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overlapping pain conditions via impaired axonogenesis in the brain  2 
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ABSTRACT 34 

Chronic pain is often present at more than one anatomical location, leading to chronic 35 

overlapping pain conditions (COPC). Whether COPC represents a distinct pathophysiology from 36 

the occurrence of pain at only one site is unknown. Using genome-wide approaches, we 37 

compared genetic determinants of chronic single-site vs. multi-site pain in the UK Biobank. We 38 

found that different genetic signals underlie chronic single-site and multi-site pain with much 39 

stronger genetic contributions for the latter. Among 23 loci associated with multi-site pain, 9 loci 40 

replicated in the HUNT cohort, with the DCC netrin-1 receptor (DCC) as the top gene. 41 

Functional genomics identified axonogenesis in brain tissues as the major contributing pathway 42 

to chronic multi-site pain. Finally, multimodal structural brain imaging analysis showed that 43 

DCC is most strongly expressed in subcortical limbic regions and is associated with alterations in 44 

the uncinate fasciculus microstructure, suggesting that DCC-dependent axonogenesis may 45 

contribute to COPC via cortico-limbic circuits. 46 

 47 

 48 

  49 
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Chronic pain is a common and complex disease with a prevalence of 10–50% worldwide and is 50 

associated with substantial costs to affected individuals and society at large1-3. The clinical 51 

assessment of most chronic pain conditions relies on self-report of symptoms associated with a 52 

specific anatomical location. However, at least one-third of chronic pain patients diagnosed with 53 

one pain condition often simultaneously exhibit symptoms of another4,5. Epidemiological studies 54 

have examined the overlap between different bodily distribution of pain and suggested that they 55 

may share a common underlying etiology5. In these pain conditions, recently referred to as 56 

nociplastic, altered network architecture of functional brain connectivity seems to contribute to 57 

central sensitization and co�occurring symptoms include fatigue, mood and cognitive problems, 58 

sleep disturbances, and multisensory hypersensitivity6. The most common set of pain disorders 59 

that tend to overlap includes temporomandibular disorders, fibromyalgia, irritable bowel 60 

syndrome, vulvodynia, myalgic encephalomyelitis/chronic fatigue syndrome, headaches, and 61 

chronic lower back pain. This manifestation of multiple chronic pain conditions that frequently 62 

occur together and are associated with similar risk factors are referred to as chronic overlapping 63 

pain conditions (COPC), and are now recognized by the National Institute for Health (NIH) as a 64 

set of disorders that co-occur7. Although the pathophysiological processes that underlie most of 65 

these conditions are still poorly understood, COPC have been proposed to have common genetic, 66 

neurological, and psychological vulnerabilities. 67 

Twin studies have indicated that chronic pain conditions show a heritability between 16–68 

50%8. Shared heritability between pelvic pain and facial pain, and between widespread pain and 69 

abdominal pain have been reported9,10. Candidate gene studies have suggested that the same 70 

genetic variants are associated with multiple pain conditions, which implicated a possible shared 71 

genetic basis11. There remains a paucity of genetic findings based on genome-wide association 72 
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studies (GWAS) in large cohorts that have systematically assessed multiple chronic pain 73 

conditions. To date, most genetic association studies of pain have featured small samples  of a 74 

single pain condition, with a few exceptions for back pain and multi-site pain12,13. It is still 75 

unknown whether the reports of COPC versus one specific chronic pain condition feature distinct 76 

pathophysiologies or are simply a manifestation of one another.  77 

In this study, we employed genome-wide and brain structure analysis to understand the 78 

pathophysiology of COPC. Our first objective was to understand the genetic basis of chronic 79 

pain manifestation at one body site versus multiple body sites as a proxy for COPC. Our second 80 

objective was to uncover the molecular pathophysiology underlying COPC. Our final objective 81 

was to investigate whether central nervous system (CNS) mechanisms are genetically related to 82 

COPC. Our goal was to uncover the shared genetic heritability between chronic pain conditions 83 

and to search for potential underlying biological pathways for COPC. 84 

  85 
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RESULTS  86 

Prevalence of chronic pain sites 87 

In the UK Biobank, 294,627 participants (60%) reported pain that interfered with their usual 88 

activities in the past month. Participants were given the choice among eight pain sites, with the 89 

possibility to report more than one site (Figure 1A): head, facial, neck/shoulder, back, 90 

stomach/abdominal, hip, knee, and “all over the body”. The highest prevalence reported was for 91 

back (26%) and neck/shoulder (23%) pains. These participants were then asked if their pain 92 

lasted for more than three months. Participants who answered “yes” for pain that lasted for more 93 

than three months were classified as having chronic pain. Participants reported chronic pain for 94 

at least one site at 72%. The highest prevalence of chronic pain was reported for back (18%), 95 

knee (17%), and neck (16%) pains. Headache (9%), hip (9%), and abdominal (5%) pains showed 96 

less than 10% prevalence. Pain all over the body (1%) and facial pain (1%) displayed the lowest 97 

prevalence. Participants that reported pain in the last month and for more than three months at 98 

the same site, were defined as having pain chronification. Pain all over the body, knee, and hip 99 

pains showed the highest rates of chronification (81%, 78%, and 77%, respectively; 100 

Supplementary Table 1). 101 

Next, we created two distinct groups to represent participants who reported only one 102 

chronic pain site and those who reported pain at two or more pain sites, which include 103 

participants with pain all over the body. We defined participants who reported more than one 104 

pain site for more than three months as participants with multi-site pain as a proxy for COPC. 105 

One third (34.1%) of participants with chronic pain reported multi-site pain and 38% reported 106 

single-site pain. Around 28% of participants did not report any chronic pain site (Supplementary 107 

Figure 1). In participants with multi-site pain, the highest odds ratio (OR) for pain at two sites 108 
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was for facial pain and headache (OR [95%CI] =10.7 [10.1-11.5]), followed by back and hip 109 

pain (OR [95%CI] =5.9 [5.8-6.1]) (Figure 1B, Supplementary Table 2). Pain all over the body 110 

was excluded from this analysis because participants who indicated pain all over the body did 111 

not have the option to report any other pain site. Participants who reported multi-site pain were 112 

more likely to be older, female, have higher body mass index, and have lower socioeconomic 113 

status. They were also more likely to report more cancer and non-cancer illnesses and to 114 

consume more paracetamol and ibuprofen, but not aspirin. In terms of mental health status, 115 

participants with multi-site pain reported higher neuroticism scores, and a higher number of and 116 

more severe depressive episodes (Table 1). 117 

Genetic correlation of chronic pain sites 118 

Most chronic pain sites were found to be genetically correlated (Figure 1B, Supplementary Table 119 

3). The largest genetic correlation was observed between facial and abdominal pain (rg = 1.04, 120 

P=1.8x10-10), followed by pain all over the body and abdominal pain (rg= 0.99, P=8.2x10-8). 121 

Headaches presented the smallest genetic correlations with any other chronic pain sites (rg 122 

between 0.37 and 0.54). In a latent causal variable analysis to infer causality, we detected 123 

evidence for genetically causal effect of facial pain on hip pain. We also detected a genetic 124 

causal effect of headache on back, knee and neck/shoulder pains (Supplementary Table 4).   125 

Pain site pairs that are physically close displayed stronger correlations (Figure 1B). Close 126 

physical proximity between two pain sites yields an increased chance of their being reported 127 

together (% variance explained: r2=54%, P=1.4x10-4) (Figure 1C). Also, increased genetic 128 

correlation is observed with close physical proximity (r2=15%, P=4.9x10-2) (Figure 1D). Genetic 129 

and epidemiological variables (pain sites) were also observed to be correlated (r2=16%, 130 

P=4.7x10-2) (Figure 1E).  131 
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Heritability of chronic pain sites 132 

For each chronic pain site, we calculated the heritability derived from genome-wide association 133 

(h2
g), defined as the proportion of phenotypic variance explained by common single nucleotide 134 

polymorphisms (SNPs) under an additive model of inheritance. Between 1–10% of the 135 

heritability can be explained for each pain site (Figure 1F, Supplementary Table 5). The highest 136 

heritability was identified for back pain (h2
g=10.0%, P=7x10-106) while the lowest was for facial 137 

pain (h2
g=1.4%, P=1x10-5).  138 

Genome-wide associations of chronic overlapping pain conditions 139 

Next, we performed a comparative GWAS analysis for the report of chronic single-site pain with 140 

the report of chronic multi-site pain. In a total sample of 340,547 participants we conducted a 141 

GWAS contrasting the report of one pain site (n=93,964) with a randomly selected half of 142 

participants who reported no pain at any site (n=81,805). We also conducted a GWAS 143 

contrasting the report of multi-site (n=82,812) with non-overlapping controls as the rest of the 144 

randomly selected participants who reported no pain at any site (n=81,966). 145 

We then computed the percentage of variance explained by genetic and by environmental 146 

factors for the report of single-site versus multi-site pain. We found a substantial contribution of 147 

environmental factors for both the report of single-site (93.2%; standard error of the mean 148 

(s.e.m) 0.4%) and multi-site (80.9%; s.e.m 0.4%) pain. However, we found a significant 149 

difference (P<2.2x10-16) for genetic factors between the report of single- site pain (6.9%; 150 

s.e.m.0.4%) and the report of multi-site pain (19.1%; s.e.m 0.4), with a much greater genetic 151 

contribution in chronic multi-site pain (Figure 1F). Importantly, the heritability for multi-site 152 

pain was twice higher than heritability for any individual pain site.  153 
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In the case-control association study, where cases were defined as participants reporting 154 

chronic single-site pain (n=93,964), and controls being participants not reporting any pain site 155 

(n=81,805), there were no individual loci that passed the threshold of genome-wide significance 156 

(Figure 2A, Supplementary Table 6). The genomic inflation factor lambda was 1.07, but the LD 157 

score regression intercept value was 1.015, suggesting a polygenic signal rather than inflation 158 

from unaccounted population stratification (Supplementary Figure 2A). A gene-level association 159 

analysis in MAGMA testing for 18,220 genes showed that 11 genes passed multiple testing 160 

(Bonferroni threshold P<2.7x10-6) (Supplementary Table 7).  161 

In the case-control genome-wide association study, where cases were defined as 162 

participants reporting chronic multi-site pain (n=82,812), and controls being participants not 163 

reporting any pain site (n=81,966), there were 896 SNPs spanning 23 loci that passed the 164 

genome-wide threshold (Figure 2B, Supplementary Figure 3, Supplementary Table 8). The 165 

genomic inflation factor lambda was 1.20, but the LD score regression intercept value was 1.017, 166 

suggesting again, a contribution of LD structure of associated loci rather than inflation from 167 

unaccounted-for population stratification (Supplementary Figure 2B). A gene-level analysis 168 

showed that 97 genes passed multiple testing (P=2.7x10-6). The two top associations were with 169 

genes involved in neuronal connectivity in model animals: DCC14, encoding the DCC receptor 170 

for netrin1 (P=7.4x10-19), and SDK115, encoding the sidekick cell adhesion molecule 1 171 

(P=5.4x10-18) (Supplementary Table 9). Since both GWASs were equally powered, the 172 

differences observed at both the SNP and the gene-level analyses might partially account for the 173 

differences in heritability estimates, establishing distinct genetic backgrounds.  174 

Genome-wide meta-analysis 175 
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In order to identify loci that were specific to individual pain states (i.e., single-site and 176 

multi-site pain) and pleiotropic loci that contribute to both states, we performed two meta-177 

analyses using GWAMA16. The first meta-analysis aimed to identify loci that are distinct for 178 

each of the GWASs (Figure 2C). Out of the 18,066 genes tested, 41 genes passed the threshold 179 

for multiple testing (Supplementary Table 10). The top two genes shown in the meta-analysis are 180 

DCC and SDK1, which are also the top two genes in chronic multi-site pain. The second meta-181 

analysis aimed to identify loci that are pleiotropic between the report of single-site pain and 182 

multi-site pain by running a classical fixed-effect meta-analysis between the two GWASs (Figure 183 

2D). There are 36 genes that passed the threshold for multiple testing, with the top two genes 184 

being BBX and PABPC4 (Supplementary Table 11). Overall, we found that there are both 185 

distinct and common genetic loci underlying chronic single-site pain and chronic multi-site pain. 186 

Tissue-expression based functional analyses 187 

Next, we performed partitioned heritability analyses by means of a stratified LD score 188 

regression17,18 to examine whether the observed heritability was enriched in any tissue, 189 

regulatory region or functional category19. Analyses in a wide range of tissues and cell types20 190 

were done for both the report of single-site pain and multi-site pain. Partitioned heritability 191 

analysis for single-site pain did not show any enrichment in any of the tested tissues at a 10% 192 

false discovery rate (FDR) (Figure 3A – Top panel, Supplementary Table 12). The analysis of a 193 

wide range of tissues and cell types for chronic multi-site pain yielded significant results 194 

exclusively in the CNS, but not in other tissue types like adipose, blood or immune, and 195 

connective or musculoskeletal, nor in the peripheral nervous system (Figure 3A – Bottom panel, 196 

Supplementary Table 13). We found an exclusive significant enrichment in most brain tissues 197 

(Figure 3B). Finally, in order to quantify whether the enrichment was exclusive to multi-site 198 
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pain, we correlated the heritability estimates in brain-specific tissues. We found no evidence for 199 

tissue-based congruency between the two heritability estimates, which suggests distinct tissue 200 

heritability (Figure 3C). Tissue-expression based analysis concluded that heritability for chronic 201 

multi-site pain, and not chronic single-site pain, is exclusively enriched in the CNS.  202 

Pathway-based functional analyses 203 

We next performed pathway-based enrichment analyses from SNPs in gene sets using Gene 204 

Ontology’s (GO) biological processes for both chronic single-site pain and multi-site pain. For 205 

the report of chronic single-site pain, there was no enrichment in any pathway at FDR 10% in 206 

GO biological process (Supplementary Table 14). For the report of chronic multi-site pain, a 207 

total of 60 pathways were significant at the FDR 10% level in GO biological process, with most 208 

pathways involved in neural development, that include DCC and SDK1 as leading-edge genes 209 

(Supplementary Table 15). We then used reviGO21 to reduce redundancy and extricate 210 

meaningful information regarding biological processes. The top reviGO class of pathway 211 

identified regulation of nervous system development that encompasses pathways involving 212 

neurogenesis, axonal development and post-synaptic specialization. Taken altogether, our 213 

pathway analysis results were in line with tissue-expression based functional analysis suggesting 214 

that pathways acting in the CNS in general and associated with neural development in particular, 215 

contribute to the pathophysiology of chronic multi-site pain. Moreover, pathway analysis further 216 

supported a strong genetic basis for chronic multi-site pain but not for chronic single-site pain. 217 

Replication of genome-wide loci in an independent cohort 218 

Next, we attempted to replicate the genome-wide significant SNPs in the independent HUNT 219 

cohort. Due to the absence of genome-wide significant SNPs in the chronic single-site pain 220 

GWAS, we only replicated the chronic multi-site pain variants. We attempted the replication of 221 
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the lead SNP in each of the loci and for SNPs that are in medium (r2>=0.5) and high LD 222 

(r2>=0.8) with it in the HUNT cohort. Out of the 23 loci, nine loci reached nominal significance 223 

at P≤0.05, of which four reached statistical significance at P≤0.002 (corrected for 23 tests) 224 

(Supplementary Table 16). The following four loci passed the threshold for multiple testing. 225 

Locus 4, with lead SNP rs11709734, located on chromosome 3 in the inositol 226 

hexakisphosphatase kinase 1 (IP6K1) gene. Locus 8, with lead SNP rs34595097, located on 227 

chromosome 4 in the mastermind like transcriptional coactivator 3 (MAML3) gene. Locus 11, 228 

with lead SNP rs12672683, located on chromosome 7 in the forkhead box P2 (FOXP2) gene. 229 

Finally, locus 20, with lead SNP rs8099145, located on chromosome 18 in the DCC gene, 230 

showed the most robust replication (P=2.0x10-4) (Table 2a).  231 

Next, we attempted to replicate the 97 genes associated with chronic multi-site pain in the 232 

UK Biobank within the HUNT cohort. The threshold for replication was corrected for 97 tests 233 

and set at P=5.6x10-4. Out of the 97 genes, 11 genes successfully replicated. The most striking 234 

association is with the DCC gene with a p-value of 2.6x10-8, reaching genome-wide statistical 235 

significance (Supplementary Table 16, Table 2). 236 

Finally, at the pathway level, we attempted to replicate the pathways that passed FDR 237 

10% in the UK Biobank. The axonogenesis pathway (GO:0007409) showed the lowest P-value 238 

in the HUNT cohort. This pathway represents mechanisms involved in do novo generation of 239 

axons, including the terminal branched region. This morphogenesis also includes the shape and 240 

form of the developing axon. The second pathway was axon development (GO:0061564), which 241 

covers processes that involve axon regeneration or regrowth after loss or damage 242 

(Supplementary Table 16, Table 2). 243 
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In summary, the replication of our results in HUNT cohort provided further evidence that 244 

axonogenesis through the netrin receptor DCC is important in the pathophysiology of chronic 245 

multi-site pain.  246 

Functional validation for the role of DCC in the human brain 247 

Chronic multi-site pain-related heritability seems to be expressed in brain tissues with a 248 

significant role for the axonogenesis pathway through the DCC gene. We therefore attempted to 249 

localize where DCC is most strongly expressed using a fine-grained representation of genomic 250 

information across the human brain and identify the location of axonal structures using diffusion 251 

weighted imaging.  252 

First, normalized DCC expression information was obtained from approximately 500 253 

brain samples (per hemisphere) of six deceased human donors from the Allen Human Brain 254 

Atlas22. A heat map representing the normalized DCC expression across the donors was 255 

generated using the neurosynth platform. We observed that DCC is specifically expressed in 256 

subcortical limbic regions, such as the hippocampus, and basal ganglia (Figure 4A-B), the 257 

corticolimbic system involved in motivation and affect regulation as well as the amplification 258 

and the chronification of pain. 259 

Given our findings on the role of DCC-driven axonogenesis in chronic multi-site pain 260 

and DCC expression in corticolimbic circuits, we next examined the associations between the 261 

microstructure of the uncinate fasciculus (UF) which connects the prefrontal cortex to limbic 262 

structures of the temporal lobe such as the amygdala and the hippocampus (Figure 4C). The UF 263 

is also the main cortico-limbic tract available as an imaging derived phenotype (IDP) in the UK 264 

Biobank. Analyses of the UF were performed on 5378 participants that consistently reported no 265 
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pain (n=3,985), single-site pain (n=593), or multi-site pain (n=800) on both the initial visit  and 266 

the brain imaging visit (about 10 years apart). Orientation dispersion (OD), a spatial organization 267 

metric that characterizes angular variation of neurites (dendrites and axons), was extracted as a 268 

metric with potential relevance to axon guidance for the left and the right uncinate fasciculus and 269 

was compared between the groups. Our analysis revealed that participants with multi-site pain 270 

showed significantly higher OD in UF compared to single-site pain and healthy controls (Figure 271 

4D), indicating that UF white matter tracts in patients with COPC are less structured.  272 

In order to assess whether genetic variants in DCC and axonogenesis pathway contribute 273 

to the OD of the UF, we generated a polygenic risk score (PRS) using summary statistics of 274 

single-site pain, multi-site pain, the axonogenesis pathway, and the DCC gene using the best 275 

PRS, i.e. which explains the highest variance. Each of the four scores were used as dependent 276 

variables in a regression model with left and right OD of the UF as independent variable 277 

(Supplementary Table 17). The score generated using DCC showed the highest significance for 278 

both brain sides OD of the UF. The PRS derived from the single-site GWAS at a P-value 279 

threshold of 5x10-8 explained 0.034-0.044% of the variability (P=1.0x10-5; P=5.5x10-4) for the 280 

left and right UF respectively. PRS derived from the multi-site pain GWAS at a P-value 281 

threshold of 4x10-2 explained 0.035% and 0.029% of the variability (P=4.8x10-4; P=1.4x10-3) for 282 

the left and right UF respectively. PRS derived from the axonogenesis pathway at a P-value 283 

threshold of 5.5x10-2 explained 0.017% of the variability (P=1.6x10-2) for both left and right UF. 284 

PRS derived from the DCC gene at a p-value threshold of 7x10-2 explained 0.05% of the 285 

variability (P=2.5x10-5; P=1.3x10-4) for the left and right UF respectively (Figure 4E). Overall, 286 

our results showed that the UF is an important structure contributing to pain and especially 287 
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multi-site pain through DCC, bridging together for the first-time the genetic determinants of 288 

COPC with corticolimbic structures of the human brain.  289 
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DISCUSSION  290 

The propensity of chronic pain patients to report more than one location of chronic pain is often 291 

observed in clinical settings. Patients diagnosed with one chronic pain condition, such as 292 

fibromyalgia, temporomandibular disorder, or headaches, have higher chances of presenting 293 

symptoms of other pain conditions4,5. Moreover, these patients also report comorbid symptoms 294 

such as sleep disturbances, depression, and anxiety23-25. Whether COPC is a distinct 295 

pathophysiology from the occurrence of single-site chronic pain is unknown5.  296 

Our analysis of the UK Biobank, one of the largest available datasets, confirmed the high 297 

degree of overlap between different chronic pain sites, with one-third of participants with chronic 298 

pain reporting multiple pain sites, another third reporting only one pain site, and the remaining 299 

third reporting no pain. Our GWAS results showed that distinct genetic factors underlie the 300 

report of a single pain condition versus the report of COPC, with multi-site pain having a much 301 

stronger genetic component than single-site pain. Furthermore, our study identified a genetic 302 

correlation between different chronic pain sites derived from genome-wide data. The strong 303 

genetic correlation between chronic pain sites and the causal latent analysis suggests that there is 304 

a specific pathway of vulnerability that underlies co-occurring pain conditions, confirming 305 

previous observations of twin studies9. Headaches, although also highly heritable, did not show 306 

genetic overlap with other chronic pain sites, which suggests a distinct pathophysiology. Indeed, 307 

previous GWASs of headaches and migraines have shown a strong cardiovascular component26, 308 

whereas in this paper we demonstrated a substantial involvement of CNS components in the 309 

genetic pathophysiology of COPCs. Finally, we also confirmed the results of a previous twin 310 

study demonstrating a high genetic correlation between widespread pain and abdominal pain9. 311 
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In the field of pain, the majority of existing genetic findings are derived from candidate 312 

gene approaches related to specific pain conditions11,27. Only recently have large genome-wide 313 

studies started to emerge from the UK Biobank for migraine, back pain, as well as multi-site 314 

pain, where investigators found many of the SNPs that we uncovered as well12,13,28. Here, we 315 

aimed to identify the genetic architecture and associated biological pathways of COPC rather 316 

than any specific SNP for a specific pain condition and discovered more than 900 variants 317 

associated with COPC.  These genetic factors explain up to 20% of the variance for multi-site 318 

pain, while the heritability for any individual pain site was lower, suggesting a much stronger 319 

genetic basis for COPC in comparison with single pain conditions. When we compared the 320 

genetic relationship between the report of chronic single-site pain and chronic multi-site pain, we 321 

find both common and distinct loci. Contrary to the report of single-site pain, COPC is highly 322 

polygenic, with a large portion of its heritability conferred by common genetic variants. The loci 323 

that are specific to COPC are enriched in the CNS and are involved in mechanisms related to 324 

axonogenesis with a leading role for the DCC gene. While the previous studies have found an 325 

association between SNPs in DCC locus and pain, among many others12,13 our approaches took 326 

single SNP associations results further and identified the central role of DCC in the genetics of 327 

COPC and uncovered corresponding functional role for netrin and its receptor in the human brain 328 

contributing to COPC pathophysiology. Importantly, we also replicated our human findings in 329 

another large and independent cohort. 330 

Axon guidance is a process by which neuronal growth cones guide axon extension in the 331 

developing nervous system29. It involves molecular cues such as netrin 1, present in the 332 

environment of growth cones, signaling via dedicated receptors, such as DCC, expressed on the 333 

surface of growth cones14,30-33. Interestingly, changes in netrin 1 dependent peripheral nerve 334 
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outgrowth have been reported in patients with chronic pain30,34, suggesting that netrin may 335 

continue to play an important role following nervous system assembly. The results of the present 336 

study further demonstrate that cerebral axonogenesis contributes to COPC. First, heritability 337 

partitioning analyses clearly indicated that heritability for multi-site pain was related to genes 338 

expressed in the brain. Second, brain imaging data from the Allen Brain Atlas and UK Biobank 339 

pointed towards corticolimbic circuits with the UF as a candidate structure for explaining the 340 

relationship between the DCC gene and COPC. 341 

More specifically, DCC gene expression in the human brain appears to be remarkably 342 

circumscribed within the basal ganglia and hippocampus. In addition, structural connectivity of 343 

the UF was also found to be related to both the DCC gene and to multi-site pain. Increased OD 344 

values in the UF for multi-site pain suggests that white matter tracts in the UF are less structured 345 

in patients exhibiting multi-site pain. This finding seems to be highly consistent with the role of 346 

the UF in emotional regulation. The UF, which develops well into the fourth decade of life, 347 

connects the medial and lateral orbitofrontal cortex with limbic structures in the temporal lobe 348 

such as the amygdala and parahippocampal gyrus35. One of the main functions of the UF is to 349 

provide subcortical structures with contextual information about potential threats and reward 350 

available in the orbitofrontal cortex. As such, UF anatomy has been related to general deficits in 351 

the capacity to flexibly predict rewards and punishments, as well as to various neuropsychiatric 352 

disorders characterized by emotional dysregulation and poor impulse control, such as major 353 

depressive disorder (MDD), attention deficit/hyperactivity disorder (ADHD) and drug abuse35.  354 

Interestingly, previous studies have shown that the DCC gene orchestrates the 355 

development of the prefrontal cortex during adolescence36. Moreover, GWASs of the UK 356 

Biobank have also associated the DCC gene with neuropsychiatric disorders characterized by 357 
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mood instability such as MDD, post-traumatic stress disorder (PTSD), bipolar disorder (BD), or 358 

ADHD37,38.  359 

Our findings add to these results by linking DCC with disorganization of the UF and 360 

multi-site pain. Here, we showed that participants who report COPC have higher disorganization 361 

in axonal tracks versus participants that report only one pain site or healthy participants. This 362 

finding suggests that rewiring of the developing brain predispose to the development of chronic 363 

pain. A PRS analysis shed the light on a potential relationship between white matter tract 364 

organization in the brain and COPC and showed that variants belonging to DCC gene are 365 

important mediators of this relationship. 366 

An exclusive involvement of the CNS in pathophysiology of COPC found in our study should be 367 

interpreted with caution. Our current results are limited by the broadness of the datasets we use. 368 

For instance, our partition heritability analyses did not identify expression from spinal cord, 369 

DRGs, or peripheral nerves contributing to multi-site pain. Yet, we are limited here in our 370 

analyses of the expression of adult tissues, when we know that NTN1 and DCC are not expressed 371 

in the adult spinal cord but only during development. With the increasing broadness of the 372 

available expression datasets, new roles for DCC may be discovered in addition to that identified 373 

here: its crucial contribution to COPC through the wiring of the CNS.  374 

In conclusion, we identified a unique and distinct genetic basis for chronic overlapping 375 

pain conditions that points to netrin-driven axonogenesis. Our results suggest that genetically 376 

determined DCC-dependent axonogenesis in the UF microstructure contributes to COPC via 377 

corticolimbic circuits. CNS mechanisms, whether overlapping or distinct, have been suggested as 378 

a common neurobiological substrate that may underlie the development of COPC5,39. Here, we 379 
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identified the genetic and structural basis of this CNS input.  Thus, our results suggest a new 380 

direction in both fundamental research and therapeutics development. 381 

 382 

  383 



20 
 

ONLINE METHODS  384 

Study cohort – UK Biobank 385 

The UK Biobank is a large, prospective, multicenter study of the United Kingdom’s population 386 

recruited between 2006 and 201040,41. Participants were 40–69 years old and lived within 25 387 

miles of a study recruitment center. Chronic pain conditions were assessed for 502,599 388 

individuals at the initial assessment visit (2006-2010) using a touchscreen-based question: “In 389 

the last month, have you experienced any of the following that interfered with your usual 390 

activities?” (Data field 6159). The participants had a choice between pain all over the body, back 391 

pain, facial pain, headaches, knee pain, stomach/abdominal pain, hip pain, neck/shoulder pain, 392 

none of the above and prefer not to answer. For each pain site selected, participants were asked if 393 

that pain lasted for more than 3 months (Data fields 2956: pain all over the body; 3404: 394 

neck/shoulder pain; 3414: hip pain; 3571: back pain; 3741: stomach/abdominal pain; 3773: knee 395 

pain; 3799: headaches; 4067: facial pain). Participants that answered pain all over the body could 396 

not indicate any other body site. Cases were defined as individuals self-reporting pain that 397 

interfered with their usual activities in the last month and/or that had lasted for more than 3 398 

months. Participants that reported pain at one month and at three months at the same site were 399 

defined as having pain chronification. Controls were defined as the participants that answered 400 

“none of the above” to data field 6159. Participants that answered, “prefer not to answer” and 401 

“do not know” were excluded. Of the 502,599 individuals, 404,381 had phenotype and genotype 402 

data available and therefore were analyzed in this paper. 403 

Statistical analysis 404 

Statistical analyses were done using SPSS IBM v 22.0. The prevalence of each chronic pain 405 

condition was assessed. The odds ratio (OR) and 95% confidence interval (95% CI) were 406 
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calculated to quantify the degree of overlap between conditions. Next, we classified the study 407 

population in two groups. The first group included individuals that reported only one pain site 408 

that lasted for more than 3 months. The second group included individuals that reported more 409 

than one pain site that lasted for more than 3 months, including those who reported widespread 410 

pain. This second group was defined as cases reporting multi-site pain as a proxy for chronic 411 

overlapping pain conditions (COPC). 412 

Genetic analysis 413 

Out of the 404,381 participants that underwent genotyping and that have available phenotype 414 

information, we excluded participants that were not genetically confirmed as “white British”, 415 

that had sex aneuploidy, or that have a high (≥2%) genotypic missingness rate. After quality 416 

control filters were applied, 340,547 participants were considered for analysis. We conducted 417 

eight genome-wide association studies (GWASs), one for each pain site, using a logistic 418 

regression model to assess heritability and genetic correlations. Next, we also conducted a 419 

GWAS contrasting the report of one pain site (n=93,964) with a randomly selected half of 420 

participants that answered “none of the above” to data field 6159 (n=81,805). We also conducted 421 

a GWAS for chronic multi-site pain, with cases defined as individuals reporting more than one 422 

pain site (n=82,812) and controls as the rest of the randomly selected participants that answered 423 

“none of the above” to data field 6159 (n=81,966). All genetic analyses were conducted using a 424 

logistic regression model with the following co-variates: 40 principle components to account for 425 

population stratification, age, age2, sex, genotyping array, and dummy coded recruitment sites. 426 

BOLT-LMM v.2.3 was used in all GWAS analyses, as it accounts for cryptic relatedness42. 427 

Autosomal analysis was restricted to variants with a MAF >0.1%, info score >0.8, genotype hard 428 

call rate >0.95, and Hardy–Weinberg P >1×10−12. A total of 8,239,177 autosomal makers with 429 
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minor allele frequencies above 0.1% that passed quality controls were tested. Heritability was 430 

estimated from single nucleotide polymorphisms (SNPs) under an additive model of inheritance 431 

using BOLT-REML42 and LD Score Regression (LDSC)43. 432 

Genetic correlations were estimated for each pair of pain conditions using LDSC44. 433 

Tissue-based partitioned heritability was evaluated using LD Score Regression17,18, with the 434 

dataset from the Xavier lab19.  435 

Gene-based analysis 436 

Gene-based analysis was done using MAGMA. SNPs derived from the summary GWAS were 437 

mapped to 18,714 protein-coding genes. A threshold of genome-wide significance level was 438 

estimated at P < 2.67 x 10-6.  439 

Genome-wide meta-analysis 440 

In order to identify shared and unique genetic loci between single and multi-site chronic pain 441 

summary GWAS datasets, a meta-analysis was performed using GWAMA16 that was adapted 442 

from the sex-specific analysis described previously45. The code was adapted to replace the “sex-443 

differentiated” option where we assigned “males” as single-site pain and “females” as multi-site 444 

pain45. The results of GWAMA will show unique and pleiotropic loci. 445 

Functional mapping and annotation 446 

We used the online platform of FUMA46 v.1.3.4 to obtain comprehensive annotation information 447 

from GWAS summary data. Gene-based tests were obtained using MAGMA47.  448 

Pathway analyses were conducted with MAGMA within Gene Ontology’s (GO) biological 449 

processes48. Reduction and visualization of GO pathways was done using reviGO21.  450 

Replication study cohort –HUNT 451 

Participants in the HUNT Study 452 
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The Nord-Trøndelag Health Study (HUNT) is an ongoing population-based cohort study from 453 

the county of Nord-Trøndelag in Norway49,50. All inhabitants aged 20 years or older were invited 454 

to participate in the HUNT1 survey (1984-1986), the HUNT2 survey (1995-1997), and the 455 

HUNT3 survey (2006-2008). Participation rates in HUNT1, HUNT2 and HUNT3 were 89.4% 456 

(n=77,212), 69.5% (n=65 237) and 54.1% (n=50 807), respectively50. Taken together, the study 457 

included more than 120,000 different individuals from Nord-Trøndelag County. For the present 458 

study, we included participants from HUNT2 and HUNT3. All participants have provided 459 

questionnaire, interview, and measurement data, which can be found at the HUNT databank 460 

[https://hunt-db.medisin.ntnu.no/hunt-db]. In addition, about 80,000 participants have provided 461 

biological samples for storage at the HUNT biobank [https://www.ntnu.edu/hunt/hunt-biobank].  462 

Phenotype definition in HUNT 463 

The pain questionnaires in HUNT2 and HUNT3 have been described in detail previously51. In 464 

brief, participants who answered "yes" to the screening question “Have you during the last year 465 

continuously for at least 3 months had pain and/or stiffness in muscles and joints?” were 466 

requested to indicate the site of the pain, with the possibility to select one or more sites among 467 

the following: neck, shoulders, elbows, wrist/hands, upper back, low back, hips, knees, and/or 468 

ankles/feet. Cases with chronic multi-site pain were defined as those reporting pain at two or 469 

more sites. Controls were defined as those who answered "no" to the screening question on 470 

chronic pain. If an individual had participated in both HUNT2 and HUNT3, information from 471 

HUNT2 was used. This resulted in a total of 25,747 cases with multi-site pain and 35,753 472 

controls without chronic pain. 473 

 474 

Genotyping, quality control and imputation  475 
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In total, DNA from 71,860 HUNT samples was genotyped using one of three different Illumina 476 

HumanCoreExome arrays (HumanCoreExome12 v1.0, HumanCoreExome12 v1.1 and UM 477 

HUNT Biobank v1.0). Samples that failed to reach a 99% call rate, had contamination > 2.5% as 478 

estimated with BAF Regress52, large chromosomal copy number variants, lower call rate of a 479 

technical duplicate pair and twins, gonosomal constellations other than XX and XY, or whose 480 

inferred sex contradicted the reported gender, were excluded. Samples that passed quality control 481 

were analyzed in a second round of genotype calling following the Genome Studio quality 482 

control protocol described elsewhere53. Genomic position, strand orientation and the reference 483 

allele of genotyped variants were determined by aligning their probe sequences against the 484 

human genome (Genome Reference Consortium Human genome build 37 and revised 485 

Cambridge Reference Sequence of the human mitochondrial DNA; http://genome.ucsc.edu) 486 

using BLAT54. Variants were excluded if their probe sequences could not be perfectly mapped, 487 

cluster separation was < 0.3, Gentrain score < 0.15, showed deviations from Hardy Weinberg 488 

equilibrium in unrelated samples of European ancestry with p-value < 0.0001), had a call rate < 489 

99%, or another assay with higher call rate genotyped the same variant. Ancestry of all samples 490 

was inferred by projecting all genotyped samples into the space of the principal components of 491 

the Human Genome Diversity Project (HGDP) reference panel55,56 (938 unrelated individuals; 492 

downloaded from http://csg.sph.umich.edu/chaolong/LASER/), using PLINK. Recent European 493 

ancestry was defined as samples that fell into an ellipsoid spanning exclusively European 494 

population of the HGDP panel. The different arrays were harmonized by reducing to a set of 495 

overlapping variants and excluding variants that showed frequency differences > 15% between 496 

data sets, or that were monomorphic in one and had MAF > 1% in another data set. The resulting 497 

genotype data were phased using Eagle2 v2.357. 498 
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 Imputation was performed on the 69,715 samples of recent European ancestry using 499 

Minimac358 (v2.0.1, http://genome.sph.umich.edu/wiki/Minimac3) with default settings (2.5 Mb 500 

reference based chunking with 500kb windows) and a customized Haplotype Reference 501 

consortium release 1.1 (HRC v1.1) for autosomal variants and HRC v1.1 for chromosome X 502 

variants59. The customized reference panel represented the merged panel of two reciprocally 503 

imputed reference panels: (1) 2,201 low-coverage whole-genome sequences samples from the 504 

HUNT study and (2) HRC v1.1 with 1,023 HUNT WGS samples removed before merging. We 505 

excluded imputed variants with Rsq < 0.3 or minor allele count <3. 506 

Association testing  507 

We used the Scalable and Accurate Implementation of GEneralized mixed model (SAIGE)60, 508 

which uses a generalized mixed model to account for sample relatedness and cryptic population 509 

structure. We ran a mixed logistic regression model, including sex, age, genotyping batch, and 510 

the first 4 principal components as covariates. The principal components were calculated by 511 

projecting all samples into the space of the principal components of unrelated HUNT samples, 512 

using directly genotyped variants in PLINK v1.9061.  513 

Ethics 514 

The current study is approved by the Regional Committee for Medical and Health Research 515 

Ethics (ref. 2015/573). 516 

Allen Brain Atlas 517 

Human gene expression data for visualization of  DCC expression in the brain were obtained 518 

from the Allen Human Brain Atlas (http://human.brain-map.org). A detailed description of this 519 

dataset can be found elsewhere22. The Neurosynth platform (https://neurosynth.org/) was used 520 

extract heat map of normalized expression of DCC across the cerebral cortex and subcortical 521 
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regions. Visualization of the extracted heat map was done using either Brain Net Viewer62 or 522 

MRICron (https://www.nitrc.org/projects/mricron). 523 

Brain imaging in the UK Biobank 524 

Brain imaging occurred on a subset of subjects at a subsequent brain imaging visit. Inclusion into 525 

the pain groups therefore necessitated that subjects met the same chronic pain report on both the 526 

initial baseline visit and brain imaging visit. This resulted in 3,985 subjects with no pain, 593 527 

subjects with one-site pain and 800 subjects with multi-site pain. Here, we focused on 528 

diffusion-weighted imaging in the UF following the identification of the axonogenesis pathway 529 

and the expression of DCC in regions the corticolimbic system. 530 

Diffusion data were acquired using a spin-echo echo-planar imaging sequence with two 531 

b-values (b = 1,000 and 2,000 s/mm2) at 2-mm spatial resolution. The diffusion-weighted 532 

volumes were acquired with 100 distinct diffusion-encoding directions with multiband 533 

acceleration factor of 3. The field of view was 104 × 104 mm, imaging matrix 52 × 52, 72 slices 534 

with slice thickness 2 mm, giving 2 mm isotropic voxels. Additional details about the sequence 535 

of acquisitions and extraction of IDPs in the UK Biobank can be obtained here: 536 

https://biobank.ctsu.ox.ac.uk/crystal/refer.cgi?id=1977. Briefly, the data was first corrected for 537 

eddy currents and head motion using the Eddy tool. Second, the tracts were derived using 538 

probabilistic tractography analysis (BEDPOSTx / PROBTRACKx). The automatic mapping of 539 

the 27 major white matter tracts was conducted in standard space of each participant using 540 

start/stop region of interest masks (implemented using the AutoPtx plugin for FSL). Maps of 541 

fractional anisotropy (FA), mean diffusivity (MD), intracellular volume fraction (ICVF), 542 

isotropic volume fraction (ISOVF) and orientation dispersion (OD) were registered with the 543 

AutoPtx tract masks, allowing the calculation of the averaged value for each parameter across all 544 
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voxels pertaining to each tract of interest. Here, we specifically focused on the angular variation 545 

in neurite orientation (OD) in the UF.  546 

The OD of neurites can range from highly parallel (coherently oriented white matter 547 

structures, such as the corpus callosum) to highly dispersed (gray matter structures characterized 548 

by sprawling dendritic processes in all directions).  549 

Polygenic risk scores 550 

Polygenic risk scores (PRSs) were generated using PRSice v.2.3.363 using as a base summary 551 

GWAS results derived from the single-site and the multi-site GWAS by excluding participants 552 

with imaging results. PRSet was used to generate PRSs for the axonogenesis pathway 553 

(GO:0007409) and the DCC gene with 100 kb on each side. SNPs were clumped using the 554 

maximum haplotype frequency estimates and permutation was performed 10,000 times to 555 

generate an empirical P-values and to prevent Type 1 errors. A regression model that included 556 

sex, age, scan site and head scales were used as covariates in a model where each participant’s 557 

PRS was the dependent variable. A PRS was generated for a series of P-value thresholds (5x10-8, 558 

1x10-7, 10-6, 10-5. 10-4, 10-3,0.04, 0.05, 0.1, 0.2, 0.3, 0.4, 0.5, and 1) in the summary GWAS were 559 

to determine the association between pain-related genetic variants and left and right OD of the 560 

UF. The best-fit P-value threshold was used in the analysis.  561 
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FIGURE LEGENDS AND TABLES 637 

Figure 1. Pain sites characteristics and correlations in UK Biobank (A) Pain sites mapped to the 638 

human body. Black dots indicate the sites in the front of the body, while grey dots indicate the 639 

sites in the back of the body. Number of cases at each site shown in parenthesis. Human body 640 

image from clipart-library.com. (B) Epidemiologic and genetic correlations between pain sites. 641 

Heatmap showing correlations for co-occurrence of pain sites. Correlations at the epidemiologic 642 

odds ratios (OR) are shown in purple hues, while genetic odds ratios (Rg) are shown in orange 643 

hues. Grey cells indicate statistical non-significance after Bonferroni correction for the number 644 

of same-colored cells. (C) Scatterplot showing correlation between epidemiologic OR and body 645 

map distance. Each dot is a pair of pain sites out of a total of 21. Also shown are percent variance 646 

explained (r2), slope of regression (m), and associated P-value (P). (D) Scatterplot showing 647 

correlation between genetic Rg and body map distance. (E) Scatterplot showing correlation 648 

between genetic Rg and epidemiologic OR. (F) Narrow-sense heritability estimates for each pain 649 

site (blue), for chronic single-site pain (orange), and for chronic multi-site pain (brown). 95% 650 

CIs shown in black. The difference in heritability is highly significant (*** P<2.2x10-16).  651 

Figure 2. Genome-wide association studies for single-site pain and multi-site pain. Shown are 652 

Manhattan plots at the SNP-level (top) and at the gene-level (bottom). SNP P-values are 653 

obtained from BOLT or GWAMA, while gene P-values are obtained from MAGMA. 654 

Alternating dark and light color hues used for odd and even chromosome numbers. Genome-655 

wide significance highlighted by a horizontal red line at SNP-level is from Bonferroni’s 656 

threshold of 5x10-8, while at gene-level is at FDR 1%. (A) Single-vs-no chronic pain site. (B) 657 

Multi-site-vs-no chronic pain sites. (C) Unique loci derived from a meta-analysis in GWAMA. 658 

(D) Pleiotropic loci from a meta-analysis in GWAMA. 659 
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Figure 3. Partitioned heritability for single-site pain and multi-site pain. (A) Seventy-eight 660 

tissues were grouped into eight tissue classes: central nervous system (CNS, green, n=21), 661 

peripheral nervous system (PNS, blue, n=4), endocrine (END, purple, n=2), myeloid (MYE, red, 662 

n=16), B cells (B, orange, n=8) T cells (T, purple, n=22), adipose (ADI, brown, n=2) and muscle 663 

(MUS, grey, n=3). Shown for each tissue is –log10 of FDR-adjusted P-value for enrichment. 664 

Heritability estimated for single-site pain (top) and for multi-pain sites are shown (COPC; 665 

bottom). Statistical threshold of significance is highlighted at the FDR 10% level with horizontal 666 

red lines, while significant tissues with colored filled boxes. (B) Zoom into the CNS tissues for 667 

multi-site pain. (C) Scatter plot of heritability coefficients in single-site pain versus multi-site 668 

pain. Each dot is a tissue of the CNS. Orange line obtained from linear regression, with percent 669 

variance explained (r2), slope (m) and regression P-value (P) shown. 670 

Figure 4. Functional validation for a role of DCC in the human brain. (A) Whole brain 671 

expression of DCC computed from the Allen Brain Atlas. (B) Zoom into the expression of DCC 672 

in the subcortical limbic regions. (C) Representation of the uncinate fasciculus (UF) white matter 673 

tract. (D) Bar plot of bilateral dispersion orientation (OD) of the UF in the no-pain controls, 674 

single-site pain, multi-site pain states. The y-axis represents OD values for the UF. Bars 675 

represent standard error. *P<0.05; ***P<0.0001. (E) Polygenic risk score (PRS) generated using 676 

PRSice from summary GWAS of single-site pain, multi-site pain, axonogenesis pathway, and 677 

DCC. Plotted is the -log 10 P-value of the regression model using PRS with the score selected at 678 

the best fit P-value threshold. 679 

Table 1.  Demographic and phenotypic characteristics of the study population. 680 

Table 2. Replication of results on multi-site pain from UK Biobank in HUNT. 681 

  682 
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SUPPLEMENTARY MATERIALS 683 

Supplementary Figure 1. Histogram of number of UK Biobank participants per reported 684 

number of chronic pain sites. 685 

Supplementary Figure 2. QQ plot: Quantile-quantile plot shows the observed versus expected – 686 

log10 p-values from A) one pain site and B) multi-site pain association analysis. 687 

Supplementary Figure 3. Locus Zoom plots for each of the 23 genome-wide significant loci. 688 

Supplementary Table 1. Prevalence of acute and chronic pain sites in UK Biobank. 689 

Supplementary Table 2. Epidemiological odds of reporting pairs of chronic pain sites. 690 

Supplementary Table 3. Genetic correlation between pairs of chronic pain sites. 691 

Supplementary Table 4. Latent causal variable analysis between chronic pain sites. 692 

Supplementary Table 5. Heritability estimates for chronic pain sites. 693 

Supplementary Table 6. List of top SNPs associated with single-site pain.  694 

Supplementary Table 7. List of protein-coding genes associated with single-site pain. 695 

Supplementary Table 8. List of genome-wide loci associated with multi-site pain. 696 

Supplementary Table 9. List of protein-coding genes associated with multi-site pain. 697 

Supplementary Table 10. List of protein-coding genes derived from GWAMA that are unique 698 

for single-site pain or multi-site pain GWASs. 699 

Supplementary Table 11. List of protein-coding genes derived from GWAMA that are 700 

pleiotropic between single-site pain or multi-site pain GWASs. 701 

Supplementary Table 12. Tissue-specific partitioned heritability within the Xavier lab dataset 702 

for single-site pain. 703 

Supplementary Table 13. Tissue-specific partitioned heritability within the Xavier lab dataset 704 

for multi-site pain. 705 
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Supplementary Table 14. Pathway-based functional analyses for single-site pain GWAS. (A) 706 

Analysis in Gene Ontology’s biological processes.  707 

Supplementary Table 15. Pathway-based functional analyses for multi-site pain GWAS. (A) 708 

Analysis in Gene Ontology’s biological processes. (B) Reduced pathway sets from reviGO.  709 

Supplementary Table 16. Replication in HUNT cohort. (A) Locus-level; (B) Gene-level; (C) 710 

Pathway level.  711 

Supplementary Table 17. Polygenic risk score (PRS) regression models testing left, right, and 712 

bilateral orientation dispersion of the uncinate fasciculus (UF). 713 
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Figure 1. Pain sites characteristics and correlations in UK biobank (A) Pain sites mapped to the human body. Black dots
indicate the sites in the front of the body, while grey dots indicate the sites in the back of the body. Number of cases at
each site shown in parenthesis. Human body image from clipart-library.com. (B) Epidemiologic and genetic correlations
between pain sites. Heatmap showing correlations for co-occurrence of pain sites. Correlations at the epidemiologic odds
ratios (OR) are shown in purple hues, while genetic odds ratios (Rg) are shown in orange hues. Grey cells indicate
statistical non-significance after Bonferroni correction for the number of same-colored cells. (C) Scatter plot showing
correlation between epidemiologic OR and body map distance. Each dot is a pair of pain sites out of a total of 21. Also
shown are percent variance explained (r2), slope of regression (m), and associated P-value (P). (D) Scatter plot showing
correlation between genetic Rg and body map distance. (E) Scatter plot showing correlation between genetic Rg and
epidemiologic OR. (F) Narrow-sense heritability estimates for each pain site (blue), for chronic single-site pain (orange),
and for chronic multi-site pain (brown). 95% confidence intervals shown in black. The difference in heritability is highly
significant (*** P<2.2x10-16).
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Figure 2. Genome-wide association studies for single-site pain and multi-site
pain. Shown are Manhattan plots at the SNP-level (top) and at the gene-level
(bottom). SNP P-values are obtained from BOLT or GWAMA, while gene P-
values are obtained from MAGMA. Alternating dark and light color hues used
for odd and even chromosome numbers. Genome-wide significance highlighted
by a horizontal red line at SNP-level is from Bonferroni’s threshold of 5x10-8,
while at gene-level is at FDR 1%. (A) Single-site-vs-no chronic pain site. (B)
Multi-site-vs-no chronic pain sites. (C) Unique loci derived from a meta-
analysis in GWAMA. (D) Pleiotropic loci from a meta-analysis in GWAMA.
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Figure 3. Partitioned heritability for single-site pain and multi-site pain. (A) Seventy-eight tissues were grouped into eight
tissue classes: central nervous system (CNS, green, n=21), peripheral nervous system (PNS, blue, n=4), endocrine (END,
purple, n=2), myeloid (MYE, red, n=16), B cells (B, orange, n=8) T cells (T, purple, n=22), adipose (ADI, brown, n=2)
and muscle (MUS, grey, n=3). Shown for each tissue is –log10 of FDR-adjusted P-value for enrichment. Heritability
estimated for single-site pain (top) and for multi-pain sites are shown (COPC; bottom). Statistical threshold of significance
is highlighted at the FDR 10% level with horizontal red lines, while significant tissues with colored filled boxes. (B) Zoom
into the central nervous system tissues for multi-site pain. (C) Scatter plot of heritability coefficients in single-site pain
versus multi-site pain. Each dot is a tissue of the CNS. Orange line obtained from linear regression, with percent variance
explained (r2), slope (m) and regression P-value (P) shown.
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Figure 4. Functional validation for a role of DCC in the human brain (A) Whole brain expression of DCC computed from the Allen Brain Atlas
(B) Zoom into the expression of DCC in the subcortical limbic regions (C) Representation of the uncinate fasciculus (UF) white matter tract (D)
Bar plot of bilateral dispersion orientation (OD) of the UF in the no-pain controls, single-site pain, multi-site pain states. The Y-axis represents
OD values for the UF. Bars represent standard error. ***p<0.0001; *p=0.02 (E) Polygenic risk score generated using PRSice from summary
GWAS of single-site pain, multi-site pain, axonogenesis pathway, and DCC. Plotted is the -log 10 p-value of the regression model using PRS
with the score selected at the best fit p-value threshold.
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Table 1 – Demographic and phenotypic characteristics of study population 

Categorical data were compared using a chi-square test and quantitative data are compared using a t-
test. The overall p-value is an ANOVA between the three groups. 

 

 

 

 

 

 

 

Controls One-site Multi-site P-value
Females (%) 52.4% 54.2% 60.7% <0.0001
Age (mean) 56.78 56.67 56.98 <0.0001
BMI (mean) 26.70 27.67 28.66 <0.0001
Smoking status (current) 8.8% 10.8% 13.6% <0.0001
Townsend deprivation index (mean) -1.60 -1.32 -0.80 <0.0001
Number of self-reported cancers 0.09 0.09 0.1 <0.0001
Number of self-reported non-cancer 
illnesses 

1.44 1.94 2.83 <0.0001

Medication for pain relief  
Paracetamol (n) 20,846 28,800 40,954 <0.0001

Ibuprofen (n) 14,480 21,137 24,468 <0.0001
Aspirin (n) 23,418 16,278 17,602 <0.0001

Depressed mood last two weeks  <0.0001
Severe days 12.9% 18.9% 25.6% 

More than half the days 1.6% 3.0% 5.5% 
Nearly every day 0.9% 1.7% 4.4% 

Number of depression episodes (mean) 2.44 2.78 3.21 <0.0001
Neuroticism score (mean) 3.35 4.32 5.41 <0.0001



Table 2 – Replication of multi-site chronic pain results from UK biobank in HUNT 

a) Loci SNP level 

 

 

b) Gene level 

HUGO CHR START STOP Z stat HUNT P-value FDR  

DCC 18 49866542 51062273 5.44 2.64E-08 0.000497 DCC netrin 1 
receptor 

CAMKV 3 49895414 49907655 4.10 2.00E-05 0.047772 CaM Kinase like 
vesicle associated 

IP6K1 3 49761728 49823973 4.10 2.03E-05 0.047772 Inositol 
hexakisphosphate 
kinase 1 

MON1A 3 49946302 49967445 4.01 3.09E-05 0.058253 MON1 homolog A, 
secretory trafficking 
associated 

MAML3 4 1.41E+08 1.41E+08 3.90 4.82E-05 0.070071 Mastermind loke 
transcriptional 
coactivator 3 

RNF123 3 49726950 49758962 3.68 0.000119 0.083047 Ring finger protein 
123 

ZBTB46 20 62375021 62463731 3.53 0.000209 0.108017 Zinc finger and 
BTB Domain 
containing 46 

BSN 3 49591922 49708982 3.45 0.000284 0.118353 Bassoon 
presynaptic 
cytomatrix protein 

TRAIP 3 49866028 49893992 3.38 0.000357 0.126412 TRAF interacting 
protein 

RBM6 3 49977474 50114685 3.32 0.000454 0.144758 RNA binding motif 
protein 6 

MST1 3 49721380 49726196 3.26 0.00056 0.159801 Macrophage 
stimulating 1 

 

Loci Lead SNP Genes in locus HUNT p-value 
Chr3 :49,206,000-49,891,000 rs11709734 APEH, BSN, C3orf62, C3orf84, 

CCDC36, CDHR4, DGA1, 
GMPPB, GPX1, IP6K1, 
KLHDC81B, MST1, MST1R, 
NICN1, RHOA, RNF123, 
TCTA, TRAIP, UBA7, USP4   

rs184219667 (r2=0.96)  1.36x10-3 

Chr4 :140,600,000-141,000,000 rs34595097 MAML3 rs1204594 (r2=0.54) 2.33x10-4 
Ch7 :113,770,000-114,267,000 rs12672683 FOXP2 rs62469212 (r2=0.51) 1.42x10-3 
Chr18 : 50,073,000-50,908,000 rs8099145 DCC rs17410557 (r2=0.58) 1.68x10-4 



 

 

c) Pathway level 

VARIABLE DESC HUNT P-value FDR
GO:0007409 axonogenesis 0.00095495 0.547171
GO:0061564 axon development 0.0013778 0.547171
GO:0042297 vocal learning 0.0014606 0.547171
GO:0098596 imitative learning 0.0014606 0.547171
GO:0048812 neuron projection morphogenesis 0.0023204 0.595695
GO:0048667 cell morphogenesis involved in neuron differentiation 0.0023438 0.595695
GO:0120039 plasma membrane bounded cell projection 

morphogenesis 
0.0024645 0.595695

GO:0048858 cell projection morphogenesis 0.0026534 0.595695
GO:0006206 pyrimidine nucleobase metabolic process 0.0036173 0.612315
GO:0098597 observational learning 0.0040134 0.612315
GO:0032913 negative regulation of transforming growth factor 

beta3 production 
0.0040365 0.612315

GO:0007638 mechanosensory behavior 0.0058522 0.621343
GO:0032990 cell part morphogenesis 0.0058527 0.621343
GO:0098598 learned vocalization behavior or vocal learning 0.0059061 0.621343
GO:0010608 posttranscriptional regulation of gene expression 0.0069535 0.63441
GO:0031223 auditory behavior 0.0069601 0.63441
GO:0030182 neuron differentiation 0.0099669 0.690212
GO:0007399 nervous system development 0.03211 0.773552
GO:0022008 neurogenesis 0.033344 0.773786
GO:0071625 vocalization behavior 0.03577 0.778559
GO:0048468 cell development 0.038141 0.78672
GO:0010468 regulation of gene expression 0.042054 0.78672
GO:0000904 cell morphogenesis involved in differentiation 0.044285 0.78672
GO:0006208 pyrimidine nucleobase catabolic process 0.047884 0.78672
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