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Abstract
One of the most troublesome issues in the drilling industry is stuck drill pipes. Drilling activities will be costly and time-
consuming due to stuck pipe issues. As a result, predicting a stuck pipe can be more useful. This study aims to use an artificial 
intelligence technology called hybrid particle swarm optimization neural network (PSO-based ANN) to predict the probability 
of a stuck pipe in a Middle East oil field. In this field, a total of 85 wells were investigated. Therefore, to predict this problem, 
we must examine and determine the role of drilling parameters by creating an appropriate model. In this case, an artificial 
neural network is used to solve and model the problem. In this way, by processing the parameters of wells with and without 
being stuck in this field, the stuck or non-stuck of drilling pipes in future wells is predicted. To create a PSO-based ANN 
model database, mud characteristics, geometry, hydraulic, and drilling parameters were gathered from well daily drilling 
reports. In addition, two databases for directional and vertical wells were established. There are two types of datasets used 
for each database: stuck and non-stuck. It was discovered that the PSO-based ANN model could predict the incidence of a 
stuck pipe with an accuracy of over 80% for both directional and vertical wells. This study divided data from several cases 
into four sections: 17 ½″, 12 ¼″, 8 ½″, and 6 1/8″. The key reasons for sticking and the mechanics have been thoroughly 
investigated for each section. The methodology presented in this paper enables the Middle East drilling industry to estimate 
the risk of stuck pipe occurrence during the well planning procedure.

Keywords  Stuck pipe · Particle swarm optimization · Directional wells · Daily drilling reports · Artificial intelligence 
technology

Abbreviations
PSO	� Particle swarm optimization
AI	� Artificial intelligence
ANNs	� Artificial neural networks
MLP	� Multilayer perceptron
DDRs	� Daily drilling reports
BHA	� Bottom hole assembly
WOW	� Waiting on weather
BP	� British petroleum
OBM	� Oil base mud
LGS	� Low gravity solid
MSA	� Multivariate statistical analysis

NNs	� Neural networks
FFNN	� Feed forward neural network
EI	� Each iteration
SVM	� Support vector machine
MSE	� Mean square error
p best	� Best position
g best	� Global best
NW	� North west
SE	� Southeast
AJ	� Aghajari formation
MN	� Mishan formation
GS	� Gachsaran formation
CR	� Cap rock formation
AS	� Asmari formation
PD	� Pabdeh formation
GU	� Gurpi formation
IL	� Ilam formation
SV	� Sarvak formation
SW	� Southwest
KOP	� Kick-off point
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RIH	� Run in hole
POH	� Pull out of hole
W&R	� Wipe and ream
CSG	� Casing
CONN	� Connection
O.PULL	� OVERPULL
BPH	� Barrel per hours
LCM	� Lost circulation material
COND	� Condition
BTM	� Bottom
BBL	� Barrel
WT	� Weight
DCS	� Drill collars
P.LAX	� Pipe Lax
CIRC	� Circulation
DRLG	� Drilling
O/P	� Over pull
F.PIPE	� Free pipe
G.OIL	� Gas oil
W/	� With
GPM	� Gallon per minute
GEL	� Gelatin
AZ	� Azimuth
AN	� Angle
OH	� Open hole
MD	� Measured depth
TVD	� True vertical depth
MW	� Mud weight
PV	� Plastic viscosity
YP	� Yield point
TQ	� Torque
CP	� Circulating pressure
S	� Stuck
NS	� Non-stuck
NPT	� Non-productive time

Introduction

The most costly unplanned drilling occurrence for an opera-
tor is sticking a Drilling BHA, which results in the loss of 
equipment, hole footage, and maybe endangers well objec-
tives. Stuck pipe events have the highest number of non-
productive times (NPT) in the drilling industry, ahead of 
well control incidents, waiting on the weather (WOW), lost 
circulation, equipment failures, and rig issues (Dushaishi 
et al. 2020; Amadi 2015). The annual cost to the industry is 
estimated to be in the billions of dollars (Hunter and Olle-
renshaw, 2014). Today, one of the ways to predict drilling 
pipe stuck is to use artificial neural networks (Ahmadi and 
Chen, 2020). The particle swarm optimization (PSO) tech-
nique trains the multilayered feed-forward neural networks 
to discriminate the different operating conditions (Ahmadi 

2012; Ahmadi et al. 2015). In 2007, Miri et al. conducted 
two models to predict differential sticking. They built the 
database model by creating 109 datasets representing 61 dif-
ferentially stuck pipe incidents and 48 non-stuck pipe events. 
The following drilling parameters are included in the data-
base model's input parameters: differential pressure, hole 
depth, and mud characteristics (API fluid loss, solid percent, 
mud filtrate viscosity, plastic viscosity, yield point, initial 
gel strength, and 10 min gel strength). Researchers utilized 
a back-propagation method, multilayer perceptron (MLP), 
and radial basis functions (RBF) for feed-forward networks. 
The research found that these networks are validated after 
3401 epochs for the MLP network and 4264 epochs for the 
RBF network, and they can estimate the error of around 
1%. They also discovered that the RBF model's test findings 
are more accurate than the MLP model's. Shadizadeh et al. 
used an artificial neural network to predict the probability of 
a stuck pipe in 2010. They tested their model on databases 
with a total of 275 cases in them. Datasets for the model 
were acquired from daily drilling reports (DDRs) in one of 
Iran's oil fields by Shadizadeh et al. There were 115 stuck 
cases and 160 non-stuck cases in the database. Non-stuck 
data were gathered when the wells were entirely safe and had 
not become stuck in the same broad operating zones. The 
created model produced a reasonable outcome, with over 
90% accuracy. Incidents with stuck pipes occur all around 
the world. However, due to the nature and structure of drilled 
formations, certain areas are more damaged than others. Al 
Dushaishi et al. 2021 established a model that consists of 
easily adaptable logical requirements that forecast stuck 
pipe events and provide a suitable treatment to unstick the 
pipe. Using simple and limited input inputs, their created 
approach could predict stuck pipe incidents with a 90% accu-
racy. Their prediction accuracy for removing the clogged 
pipe was 84 percent for the stuck pipe remedy model. The 
proposed models for stuck pipe events and remedy forecasts 
provide logical criteria based on simple quantities that may 
be used quickly in that oil field. A stuck pipe occurrence 
in one of the Middle East oil fields is investigated in this 
research. Most of the drilled wells in this field, according 
to DDRs, have had at least one stuck difficulty during their 
drilling operation. This issue has shown itself in every aspect 
of the well profile. In this industry, the cause of stuck pipes 
is significantly different. Tight hole problems, differential 
sticking, hole cleaning, and geometry problems are the most 
common stuck in this discipline. According to DDRs in the 
desired oil field, the processes used to liberate pipes in some 
cases are exceedingly time-consuming and costly. In this 
field, optimizing drilling parameters, mud characteristics, 
and geometry factors to reduce the danger of sticking can 
save time and money. A total of 85 wells in this field are 
investigated in this study. The wellbore is divided into four 
portions: hole Sections. 17 ½″, 12 ¼″, 8 ½″, and 6 1/8″. 
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The causes of becoming stuck are investigated in each area. 
This field also investigates the number of stuck cases for 
each Formation, the types of sticking, the procedures used 
to free the pipes, and the major reasons for getting stuck. 
After that, input parameters are chosen to build a model for 
predicting the chance of a stuck pipe in the desired field. 
Selected variables are normalized, and two databases for 
vertical and directional wells are created. Finally, in the ver-
tical and directed wells database, an artificial Intelligence 
method integrating neural networks and particle swarm opti-
mization (PSO) is used to predict stuck pipe probability. 
Artificial neural networks and swarm particle optimization 
are two machine learning approaches used in this study since 
they are both powerful prediction techniques. The classifi-
cation of problems into stuck and non-stuck cases is done 
using a PSO-based ANN model. The output variable is stuck 
pipe probability, while the input variables are drilling, mud, 
geometry, and hydraulic parameters.

Literature review

One of the major early stuck pipe prediction techniques is 
multivariate statistical analysis. Historically this technique 
was developed in the 1930s. Using MSA to predict stuck 
pipe occurrences was initially brought by Hempkins et al. 
through research done in 1985. Hempkins et al. claimed that 
before 1985 there had not been any statistical analysis that 
could bring some study to stuck pipe avoidance. Their study 
was applied to wells in the Gulf of Mexico. One major drive 
that forced scholars in the oil industry to explore several 
proactive approaches to predict stuck pipe is the high rate of 
sticking problems in the early 1980s, especially in the Gulf 
of Mexico and North Sea (Hempkins et al.). The authors 
stated that, between 1981 and 1984, almost 131 stuck pipe 
incidents were reported in the Gulf of Mexico. The research 
of Hempkins et al. included 131 stuck pipe cases and 20 
drilling variables. They utilized discriminant analysis to 
develop discriminant functions, equations derived from cor-
relations based on relationships between dependent and 
independent drilling parameters that would lead to the stuck 
pipe. These functions are set to classify the input data 
according to values of their parameters into three groups: 
mechanical stuck, differential stuck, and non-stuck pipe. The 
authors found that discriminant analysis brought an 81–87% 
success rate. In other words, the model can correctly classify 
the data into their predetermined groups by 81–87%. In 
1994, Biegler and Kuhn constructed a model that could pre-
dict stuck pipe using the same technique of MSA. Their 
model included physical parameters of stuck pipe and large 
drilling datasets. Biegler and Kuhn claimed that their model 
could predict or detect stuck pipes and identify the driving 
mechanism of pipe sticking. Thus, the current model can 

optimize the drilling parameters and lead to stuck avoidance. 
However, their model was limited to water-based mud, and 
commercial software was used to analyze the data. There 
were eight independent, meaningful physical variables 
selected for each well. The model can optimize these vari-
ables during well planning to minimize the risk of stuck 
pipes. Siruvuri et al., in 2006, were the first researchers who 
used artificial neural networks to predict stuck pipes. They 
claimed that neural network modeling could provide better 
and more accurate solutions for the problems associated with 
differential sticking events. The researchers constructed a 
database model that contained 200 datasets, where 120 were 
reported as differentially stuck pipe and 50 as non-stuck 
pipe. Also, 35 datasets were used for cross-validation. The 
remaining dataset rows were used for testing purposes. They 
separated your database to conduct studies for the water-
based and oil-based sticking phenomenon. The datasets 
belonged to different fields which are located in the Gulf of 
Mexico. The authors constructed a simple three-layer gen-
eralized feed-forward neural network model. The number of 
neurons in the first layer (input layer) is dictated by the prob-
lem considered and consist of ten processing element. The 
number of neurons in the second layer (hidden layer) is auto-
matically adjusted according to the strength of the data. 
Finally, the output layer includes two processing elements: 
differential stuck or no-stuck. To assess the model prediction 
performance, the authors calculated and examined two quan-
titative measures for predicted accuracy calculated and 
examined: MSE and final MSE. Finally, they observed that 
the proposed model could approximate the error with ± 5%. 
Additionally, Sirivuri et al. found that the accuracy of the 
predictive model depends on the size of the database and the 
variables selected for the analysis. Miri et al. (2007), con-
ducted research that utilized two models to predict differen-
tial sticking. They collected data from 32 wells drilled in the 
Persian Gulf from different fields (Soroush, Norouz, Abou-
zar, Forouzan, Salman, Dena, Doroud) during 1998–2006 
that experienced differential pipe sticking, and 31 wells that 
did not experience differential pipe sticking to construct the 
database for the neural network to predict the risk of dif-
ferential pipe sticking. Most of the wells were side-tracked 
and horizontal, and stuck pipe events have occurred in res-
ervoir layers of wells in which oil-based or synthetic drilling 
fluids were being used to drill. Scholars assumed that oil and 
synthetic fluids would perform the same. Therefore, the neu-
ral network database model will be prepared to study oil-
based and synthetic drilling fluids together. They constructed 
a database model by formulating 109 datasets representing 
61 differentially stuck pipe incidents and 48 non-stuck pipe 
incidents. Each of these datasets has been classified either 
as stuck or not-stuck. The input parameters of the database 
model include the following drilling parameters: differential 
pressure, hole depth, and mud properties (API fluid loss, 
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solid percent, mud filtrate viscosity, plastic viscosity, yield 
point, initial gel strength, and 10 min gel strength). They 
claimed that independence in the variable selection makes 
it possible to predict the occurrence conditions for the dif-
ferentially stuck pipe. The output values range from zero to 
one, corresponding zero to non-stuck cases, and 1 to stuck 
issues. Values between zero and one roughly represent levels 
of risk. They divided your database into training, validation, 
and test data that assigned 85, 5, and 15 percent to the theme, 
respectively. Researchers used a back-propagation algorithm, 
feed-forward networks, multilayer perceptron (MLP), and 
radial basis functions (RBF). Both models, MLP and RBF, 
consisted of four layers. In their study, Miri et al. adjusted 
the number of neurons in each layer like before research 
(Sirivuri et al.). They applied two transfer functions Tan-
hAxon and Linear Sigmoid Axon, to transform hidden and 
output layers. Results of the study showed that after 3401 
epochs for MLP network and 4264 epochs for the RBF net-
work, these networks are validated, and they can approxi-
mate the error of around 1%. Also, they found that test 
results for the RBF model are more accurate than the MLP 
model. In 2009, Adriana et al. research presented a study of 
applying fuzzy logic concepts to the problem of differen-
tially stuck pipes. They claimed that these methods could 
estimate the risk of stuck pipe occurrence in the well-plan-
ning procedure and during drilling in real time. Researchers 
made a database for their model that included three major 
data groups: mechanical, differential, and non-stuck. These 
groups form the basis of the entire Adriana et al. project 
analysis. They classified wells into 59 differentials, 68 
mechanical stuck pipes, and 58 non-stuck as control input in 
the entire analysis. Also, Adriana et al. utilized discriminant 
analysis to generate a predictive model of group membership 
based on similar characteristics of each group. To reduce 
independent variables for the fuzzy input, they defined 
dimensionless groups. Consequently, they reduced input 
parameters from 18 variables into five dimensionless forms 
by combining initial parameters. They used a fuzzy model 
and neural network to predict stuck pipe occurrences and 
provide the optimal values of the variables necessary to 
move a well from the stuck region into the non-stuck area. 
In Adriana et al. models, the redefined variables were used 
as independent variables, and F1, F2 discriminant functions 
from the discriminant analysis were used as the control 
input. The data are divided by using 75% of the data for 
training and 25% data for checking. According to the outputs 
of their models, they found that the neural network had less 
misclassification than the fuzzy logic. In 2010, Shadizadeh 
et al. applied the artificial neural network to predict stuck 
pipe probability. They used their model on databases that 
involved a total number of 275 cases. Shadizadeh et al. col-
lected datasets of the model from the daily drilling reports 
(DDRs) in one of the Iranian oil fields. The database 

contained 115 stuck and 160 non-stuck cases. Non-stuck 
data were collected from days that the wells were completely 
safe and had not become stuck in the same general areas of 
operation. Researchers selected input parameters between 
many parameters based on two criteria:

(1)	 There must be a spread of parameter values in the data-
bases. This allows the neural network to approximate 
the function more easily.

(2)	 The variable must not be dependent on other input 
variables only. A parameter may depend on other input 
variables but must also be dependent on a parameter 
that is not an input variable.

According to the above criteria, some parameters were 
removed from the analysis. These parameters are WOB, CA, 
MW, true vertical depth (TVD), solid percent, flow rate, 
API fluid loss, loss at formation, and Pf. This study defined 
a new dimensionless parameter as geometric factor (GF) to 
reduce the remaining parameters. This parameter is related 
to geometry parameters and included several parameters. In 
this work, the available data have been normalized into the 
range of 0–1, according to the drilling fluid condition in the 
different hole sections. They classified the study data into 
two groups: dynamic and static types. The drilling fluid is 
in circulation in dynamic conditions, while it is not circulat-
ing during static conditions. Finally, differential pressure, 
pH, GF, RPM, ROP, and PV were considered for dynamic 
conditions. The final selected network has a three-layer feed-
forward and back-propagation with a sigmoid-type activa-
tion function in the hidden and output layers. The number of 
neurons in the input, hidden, and output layers is 6, 3, and 1. 
The final parameters are differential pressure, GF, pH, YP, 
PV, and GL. The final network is a three-layer feed-forward 
back-propagation network with correspondingly six, four, 
and one neuron in its input, hidden, and output layers. Acti-
vation functions are “tansig” and “logsig” in the hidden and 
output layers. The result of constructed model was reason-
able with over 90% of accuracy. Al-Baiyat et al., in 2012, 
conducted research that included two models of machine 
learning to predict stuck pipe incidents. In addition to the 
neural network technique, Al-Baiyat et al. used another 
artificial intelligence method supporting vector machines 
(SVMs). The authors constructed a database that denoted 
as Group-X.

Datasets of Group-X were retrieved from the technical 
paper SPE 120128 by Murillo et al. 2009. The total num-
ber of selected datasets for learning in Group-X was 48 and 
18 for testing. The datasets from Group-X were sorted into 
testing or learning randomly but evenly distributed among 
the class labels. For Group-X datasets, each set had a target 
that is denoted by a stuck index as DS: differential stuck, 
MS: mechanical stuck, or NS: non-stuck. The constructed 
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ANN model for this research was based on the multilayer 
perceptrons. Researchers built an ANN model for Group-X 
that was contained 18 neurons for the input layer since the 
number of parameters provided for that group is 18. Also, 
based on the optimization process, it has been found that 
the number of neurons in the hidden layer in the Group-X 
model was the number of inputs plus one, which was 19 
in this case. Since the model will produce one class label 
for each dataset (either stuck or non-stuck), the output layer 
was designed to have a single neuron. The two most com-
mon activation functions in artificial neural networks were 
implemented; Sigmoid and Tanh. According to the sequence 
of activation functions, four scenarios in the ANN models 
were constructed for their project. They claimed that ANNs 
and SVMs are powerful tools for predicting stuck pipe inci-
dents which are otherwise very complicated because of the 
number of variables. Also, the researchers have shown that 
machine learning techniques can predict the stuck pipe with 
reasonable accuracy, which is more than 83% based on the 
data that have been utilized. Al-Baiyat research showed 
that SVMs are more accurate in stuck pipe prediction than 
ANNs based on the data used. Another work in 2013 done 
by Chamkalani et al. demonstrated the usage of the support 
vector machine model to predict stuck pipe. A new model is 
developed using different wells' drilling parameters such as 
measured depth, mud weight, plastic viscosity, yield point, 
gel strengths, PH, and solid percent. The method incor-
porates hybrid least square support vector regression and 
coupled simulated annealing (CSA) optimization technique 
(LSSVM-CSA) for efficient tuning of SVR hyperparam-
eters. The algorithm is applied to classify the stuck types, 
i.e., differential stuck or mechanical stuck. The data used 
for this study were collected from a Middle East oil field 
(Shoraka et al. 2011). Two hundred and nineteen sets of 
data were gathered in which non-stock had a portion of 109 
data, mechanical acquired 51 datasets, and the remaining 59 
data were allotted to differential sticking. The authors found 
that the model created in the study came up with a higher 
95% success rate to classify the data into three groups of 
stuck pipes.

Geological settings

Field description

The Dezful Embayment, which encompasses 45 oil fields 
and is frequently associated with gas caps, is one of the Mid-
dle East's most prolific locations. Aghajari, Ahwaz, Bibi 
Hakimeh, Gachsaran, Mansuri, Marun, and Rag-e Safid are 
all classified as supergiants since they contain 10 to 50 bil-
lion barrels of oil in place. Figure 1 depicts these oil fields. 
The desired oil field is the subject of this case study. In 1956, 

the chosen oil field, one of the Middle East's most major 
supergiant oil fields, was discovered. This oil field is located 
in the southwest of Iran, in the center section of the north 
Dezful region. It features an anticline structure 72 km long 
and 6 km wide with an NW–SE trending symmetrical anti-
clinal. With 1,000,000 barrels per day, the Asmari Forma-
tion and Bangestan Group are its primary reservoirs.

Well schematic and geological formations in desired 
oil field

•	 The well design is chosen based on subsurface data such 
as formation pressures, strengths, constitution, cost goals, 
and drilling approach preferences. Figure 2 depicts a typ-
ical schematic of a well profile in the desired oil field. 
Figure 2 also shows that the well design consists of four 
hole sections: 17 ½″, 12 ¼″, 8 ½″, and 6 1/8″.

•	 A.J., MN, and GS7 formations are common in the 17 
½″ hole sector. To isolate the 17 ½″ hole, a 13 5/8″ cas-
ing shoe is put into the GS6 Formation. In the Dezful 
Embayment, the AJ Formation has the thickest layer. 
Silty marls, carbonated sandstones, and siltstones form 
up the upper part of AJ. This formation constitutes 
laminate red marls or gypsum veins, mud fissures, and 
grained siltstones. This formation is often drilled with 
62–70 PCF water base mud. Gray marl with limestone 
blades includes the MN formation. With AJ, the upper 
contact surface is gradual, while the lower contact sur-
face is very sharp and clear with GS. The GS7 formation 

Fig. 1   Oil fields in Dezful Embayment, Middle East
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comprises anhydrite, gray marl, and limestone at the top 
of the Gachsaran Formation. It has a thickness of nearly 
92 m in the desired oil field. GS7 is usually under low 
pressure.

•	 From GS6 to CR, a 12 ¼″ hole is drilled. This range 
contains the formations GS6, GS5, GS4, GS3, GS2, and 
CR. Isolate this hole with 9 5/8″ casing before drilling 
an 8 ½″ hole. Casing shoe is put in CR formation at 9 
5/8″. The Gachsaran formation consists of evaporating 
anhydrite and salt with a small porosity and is deform-
able when compressed. There are seven members in the 
evaporating Gachsaran Formation. The Asmari Reservoir 
Formation's lowest member, member 1, is the caprock. 
Members 2 to 5 are particularly harmful due to the enor-
mous pressures generated by the saline water it contains. 
Members 6 and 7 are usually under a lot of stress. As 

previously stated, the 13 5/8″ casing shoe is put in the 
first layer of anhydrite at GS6.

•	 CR, AS, PD, GU, and IL formations are usually observed 
in the 8 ½″ hole section. A 7″ liner guards this area. A 7″ 
shoe indicates the top of the SV formation. Limestones, 
dolomitic limestones, and argillaceous limestones consti-
tute the Asmari formation (one of the most well-known 
carbonate reservoirs in the world). The Asmari Forma-
tion, which ranges in thickness from 250 to 500 m and 
is rich in large Foraminifera, is a high-energy limestone 
with outstanding reservoir properties throughout the 
Dezful Embayment. A significant fracture system often 
improves reservoir quality near the tops of high-relief 
anticlines. The Asmari becomes sandy (Ahwaz Sand-
stone Member) at its base in the SW Dezful Embay-
ment, increasing its porosity. The Gachsaran Formation 
is evaporated by the thick caps of the Asmari, forming 
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Fig. 2   Typical schematic of well profile in desired oil field, Middle East
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a strong barrier. Asmari and Bangestan reservoirs in the 
Dezful Embayment oil fields are separated by the Pabdeh 
and Gurpi formations.

•	 On the other hand, these formations act as barriers for the 
Dezful Embayment's Bangestan reservoirs. These rocks 
can approximate marl or shale at times. Pabdeh formation 
consists of shale and clay-limestone. The Ilam Forma-
tion forms the upper part of the Bangestan reservoir. On 
the Ilam horizon, the Ahwaz Bangestan reservoir has a 
length of 75 km and a width of 8 km. The Ilam Forma-
tion is made up of gray microcrystalline limestone that 
is thin to medium in thickness and is well-bedded. This 
layer is overlain by the Sarvak Formation and underlain 
by the Gurpi Formation.

•	 SV formation is drilled with a 6 1/8″ section. A 5″ liner 
is used to seal this hole, and a 5″ liner shoe is placed at 
the bottom of the SV formation. The thick Sarvak lime-
stone (300–1000 m thick) and the thinner Ilam Formation 
constitute the Bangestan reservoir (50–200 m thick). The 
thick Gurpi/Pabdeh marls covered these two reservoirs, 
creating a single reservoir in most Dezful Embayment. 
In southern Iran, the Sarvak Formation is one of the rock 
layers of the Bangestan group. This Formation's carbon-
ate rocks are from the study field's reservoir rock.

Methodology

Selecting and assembling data

Preparing a database for machine learning models is a cru-
cial step. Because noisy inputs result in poor model per-
formance, the datasets must be accurate. A huge database 
also has a significant impact on the learning process. The 
model can be trained more effectively if the dataset is large 
enough. A total of 85 wells in this field were investigated 
in this investigation. Table 1 shows that 42 of the wells are 
vertical, whereas 43 are directional. In addition, 60 of the 
total wells were stuck at least once, while the other wells 
were drilled without issue. To create the model database, 
230 sets were taken from daily drilling reports (DDRs) of the 
above wells, with 130 sets related to directional wells and 
100 sets of data linked to vertical wells. There are 80 data-
sets of stuck instances and 50 datasets of non-stuck cases in 

the directional wells database. In addition, the vertical wells 
database has 50 datasets for stuck points and 50 datasets for 
non-stuck points, respectively. Non-stuck datasets were cho-
sen from wells that did not report the problem of being stuck 
in their DDRs (22 wells that were drilled without issue). 
The control of model calculations will be based on these 
datasets. Table 2 shows the number of datasets for stuck and 
non-stuck wells according to well type. These datasets will 
be used in the modeling portion to create a PSO-based ANN 
model to predict stuck pipe probability in this field. These 
datasets will be used as input parameters for the learning 
process in this model. But first, according to DDR's exper-
tise in this subject, the causes of this phenomenon are stud-
ied. As previously stated, the stuck problems have occurred 
in all portions of wells with hole sizes of 17 ½″, 12 ¼″, 8 
½″, and 6 1/8″. Figure 3a depicts the percentage of each hole 
size from the stuck incidence. Because each section has a 
unique geological condition, studying stuck pipe reasons is 
based on hole size. Drilling parameters, mud characteristics, 
and other drilling circumstances are also likely to differ from 
one hole section to the next. As a result, the size of the hole 
can be used to study stuck situations. It should be noted that 
the stuck pipe occurrence is a complex issue with numerous 
variables at play. However, this issue has been researched 
for each hole size, and the primary cause of sticking has 
been determined.   

Input parameters

Drilling parameters, mud characteristics, geometry param-
eters, and hydraulic parameters were collected from DDR. 
The optimal input variables were chosen based on the causes 
of stuck pipes in this field. Additionally, to optimize the 
model's performance, the database was divided into two sep-
arate databases: vertical and directional wells. All of these 
characteristics have been chosen so that they are mostly self-
contained. Tables 3 and 4 illustrate these characteristics for 
vertical and directional cases, respectively.

•	 Mud Weight (MW)
	   As aforementioned, mud weight plays a critical func-

tion in all portions of the well. Additionally, differential 
sticking and tight hole problems, which are the most 

Table 1   Number of wells

Tittle Vertical wells Directional 
wells

Total wells

Experienced stuck pipe 30 33 63
Observation wells 12 10 22
Total wells 42 43 85

Table 2   Number of datasets

Tittle Vertical wells Direc-
tional 
wells

Stuck datasets 50 80
Non-stuck datasets (observa-

tion data)
50 50

Total data 100 130
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prevalent types of stuck in this field, can be prevented 
with the proper mud weight. MW versus MD is displayed 
in Fig. 4 for both stuck and non-stuck cases in all depths 
of well. As illustrated in Fig. 5, MW for stuck situations 
is more strongly related to non-stuck issues at certain 
depth intervals (1000–2000 m and 3000–4000 m). Sig-
nificant out-of-balance conditions at these intervals may 
result in differential sticking.

•	 Solids level
	   The kind and amount of solids in the cake determine 

its properties and the degree to which it sticks to the pipe. 
It should be noted that raising the cake thickness in a 
wellbore increases the chances of a stuck pipe. The solid 
% for stuck and non-stuck cases against MD is shown in 
Fig. 6. As illustrated in Fig. 7, between 3000 and 4200 m, 
the solid percent is more suitable for stuck difficulties.

•	 Measured Depth
	   In a stuck situation, the wellbore length can be an 

effective parameter. Greater strains will be put on the 
Formation at deeper depth, which could be a signifi-
cant stuck pipe variable. Additionally, as drilling depth 
increases, drilling conditions become more difficult, 
increasing the danger of sticking. Figures 8 and 9 illus-
trate the number of stuck pipe-cases as a function of the 
MD interval between 0 and 500 m for vertical and direc-
tional wells. As shown in Figs. 10 and 11, most stuck 
cases occurred at depths greater than 3,000 m in vertical 
wells. In contrast, most of the stuck points occurred at 
greater depths than 2000 m in directional wells. Addi-
tionally, directional wells are shown to have more stuck 
problems at shallow depths than vertical wells.

•	 Kick-off Point
	   The kick-off point, or KOP, is defined as the point in 

the wellbore referred to as a vertical depth below the 
surface at which the well begins to deviate from verti-
cal in a particular direction at a specific inclination and 
build-up angle. Generally, this is governed by the well 
targets and geological conditions. If the KOP is located 
at a shallow depth, the chance of sticking increases, as 
the directional section will be the well profile's longest 
section. In this field, wells identified with their KOP in 
the 17 ½″ hole section encounter more difficulties than 
wells located with their KOP in the 12 ¼″ hole section.

•	 Yield Point
	   Y.P. represents the yield stress extrapolated to a zero 

shear rate. YP is used to determine a mud's ability to lift 
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cuttings from the annulus. A high YP indicates a non-
Newtonian fluid that transports cuttings more efficiently 
than a fluid of comparable density but lowers YP.

•	 Plastic viscosity (PV)
	   The slope of the shear stress/shear rate line above the 

yield point is indicated by PV. A low PV value implies 
that the mud can drill rapidly due to the low viscosity of 
the mud exiting the bit.

•	 Gel Strength (Initial and 10 min)
	   Shear stress is determined at a low shear rate after a 

mud has sat in a quiescent state for some time (10 s and 
10 min in the standard API procedure). Certain drill-
ing fluids are thixotropic, gelling when left stagnant and 
liquefying when sheared. According to the measured gel 
strength versus time, a drilling fluid's specific gel strength 
is classified as low-flat (most desirable), progressive, or 
high-flat (both undesirable). It can be inferred that using 
the correct values for the YP, PV, and gel strength param-
eters results in improved hole cleaning and a reduced 
danger of sticking. It should be noted that the hole clean-
ing difficulty is one of the desired field's stuck mecha-
nisms.

•	 Revolutions per Minute (RPM)
	   Increased rotational speed speeds up the process of 

straightening the drill collars. By increasing the RPM 
of the bit, more opportunities to cut the formation are 
produced in a given period. In the presented approach, 
the pipe being stuck is considered to be based on the 
specified parameter. This parameter is plotted versus MD 
in Fig. 9 for both stuck and non-stuck conditions. As 
indicated in Fig. 12, the RPM for stuck issues is lower 
than for non-stuck difficulties at shallow depths. How-
ever, at great depths, the RPM of non-stuck objects is 
significantly reduced.
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Fig. 3   (continued)

Table 3   Selected parameters for 
vertical case

Parameters Symbol Unit Category

Hole size Hole size Inch Geometry parameters
Depth of the last shoe Last shoe Meter
The measured depth of stuck MD Meter
Rate of penetration ROP ft/hr Drilling parameters
Revolutions per minute RPM Round/min
Pump Rate GPM Gallon/minute Hydraulic parameters
Mud weight MW Pound per ft (PCF) Mud properties
Plastic viscosity PV Centipoise
Yield point YP Centipoise
Gel strength (Initial and 10 min) GEL Centipoise
Solid percent Solid% Percent



	 Journal of Petroleum Exploration and Production Technology

1 3

Redefining variables

Combining input parameters is a typical data preparation 
approach in artificial intelligence methods. This combination 
should be straightforward and rational. In this work, several 
of the above parameters were reinterpreted as input variables 
for the user in the PSO-based ANN model. Six parameters 

have been redefined so that they become dimensionless fac-
tors. These are the following parameters: YP, PV, GL10M, 
GEL10 SEC, KOP, and last shoe. The following new param-
eters have been defined:

Psically, it is evident that when the open hole ratio and 
curve section ratio rise, the risk of a stuck pipe increases. 
It is important to remember that this approach has been 
employed in past works. Shadizade et  al. (2010), for 

(1)Open hole ratio =
(MD − Last shoe)

M.D.
=

OH

MD

(2)Curve section ratio =
(MD − KOP)

MD

(3)Gelatin ratio =
GL 10MIN

GL 10SEC

(4)Viscosity ratio =
PV

YP

Table 4   Selected parameters for 
directional case

Parameter Symbol Unit Category

Hole size Hole size Inch Geometry parameters
Depth of the last shoe Last shoe Meter
The measured depth of stuck MD Meter
Kick-off Point KOP Meter
Well Azimuth AZ Degree
Hole Angle AN Degree
Rate of Penetration ROP ft/hr Drilling parameters
Revolutions Per Minute RPM Round/min
Pump Rate GPM Gallon/minute Hydraulic parameters
Mud weight MW Pound per ft (PCF) Mud properties
Plastic viscosity PV Centipoise
Yield point YP Centipois
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example, used a parameter comprised of several simple 
geometry variables (geometrical factor). Additionally, Muri-
llo et al. (2009) reduced independent variables for the fuzzy 
model using dimensionless groups. Murillo et al.  trans-
formed 18 variables into five dimensionless forms. Finally, 

Fig. 7   Comparison of real and 
predicted results for training 
data (vertical wells)
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Fig. 9   The flowchart of PSO algorithm
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the input parameters for the PSO-based ANN model were 
chosen to correspond to those listed in Table 5 for vertical 
and directional wells—along with the redefined variables 
listed in Table 6.  

Normalization

Normalization of data refers to converting all variables 
in a database to a given range. When differences in vari-
ables have a negative impact on the model's performance, 
normalization is used. As illustrated in Table 7, the input 
parameters used in this investigation are quite varied. Thus, 
data normalization is critical in preprocessing the data for 
this investigation. Normalization of the database can ensure 
consistent convergence of weights and biases in ANN mod-
els. To normalize the input parameters in this research, the 
following formula was used:

where X (n): normalized value, X (min): minimum of origi-
nal values, X (max): maximum of original values, X: original 
value.

This formula transforms all data to the interval between 
0 and 1. Table 7 illustrates the range of initial parameters 
for both database scenarios (vertical wells and directional 
wells).

(5)X(n) =
X − X(min)

X(max) − X(min)
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Table 5   Input parameters for PSO-based ANN model

Input parameters for PSO-based ANN Model

Vertical Wells Hole Size OH/MD MD ROP RPM GPM MW PV/YP GEL2/GEL1 SOLID%
Directional Wells Hole Size OH/MD MD ROP RPM GPM MW PV/YP (MD-KOP)/MD AZ AN

Table 6   Redefined variables

Initially Variable Unit Redefined variable Unit

YP CP PV/YP Dimensionless
PV CP
GEL10MIN CP GEL10 MIN/GEL10 

SEC
Dimensionless

GEL 10SEC CP
MD METER OH/MD Dimensionless
Last shoe METER
MD METER (MD-KOP)/MD Dimensionless
KOP METER

Table 7   Range of parameters values for vertical and directional data-
base

Parameter Minimum Maximum

Directional wells
HOLE PROB 6.125 17.5
Last shoe 56 4059
kop 452 3777
Azimuth 16 351.5
Angle 1 88
ROP 0.33 13
RPM 35 200
GPM 190 1350
MW Stuck 60 152
PV 0 98
YP 0 33
MD Stuck 204 4457
Vertical wells
HOLE PROB 4.125 17.5
Last shoe 56 4194
ROP 0 12.27
RPM 0 190
GPM 0 1000
MW Stuck 56 147
PV 0 86
YP 0 32
MD Stuck 624 4192
SOLID% 0 46
IN GEL 0 14
10MIN GEL 0 18
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Stuck pipe prediction using a hybrid PSO‑based 
ANN

A hybrid PSO-based ANN model was used to construct a 
model for predicting the chance of a stuck pipe. Particle 
swarm optimization (PSO) is being used in the study to train 
a feed-forward neural network to improve the convergence 
rate and learning process. The PSO algorithm is dependent 
on its implementation in two relationships:

where c1 and c2 are positive constants, r1 and r2 are random 
functions in the range [0,1], xi = (xi1, xi2,…,xid) represents the 
ith particle; pi = (pi1, pi2,…,pid) represents the ith particle's 
best previous position (the position with the highest fitness 
value); the symbol g represents the index of the best particle 
in the population; and v = (vi1,vi2,…,vid (Amin and Rodin 
1998). The PSO algorithm's flowchart is depicted in Fig. 9. 
As previously stated, the primary objective of training 
ANNs with PSO is to get weights and biases that minimize 
the MSE. Particles move throughout the weight and bias 
space and update their positions during each iteration. The 
best error sets for the entire system are denoted by gbest, and 
the best error sets for each particle are indicated by pbest. 
Then, the ANN model is trained using the obtained particle 
positions, and the new error is calculated using new weights 
and biases until a sufficient mistake is found. Weights and 
biases are calculated and used for prediction.

Test and train data

As noted previously, two different database models were cre-
ated to fund vertical and directional wells studies. The data-
base is divided into subsets for training and testing. 80% of 
the dataset was used for training purposes for each database, 
and 20% was used to evaluate the model's performance. As 
shown in Table 8, 80 and 20 sets were assigned to training 
and testing data in vertical wells, respectively. There are 155 
and 20 training and testing datasets for directional wells, 

(6)
Vid =w × vid + c1 × r1 ×

(

pid−xid
)

+ c2 × r2 ×
(

pgd−xid
)

(7)Xid = xid + vid

respectively. The training and testing data percentages were 
determined randomly among all datasets in this analysis.

Design of networks

The optimal performance of the PSO-based ANN model can 
be reached by carefully selecting its parameters. As a result, 
numerous runs were conducted to determine the optimal 
parameters. The ANN model used in this study is based on 
multilayer perceptrons, which were addressed in the pre-
ceding chapter. It is worth noting that PSO can only change 
weights and biases to decrease learning error. In compari-
son, the network design (number of hidden layers and nodes 
within each hidden layer) must be optimized.

Number of  neurons and  layers  The number of layers and 
neurons for each layer of the developed PSO-based ANN 
models are shown in Table 9. The input, hidden, and output 
layers are present in both cases. The input layer represents 
the problem's input parameters. As a result, the number of 
neurons in this layer equals the number of problem param-
eters. Because the number of parameters provided for this 
scenario is ten, the input layer in the model of the vertical 
well has ten neurons. To determine your total neural net-
work architecture, you must first select the number of hid-
den neurons in a layer. Underfitting happens when there are 
not enough neurons in the hidden layers. Underfitting occurs 
when there are not enough neurons in the hidden layers to 
identify the signals in a complicated dataset (Chamkalani 
et  al. 2013). Having too many neurons in the hidden lay-
ers might cause several problems. Overfitting may arise if 
there are too many neurons in the hidden layers. When a 
neural network has so much information processing capac-
ity that the limited amount of data in the set is insufficient 
to train all neurons in the hidden layers, this is known as 
overfitting. Even when there is enough training data, a sec-
ond issue can arise. Many neurons in the hidden layers can 
increase the time it takes to train the network. The network 
results showed that the eight hidden neurons have the best 
performance. There are numerous rule-of-thumb methods 
for finding the correct number of neurons to employ in the 
hidden layers. Here is a summary of a few of them: (Cham-
kalani et al. 2013).

•	 The number of hidden neurons should equal the differ-
ence between the input and output layer sizes.

•	 The number of hidden neurons should be 2/3 the size of 
the input layer plus the output layer size.

•	 The number of hidden neurons should not exceed twice 
the size of the input layer.

Table 8   Test and train data

Tittle Vertical wells Direc-
tional 
wells

Training data 80 104
Testing data 20 26
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However, the model was tested in the hidden layer with 
many neurons. Finally, the model of the vertical well pro-
duced the greatest results when seven neurons were counted 
in the hidden layer. The model will provide a single output 
for each dataset, a real number indicating the stuck pipe 
probability, resulting in a single neuron in the output layer. 
The number of neurons in the directional well model was 
11, 8, 1, and 1 neuron in the input, hidden, and output lay-
ers, respectively, in the same way, that they were for the 
vertical wells.

Activation functions  Before training the model to add non-
linearity into the network, the transfer function at the active 
nodes of the feed-forward must be fixed. In practice, before 
training a neural network, the dataset must be preprocessed. 
The data are compressed during preprocessing to fit inside 
the activation function's active range. In neural network 
(NN) modeling, the activation function is crucial. Choos-
ing the correct activation function for the NN design, on 
the other hand, is not critical (Al-Baiyat and Heinze, 2012). 
Many transfer functions have been developed; however, the 
two most popular neural networks are the logistic functions 
in artificial and hyperbolic tangent activation. As a result, 
these functions were used as a transfer function in both well 
datasets. The following equation gives the logistic activa-
tion function:

It is a sigmoid (S-shaped) curve, and the outputs are in 
the range of [0, 1]. Also, the hyperbolic tangent activation 
function is as follows:

(8)f (x) =
1

1 + e−x

It is a sigmoid curve, similar to the logistic function. 
However, the output range is [1, + 1]. Because of its sym-
metry, it frequently outperforms the logistic function.

Particle number and  termination criteria  While a small 
number of particles may fail to convert to a global solution, 
a large number of particles may cause convergence to be 
delayed and training time to be extended. Many runs were 
obtained because there is no theoretical study for determin-
ing the optimal number of particles. Increased particle sizes 
result in lower error values in the vertical well model. How-
ever, following a considerable improvement in network per-
formance for swarm sizes of 10–150 particles, some minor 
variations in error values have occurred for swarm sizes 
bigger than 150 particles. On the other hand, the running 
time increases as the size of the swarm (number of particles) 
grows. As a result, in PSO-based ANN models for vertical 
wells, a value of 150 particles was chosen as the optimum 
number of particles.

In comparison, 200 particles were selected similarly for 
directional wells. The termination criteria are the circum-
stances that must be met for the iterative process to close. As 
a termination criterion in this study, the maximum number 
of iterations was chosen. As a result, the iterative process 
ends once the maximum number of iterations is achieved. 
Significant modifications were observed during the initial 
iterations according to the model's output. The variations in 
MSE values were reduced as the number of iterations rose.

Nonetheless, until iteration 500, the changes were moder-
ate, and beyond that, the MSE fluctuations were minimal. As 
a result, the maximum number of iterations was chosen to be 

(9)f (x) =
2

1 + e−2x
− 1

Table 9   Network architecture

Ti�le  Layers Number of Neurons  Func�ons Number of Par�cles  Itera�on  

Ver�cal Wells 

Input layer 10 
Hyperbolic Tangent 

150 500 hidden layer 7 

logis�c 
Output layer 1 

Direc�onal Wells 

Input layer 11 
Hyperbolic Tangent 

200 500 Hidden layer 8 

Logis�c 
Output layer 1 
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500. This termination condition concluded the iterative pro-
cess when the maximum number of iterations was reached.

Accuracy and error

The network's output is usually in the [0 1] range. The data 
are classed as stuck cases if the result is larger than 0.5, and 
it is classified as non-stuck cases if the output is less than 
0.5. The inaccuracy is then calculated using a comparison 
of actual and expected work. The following is how the error 
is calculated:

The accuracy of any model is determined by the number 
of outputs correctly identified throughout all datasets. As a 
result, the model's accuracy is calculated using the formula:

Another error function that has been used to determine 
the error of outputs in prior work is “Mean Square Error” or 
MSE, which is defined as the following formula:

where: MSE = Mean Square Error, stuck index (0 or 1 in 
this study), T: predicted stuck index (output of the model), 
N: total number of data for each case.

Because this is a classification problem, 10 and 11 for-
mulas are more relevant for calculating error and accuracy 
than 12.

Results and discussion

Stuck pipe problem in desired oil field

Stuck pipe problems are among the most difficult chal-
lenges to solve during a drilling operation at the desired 
field. According to DDRs, most drilled wells in this field 
have had at least one stuck pipe occurrence during their drill-
ing operations. This issue has shown itself in every aspect 
of the well profile. The procedures and methods used in the 
desired field to free the pipelines are time-consuming and, 
in some cases, ineffective. Drilling parameters, mud charac-
teristics, and geometry factors can all be optimized to reduce 
the chance of sticking and save time and money through-
out the drilling operation. In this industry, there are various 

(10)
Error =

The number of stuck data considered as non - stuck+The number of non - stuck data considered as the stuck

total number of data

(11)Accuracy =
the number of data predicted correctly

total number of data

(12)MSE =
1

N

N
∑

1

(y − T)2

reasons for a stuck pipe. Tight hole difficulties, differential 
sticking, hole cleaning, and incorrect well geometry are the 
most common stuck in this field. In this section, stuck pipe 
issues are investigated in all well hole sizes, and a model is 
developed to estimate stuck pipe probability in this field.

Stuck problems in 17 ½″ hole size

There were twenty-one total stuck incidents in this hole, with 
seven occurring in vertical wells and fourteen in directional 
wells. Figure 3b shows that the tight hole mechanism is the 

most common type of stuck pipe in this area. Most of the 
issues occurred during the wash and ream, surveying, con-
nection, RIH, and POH operations. Table 10 shows that most 
of the stuck scenarios in 17 ½″ hole sizes occurred in the 
AJ Formation. The AJ Formation had the most stuck cases, 
accounting for 75% of all cases in this section. According 
to DDRs and other data, the main reason for the stuck pipe 
in this part is as follows: Swelling of the AJ Formation can 
occur if the drilling duration in this hole is extended. While a 
result, like wash and ream, surveying, RIH, and POH activi-
ties, is carried out across these swollen formations, the prob-
ability of a stuck pipe increases due to the downfall. Inap-
propriate mud and hydraulic parameters, on the other hand, 
have a significant impact on the stuck incidence in this hole. 
Table 11 contains more information on stuck cases in the 
17 ½″ hole section. For each stuck example, the formation 
name, MD of stuck, KOP, hole angle, and stuck condition 
have been determined in these tables. In addition, the meth-
ods employed to release the pipes for each scenario were 
described. Figure 3c also shows the percentage of stuck pipe 
for each formation in a hole size of 17 ½″.

Table 10   Number of stuck pipe in 17 ½″ hole based on formation

Formation Vertical wells Directional wells Total

AJ 2 13 15
MN 2 0 2
GS7 0 1 1
GS6 3 0 3
7 14 21
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Stuck problems in 12 ¼″ hole size

According to Table 12, directional wells accounted for 21 
of the total stuck datasets in this hole size, whereas verti-
cal wells accounted for only three. As a result, directional 
parameters are crucial in this part. The tangent region of the 
well profile is usually where a 12 ¼″ hole is found. Further-
more, the tangent section will be tight if the mud weight is 
less than the acceptable amount for this part. As a result, the 
drilling pipes may become stuck in a tight hole. On the other 
side, if the KOP depth is shallow, the tangent portion of the 
well profile will be the long sector, increasing the chances 
of getting stuck. Other reasons for becoming stuck in the 12 
¼″ area, according to Fig. 3d, are differential sticking and 
hole cleaning processes. As shown in Table 12, most of the 
issues occurred in GS5 Formation. Furthermore, the major-
ity of occurrences of stuck pipe in this hole happened dur-
ing operations such as wash and ream, connection, drilling, 
RIH, and POH. Table 13 contains more information on stuck 
cases in the 12 ¼” hole section. For each stuck case, the 
formation name, MD of stuck, KOP, hole angle, and stuck 
condition are listed in this table. In addition, the techniques 
for releasing pipes are stated for each situation. Figure 3e 

also shows the percentage of stuck pipe for each formation 
in a 12 ¼” hole size.

Stuck problems in 8 ½″ hole size

The hole size of 8 1/2″ is the most problematic, accounting 
for 39% of all stuck records (47 stuck cases). The occur-
rence of formations with varied pore pressures throughout 
this hole could be the fundamental reason. AS, PD, GU, 
and IL forms are typically found in this region. Because 
the AS (Asmari) formation is a depleted zone, it requires a 
lower mud weight. Lower formations, such as PD and GU, 
are high-pressure and require a lot of mud to impact the 
AS Formation. Differential sticking occurs in three ways in 
the AS Formation: permeable, porous, and depleted. As a 
result of these factors, differential sticking has the highest 
percentage of stuck types in the 8 ½” hole, accounting for 
50% (23 occurrences) of total points. For each formation, the 
average MW (mud weight) that has been used in this hole 
has been compared to the average MW data of observation 
wells in this hole (Table 14). Figure 13 shows that the aver-
age MW in stuck wells (wells with a stuck pipe) is higher 
in all formations when compared to observation well data. 
For both stuck and non-stuck situations, these data are dis-
played in Fig. 14 versus MD (measured depth). The AS and 
IL forms, with 14 and 14 stuck points, respectively, are the 
most challenging formations, as shown in Table 15. Other 
than differential sticking, there are other explanations for 
stuck pipe accidents in this scenario. The many causes of 
being stuck in this region include a tight hole difficulty and 
incorrect drilling parameters. Figure 3f and g indicates the 
percentages of stuck pipe for each formation and stuck type 
in 8 ½” hole sizes, respectively.

Table 11   Details of stuck problems in 17 ½″ hole section for vertical wells

Cases Formation stuck MD of stuck Stuck Condition How Free Pipe

1 AJ 624 TRY TO CONN/OBS PIPE 
STUCK IN UPWARD

W/BACK REAM F/624-620 m WHILE PUMP 70BBL SALT WTR​

2 AJ 1214 W&R FREE W/90000LBS OVERPULL
3 MN 1734 W&R FREE W/80 KLB O.PULL(270 KLB ON WT. IND.), DUE TO 

TIGHT HOLE INC. MW TO 87 PCF
4 MN 1164 POH W/MAX 130klbs (285klbs ON WT.INDICATOR)
5 GS6 1685 RIH CSG PUMP 150 BBL S.WTR & 150 BBL F.WTR @ 2 TIMES

UPWARD MAX 600 K# ON WT.IND
6 GS6 1026 POH FOR CONN WORK ON STUCK SEVERAL

TIMES, FREE PIPES W/50 k lbs OVER PULL
7 GS6 1500 B.REAM TO 1500 FREE STUCK W/80000# O.PULL W/0-3

BPH LOSS TILL M.N

Table 12   Number of stuck pipe in 12 ¼ hole based on formation

Formation Vertical well Directional well Total

GS6 0 1 1
GS5 1 9 10
GS4 0 3 3
GS3 0 2 2
GS2 0 2 2
CR 2 4 6
3 21 24
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Stuck problems in 6 1/8″ hole size

Thirty-three stuck cases were discovered in 6 1/8″ holes, 
with 20 cases involving vertical wells and 13 directional 
wells. SV and IL formations are located in this hole. In SV 
and IL formations, respectively, stuck pipes occurred 20 and 
7 times. In this hole, there was a stuck pipe caused by many 

Table 13   Details of stuck problems in 12 1/4" hole section for directional wells

Cases KOP Angle Formation stuck MD of stuck Stuck Condition How Free Pipe

1 1750 27 GS6 2358 WHILE CONNECTION DECREASE MW TO 136 PCF & PUMP PIPE LAX
2 1306 1 Gs5 2570 POH 80 KLBS DOWNWARD APPLY TORQUE & CIRCULATE 

OUT 100 BBL SALT WATER
3 1204 32 GS5 2231 RUN SURVEY PUMP PIPE LAX AND JARRING
4 993 32 GS5 2314 POH NOT FREE
5 1162 27 GS5 2495 WHILE

DRLG
W/80000 OVER PULL & DOWN WARD

6 980 33.51 GS5 2175 WHILE
CONN

PUMP SALT WATER & JARRING & OVER PULL &

7 1165 28 GS5 2158 WHILE
DRILLING

OVER PULL, PUMP 100 BBL SALT WATER PIPE FREE

8 540 22 GS5 2207 WHILE
POH

INCREASE MW TO 144 & & PUMP PIPE LAX & OVER 
PULL & ROTATE

9 1001 35.4 GS5 2227 WHILE
WASH &
REAM

JARRING & OVER PULL

10 980 33.51 Gs5 2404 WORK
ON MUD
PUMP

GET FREE WITH OVER PULL

11 1001 35.4 GS4 2578 WHILE
POH

FREE W/ROTATE & PUMPING

12 1001 35.4 GS4 2648 WHILE
GET
SURVEY

DECREASES MW TO 140 PCF

13 1909 36 GS4 2612 DRLING OVER PULL
14 980 33.51 GS3 2643 WHILE

TEST
PUMP SALT WATER & JARRING & OVER PULL & 

TORQUE GET FREE
MWD AT
BTM

15 1330 25 GS3 1993 POH PUMPED 60 BBL PIPE LAX, PIPES FREE
16 1027 22 GS2 2610 DRLING

AND
RUN
SURVEY

PUMP 68 PCF SALT WATER

17 1330 25 GS2 2093 WHILE
DRILLING

CIRC 60 BBL SALT WATER 72 PCF PIPE FREE

18 1001 35.4 CR 2626 WHILE
POH

OVER PULL

19 491 23 CR 2372 RUN
SINGLE
SHOHT

PUMP WATER

20 1385 23.7 CR 2291 WHILE
DRILLING

WORK ON STUCK, DOWNWARD 60KLBS, OVERPULL 
80KLBS, JARRING, INCREASE MW

TO 140, CIRC SALTWATER, PIPE FREE
21 1909 36 CR 2682 CIRC PIPE LAX

Table 14   Values of average MW for stuck and non-stuck cases in 8 
½″ hole

Tittle AS PD GU IL SV

Stuck 73.3 76.5 80.12 77.92 76.5
Non-Stuck 66.2 69 70.5 72.16 76
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mechanisms. Differential sticking, hole cleaning, tight hole 
mechanisms, and other mechanisms are the four types of 
stuck agents that can be found. The most common reasons 
for stuck pipes in the SV formation are inappropriate mud 
characteristics, hydraulic parameters, and wellbore geometry 
factors. Figures 15 and 16 demonstrate the percentage of 
stuck situations based on mechanisms and formation in this 
section. The number of stuck pipes in 6 1/8″ holes is also 
dependent on Table 16's Formation.

Discussion and evaluation of the results of artificial 
neural network

The stuck index [0, 1] is used in this study for stuck and 
non-stuck conditions. So that if the index is equal to zero 
and one, it indicates non-stuck and stuck, respectively. Also, 
in all cases, whether vertical or directional wells, if the real 
conditions and model were the same, then the result (out-
puts) will be correct for training and testing data. Tables 17, 
18, 19, 20, 21, 22 show the results of the generated models 
for both datasets, vertical and directional wells. Based on 10 
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Table 15   Number of stuck pipes in 8 ½″ hole based on formation

Formation Vertical well Directional well Total

AS 5 9 14
PD 0 3 3
GU 3 5 8
IL 7 7 14
SV 3 5 8
18 29 47

73%

4%

23%

SV AS IL

Fig. 15   Stuck pipe percentage for each formation in 6 1/8″ hole
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Fig. 16   Percentage of stuck pipe types in 6 1/8″ hole

Table 16   Number of stuck pipe in 6 1/8″ hole based on formation

Formation Vertical wells Directional wells Total

AS 0 1 1
IL 1 6 7
SV 14 6 20
15 13 28
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and 11 formulas, the accuracies and errors of constructed 
models were calculated. Tables 17 and 20 for directional 
and vertical datasets, respectively, exhibit these values. In 
addition, when employing all datasets of directional wells, 
Figs. 4 and 17 illustrate the predicted stuck pipe probabil-
ity using the PSO-based ANN model plotted against the 
observed stuck pipe probability values for training and 
testing datasets, respectively. Figures 7 and 8 compare the 
predicted stuck pipe probability to the observed stuck pipe 
probability for the training and testing datasets, respectively, 
when using all vertical well datasets. The model's accuracy 
in predicting the chance of a stuck pipe is a good indicator 
of the model's performance. The accuracy of the PSO-based 
ANN model in directional wells is 86.54 percent for training 
datasets and 84.61 percent for testing datasets, indicating 
a close agreement between predicted and measured stuck 
probability. The constructed model's accuracy in vertical 
wells is 87.5 percent for training datasets and 80 percent for 
testing datasets, respectively.

Directional wells

For the model's training, 104 datasets for directional wells 
were randomly chosen among 130 datasets. There were 63 
stuck cases out of 104 datasets and 41 non-stuck points out 
of 104 datasets. Table 17 shows that the accuracy of the 
PSO-based ANN model for all training datasets was 92.3 
percent. The training data results for stuck cases demonstrate 
that 10 points were incorrectly predicted as non-stuck. In 
addition, four out of 41 non-stuck situations were misclas-
sified as stuck cases. Eighteen data, including stuck points 
and remaining, belonged to non-stuck problems among the 
26 datasets analyzed for directional wells testing. The model 
discovered that three stuck datasets had been predicted 
wrongly, and one non-stuck dataset had been incorrectly 
classified as stuck datasets, based on the training outputs. 
Finally, testing datasets with an accuracy of 84.61 percent 

show that the PSO-based ANN model's predictions for direc-
tional wells can be reasonable.

Vertical wells

For the model's training, 80 datasets for vertical wells were 
chosen randomly from 100 datasets. There were 37 stuck 
cases out of 80 datasets and 43 non-stuck points out of 80 
datasets. Table 20 shows that the accuracy of the PSO-
based ANN model for all training datasets was 87.5 per-
cent. The training data results for stuck cases demonstrate 
that two instances were incorrectly predicted as non-stuck. 
In addition, 8 out of 43 non-stuck situations were wrongly 
predicted as stuck cases. Seven data series included stuck 
points among the 20 datasets used as testing datasets for ver-
tical wells, whereas the remaining 13 were non-stuck cases. 
The model discovered that all stuck cases were appropri-
ately anticipated based on the testing results. Finally, test-
ing datasets with an accuracy of 80% reveal that the PSO-
based ANN model's results can be suitable for vertical wells. 
Tables 17, 18, 19, 20, 21, 22 show that some wrong results 
have a little error. For example, if the real state is stuck, the 
stuck index should be predicted to be more than 0.5, but the 
model's response is 0.45 or near 0.5, which is erroneous.

On the other hand, some of the data in correct predicted 
datasets have the same problem, and in circumstances when 
they should be close to 1 and predict stuck conditions with 
high probability, they are close to 0.5. They expect 0.55 for 
the stuck state, for example. The authenticity of the out-
comes is low in these cases. There are numerous mecha-
nisms and types of stuck pipes. Some settings may be effec-
tive for each stuck, while others may have no effect. Because 
a stuck incident is a complex topic, these low-authenticity 
replies may be natural for particular datasets.

Conclusions

•	 The results of this paper can be used in pre-drilling plan-
ning of directional and vertical wells to optimize the 
parameters for drilling without stuck of future wells.

•	 In this part, the tight hole problem is the most common 
kind of stuck in 17 ½″ hole size that may be avoided by 
using appropriate mud characteristics and reducing drill-
ing time. Increased drilling time in this hole, according to 
DDRs, causes formation swelling. These swollen forma-
tions present an issue with tight holes.

•	 • In directional wells, the hole size of 12 ¼” is crucial. 
Twenty-one of the 24 stuck cases in this hole occurred 
in directional wells. Furthermore, all subjects were in 
the well profile's tangent section. Moreover, most of the 
issues occurred in wells where the KOP was located at 
the 17 ½” hole section. As a result, it can be determined 

Table 17   Results of PSO-based ANN model for directional wells

Tittle All data True 
predic-
tion

False 
predic-
tion

Error (%) Accuracy (%)

Training data results
Stuck data 63 53 10 15.87 84.13
Non-stuck 

Data
41 37 4 9.75 90.25

Total data 104 90 14 13.46 86.54
Testing data results
Stuck data 18 15 3 16.66 83.33
Non-stuck 

data
8 7 1 12.5 87.5

Total data 26 22 4 15.38 84.61
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Table 18   Outputs of model for 
training data (directional wells)

Cases Stuck index Real condition Output of model Model prediction Result

1 0 Non-stuck 0.455677919 Non-stuck Correct
2 1 Stuck 0.856062533 Stuck Correct
3 0 Non-stuck 0.824569927 Stuck Incorrect
4 1 Stuck 0.428168739 Non-stuck Incorrect
5 0 Non-stuck 0.117736714 Non-stuck Correct
6 1 Stuck 0.727275516 Stuck Correct
7 0 Non-stuck 0.20476733 Non-stuck Correct
8 1 Stuck 0.755989493 Stuck Correct
9 1 Stuck 0.642455304 Stuck Correct
10 0 Non-stuck 0.180135704 Non-stuck Correct
11 0 Non-stuck 0.619287863 Stuck Incorrect
12 1 Stuck 0.379914969 Non-stuck Incorrect
13 1 Stuck 0.956272874 Stuck Correct
14 0 Non-stuck 0.447123908 Non-stuck Correct
15 0 Non-stuck 0.104071912 Non-stuck Correct
16 1 Stuck 0.96001556 Stuck Correct
17 1 Stuck 0.974351226 Stuck Correct
18 0 Non-stuck 0.122041084 Non-stuck Correct
19 1 Stuck 0.802847259 Stuck Correct
20 1 Stuck 0.804901774 Stuck Correct
21 1 Stuck 0.945365902 Stuck Correct
22 1 Stuck 0.771440238 Stuck Correct
23 0 Non-stuck 0.462639189 Non-stuck Correct
24 0 Non-stuck 0.113930935 Non-stuck Correct
25 1 Stuck 0.752743609 Stuck Correct
26 1 Stuck 0.867021437 Stuck Correct
27 1 Stuck 0.785454809 Stuck Correct
28 1 Stuck 0.807219897 Stuck Correct
29 1 Stuck 0.841962493 Stuck Correct
30 0 Non-stuck 0.392780721 Non-stuck Correct
31 0 Non-stuck 0.258235225 Non-stuck Correct
32 1 Stuck 0.761646084 Stuck Correct
33 1 Stuck 0.863710685 Stuck Correct
34 0 Non-stuck 0.585187286 Stuck Incorrect
35 0 Non-stuck 0.137203633 Stuck Correct
36 0 Non-stuck 0.114898997 Non-stuck Correct
37 1 Stuck 0.83672138 Stuck Correct
38 1 Stuck 0.762248236 Stuck Correct
39 0 Non-stuck 0.271186024 Non-stuck Correct
40 1 Stuck 0.800391493 Stuck Correct
41 1 Stuck 0.838822986 Stuck Correct
42 1 Stuck 0.355464263 Non-stuck Incorrect
43 1 Stuck 0.840391927 Stuck Correct
44 0 Non-stuck 0.139779388 Non-Stuck Correct
45 1 Stuck 0.602283951 Stuck Correct
46 1 Stuck 0.928292326 Stuck Correct
47 1 Stuck 0.849005851 Stuck Correct
48 1 Stuck 0.389370395 Non-stuck Incorrect
49 1 Stuck 0.821371518 Stuck Correct
50 1 Stuck 0.956262279 Stuck Correct
51 1 Stuck 0.255246292 Non-stuck Incorrect
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Table 18   (continued) Cases Stuck index Real condition Output of model Model prediction Result

52 1 Stuck 0.732152413 Stuck Correct
53 0 Non-stuck 0.075725712 Non-stuck Correct
54 1 Stuck 0.919491603 Stuck Correct
55 0 Non-stuck 0.128543965 Non-stuck Correct
56 0 Non-stuck 0.267489886 Non-stuck Correct
57 1 Stuck 0.831254448 Stuck Correct
58 0 Non-stuck 0.126449903 Non-stuck Correct
59 1 Stuck 0.60036476 Stuck Correct
60 1 Stuck 0.939049812 Stuck Correct
61 1 Stuck 0.86093922 Stuck Correct
62 1 Stuck 0.82609144 Stuck Correct
63 1 Stuck 0.678531202 Stuck Correct
64 1 Stuck 0.777028673 Stuck Correct
65 0 Non-stuck 0.163220793 Non-stuck Correct
66 0 Non-stuck 0.273581854 Non-stuck Correct
67 0 Non-stuck 0.21094496 Non-stuck Correct
68 1 Stuck 0.80338346 Stuck Correct
69 1 Stuck 0.756993164 Stuck Correct
70 1 Stuck 0.775161449 Stuck Correct
71 0 Non-stuck 0.27623341 Non-stuck Correct
72 1 Stuck 0.594685833 Stuck Correct
73 0 Non-stuck 0.137896303 Non-stuck Correct
74 1 Stuck 0.557958952 Stuck Correct
75 1 Stuck 0.824178332 Stuck Correct
76 0 Non-stuck 0.123168749 Non-stuck Correct
77 0 Non-stuck 0.080060246 Non-stuck Correct
78 1 Stuck 0.917541537 Stuck Correct
79 1 Stuck 0.630575134 Stuck Correct
80 1 Stuck 0.478164301 Non-stuck Incorrect
81 0 Non-stuck 0.637385516 Stuck Incorrect
82 1 Stuck 0.737481603 Stuck Correct
83 0 Non-stuck 0.343154533 Non-stuck Correct
84 1 Stuck 0.814635177 Stuck Correct
85 0 Non-stuck 0.26943557 Non-stuck Correct
86 0 Non-stuck 0.144218426 Non-stuck Correct
87 0 Non-stuck 0.354534984 Non-stuck Correct
88 1 Stuck 0.65433564 Stuck Correct
89 0 Non-stuck 0.518258913 Stuck Incorrect
90 0 Non-stuck 0.730407695 Stuck Incorrect
91 1 Stuck 0.702179621 Stuck Correct
92 1 Stuck 0.746140448 Stuck Correct
93 0 Non-stuck 0.52408828 Stuck Incorrect
94 1 Stuck 0.871782023 Stuck Correct
95 1 Stuck 0.931892408 Stuck Correct
96 1 Stuck 0.688120278 Stuck Correct
97 1 Stuck 0.97556287 Stuck Correct
98 1 Stuck 0.815112994 Stuck Correct
99 0 Non-stuck 0.523286245 Stuck Incorrect
100 0 Non-stuck 0.153159962 Non-stuck Correct
101 0 Non-stuck 0.141265571 Non-stuck Correct
102 0 Non-stuck 0.225174717 Non-stuck Correct
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that directional parameters such as KOP and angle incli-
nation are responsible for most of the stuck issues in this 
segment. Optimizing these values can reduce the prob-
ability of becoming stuck in this hole.

•	 The most problematic hole size is 8 ½”, and differential 
sticking is the most typical type of stuck in this hole. 
Formations could cause it with varying pore pressures on 
either side of the hole. In this hole, stuck pipe situations 
can be prevented by utilizing the appropriate MW value 
for each formation. In this investigation, MW values for 
stuck instances were higher than non-stuck cases in all 
8 ½” hole formations. As a result, differential sticking 
in this section may be caused by high mud overbalance 
pressure.

Table 18   (continued) Cases Stuck index Real condition Output of model Model prediction Result

103 1 Stuck 0.755318846 Stuck Correct
104 0 Non-stuck 0.09045497 Stuck Correct

Table 19   Outputs of model for 
testing data (directional wells)

Cases Stuck index Real condition Output of model Model prediction Result

1 0 Non-Stuck 0.092659724 Non-Stuck Correct
2 0 Non-Stuck 0.44961765 Non-Stuck Correct
3 1 Stuck 0.818605139 Stuck Correct
4 0 Non-Stuck 0.171409789 Non-Stuck Correct
5 1 Stuck 0.850059593 Stuck Correct
6 1 Stuck 0.773257866 Stuck Correct
7 1 Stuck 0.849468226 Stuck Correct
8 1 Stuck 0.82033396 Stuck Correct
9 1 Stuck 0.308278723 Non-Stuck Incorrect
10 1 Stuck 0.935294999 Stuck Correct t
11 1 Stuck 0.37305197 Non-Stuck Incorrect
12 1 Stuck 0.568130612 Stuck Correct
13 1 Stuck 0.953752976 Stuck Correct
14 1 Stuck 0.7474009 Stuck Correct
15 0 Non-Stuck 0.25437701 Non-Stuck Correct
16 1 Stuck 0.876808805 Stuck Correct
17 0 Non-Stuck 0.16221331 Non-Stuck Correct
18 1 Stuck 0.957096908 Stuck Correct
19 0 Non-Stuck 0.612776683 Non-Stuck Correct
20 1 Stuck 0.767791539 Stuck Correct
21 0 Non-Stuck 0.109861168 Stuck Correct
22 1 Stuck 0.998559904 Stuck Correct
23 0 Non-Stuck 0.154825706 Non-Stuck Incorrect
24 1 Stuck 0.845904567 Stuck Correct
25 1 Stuck 0.388560045 Non-Stuck Incorrect
26 1 Stuck 0.956690122 Stuck Correct

Table 20   Results of PSO-based ANN model for vertical wells

Tittle All data True 
predic-
tion

False 
predic-
tion

Error (%) Accuracy (%)

Training data results
Stuck data 37 35 2 5.4 94.6
Non-stuck 

data
43 35 8 18.6 81.4

Total data 80 70 10 12.5 87.5
Testing data results
Stuck data 7 7 0 0 100
Non-stuck 

data
13 9 4 30 70

Total data 20 16 4 20 80
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Table 21   Outputs of model for 
training data (vertical wells)

Cases Stuck Index Real condition Output of model Model prediction Result

1 0 Non-Stuck 0.123242659 Non-Stuck Correct
2 0 Non-Stuck 0.055633362 Non-Stuck Correct
3 1 Stuck 0.983908065 Stuck Correct
4 1 Stuck 0.795083491 Stuck Correct
5 1 Stuck 0.863330169 Stuck Correct
6 1 Stuck 0.731941585 Stuck Correct
7 0 Non-Stuck 0.027717916 Non-Stuck Correct
8 0 Non-Stuck 0.100099324 Non-Stuck Correct
9 0 Non-Stuck 0.093552194 Non-Stuck Correct
10 0 Non-Stuck 0.229607546 Non-Stuck Correct
11 0 Non-Stuck 0.427949183 Non-Stuck Correct
12 1 Stuck 0.901156113 Stuck Correct
13 0 Non-Stuck 0.859504139 Stuck Incorrect
14 1 Stuck 0.378966818 Non-Stuck Incorrect
15 1 Stuck 0.378738139 Non-Stuck Incorrect
16 1 Stuck 0.721279105 Stuck Correct
17 1 Stuck 0.882573725 Stuck Correct
18 0 Non-Stuck 0.075752131 Non-Stuck Correct
19 0 Non-Stuck 0.144825636 Non-Stuck Correct
20 0 Non-Stuck 0.195452134 Non-Stuck Correct
21 1 Stuck 0.822977645 Stuck Correct
22 0 Non-Stuck 0.030743754 Non-Stuck Correct
23 1 Stuck 0.796848731 Stuck Correct
24 0 Non-Stuck 0.17953657 Non-Stuck Correct
25 1 Stuck 0.793953945 Stuck Correct
26 1 Stuck 0.889004699 Stuck Correct
27 1 Stuck 0.829422082 Stuck Correct
28 1 Stuck 0.588588499 Stuck Correct
29 0 Non-Stuck 0.127076508 Stuck Correct
30 1 Stuck 0.955559257 Stuck Correct
31 1 Stuck 0.839730508 Stuck Correct
32 0 Non-Stuck 0.217966714 Non-Stuck Correct
33 0 Non-Stuck 0.286380855 Non-Stuck Correct
34 0 Non-Stuck 0.271005643 Non-Stuck Correct
35 1 Stuck 0.705291997 Stuck Correct
36 0 Non-Stuck 0.86824553 Stuck Incorrect
37 1 Stuck 0.726629616 Stuck Correct
38 0 Non-Stuck 0.039046182 Non-Stuck Correct
39 0 Non-Stuck 0.314280633 Non-Stuck Correct
40 1 Stuck 0.69760685 Stuck Correct
41 1 Stuck 0.941934044 Stuck Correct
42 0 Non-Stuck 0.77242968 Stuck Incorrect
43 1 Stuck 0.883883852 Stuck Correct
44 1 Stuck 0.506008448 Stuck Correct
45 0 Non-Stuck 0.784936027 Stuck Incorrect
46 1 Stuck 0.569241721 Stuck Correct
47 0 Non-Stuck 0.311598979 Non-Stuck Incorrect
48 0 Non-Stuck 0.21247063 Non-Stuck Correct
49 1 Stuck 0.912686932 Stuck Correct
50 0 Non-Stuck 0.013752972 Non-Stuck Correct
51 1 Stuck 0.812758683 Stuck Correct
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Table 21   (continued) Cases Stuck Index Real condition Output of model Model prediction Result

52 1 Stuck 0.609959859 Stuck Correct
53 1 Stuck 0.715122233 Stuck Correct
54 1 Stuck 0.889765717 Stuck Correct
55 1 Stuck 0.885759861 Stuck Correct
56 0 Non-Stuck 0.37427521 Non-Stuck Correct
57 1 Stuck 0.762874786 Stuck Correct
58 0 Non-Stuck 0.647149785 Stuck Incorrect
59 1 Stuck 0.708049583 Stuck Correct
60 0 Non-Stuck 0.894168601 Stuck Incorrect
61 0 Non-Stuck 0.179913662 Non-Stuck Correct
62 1 Stuck 0.796778705 Stuck Correct
63 1 Stuck 0.734167915 Stuck Correct
64 1 Stuck 0.700810696 Stuck Correct
65 1 Stuck 0.7439268 Stuck Correct
66 1 Stuck 0.783638647 Stuck Correct
67 1 Stuck 0.905487941 Stuck Correct
68 1 Stuck 0.91951559 Stuck Correct
69 0 Non-Stuck 0.253511245 Non-Stuck Correct
70 0 Non-Stuck 0.258208273 Non-Stuck Correct
71 1 Stuck 0.823414555 Stuck Correct
72 0 Non-Stuck 0.056650837 Non-Stuck Correct
73 1 Stuck 0.735967442 Stuck Correct
74 0 Non-Stuck 0.222642407 Non-Stuck Correct
75 0 Non-Stuck 0.871166733 Stuck Incorrect
76 1 Stuck 0.688247096 Stuck Correct
77 1 Stuck 0.984500011 Stuck Correct
78 0 Non-Stuck 0.682582592 Stuck Incorrect
79 0 Non-Stuck 0.165441867 Non-Stuck Correct
80 0 Non-Stuck 0.034428417 Non-Stuck Correct
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•	 It can be stated that geometry parameters considerably 
affect the model's performance for directional wells 
based on the input parameters for two groups, vertical 
and directional wells. In vertical circumstances, however, 
mud qualities are more essential.

•	 The suggested model may estimate stuck pipe probability 
during well development in the desired field. It has a rea-
sonable accuracy of over 80% for directional and vertical 
wells.

•	 The performance of ANN models can be improved by 
reducing the number of input parameters. New dimen-
sionless parameters were defined in this work by merg-
ing some parameters. The addition of new parameters 
improved the network's findings.

•	 Optimization of PSO and neural network parameters has 
a substantial impact on the performance of a PSO-based 
ANN model.
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