a1 · · · am)Φ′(am+1 · · ·an),

where in the last equation we used that both β and β′ are infinitesimal charac-
ters. Using the Boolean moment-cumulant relation, we note that the first sum
above is equal to

n
∑

m=1

β′(a1 · · · am)Φ(am+1 · · · an) = β′(a1 · · · an)

+
n−1
∑

m=1

β′(a1 · · · am)
∑

π∈I({m+1,...,n})

∏

V ∈π

β(aV )

=
∑

π∈I(n)

β′(aV1)
∏

W∈π
W 6=V

β(aW ),

where V1 denotes the block in π containing 1. On the other hand, by using the
induction hypothesis in the second sum we have that

n−1
∑

m=1

β(a1 · · ·am)Φ′(am+1 · · · an)

=

n−1
∑

m=1

β(a1 · · · am)
∑

π∈I({m+1,...,n})

∑

V ∈π

β′(aV )
∏

W∈π

W 6=V

β(aW )

=
∑

π∈I(n)

∑

V ∈π

V 6=V1

β′(aV )
∏

W∈π

W 6=V

β(aW ).

Combining the two sums above we obtain

ϕ′(a1 ·A · · · ·A an) =
∑

π∈I(n)

∑

V ∈π

β′(aV )
∏

W∈π
W 6=V

β(aW ), (62)

and since β(w) = b(a1, . . . , an), this permits to identify the infinitesimal char-
acter β′ with the multivariate infinitesimal Boolean cumulants, i.e., β′(w) =
b′(a1, . . . , an).

Let us return to (39) in the context of G̃ and its Lie algebra g̃. For a G-valued
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character Φ̃ ∈ G̃ and κ̃, β̃ ∈ g̃, we observe that

Φ̃ = E≺(κ̃) = E≺(κ+ ~κ′) = Φ ⋆ (E≺(~κ
′) �⊢ Φ)

= E≺(κ) ⋆ E≺(~θΦκ
′)

= Φ ⋆ (ε+ ~θΦ(κ
′))

= Φ + ~Φ ⋆ θΦ(κ
′).

Here we used that

E≺(~θΦκ
′) = ε+ ~θΦ(κ

′) +O(~2).

From this we deduce that

Φ′ = Φ ⋆ θΦ(κ
′), (63)

which is the (shuffle algebra) solution of the defining fixed point equation Φ′ =
κ′ ≺ Φ + κ ≺ Φ′ and therefore gives the infinitesimal free moment-cumulant
relations. See [EFM09] for more details on shuffle algebra equations. Moreover,
it implies that Φ−1 ⋆ Φ′ ∈ g and that

κ′ = θΦ−1(Φ−1 ⋆ Φ′) = Φ ≻ (Φ−1 ⋆ Φ′) ≺ Φ−1.

Let us do some explicit computations. Recall that Φ = ǫ+ κ ≺ Φ implies that

E≺(κ) = ε+ κ+ κ ≺ κ+ κ ≺ (κ ≺ κ) + · · ·

Then we find in the univariate case, i.e., for a single letter a 6= 1:

Φ′(a) = Φ ⋆ θΦ(κ
′)(a) = κ′(a) = r′1

Φ′(aa) = θΦ(κ
′)(aa) + 2Φ(a)θΦ(κ

′)(a)

= κ′(aa) + 2κ(a)κ′(a)

= r′2 + 2r′1r1

Φ′(aaa) = θΦ(κ
′)(aaa) + 2Φ(a)θΦ(κ

′)(aa) + 3Φ(aa)θΦ(κ
′)(a)

= κ′(aaa) + 3κ′(aa)κ(a) + 3κ(aa)κ′(a) + 3κ(a)κ(a)κ′(a)

= r′3 + 3r′2r1 + 3r′1r2 + 3r′1r1r1

Φ′(aaaa) = θΦ(κ
′)(aaaa) + 2Φ(a)θΦ(κ

′)(aaa)

+ 3Φ(aa)θΦ(κ
′)(aa) + 4Φ(aaa)θΦ(κ

′)(a)

= κ′(aaaa) + 4κ′(aa)κ(aa) + 4κ′(aaa)κ(a) + 4κ(aaa)κ′(a)

+ 6κ(a)κ(a)κ′(aa) + 12κ(aa)κ(a)κ′(a) + 4κ(a)κ(a)κ(a)κ′(a)

= r′4 + 4r′2r2 + 4r′3r1 + 4r′1r3 + 6r′2r1r1 + 12r′1r2r1 + 4r′1r1r1r1.

Remark 4.3. In the Hopf algebra setting, the multivariate case is automa-
tically included since we can make the computations on an arbitrary word
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w ∈ T+(A). For instance

Φ′(a1a2a3) = θΦ(κ
′)(a1a2a3) + Φ(a1)θΦ(κ

′)(a2a3) + Φ(a2)θΦ(κ
′)(a1|a3)

+Φ(a3)θΦ(κ
′)(a1a2) + Φ(a1a2)θΦ(κ

′)(a3)

+Φ(a1a3)θΦ(κ
′)(a2) + Φ(a2a3)θΦ(κ

′)(a1)

= κ′(a1a2a3) + κ′(a1a3)κ(a2) + κ′(a2a3)κ(a1) + κ′(a1a2)κ(a3)

+κ′(a3)(κ(a1a2) + κ(a1)κ(a2)) + κ′(a2)(κ(a1a3) + κ(a1)κ(a3))

+κ′(a1)(κ(a2a3) + κ(a2)κ(a3)).

Remark 4.4. We can address in an analogous way the Boolean case. For this,
we find that

Φ̃ = E≻(β̃) = E≻(β + ~β′) = (E≻(~β
′) �⊣ Φ) ⋆ Φ = E≻(~θΦ−1(β′)) ⋆ E≻(β)

= (ε+ ~θΦ−1(β′)) ⋆ Φ = Φ + ~θΦ−1(β′) ⋆ Φ.

This yields
Φ′ = θΦ−1(β′) ⋆ Φ. (64)

Expression (64) solves the shuffle fixed point equation Φ′ = Φ ≻ β′ + Φ′ ≻ β

and therefore gives the infinitesimal Boolean moment-cumulant relations, i.e.,
Equation (62) in the proof of Proposition 4.2.

4.3 Infinitesimal monotone cumulants in the shuffle approach

We now show how to obtain the corresponding monotone infinitesimal moment–
cumulant relations from the exponential bijection given by the convolution
product ⋆.

Proposition 4.5. Let (A, ϕ, ϕ′) be an incps, and let Φ,Φ′ be the corresponding
extensions to linear maps H → C as above. Let Φ̃ = Φ+~Φ′ be the character in
Hom(H,G) and ρ̃ = ρ+ ~ρ′ the infinitesimal character such that Φ̃ = exp⋆(ρ̃).
Then, for every word w = a1 · · ·an ∈ T+(A), the infinitesimal character ρ′

evaluated in a word w = a1 · · · an identifies with the infinitesimal monotone
cumulant, i.e., h′

n(a1, . . . , an) = ρ′(w).

Proof. By the definition of the exponential map with respect to the convolution
(shuffle) product, ⋆, in the G-valued case, we have that

Φ̃ = exp⋆(ρ+ ~ρ′)

=

∞
∑

k=0

(ρ+ ~ρ′)⋆k

k!

=
∞
∑

k=0

1

k!

(

ρ⋆k + ~

(

k
∑

m=1

ρ⋆(m−1) ⋆ ρ′ ⋆ ρ⋆(k−m)

))

. (65)

We will compute the evaluation on a word v = a1 · · ·am ∈ T+(A) of the right-
hand side in the above equation. From [EFP18] we conclude, since ρ and ρ′
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are infinitesimal characters, that the convolution product between them only
requires the “reduced linearised” part of the coproduct, which is given by

∆(a1 · · ·am) :=
∑

aI1
aI2

aI3
=v

I1⊔I3,I2 6=∅

aI1aI3 ⊗ aI2 .

Then we have, for instance, that ρ ⋆ ρ′(v) = mC(ρ ⊗ ρ′)∆(v). More generally,

it was shown in Lemma 3 of [EFP18] that if ∆
[q]

: T+(A) → T+(A)
⊗(q+1)

stands for the q-fold left iterated reduced linearised coproduct, i.e., ∆
[q]

=

(∆
[q−1]

⊗ id)∆, then

∆
[q−1]

(a1 · · ·am) =
∑

π∈Mq(m)
π={V1,...,Vq}

aV1 ⊗ · · · ⊗ aVq
, (66)

where Mq(m) denotes the set of monotone partitions of [m] into q blocks, and
the blocks of π are naturally pre-ordered.
We proceed now to the evaluation of the order-~ coefficient on the right-hand
side of (65). Given a k ≥ 1 and 1 ≤ m ≤ k we have that

1

k!
ρ⋆(m−1) ⋆ ρ′ ⋆ ρk−m(a1 · · · an)

=
1

k!
m

[k]
C
(ρ⊗ · · · ⊗ ρ′ ⊗ · · · ⊗ ρ)∆

[k−1]
(a1 · · · an)

=
1

k!

∑

π∈Mk(n)
π={V1,...,Vk}

ρ(aV1) · · · ρ
′(aVm

) · · · ρ(aVk
).

Adding over 1 ≤ m ≤ k as well as over 1 ≤ k ≤ n we obtain

Φ′(w) =

n
∑

k=1

1

k!

k
∑

m=1

ρ⋆(m−1) ⋆ ρ′ ⋆ ρk−m(a1 · · · an)

=

n
∑

k=1

1

k!

∑

π∈NCk(n)

m(π)
∑

V ∈π

ρ′(aV )
∏

W∈π
W 6=V

ρ(aW ),

where NCk(n) stands for the set of non-crossing partitions of [n] with ex-
actly k blocks and m(π) denotes the number of monotone labelings of π. See
Appendix A.1 for a more careful discussion on m(π). Finally, from (77) we get
that

ϕ′
n(a1, · · · , an) =

∑

π∈NC(n)

1

τ(π)!

∑

V ∈π

ρ′(aV )
∏

W∈π
W 6=V

ρ(aW ), (67)

and since ρ(w) = hn(a1, . . . , an), we conclude that ρ′(w) = h′
n(a1, . . . , an).
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Consider Φ̃ and ρ̃ as in the above proposition. This means that

Φ̃ = exp⋆(ρ̃) = exp⋆(ρ+ ~ρ′).

One can show the factorisation [Reu93]

exp⋆(ρ+ ~ρ′) = exp⋆(ρ) ⋆ exp⋆(F (ρ, ~ρ′)),

where

F (ρ, ~ρ′) := ~ρ′ +
∑

n>0

(−1)
n

(n+ 1)!
Ad(n)ρ (~ρ′).

We can compactly write

F (ρ, ~ρ′) =
e−Adρ − 1

−Adρ
(~ρ′) =: W−ρ(~ρ

′).

Note that Ad(n)
α (β) := [α,Ad(n−1)

α (β)] = α⋆Ad(n−1)
α (β)−Ad(n−1)

α (β)⋆α. This
then yields

exp⋆(ρ) ⋆ exp⋆(F (ρ, ~ρ′)) = exp⋆(ρ) ⋆ (ε+ ~W−ρ(ρ
′)).

Note that W−ρ(ρ
′) is an infinitesimal character. For exp⋆(ρ̃) = Φ̃ = Φ+~Φ′ this

implies the shuffle analog of monotone infinitesimal moment-cumulant relations

Φ′ = Φ ⋆ W−ρ(ρ
′). (68)

We compute the first three univariate monotone infinitesimal moment-cumulant
relations. Let a ∈ A ⊂ T+(A). Then, thanks to ∆(a) = a⊗ 1+ 1⊗ a, we have

Φ′(a) = Φ ⋆ W−ρ(ρ
′)(a) = W−ρ(ρ

′)(a) = ρ′(a) = h′
1

Φ′(a2) = Φ ⋆ W−ρ(ρ
′)(a2) = 2Φ(a)W−ρ(ρ

′)(a) +W−ρ(ρ
′)(a2)

= 2ρ(a)ρ′(a) + ρ′(a2)−
1

2
[ρ, ρ′](a2)

= 2ρ(a)ρ′(a) + ρ′(a2)−
1

2
(ρ ⋆ ρ′ − ρ′ ⋆ ρ)(a2)

= ρ′(a2) + 2ρ(a)ρ′(a) = h′
2 + 2h1h

′
1

Φ′(a3) = Φ ⋆ W−ρ(ρ
′)(a3)

= 2Φ(a)W−ρ(ρ
′)(a2) + 3Φ(a2)W−ρ(ρ

′)(a) +W−ρ(ρ
′)(a3)

= ρ′(a3) +
5

2
ρ′(a)ρ(a2) +

5

2
ρ(a)ρ′(a2) + 3ρ(a)ρ(a)ρ′(a)

Φ′(a4) = ρ′(a4) + 3ρ′(a)ρ(a3) + 3ρ(a)ρ′(a3) + 3ρ(a2)ρ′(a2)

+
13

3
ρ′(a2)ρ(a)ρ(a) +

26

3
ρ(a2)ρ′(a)ρ(a) + 4ρ′(a)ρ(a)ρ(a)ρ(a).
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These relations are consistent with the formal derivation viewpoint on the
monotone moment-cumulant relations:

Φ(a) = ρ(a)

Φ(a2) = ρ(a2) + ρ(a)ρ(a)

Φ(a3) = ρ(a3) +
5

2
ρ(a)ρ(a2) + ρ(a)ρ(a)ρ(a)

Φ(a4) = ρ(a4) + 3ρ(a)ρ(a3) +
3

2
ρ(a2)ρ(a2)

+
13

3
ρ(a)ρ(a)ρ(a2) + ρ(a)ρ(a)ρ(a)ρ(a)

Remark 4.6. Eventually, Equation (68) implies that

W−ρ(ρ
′) = Φ−1 ⋆ Φ′.

This result is consistent with the viewpoint of taking formal derivations. From
the last equation we deduce that

ρ′ = W ◦−1
−ρ (Φ−1 ⋆ Φ′) =

−Adρ
e−Adρ − 1

(Φ−1 ⋆ Φ′), (69)

which expresses infinitesimal monotone cumulants in a rather non-trivial man-
ner in terms of moments and infinitesimal moments (recall that ρ = log⋆(Φ)).

We can collect the obtained equations (63), (64), (68) in the following result:

Proposition 4.7. Let (A, ϕ, ϕ′) be a incps, and let Φ,Φ′ be the corresponding
extensions to linear maps H → C as above. Consider the pairs of infinitesimal
characters (κ, κ′), (β, β′) and (ρ, ρ′) described in Propositions 4.2 and 4.5. Then
we have

Φ′ = Φ ⋆ θΦ(κ
′)

= θΦ−1(β′) ⋆ Φ

= Φ ⋆ W−ρ(ρ
′).

5 Infinitesimal cumulant-cumulant relations

In this section, we are going to generalise to the infinitesimal setting some
relations between cumulants that are already known in the context of non-
commutative probability. Specifically, we want to check how the formulas (14),
(16), (15), and (17) from Arizmendi et al, reference [AHLV15], are carried over
to the infinitesimal setting. The nice thing about these specific formulas is that
their proofs do not really use the fact that the ϕn, bn, rn, hn are functionals and
we can replace them by our C-linear functionals into G, ϕ̃n, b̃n, r̃n, h̃n. We have
the following theorem:
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Theorem 5.1. Let (A, ϕ, ϕ′) be an incps, and let {r̃n}n≥1, {b̃n}n≥1, and

{h̃n}n≥1 be the families of C-linear maps from An to G obtained from merg-
ing cumulants rn, bn, hn with infinitesimal cumulants r′n, b

′
n, h

′
n, respectively.

Then, the following relations between b̃, r̃, h̃ hold:

b̃n(a1, . . . , an) =
∑

π∈NCirr(n)

r̃π(a1, . . . , an), (70)

r̃n(a1, . . . , an) =
∑

π∈NCirr(n)

(−1)|π|−1b̃π(a1, . . . , an), (71)

b̃n(a1, . . . , an) =
∑

π∈NCirr(n)

1

τ(π)!
h̃π(a1, . . . , an), (72)

r̃n(a1, . . . , an) =
∑

π∈NCirr(n)

(−1)|π|−1

τ(π)!
h̃π(a1, . . . , an), (73)

for every n and elements a1, . . . , an ∈ A.

Proof. The proof of these formulas can be obtained by either of the both
approaches we discussed in Sections 3 and 4. Through this proof we work
with an integer n and generic elements a1, . . . , an ∈ A. We will denote
w = a1 · · · an ∈ T+(A), a = (a1, . . . , an) ∈ An and (a|V ) = (av1 , . . . , avk) ∈ Ak

for a subset V = {v1 < · · · < vk} ∈ [n].

• To get (70) we begin by proposing the candidate Boolean cumulants cn
by

cn(a1, . . . , an) =
∑

π∈NCirr(n)

r̃π(a1, . . . , an).

Our aim is to show that cn = b̃n. Observe that we can use the Grassmann
free moment-cumulant formula (46), to compute:

ϕ̃n(a) =
∑

σ∈NC(n)

r̃σ(a) =
∑

π∈I(n)

∑

σ∈NC(n)
σ≪π

r̃σ(a)

=
∑

π∈I(n)

∑

σ∈NC(n)
σ≪π

∏

V ∈σ

r̃|V |(a|V ) =
∑

π∈I(n)

∏

V ∈π

(

∑

σ∈NC(V )
σ≪1|V |

r̃σ(a|V )
)

=
∑

π∈I(n)

∏

V ∈π

c|V |(a|V ) =
∑

π∈I(n)

cπ(a),

where ≪ stands for the min-max order in NC(n) (see Definition A.3).
Thus, we arrive at the fact that the proposed candidates actually satisfy
the infinitesimal Boolean moment-cumulant formula (49) for all n and
elements a1, . . . , an ∈ A. Thus, we conclude that:

β̃n(a1, . . . , an) = cn(a1, . . . , an) =
∑

π∈NCirr(n)

r̃π(a1, . . . , an).
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• Now we prove (71). Consider the extensions to the Hopf–algebraic frame-
work such that Φ and Φ′ are the elements in Hom(H,C) extending ϕ and
ϕ′ as before, Φ̃ = Φ + ~Φ′ is the G-valued character associated, and κ̃

and β̃ are the G-valued infinitesimal characters associated to the free
and Boolean cumulants of the pair (ϕ, ϕ′), respectively. Consider a word
w = a1 · · · an ∈ T+(A). From the G-valued fixed point equations for Φ̃,
we have that κ̃ ≺ Φ̃ = Φ̃ ≻ β̃. From the shuffle algebra axioms, the latter
equation implies the relation

Φ̃−1 ≻ κ̃ = β̃ ≺ Φ̃−1.

From the G-valued case of Equation (24) we have that Φ̃−1 = E≺(−β̃).
The latter equation evaluated in w then yields the identity

Φ̃−1(a1 · · ·an) =
∑

π∈NC(n)

(−1)|π|b̃π(a1, . . . , an).

Then we use induction to obtain

Φ̃−1 ≻ κ̃(w) = κ̃(a1 · · · an) +
n−1
∑

j=1

κ̃(a1 · · · aj)Φ̃
−1(aj+1 · · · an)

= κ̃(w) +

n−1
∑

j=1





∑

π∈NCirr(j)

(−1)|π|−1b̃π(a1, . . . , aj)





·





∑

σ∈NC(n−j)

(−1)|σ|b̃σ(aj+1, . . . , an)





= κ̃(w) +
∑

π∈NC(n)\NCirr(n)

(−1)|π|−1b̃π(a1, . . . , an).

On the other hand

β̃ ≺ Φ̃−1(w) =
∑

1∈S⊆[n]

β̃(aS)Φ̃
−1(aJ1 | · · · |aJp

)

=
∑

1∈S⊆[n]

β̃(aS)

p
∏

j=1





∑

π∈NC(|Jj|)

(−1)|π|b̃π(aJj
)





=
∑

π∈NC(n)

(−1)|π|−1b̃π(a1, . . . , an).

Hence
κ̃(a1 · · · an) =

∑

π∈NCirr(n)

(−1)|π|−1b̃π(a1, . . . , an).

We conclude (71) once we identify r̃n(a1, . . . , an) = κ̃(a1 · · · an).
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• Similarly, we can give a proof of (72) using the shuffle algebra approach.
For this, we recall the G-valued fixed point equation for Boolean cu-
mulants Φ̃ − ε̃ = Φ̃ ≻ β̃. Let ρ̃ be the G-valued infinitesimal char-
acter associated to the monotone cumulants of the pair (ϕ, ϕ′) and
w = a1 · · · an ∈ T+(A) be a word. Using the G-valued monotone
moment–cumulant relation and induction we have:

∑

π∈NC(n)

1

τ(π)!
h̃π(a) = Φ̃(w) = β̃(w) +

n−1
∑

j=1

β̃(a1 · · · aj)Φ̃(aj+1 · · · an)

= β̃(w) +
n−1
∑

j=1





∑

π∈NCirr(j)

1

τ(π)!
h̃π(a1, . . . , aj)





·





∑

σ∈NC(n−j)

1

τ(σ)!
h̃σ(aj+1, . . . , an)





= β̃(w) +
∑

π∈NC(n)\NCirr(n)

1

τ(π)!
h̃π(a1, . . . , an).

Observe that we used the fact that 1
τ(π)!

1
τ(σ)! = 1

τ(π⊔σ)! , where π ∈

NCirr(j), σ ∈ NC(n − j), and π ⊔ σ ∈ NC(n) is the noncrossing par-
tition obtained by taking the disjoint union of π and σ. From above, we
conclude Equation (72).

• Regarding (73), we can use again shuffle algebra. We first recall that

Φ̃−1(w) = exp⋆(ρ̃)−1(w) = exp⋆(−ρ̃)(w)

=
∑

π∈NC(n)

1

τ(π)!
(−h̃)π(a1, . . . , an)

=
∑

π∈NC(n)

(−1)|π|

τ(π)!
h̃π(a1, . . . , an),

for any word w = a1 · · · an ∈ H . On the other hand, we have that
Φ̃−1 = E≺(κ̃)−1 = E≻(−κ̃). Hence, we have the fixed-point equation

Φ̃−1 − ǫ̃ = Φ̃−1 ≻ (−κ̃).

Now we can proceed in a similar way to that of proving (72). For a word
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w = a1 · · · an ∈ H , using induction we have that

∑

π∈NC(n)

(−1)|π|

τ(π)!
h̃π(a1, . . . , an) = Φ̃−1(w)

= −κ̃(w)−
n−1
∑

j=1

κ̃(a1 · · · aj)Φ̃(aj+1 · · · an)

= −κ̃(w)−
n−1
∑

j=1





∑

π∈NCirr(j)

(−1)|π|−1

τ(π)!
h̃π(a1, . . . , aj)





·





∑

σ∈NC(n−j)

(−1)|σ|

τ(σ)!
h̃σ(aj+1, . . . , an)





= −κ̃(w)−
∑

π∈NC(n)\NCirr(n)

(−1)|π|−1

τ(π)!
h̃π(a1, . . . , an),

and hence Equation (73) follows.

Remark 5.2. We note that to get (70) using the shuffle approach, we can
use equation κ̃ ≺ Φ̃ = β̃ ≻ Φ̃ and follow arguments analogous to the proof
of (71). To show (71), we could have followed the proof by Belinschi and
Nica (See [BN08a], Proposition 3.9). The proof of (72) follows similar ideas to
the ones used in the proof of (71). Regarding (73), we could have followed an
approach similar to how we showed (70). This requires to proof some interesting
combinatorial identities for rooted tree factorial in the spirit of [AHLV15].

Proof of Theorem 1.1. Once we have formulas (70), (71), (72), (73) we can just
focus on the ~ coefficient to get the respective formulas relating infinitesimal
cumulants: (5), (7), (6), (8).

Remark 5.3. At the time when the first version of this work was finalized,
we did not have the complete picture of relations between infinitesimal cumu-
lants. Indeed, the formulas expressing monotone cumulants in terms of free (or
Boolean) cumulants in the multivariate case were missing. These formulas are
given in the more recent work [CEFPP21], which appeared after the first release
of the current paper. The extension to the infinitesimal setting can be done by
considering the G-valued analogue of the pre-Lie Magnus expansion (43):

ρ̃ = Ω′(κ̃) = −Ω′(−β̃).
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The corresponding formulas between infinitesimal cumulants are

h′
n(a1, . . . , an) =

∑

π∈NCirr(n)

ω(π)∂bπ(a1, . . . , an), (74)

h′
n(a1, . . . , an) =

∑

π∈NCirr(n)

(−1)|π|−1ω(π)∂rπ(a1, . . . , an). (75)

Here ω is Murua’s function that assigns a real value to each partition π, see
Definition A.6 in the appendix at the end. In addition, we note that, based on
the first version of this paper, a generalization of the six cumulant-cumulant
formulas to the infinitesimal operator-valued case was developed in the recent
work [PT20].

6 Infinitesimal Boolean Bercovici–Pata bijection

The objective of this section is to apply our previous results to get an infinites-
imal analogue of the work of Belinschi and Nica [BN08a, BN08b, BN09] at the
algebraic level.
We consider an infinitesimal law on k variables, which is a pair µ̃ = (µ, µ′) of
linear functionals µ, µ′ : C〈z1, . . . , zk〉 → C such that µ(1) = 1 and µ′(1) = 0.
We also define

D̃(k) = {µ̃ = µ+ ~µ′ : (µ, µ′) is an infinitesimal law on k variables}.

Given µ̃ = µ+~µ′ ∈ D̃(k), we can compute its G-valued free and Boolean cumu-
lants r̃n(µ̃) = rn(µ̃)+~r′n(µ̃), and b̃n(µ̃) = bn(µ̃)+~b′n(µ̃). With these concepts
at hand, we can define an infinitesimal analogue of the Boolean Bercovici–Pata
bijection studied in [BN08a].

Definition 6.1. The infinitesimal Boolean Bercovici–Pata bijection B̃ :
D̃(k) → D̃(k) is the map µ̃ 7→ B̃(µ̃) such that B̃(µ̃) is uniquely defined by
the fact that

r̃n(B̃(µ̃)) = b̃n(µ̃), ∀n ≥ 1.

Remark 6.2. In the shuffle approach, the map B̃ can be simply expressed in
terms of the right action, �⊢, of G̃ on itself defined in (38). For Φ̃ ∈ G̃

B̃(Φ̃) = Φ̃ �⊢ Φ̃ ∈ G̃.

If we use the infinitesimal free and Boolean cumulants, we see that Φ̃ �⊢ Φ̃ =
E≺(θΦ̃(κ̃)) = E≺(β̃) = E≺(L≻(Φ̃)). Thus we can also define B̃ by

B̃(Φ̃) = E≺(L≻(Φ̃)).

Recall that the left and right-shuffle logarithms are defined by L≺ := (Φ̃− ǫ) ≺
Φ̃−1 respectively L≻ := Φ̃−1 ≻ (Φ̃− ǫ). It is clear that B̃ has a compositional
inverse B̃−1 given by

B̃
−1(Ψ̃) = E≻(L≺(Ψ̃)) = Ψ̃ �⊣ Ψ̃,

where for the second equality we can follow similar steps.
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Now we want to define an infinitesimal version of the Bt-transform studied in
[BN08b]. First we recall the infinitesimal free additive convolution and define
its Boolean analogue on D̃(k).

Definition 6.3. Given µ̃, ν̃ ∈ D̃(k), the infinitesimal free additive convolution
of µ̃ and ν̃ is the infinitesimal distribution µ̃⊞ ν̃ ∈ D̃(k) uniquely determined
by the fact that

r̃n(µ̃⊞ ν̃) = r̃n(µ̃) + r̃n(ν̃).

Similarly, the infinitesimal Boolean additive convolution of µ̃ and ν̃ is the in-
finitesimal distribution µ̃ ⊎ ν̃ ∈ D̃(k) uniquely determined by the fact that

b̃n(µ̃ ⊎ ν̃) = b̃n(µ̃) + b̃n(ν̃).

Remark 6.4. In shuffle algebra, additive convolution is defined in the following
way. If Φ̃, Ψ̃ ∈ G̃ are the characters associated to µ̃, ν̃ ∈ D̃(k), then the
character Φ̃⊞ Ψ̃ ∈ G̃ associated to µ̃⊞ ν̃ ∈ D̃(k) is given by

Φ̃⊞ Ψ̃ := E≺(L≺(Φ̃) + L≺(Ψ̃)),

and the the character Φ̃ ⊎ Ψ̃ ∈ G̃ associated to µ̃ ⊎ ν̃ ∈ D̃(k) is given by

Φ̃ ⊎ Ψ̃ := E≻(L≻(Φ̃) + L≻(Ψ̃)).

For µ̃ ∈ D̃(k) and s ≥ 0, we denote by µ̃⊞s, µ̃⊎s ∈ D̃(k) the infinitesimal laws
such that

r̃n

(

µ̃⊞s
)

= sr̃n(µ̃) and b̃n (µ̃
⊎s) = sb̃n(µ̃).

Now we are ready to prove Theorem 1.2.

Proof of Theorem 1.2. Given an infinitesimal law µ̃ = (µ, µ′), consider the as-
sociated linear functionals Φ,Φ′ : H → C and Φ̃ = Φ + ~Φ′. We will show
that if

B̃t(Φ̃) =
(

Φ̃⊞1+t
)⊎ 1

1+t

,

then B̃1 = B̃ and B̃s ◦ B̃t = B̃s+t, for any s, t ≥ 0. Let κ̃ = L≺(Φ̃) be the
G-valued free infinitesimal cumulant character of Φ̃. We can follow the proof
of Lemma 42 in [EFP19] in order to obtain

B̃t(Φ̃) = E≺(tθΦ̃(κ̃))
⊎ 1

t = E≺
(

θE≺(tκ̃)(κ̃)
)

. (76)

From above, it follows that B̃1 = B̃. To prove the semigroup property, by (76)
we have

B̃s ◦ B̃t(Φ̃) = B̃s

(

E≺
(

θE≺(tκ̃)(κ̃)
))

= E≺
(

θE≺(sθE≺(tκ̃)(κ̃))(θE≺(tκ̃)(κ̃))
)

.

Looking at the argument of the last exponential, by the action property of θ
we can get

γ̃ := θE≺(sθE≺(tκ̃)(κ̃))(θE≺(tκ̃)(κ̃)) = θE≺(tκ̃)⋆E≺(θE≺(tκ̃)(sκ̃))(κ̃).
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By (38) and (39),

E≺(tκ̃) ⋆ E≺
(

θE≺(tκ̃)(sκ̃)
)

= E≺(tκ̃) ⋆ (E≺(sκ̃)�⊢ E≺(tκ̃))

= E≺(tκ̃)⊞ E≺(sκ̃)

= E≺((t+ s)κ̃).

Hence

B̃s ◦ B̃t(Φ̃) = E≺(γ̃) = E≺(θE≺((t+s)κ̃)(κ̃)) = B̃t+s(Φ),

where we used (76) in the last equality.

Remark 6.5. We can also do this in the usual approach. The main idea is to
extend into the G-valued case the ideas in [BN08b]. For instance to prove that
B̃1(µ̃) = B̃(µ̃), we proceed like this:

Let us denote by ν̃1 := B1(µ̃) =
(

µ̃⊞2
)⊎ 1

2 and ν̃ := B(µ̃). Now we can use (70)
to get

b̃n(ν̃1) =
1

2
b̃n

(

µ̃⊞2
)

=
1

2

∑

π∈NCirr(n)

r̃π

(

µ̃⊞2
)

=
1

2

∑

π∈NCirr(n)

2|π|r̃π(µ̃).

On the other hand, for all n ≥ 1 we have qr̃n(ν̃) = b̃n(µ̃), so we can compute

b̃n(ν̃) =
∑

σ∈NCirr(n)

r̃σ(ν̃) =
∑

σ∈NCirr(n)

b̃σ(µ̃)

=
∑

σ∈NCirr(n)

∏

V ∈σ

(

∑

τ∈NCirr(V )

b̃τ (µ̃)
)

=
∑

σ∈NCirr(n)

∑

π≪σ

r̃π(µ̃) =
∑

π∈NCirr(n)

r̃π(µ̃)
∑

σ≫π

1,

where the last equality we just switched the order of the sums. Finally, from
Proposition A.5 below, we know that card{σ ∈ NC(n)|σ ≫ π} = 2|π|−1, and
by the previous analysis we get that b̃n(ν̃1) = b̃n(ν̃) for all n ≥ 1. Finally,
Boolean moment-cumulant formula (50) implies that ϕ̃n(ν̃1) = ϕ̃n(ν̃) for all
n ≥ 1 and we conclude that ν̃1 = ν̃.

A Appendix

A.1 Partitions

Here we give a brief introduction to the definitions and notations used in this
paper regarding partitions of a set. (For a broader explanation on these sets
we refer the reader to [AHLV15])

Definition A.1 (Types of partitions). Let us fix a positive integer n.
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• A partition π of [n] := {1, . . . , n} is a set of the form π = {V1, . . . , Vk}
where V1, . . . , Vk (called blocks of π) are pairwise disjoint non-empty sub-
sets of [n] such that V1 ∪ · · · ∪ Vk = [n].

• The number of blocks of π is denoted by |π|.

• We say that π is an interval partition if all the blocks V ∈ π are of the
form V = {i, i+ 1, . . . , i+ j} for some integers 1 ≤ i ≤ i+ j ≤ n.

• We say that π is a non-crossing partition if for every 1 ≤ i < j < k <

l ≤ n such that i, k ∈ Va (are on the same block) and j, l ∈ Vb (are on
the same block), then it necessarily follows that a = b (all i, j, k, l are in
the same block).

• For two distinct blocks V,W ∈ π, we say that V is nested inside W if
there exist i, j ∈ W such that for all v ∈ V we have i < v < j.

• We say that (π, λ) is a monotone partition if π is non-crossing and λ :
π → {1, . . . , |π|} is a bijective function (an ordering of the blocks of π)
such that if V,W ∈ π and V is nested inside W , then λ(W ) < λ(V ).

We will denote by P(n), NC(n), I(n), M(n) the sets of all, non-crossing,
interval, and monotone partitions of [n], respectively.

Given a partition π ∈ NC(n), it is useful to know that the number of possible
orders λ on the blocks of π such that (π, λ) becomes a monotone partition is

m(π) :=
|π|!

τ(π)!
, (77)

where τ(π)! is the tree factorial of the nesting forest of a partition π. We refer
the reader to [AHLV15] for a proof of this identity and further details on this
topic. From the previous consideration we obtain the following observation:

Remark A.2. For any sequence of coefficients (cπ)π∈NC(n) we have that

∑

(π,λ)∈M(n)

1

|π|!
cπ =

∑

π∈NC(n)

1

τ(π)!
cπ. (78)

Definition A.3. In this note we consider two partial orders on NC(n).

• Reversed refinement order ≤. For π, σ ∈ NC(n), we write “π ≤ σ” if
every block of σ is a union of blocks of π. The maximal element of
NC(n) with this order is 1n := {{1, . . . , n}} (the partition of [n] with
only one block), and the minimal element is 0n := {{1}, {2}, . . . , {n}}
(the partition of [n] with n blocks). NC(n) with this order ≤ actually
form a lattice. For σ, π ∈ NC(n) we write Möb(σ, π) to refer to the
Möbius function on NC(n). For much more detailed view this topic we
refer the reader to [NS06].
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• The min-max order ≪. For π, σ ∈ NC(n), we write “π ≪ σ” to mean
that π ≤ σ and that for every block V of σ there exists a block W of π
such that min(V ),max(V ) ∈ W . We refer the reader to [BN08a] for a
broader explanation on this partial order.

Definition A.4. We will say that a partition π is irreducible if π ≪ 1n. This
is equivalent to the fact that 1 and n are in the same block of π. The set
of non-crossing irreducible partitions and monotone irreducible partitions are
denoted by NCirr(n) and Mirr(n), respectively.

It is useful to recall the following property of the min-max order, that is a
particular case of Proposition 2.13 in [BN08a]:

Proposition A.5. Let π ∈ NCirr(n) and p an integer with 1 ≤ p ≤ |π|. Then

card{σ ∈ NC(n)|σ ≫ π and |σ| = p} =

(

|π| − 1

p− 1

)

.

In particular, we have the following formula

card{σ ∈ NC(n)|σ ≫ π} =

|π|
∑

p=1

(

|π| − 1

p− 1

)

= 2|π|−1. (79)

When writing the monotone cumulants in terms of free or Boolean cumulants, it
was recently shown in [CEFPP21] that the coefficients are dictated by Murua’s
ω function.

Definition A.6 (Murua’s ω). Let π ∈ NCirr(n). We will write ωk(π) for the
number of increasing k-colored non-crossing partitions, namely, the number of
ways one can decorate the blocks V ∈ π with a color f(V ) ∈ [k] in such a way
that if the block V is nested inside the block W , this implies f(V ) < f(W ).
Then, for every π ∈ NCirr(n) we define

ω(π) :=

n
∑

k=1

(−1)k+1

k
ωk(π). (80)

A.2 Independences

Different notions of independence play an important role in non-commutative
probability. Muraki [Mur02] proved that there are only five natural notions of
independence: tensor, free, Boolean, monotone and anti-monotone. We give
the precise definitions of the independences used in this paper.

Definition A.7. (Independences) Let (A, ϕ) be a non-commutative probabil-
ity space. Consider an index set I and A1, . . . ,Ak subalgebras of A.
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1. We say that A1, . . . ,Ak are freely independent if each Ai is unital and

ϕ(a1 · · · an) = 0

whenever n ≥ 1, a1 ∈ Ai1 , . . . , an ∈ Ain , ij 6= ij+1 for 1 ≤ j < n and
ϕ(a1) = · · · = ϕ(an) = 0.

2. We say that A1, . . . ,Ak are Boolean independent if

ϕ(a1 · · · an) = ϕ(a1) · · ·ϕ(an)

whenever n ≥ 1, a1 ∈ Ai1 , . . . , an ∈ Ain and ij 6= ij+1 for 1 ≤ j < n.

3. We say that A1, . . . ,Ak are monotone independent if

ϕ(a1 · · ·aℓ · · · an) = ϕ(aℓ)ϕ(a1 · · · aℓ−1aℓ+1 · · · an)

whenever n ≥ 1, a1 ∈ Ai1 , . . . , an ∈ Ain , ij 6= ij+1 for 1 ≤ j < n,
iℓ−1 < iℓ and iℓ > iℓ+1.

Speicher introduced free cumulants in order to characterise Voiculescu’s free
independence. More precisely, he proved that free independence is equivalent
to the condition of vanishing mixed free cumulants. Boolean cumulants sa-
tisfy an analogous characterisation for Boolean independence. In this spirit,
Février and Nica introduced the notion of infinitesimal free cumulants such
that the condition of vanishing mixed cumulants is equivalent to the notion of
infinitesimal free independence. For completeness, we provide the definition of
infinitesimal freeness.

Definition A.8. (Infinitesimal freeness) Let (A, ϕ, ϕ′) be an incps. Let
A1, . . . ,Ak ⊂ A be unital subalgebras of A. We say that A1, . . . ,Ak are in-
finitesimally free if the following holds: for each n ≥ 1 and any sequence of
indices i1, . . . , in ∈ {1, . . . , k} such that ij 6= ij+1, for 1 ≤ j < n, and elements
a1 ∈ Ai1 , . . . , an ∈ Ain such that ϕ(aj) = 0, for j = 1, . . . , n, the following is
satisfied

1. ϕ(a1 ·A · · · ·A an) = 0.

2. ϕ′(a1 ·A · · · ·A an) = ϕ(a1 ·A an)ϕ(a2 ·A an−1) · · ·ϕ(a(n−1)/2 ·A
a(n+3)/2)ϕ

′(a(n+1)/2) if n is odd and i1 = in, i2 = in−1, . . . , i(n−1)/2 =
i(n+3)/2, and ϕ′(a1 ·A · · · ·A an) = 0 otherwise.

One could use the definition of infinitesimal Boolean cumulants in order to
obtain the notion of infinitesimal Boolean independence. Let (A, ϕ, ϕ′) be an
incps and A1, . . . ,Ak be subalgebras of A. Consider also the G-valued Boolean
cumulants {b̃n : A → G}n≥1. Then, we assume the vanishing mixed cumulants

condition for {b̃n : A → G}n≥1, i.e.,

b̃n(a1, . . . , an) = 0
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when n ≥ 2, and if there exists 1 ≤ s < r ≤ n such that ar ∈ Ai(r), as ∈ Ai(s)

and i(r) 6= i(s).
We want to find some conditions for ϕ and ϕ′, which are equivalent to the
vanishing of mixed cumulants. Let n ≥ 1 and take elements a1 ∈ Ai(1), . . . , an ∈
Ai(n), where i1, . . . , in ∈ {1, . . . , k} and ij 6= ij+1 for 1 ≤ j < n. Since we are
assuming the vanishing mixed cumulants condition, the unique partition π

which does not give a zero contribution in the sum

ϕ̃(a1 ·A · · · ·A an) =
∑

π∈I(n)

β̃π(a1, . . . , an), (81)

is π = {{1}, {2}, . . . , {n}}. Hence

ϕ̃(a1 ·A · · · ·A an) =
∑

π∈I(n)

β̃π(a1, . . . , an) = ϕ̃(a1) · · · ϕ̃(an).

Recalling that ϕ̃ = ϕ+ ~ϕ′, we have that ϕ̃(a1 ·A · · · ·A an) = ϕ̃(a1) · · · ϕ̃(an) is
equivalent to

ϕ(a1 ·A · · · ·A an) = ϕ(a1) · · ·ϕ(an), (82)

ϕ′(a1 ·A · · · ·A an) =
n
∑

m=1

ϕ′(am)
∏

1≤k≤n
k 6=m

ϕ(ak). (83)

The above equations provide the conditions for infinitesimal Boolean indepen-
dence.

Definition A.9. Let (A, ϕ, ϕ′) be an incps. Consider A1, . . . ,Ak subalgebras
of A. We say that A1, . . . Ak are infinitesimally Boolean independent if for each
n ≥ 1 and any sequence of indices i1, . . . , in ∈ {1, . . . , k} such that ij 6= ij+1

for j = 1, . . . , n − 1, and elements a1 ∈ Ai1 , . . . , an ∈ Ain , we have that (82)
and (83) hold.

We note that condition (82) simply refers to the usual Boolean independence.

Remark A.10. The above definition coincides with the first order Boolean
differential independence introduced in [Has11].

Remark A.11. It is easy to prove that infinitesimal Boolean independence
recently defined actually implies the conditions of vanishing mixed Boolean
and infinitesimal Boolean cumulants. One can obtain a proof of this fact by
following the usual case of Boolean independence.

References

[AHLV15] Octavio Arizmendi, Takahiro Hasebe, Franz Lehner, and Carlos
Vargas. Relations between cumulants in noncommutative proba-
bility. Adv. Math. 282:56–92, 2015.

Documenta Mathematica 26 (2021) 1145–1185



Rel between Inf NC Cumulants 1183

[BGN03] Philippe Biane, Frederick Goodman, and Alexandru Nica.
Non-crossing cumulants of type B. Trans. Amer. Math. Soc.
355(6):2263–2303, 2003.

[BN08a] Serban Belinschi and Alexandru Nica. η-series and a Boolean
Bercovici–Pata bijection for bounded k-tuples. Adv. Math.
217(1):1–41, 2008.

[BN08b] Serban Belinschi and Alexandru Nica. On a remarkable
semigroup of homomorphisms with respect to free multiplicative
convolution. Indiana Univ. Math. J. 57(4):1679–1713, 2008.

[BN09] Serban Belinschi and Alexandru Nica. Free Brownian motion and
evolution towards ⊞-infinite divisibility for k-tuples. Internat. J.
Math. 20(3):309–338, 2009.

[BS12] Serban Belinschi and Dimitri Shlyakhtenko. Free probability of
type B: analytic interpretation and applications. Amer. J. Math.
134(1):193–234, 2012.

[CEFPP21] Adrián Celestino, Kurusch Ebrahimi-Fard, Frederic Patras, and
Daniel Perales. Cumulant-cumulant relations in free probability
theory from Magnus’ expansion. Found. Comput. Math.
Preprint, 2021.

[CHS15] Benoit Collins, Takahiro Hasebe, and Noriyoshi Sakuma. Free
probability for purely discrete eigenvalues of random matrices. J.
Math. Soc. Japan 70(3):1111–1150, 2015.

[EFM09] Kurusch Ebrahimi-Fard and Dominique Manchon. Dendriform
equations. J. Algebra 322(11):4053–4079, 2009.

[EFP15] Kurusch Ebrahimi-Fard and Frédéric Patras. Cumulants, free
cumulants and half-shuffles. Proc. A, R. Soc. Lond.
471(2176):20140843, 2015.

[EFP18] Kurusch Ebrahimi-Fard and Frédéric Patras. Monotone, free,
and Boolean cumulants: a shuffle algebra approach. Adv. Math.
328:112–132, 2018.

[EFP19] Kurusch Ebrahimi-Fard and Frédéric Patras. Shuffle group laws:
applications in free probability. Proc. Lond. Math. Soc.
119(3):814–840, 2019.

[EFP20] Kurusch Ebrahimi-Fard and Frédéric Patras. A group-theoretical
approach to conditionally free cumulants. IRMA Lect. Math.
Theor. Phys. 31:67–92, 2020.

[Fev12] Maxime Fevrier. Higher order infinitesimal freeness. Indiana
Univ. Math. J. 61(1)249–295, 2012.

Documenta Mathematica 26 (2021) 1145–1185



1184 A. Celestino, K. Ebrahimi-Fard, D. Perales

[FN10] Maxime Février and Alexandru Nica. Infinitesimal non-crossing
cumulants and free probability of type B. J. Funct. Anal.
258(9):2983–3023, 2010.
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